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Abstract

A new high order Arakawa-like method for the incompressible vorticity equa-
tion in two-dimensions has been developed. Mimetic properties such as skew-
symmetry, energy and enstrophy conservations for the semi-discretization are
proved for periodic problems using arbitrary high order summation-by-parts
operators. Numerical simulations corroborate the theoretical findings.
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1. Introduction

The numerical discretization issue for non-linear problems has been stud-
ied for a long time. Among the many difficulties, the false transfer of energy
between different scales and the consequent non-linear computational insta-
bility are arguably the hardest to encounter. How this problem can harm
long-term numerical simulations and applications has first been shown by
Phillips in [23] and afterwords by Durran in [9]. The non-linear numerical
instability was traced back to the inappropriate treatment of the non-linear
terms.

In order to overcome this problem, different solutions have been pro-
posed: adding a smoothing term to control the non-physical energy growth
23],[15],[11], using higher order schemes to raise the accuracy [25], and us-
ing mimetic schemes to mimic physical properties [1],[14],[20],[2] are among
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the most common ones. Arakawa, in [3], proposed a particular second-order
mimetic finite-difference Jacobian operator and showed the superiority of his
solution with respect to other non-mimetic schemes [4]. His solution have
been widely used [25],[12], studied [18],[8], and generalized [7],[24],[19].

The aim of this paper is to blend high order accuracy with mimetic proper-
ties and re-formulate Arakawa’s Jacobian using summation-by-parts (SBP)
operators ([6],[13],[27],[26]). The proficiency of this technique lies in the
simulation of the integration by parts property and maintain the analytical
conservation properties in the discrete setting. All mimetic properties are
included in the special matrix structure and do not depend on a specific dis-
cretization order. In Arakawa’s scheme, for example, the mimetic properties
are proved only for a second order scheme. By using SBP operators we aim
for arbitrary high order approximations.

The paper is divided as follows: in Section 2, we derive the two-dimensional
incompressible vorticity equation in terms of stream-function and vorticity
and show well-posedness for a periodic problem. In Section 3 we analyze
the analytical properties of the Jacobian operator which guarantee energy
and enstrophy conservations for periodic problems. Summation-by-parts dis-
cretization and the corresponding conservation properties are constructed
and proved in Section 4 by exploiting the SBP properties. Section 5 is dedi-
cated to numerical computations and discussion of their results. Finally, we
draw conclusions in Section 6.

2. The incompressible vorticity equation

Consider the Euler equations for an incompressible inviscid fluid in %3

ov
— +v-Vv = —Vp, (1)

ot
Vv = 0,
where v = (u,v,w) is the velocity field in a Cartesian frame of coordinates

(x,y, z). The vorticity vector w is defined as the curl of the velocity field v,
ie.,

oy 0z 0z 0x dr Oy
In order to derive the vorticity equation we recall the identity

(Iv*)
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(for details see [22],[16]). By taking the curl of the momentum equation in
(1), the incompressibility relation and (3) lead to

0

v Vw—w-Vv=0. (4)

ot
A two-dimensional flow can be described by a three-dimensional velocity field
with the vertical component w identically zero and the vorticity w = (0,0, ¢),
where ( = (0v/dx — Ou/dy). In this setting, w L Vv and (4) becomes the
vorticity equation for an incompressible flow on a general two-dimensional
spatial domain. For completeness we restate (1) as:

%—FV-VC:O, (5)

ot
V.v=0. (6)

3. Analytical properties of the Jacobian for periodic problems

The divergence relation (6) implies (see [17],[5]) the existence of a primi-
tive function v with the exact differential form dy) = —udy+vdz. Therefore,
zero divergence also implies that the velocity field can be written as

(u,v) = (‘%’%) . (7)

The function ¢ in (7) is the so called stream function. By taking the curl
of (7), it follows that the relation between the stream function 1 and the
vorticity ¢ is ¢ = At. In this setting (5) can be rewritten as

9¢

S I0,0 =0 ®

The advection term in (8) is expressed by the Jacobian differential oper-
ator J(-,-), which is defined as

8&@ Oa Ob

(9)
By definition, the Jacobian operator satisfies naturally the skew-symmetric
property:

J(a,b) = —J(b,a). (10)
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Moreover, if we consider periodic functions a and b on the spatial domain D,
the following integral constraints on (9) hold:

/J(a,b)dxdy:/aJ(a,b)da:dy:/ bJ(a,b)dzdy = 0. (11)

These last properties follow directly from integration by parts using periodic
boundary conditions.

3.1. Conservation properties
We start with two definitions.

Definition 1. The mean kinetic energy for the equation (8) is defined as:

K= VP (12)

where ﬁ? = [, fdxdy.

Definition 2. The enstrophy (mean square vorticity) for the equation (8) is
defined as:

G= %? (13)

In the following theorem we state the continuous conservation laws that
are the main focus in this paper.

Theorem 1. Consider a periodic stream function with periodic related vor-
ticity function. The vorticity equation (8) conserves the mean kinetic energy
(12) and the enstrophy (13).

Proof. We multiply (8) by ¢ and compute the mean over the domain D. This
leads to - To
1 -
% 20 ¢J (¥, ¢) =0, (14)

where in the last equality we used the integral property (11). The result (14)
shows that the formulation (8) conserves the enstrophy.

Next we consider conservation of mean kinetic energy; we multiply (8) by
¥ and compute the mean over the domain D. By using property (11) and
integration by parts we get:

0 (1o N\ o Ve DY) A
a(§w) =y = A0 _ % YT =0 ()

The relation (15) show that (8) conserves mean kinetic energy. O
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As a direct consequence of the enstrophy conservation, the periodic initial
value problem associated with the vorticity equation is well-posed.

Corollary 1. The Cauchy problem given by

9¢
— + J(¢, = 0, ,y) € Dt >0,
((z,y,0) = [f(z,y), (z,y) € D,
where ¢ and Y are periodic functions on D, is well-posed.
Proof. The procedure used in (14) leads to
0
Sl =0,
where ||-|| indicates the standard L? norm. Integration with respect to the
time leads to
1K = 1£15, (2,y) € Dt > 0. (17)
The bound of the solution in terms of initial data guarantees well-posedness,
see [10] for more details. O

3.2. Operator splitting

Following the splitting technique presented in [21], we formulate a new
Jacobian expression as a linear combination of three equivalent differential
operators. These are:

Ji(¥, )
wo - (L 2(8).

oo - (368)- (%)

The general linear combination

(o ouicy

J(,C) = aJi + BJy +7J3 (19)

is a new operator equivalent to (9) for any set of coefficients «, f and 7,
provided that a + 8+~ = 1. It is equivalent in the sense that (19) is skew-
symmetric and satisfies the integral constraints (14)-(15).
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In the remaining part of the paper, we will derive high order finite differ-
ence approximation of (19) which mimics identically the three properties in
the discrete case. The result will be a high order accurate generalization of
the second order Arakawa’s Jacobian scheme in [3].

4. Summation-by-parts operators for periodic problems

To define an SBP semi-discretization of the spatial derivatives, we in-
troduce the computational grid, z; = ih,, + € 0,1,2,..., N and y; = jh,,
Jj€0,1,2,..., M where h, and h, > 0 are the spatial steps in the two dimen-
sions. The partial derivatives are approximated by

Of _  p-1 of _ fl
5p N (P e I)f and a—yN(Ix@@Py Qy)f,

where £ = (fi1, ..., fine, foroos forts oo N1, -0 far) T is a vector of dimension
NM and ® is the Kronecker product of two matrices defined as

CLHB CllnB
A®B = : : . (20)

amiB ... amunB

P, , are diagonal positive definite matrices such that (P, ® P,) define a two-
dimensional L? norm by ||f|]%Pz®Py) = (P, ® P)f. The matrices Q,, are
periodic operators satisfying @), ,, + ny =

In order to define the discrete non-linear operator J (¢, ) in (19), we need
to define an analogous of the product between two functions. For any vector
a = (a,...,ay), let the matrix diag(a) be

aa 0 0 .. O

0 a9 0 .. 0
diag(a) = | . : - (21)

0 0 .. 0 an
and let the vector 1 = (1,--- ,1)T be of the same length as a. Then we have
diag(a)l =a and 1'diag(a) = a’, (22)

with properties:

Ddiag(a) = diag(Da), (23)
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a’ B = (BTa)" = 1"diag(B"a), (24)

for any diagonal matrix D, and for any vector a of length N and N x N
matrix B. Equation (24) follows from (22).
The definition (22) is used as follows to define the vectors:

D, f = (PJ'Q.®1)f = diag(P,'Q, ® I,1)1,

25
Df = (L ®P'Q)f = diag(l, @ P, Q,0)1. (25)

Now we can define the corresponding SBP discretization of the analytical
Jacobian (19) by adopting the previous definitions for each term in (18).
From (25), the discrete analogous of the differential operators in (18) are
vectors of size NM, defined as

J1(,¢) = {[diag(P;'Q. ® I)diag(I, ® P;'Q,¢)] 1

(26)
—  |diag(I, ® P,/'Qu)diag(P,' Q. ® I,()] 1},
1®,¢) = {(P/'Q.® L) [diag(¥)diag(l, ® P;'Q,()] 1 -
— (I, ® P'Qy) [diag(¥)diag(P; ' Qe ® 1,0)] 1},
Js¥,¢) = {(I.® P,'Q,)diag({)diag(P;'Q, ® Iah)] 1 )

— (P'Q. ® 1) [diag({)diag(I, © P Q)] 1},

where ¢ and 9 are also vectors of size NM. Then, the discretization of (19)
in SBP formulation may be obtain by the linear combinations of J;, J5 and
J3, given by

J:OdJl—i‘ﬁJg—i")/Jg, (29)
where the real constants «, 5 and v satisfy
a+fB+y=1 (30)

The following theorem proves that the analytical properties (10) and (14)-
(15) are reproduced exactly by (29) for one unique choice of the coefficients
in (30).

Theorem 2. The linear combination (29) is skew-symmetric, conserves en-
strophy and conserves kinetic energy if and only if

1

04:5:7:5. (31)



This choice gives the discrete Jacobian of arbitrary order of accuracy

1 1 1
J =T+ -Jy+ =Js.
gitgatgds

Proof. The proof is divided in three parts:

1. Conservation of enstrophy
Consider the semi-discretization

aC B
I, =0

By multiplying (33) with ¢* (P, ® P,) we have

a 10
CT(Pm &® Py)a = 5&“(”%]%@1311)

= —af" (P, @ P,){[diag(P; ' Q. ® Ip)diag(L, @ P, Q,{)]1
—[diag(I; ® Py_lel/))dm!](Pac_le ® 1,()]1}

—6¢" (Pr ® P){(P, ' Qo ® 1) [diag(y)diag(L, ® P, Q,¢)]1

— (I, ® P'Qy)|diag(¥)diag(P; ' Q. ® 1,()]1}

_VCT(P:B ® Py){(]x ® Py_le)[diag({)diag(P{lQm ® Iy'%b)]l

—(P,' Q. © L) |diag({)diag(I, ® P, ' Qub)]1}.

(32)

(33)

(34)

In the first term on the RHS of (34) (the whole part multiplied by the
a) we use (22) and the commutative property of diagonal matrices to

write

(" (P, ® P)) = 1"diag({)(P. ® P,) = 17 (P, ® P,)diag(().

In the second and third term (the parts multiplied by 5 and -, respec-

tively) we use Qq, = —Q7 ,, (22), (23) and (24) as follows
(T(Pm ® Py)(Pngw ® ]y) = CT(QJC ® Py)

QP ®1,)(P® Fy)

—[(Px ® Py)(P;'Qu ® I,)C]"

—~1"diag[(P, ® P,)(P;'Q. ® 1,)(]

= —17(P, ® P,)diag(P;'Q. ® I,),

(35)



((PeP)(LeoP'Q,) = ('(P®Q,)
= —(T(Ix R Q;Py_l)(Px X Py)

~[(P: ® P,) (1, ® P, 'Qy)¢]"
—leiag[(Px ® P,) ([ ® Pyile)C]

= —17(P, ® P,))diag(I, ® PJleO.

(36)

Next, by extracting diag(¥) and diag({) from the second and third
term respectively, (34) becomes

10 .
55”(”?1%@1@) = —al™(P, ® P,)diag({)

{[diag(P;' Q. ® I)diag(l, @ P;'Q,()] 1
— [diag(I, ® P;'Qyp)diag(P; Q. ® 1,()] 1}

+p17(P, ® P,)diag(y)
{—diag(P;'Q, ® I,€) [diag(I, ® P,*Q,()] 1
+ diag(I, ® P Q) [diag(P; ' Q. ® 1,0)] 1}

+717(P, ® P,)diag(¢)
{diag(L. ® P, Q,C) [diag(P;' Q. @ L)) 1
— diag(P;'Q, ® 1,() [diag(l, ® P, ' Q)] 1}

(37)

Note that, thanks to the commutative property of diagonal matrices,

the second term on the RHS of (37) is zero. Due to the same property,

the first and the second term are the same with opposite sign if and
only if

a=r. (38)

Finally, by canceling all the terms with opposite signs, we have

10
5%”(”%&@;@) = 0.

This proves that J conserves enstrophy if and only if (38) is satisfied.

. Conservation of kinetic energy
We consider (29) with the choice (38) and multiply (33) by ¥* (P, ® P,).



We obtain

a 19
V(P P)S = 5 ol (V) e,

= —ap’ (P, ® P,) {[diag(P, Q. @ Iap)diag(l, ® P,'Q,()] 1

— [diag(L, ® P,'Qup)diag(P, ' Q. ® 1,()] 1}

—BYT (P, @ P)) {(P; Q. © 1) [diag(y)diag(I, ® P, Q,¢)] 1
— (I, ® B, Q) [diag(¥)diag(P, ' Q. ® I,{)] 1} (39)

—ap" (P, ® P)) {(I. ® P,'Q,) [diag({)diag(P, ' Q. © I)] 1

—(P'Q: ® 1y) [dz’ag(()diag(lx ® Py_le¢)] 1} :

Similar to the procedure above for the first term on the RHS of (39)
we rewrite

Y (P, ® Py) = 1"diag(¥)(P, ® P,) = 17(P, ® P,)diag ().

In the second and third term we again apply Q,, = — iy’ (23) and
(24) obtaining, with analogous steps to (35) and (36),

¢'T(Poc ® Py)(Px_lQ:c ®1I,) = _1T(Px ® Py)diag(Px_le ® 1)

and
"»bT(Pa: & Py)(]z ® Pyile) = _1T(P:B ® Py)dmg(jcc ® ngle"p)’

By extracting diag(y) and diag(¢) from the second and the third term,
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respectively, (39) becomes

8 .
Sl (VOEpcp,) = —ol'(Pe® B)diag(¥)

{[diag(P; Q. ® Lgp)diag(I, ® P, 'Q,€)] 1
— [diag(I, ® P, Qup)diag(P, ' Q. ® 1,()] 1}

+817(P, ® P,)diag(v)
{diag(P;'Q, ® L) [diag(I, ® P, Q,()] 1
— diag(I, ® Py_le'«/J) [diag(P,;'Q, @ I,Q)] 1}

+a1”(P, @ P,)diag(C)
{~diag(L, ® P; Q) [diag(P;' Qs @ 1,$)] 1
+ diag(P;'Q, ® L) [diag(I, ® Py’lei/))} 1}

(40)
Note again that, thanks to the commutative property of diagonal ma-
trices, the last term on the RHS of eq. (40) is zero. While the second
and third term are the same with opposite sign if and only if

a=p. (41)
By summation, we have

10

§EH<V¢)H%PZ®PM = 0.
Hence, J conserves kinetic energy only assuming (41).
. Skew-symmetry
We conclude noting that J; is itself skew-symmetric. By definition
(26):

J1<CL, b) = —Jl(b, a),

while Jo and J3 are not skew-symmetric. However, from definitions
(27)-(28) it follows that they satisfy

Jo(a,b) = =J5(b,a).
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Thus, the linear combination J is antisymmetric if 5 = +, since in that
case we have

J(a,b) = aJi(a,b) + pIa(a,b) + SIs(a,b)
= —aJi(b,a) — 8I5(b,a) — BIa(b, a) (42)
= —J(b,a).

In conclusion, J conserves enstrophy, kinetic energy and it is skew-symmetric
at the same time, if and if only we choose o = 8 = «. This condition, together
with (30), gives exactly (31) and J becomes J*.

J* in (32) is an Arakawa-like arbitrary high-order finite difference approx-
imation of the non-linear Jacobian in (19). ]

5. Numerical Results

5.1. Accuracy

In this section we show the rate of convergence of the approximation
(32) using SBP operators with different orders of accuracy [26]. We use the
method of manufactured solution and choose the analytical stream function

U(z,y,t) = K [sin(27(ax — t) + cos(2m(by — )], (43)
related to the vorticity function
(=AY = —47°K [a”sin(27(az — t) + b” cos(2m (by — t)] . (44)

Here K is a constant chosen such that max || = 1, while a,b determine the
frequencies in the « and y direction respectively. The functions (43) and (44)
satisfy the equation

a¢ B
5 WO =F (45)

where F' is the forcing term obtained by inserting (43) and (44) into (8).

A full time-space discretization of (45) is obtained by combining the
scheme (32) with a suitable high order time integration scheme. For all the
tests in this paper we have used the explicit standard fourth-order Runge-
Kutta (RK4) scheme with time step At obtained from the relation At =
C (h)? /4 , where p is the order the accuracy in space and h is the spatial step
(the same in the = and y direction). C' is a scaling factor for keeping the
error in time negligible with respect to the error in space.

12



The convergence rate is calculated using

1€ — ¢ la hy
p=ton (=g ) Vor (32) 1o
where ( is the analytical solution, (" the corresponding numerical solution
with spatial step h and ||¢ — ("], is the discrete L? norm. We consider SBP
operators with 2nd, 4th, 6th and 8th expected order of accuracy [26]. The
results at the final time T = 0.1 are presented in Table 5.1. In all the the
computations we have chosen the frequencies a = 2 and b = 3 in the x and

y direction, respectively, and C' = 1/50 for rescaling the time step. All the
schemes show the design order of accuracy.

SBP 2nd SBP 4th SBP 6th SBP 8th
N Err P Err P Err P Err P
30 | 2111072 6.66 104 1.00 1074 8.1310°°

40 [ 1.101072 1.97|4.33107% 3.95| 1.84 10> 5.88|8.52 107" 7.83
50 | 7.50 1073 1.94| 1.7910~* 3.94| 4.90 1075 5.93| 1.46 10~" 7.90
60 | 5341073 2.03|8.6710° 3.99| 1.6510°% 5.95|3.4310°% 7.93
70 | 3.92107% 2.00|4.69107° 3.98]6.591077 5.96| 1.00107® 7.95
80 | 1.971073 1.97(2.75107° 3.98]5.971077 5.97|3.48107° 7.96

Table 1: Discrete L?-error and Rate of convergence for the 2nd, 4th, 6th and 8th SBP
operators. The error is indicated with Err and the order of accuracy with p. N indicates
the number of grid points in the x and y direction, respectively.

5.2. Efficiency

We compare the Arakawa Jacobian (or second order version of (32)) and
the other higher order schemes derived in this paper. The manufactured
solutions (43) and (44) are used as before. As efficiency parameters we con-
sider the number of grid points and the CPU time (in seconds) needed to
reach the magnitude of the error. Table 5.2 shows the efficiency results with
a reference error of magnitude less than 0.5 - 1074 All the computations
are done with a fixed time step At = 1073, advancing up to the final time
T = 0.1. Clearly, the high order SBP schemes are much more efficient than
the Arakawa approximation.
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‘ Arakawa ‘ SBP 4th ‘ SBP 6th ‘ SBP &th
Error | 4.83-107% [ 4.34-10~* | 4.70-10~* | 4.08-107*
CPU | 1215614 s | 2.091s 0.287 s 0.139 s
N 200 40 23 18

Table 2: Efficiency comparison between the Arakawa (or second order SBP) scheme and
high order approximations of (32) using SBP operators 4th, 6th and 8th order. The CPU
time (in seconds) and the number of grid points (N) are considered at the reference error
of magnitude 1074,

6. Summary and Conclusions

We have derived the two-dimensional vorticity equation from the incom-
pressible inviscid Euler equation and showed that it was well-posed for peri-
odic problems. We have focused on the advection term in the equation which
can be rewritten as a Jacobian operator.

An Arakawa-like scheme for the discretization of the Jacobian has been
formulated using a finite difference method based on summation-by-parts
operators and splitting techniques. The resulting Jacobian approximation is
mimetic, skew-symmetric, energy and enstrophy conserving and high-order
accurate.

The skew-symmetry and the conservation properties have been proved by
using the special structure of the SBP operators and a special way to relate
vectors and diagonal matrices.

The numerical results show that the new Arakawa-like schemes using
periodic SBP operators are high order accurate and more efficient than the
original one presented in [3].

7. Appendix A. The Arakawa scheme and the second order SBP
formulation

Here we compare the Arakawa’s scheme derived in [3] with the discretiza-
tion (32) using the second order SBP operator in [26]. We want to show that
the second order approximation (32) at an internal grid point is identical to
the one in [3].

14



The Arakawa’s Jacobian at the grid point (z;,y;), ¢,7 =1,..., N, is

1
ij = W[(Ci,j-i—l = Gij—1)(Wir15 — Vi1 )

= (Giv1g — Gim1,) (Wi 1 — i)

+ W[(Ci-‘rl,j—&—l - Ci—f—l,j—l)qvbi—i—l,j - (Ci—l,j—i—l - gi—l,j—l)wi—l,j

— (G141 — Gim1,j+1)Wi g1 + (G -1 — Gim1,j—1) Vi j-1]

1
19k2 [(Vit1g41 = Yiv1j-1)Giv15 — Wimrge1 — Yi1-1)Gim1,5

+ (7707;+1,j+1 - ¢z’—1,j+1)<z‘,j+1 - (¢z‘+1,j—1 - wz‘—l,j—l)cz‘,j—l]-

(47)
The second order periodic operator on SBP form is
_ . |
0 o ~
—z 0 %
1 1
1 I 01 20
| 5 —w 0

where h is the spatial step. Hence, the second order partial derivatives (25)
of the vector function f = (f117 ceey f1M7 f21..., f2M7 ceey le, P fNM)T are

preeni= | dh 0 |- |6 - oyt
(49)

and

(L®PQ,) f= 3 o py%'le o f] _ %
(50)
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Choosing A, = A, = h in (49) and (50) lets us rewrite J; (¢, () as

(—Yic1, + Yig15) ) - diagf... (=Gij—1 + Gij+1) 1

J1(¢7<) = dzag(,

2h o
—diag(.., (_wm‘—;ff Vi) ) - diag(.., (_Q—lﬂé Z Git14) 1.

Hence, J; (%, () at the grid point (z;,y;) is given by

1
Ji; = g (Wirrg = Yim1) (G = Gig1) = Wigen = Yig-1) (G = Gimry)] -
(51)
In a similar way we compute Ja(1, () :

3.0 = ('Qu 0 1,) [dg(9) - diag(. = 651)

(—Giz1 + Giv1,j)
i) )]

(0@ B, 'Q,) | diagw) - dicgt..

_ (p-1 ?ﬂz’,‘(—@,‘—'l-ﬁ-g,'ﬂ) B 1 ¢i,‘(—C¢_1Z-+Q+1,'>
= (P'Q., ®1,) | 22 th ! (L®P1Q,) |2 z;l !

which gives J5(%, ) at the grid point (z;,y;) as

1
Jo,, = W[¢i+1,j(§i+l,j+l — Git1,j-1) — Yic1,(Gm1j41 — Gim1,-1)

+ Viir1(Grr a1 — Gio1g+1) — Vij—1(Gip1-1 — Gim1j—1)]-
For J3(v, () we obtain

(52)

(=i + Yij1)
J 57 J ,..)1}
(—Yic1j + Yiq15)

A ,..)1]

1.0 = —(PQ. 0 1) [dmg«) diag(...

+(I. ® P,'Qy) [diag(() ~diag(..,

__(p-1 Ci,j(_wi,jf‘l + i j41) 1 Ci,j(_wifl,'j + Vi)
= (P 1) - HIL® P, L
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Finally, J5(4,() at the grid point (x;,y;) is
1
Js,, = 2 [Gim1, (Vi1 41 — Yic1j-1) = Gigrj (Vi1 541 — Yig1,5-1)
+ Gigo1(Yir1j-1 — Yic1-1) = Giga1 (Wit — Yic1g41)] -
The average of (51),(52) and (53) gives the expression for J* (¢, () at the grid
point (z;,y,) as

1
Ji, = W[(%‘H,y —i—13)(Cijr1 — Gjm1) — Qi1 — Yij—1)(Civ1j — Gim1,5)]

(53)

1

T o Vi1 (Grrgen = Girrg-1) = Yim15(Gmrin = Gmngn)
1
i 1212 [Ci_l’j(wi_l’jﬂ B wi_l’j—l) - <i+1,j(1/)i+1,j+1 - ¢i+1,j—1)

Ci,j—1(¢i+1,j—1 - wz‘—l,j—l) - Cz‘,j+1(1/1i+1,j+1 - ¢i—1,j+1)] .
(54)
The expressions (47) and (54) are identical. Thus, the Arakawa’s Jacobian
coincides with the classical second order SBP formulation (32).
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