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Role of ion channels in regulating Ca2+ homeostasis
during the interplay between immune and cancer cells

T Bose1,4, A Cieślar-Pobuda2,3,4 and E Wiechec*,2

Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and
downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell
recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave
differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis.
Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the
implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their
role in cancer progression.
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Facts

� Ion channels regulate Ca2+ influx and downstream signal-
ing pathways in immune and cancer cells.

� Altered regulation of ion channels is implicated in
carcinogenesis.

� Cytotoxicity of immune cells against cancer cells depends
highly on Ca2+ signaling

� Ion channels comprise an attractive tool for targeted
therapy for cancer

Open Questions

� Are blockers of K+ and CRAC channels able to inhibit
cancer progression?

� What is the role of immune cell-specific ion channels in
cancer therapy?

� What cancer-specific ion channels are involved in neoplas-
tic transformation in vivo?

Physiological processes depend on the continued flow of ions
into and out of cells defeating a barrier impermeable to ions
such as plasma membrane, which is built in a form of
phospholipid bilayer. Thus, the hydrophobic membrane acts
as a serious energy barrier for transporting ions. Ions are

charged molecules that have low solubility in the hydrocarbon
core of lipid bilayer, thereby having low permeability coeffi-
cients across the bilayer. There is a large difference in the
electric potential between the two sides of a biological
membrane. In order to transfer ions across the membrane
and equilibrate both sides of the membrane, eukaryotic cells
are equipped in the integrally embedded pore-forming
membrane proteins (ion channels) and biological pumps.
Such structure allows for the passage of ions through the
channel. Opening and closing of the ion channel is usually
controlled chemically or mechanically. Depending on the type
of ion channel, its conformational change may occur because
of changes in the membrane potential (voltage-gated chan-
nels), ligand binding (chemical activation) or ligand-driven
stretching of the membrane (stretch-activated ion channels).
Body response to the external stimuli can be linked to the
regulation of ion channel activity. Ion channels play a crucial
role in various physiological processes including flow of nerve
impulses, muscle contraction, cell division and hormone
secretion.1 The intracellular concentration of the key signaling
ion such as calcium (Ca2+) depends on electrical gradients
driven in turn by sodium (Na+) and potassium (K+) channels.
The role of ion channels in pathogenesis of various diseases
including cancer and its treatment has been extensively
studied. The prime function of an immune cell is to remove
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cancer cells from the body by cytotoxic T lymphocytes (CTL or
CD8+ cells) and natural killer (NK) cells through polarized
discharge of the contents of cytotoxic granules towards the
target cells.2 The effector function of CTL and NK cells as well
as their proliferation and apoptosis of cancer cells largely
depend on Ca2+ signaling. The role of ion channels in the
regulation of intracellular Ca2+ concentration is well described
in the literature. Alterations in Ca2+ homeostasis due to ion
channel dysfunction contribute to the common traits of
neoplastic transformation, which are known as hallmarks of
cancer. These hallmarks include different stages of tumor
development like unlimited replication, tissue invasion and
metastasis, evasion of apoptosis, sustained angiogenesis,
self-sufficiency in growth signals and insensitivity to anti-
growth signals.3,4 Additionally, modulation of ion channel-
mediated Ca2+ concentration in CTLs regulates their antitumor
action.5,6

Regulation of Intracellular Ca2+ Concentration

Na+ and K+ are the most abundant cations in biological
systems. Na+ ions are mainly present at high concentrations
outside the cell, unlike K+ ions that are present at high
concentrations inside the cell. Gradients for these ions across
the cell membrane provide the energy source for action
potentials generated by opening of Na+ and K+ channels7,8

and for transporting solutes and other ions across the cell
membrane via coupled transporters. Among several ions, the
gradient for Ca2+ ions is the largest. The cytosol is surrounded
by two big Ca2+ stores: the extracellular space, where the Ca2+

concentration is ~ 1.8mM, and the sarco-endoplasmic reticu-
lum, where the Ca2+ concentration varies from 300 μM to 2
mM.9 In immune cells, the intracellular Ca2+ concentration is
~ 0.1 μM in the resting state, but it is significantly increased
(~10-fold) when the cells are activated.10

Plasma membrane Ca2+ channels and Ca2+ influx are
particularly important at different steps of the cell-cycle
progression and proliferation of immune cells.11–13 The
molecular features of Ca2+ channels are well defined,
which allows for the distinction of four main types of these
channels including voltage-activated, receptor-activated,
store-operated and second messenger-operated channels.
Receptor-activated, store-operated and second messenger-
operated channels are ubiquitous, whereas voltage-activated
calcium channels are specific for excitable cells. Voltage-
activated calcium channels (e.g., L-, T-, N-, P-, Q-type
Ca2+ channels) open when the plasma membrane is
depolarized. Receptor-activated calcium channels (e.g., P2X
purinergic receptors) open when a ligand binds to the
channel,14 whereas store-operated calcium channels (e.g.,
transient receptor potential (TRP)) and archetype calcium
release-activated channels (CRAC) are activated when the
level of Ca2+ within the lumen of the ER decreases below a
threshold level.15,16 Another type, second messenger-
operated channels (e.g., arachidonic acid-regulated Ca2+

current) are activated by intracellular second messengers like
arachidonic acid.17 The role of CRAC, TRPM4 and P2X
channels are important in case of immune cells in the
continuous effort to keep Ca2+ at an optimal level in order to
maintain the cellular functions in parallel with ion pumps like

Na+/K+ pumps.18,19 In non-excitable cells including immune
cells, themembrane potential plays an important role in setting
the electrical driving force for Ca2+ entry. In cells where
voltage-independent Ca2+ channels like TRPM4 and two-pore
K+ channels (K2P) are present, Ca2+ influx only depends
on the electrochemical gradient over the membrane and
intensifies when the membrane potential is more negative
(hyperpolarized).20

Among different ion channels involved in the regulation of
Ca2+ homeostasis, CRAC channels are the most important.
CRAC channels have been widely characterized21 and are
known because of their high ion selectivity for Ca2+ and low
conductance. CRAC channels are activated through the
binding of the endoplasmic Ca2+ depletion sensor, known as
stromal interaction molecule 1 (STIM1) and STIM2 to the
CRAC channel units ORAI1-3 (also known as CRACM1-3).10

ORAI1 is a widely expressed surface glycoprotein with four
predicted transmembrane domains, intracellular amino- and
carboxyl-termini and no sequence homology to other ion
channels except for its homologues ORAI2 and ORAI3.22,23

The activation of ORAI/CRAC channels involves a complex
series of coordinated steps, during which STIM proteins sense
the depletion of ER Ca2+ stores and pass on this store
depletion to the CRAC channels.24,25 In resting cells with filled
up Ca2+ stores, STIM proteins are diffusely distributed all over
the ER membrane. Following the depletion of Ca2+ stores,
STIM proteins get activated, oligomerize and redistribute into
puncta within junctional ER sites, which are in close proximity
to the plasma membrane.26

Role of Ion Channels in Maintaining the Normal
Membrane Potential

The resting potential of a lymphocyte membrane is ~− 50mV.
Membrane potential alterations mainly occur when lympho-
cytes get activated. TCR engagement activates PLCγ1, which
catalyzes the hydrolysis of phosphatidylinositol 4,5-bispho-
sphate (PIP2) into inositol trisphosphate (IP3) and di-acyl
glycerol. IP3 stimulates the release of Ca2+ from intracellular
ER stores, which triggers the opening of plasma membrane
CRAC channels. It is the resulting influx of extracellular Ca2+

that is responsible for the sustained rise in cytoplasmic Ca2+

after TCR stimulation. Ca2+ binds to the cytoplasmic
Ca2+-dependent protein calmodulin, which then activates the
phosphatase calcineurin. This phosphatase dephosphory-
lates and activates the nuclear factor of transcription of
activated T cells (NFAT), which enters the nucleus and helps
to initiate interleukin-2 (IL-2) gene transcription.10 During the
activation of immune cells, opening of CRAC channels raises
the intracellular Ca2+ level. To maintain the balance in
membrane conductance, KCa channels get opened to
hyperpolarize the membrane, which results in Ca2+ efflux. A
negative feedback loop is established when the level
of Ca2+ inside the cell is high enough to inhibit CRAC
channels. Beside the Ca2+-dependent activation of TRPM4
channels in T cells, there is also involvement of Kv1.3 channels
in order to repolarize the membrane (Figure 1). Along with
these conventional ion channels, the K2P TWIK-related
acid-sensitive K+ channels 1 and 3 (TASK-1/K2P3.1 and
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TASK-3/K2P9.1) are known to regulate immune cell effector
functions by hyperpolarizing the membrane.27

Ion Channels in Immune Cells

Activation and the effector role of immune cells is dependent on
Ca2+ influx, which is regulated by a group of ion channels located
in the plasma membrane of the cell. The detailed characteristics
of certain ion channels and their implication in the cellular
functions became possible with the help of ‘gold standard’ patch-
clamp technique. The role of individual types of ion channels in
the physiology of immune cells is briefly presented.

K+ channels. K+ channels comprise the major ion channel
family expressed in immune cells that regulate important
cellular processes including Ca2+-mediated cellular prolifera-
tion, migration and finally controlling cell volume.28 They
regulate membrane potential by driving K+ efflux resulting in
membrane hyperpolarization. From the superfamily of K+

channels, immune cells express voltage-gated (Kv1.3),
calcium-activated (KCa3.1), inwardly rectifying potassium
channels (Kir) and two-pore gated channels (K2P).

29 In regard
to the structural diversity of the channels, there are several
types like six transmembrane one pore (Kv) or transmembrane
two pore (K2P).

29 Kv channels are further subdivided into three
conserved gene families: Kv (shaker-like), Ether-a-go-go (EAG)
and KCNQ (Kv7).

30 In addition, KCa channels are grouped into
big-conductance calcium-activated channels (BKCa (KCa1.1)),

intermediate-conductance calcium-activated channels (IKCa

(KCa3.1)) and small-conductance calcium-activated channels
(SKCa (KCa2.1, KCa2.2, KCa2.3)).

30

The role of Kv1.3 and KCa3.1 in mediating the efflux of K+ in
order to maintain the hyperpolarization of the cell membrane
(Figure 1) is well explained in the literature.27 K+ channels are
differently expressed in various subsets of lymphocytes
followed by their activation. For example, naïve and regulatory
human T cells mainly express Kv1.3, whereas the expression
of KCa3.1 is upregulated upon activation by cognate
antigen.31–33 Interestingly, a recent study has shown that
Kv1.3 channels are indispensable for the differentiation of
CD8+ T cells into effector cells with cytotoxic ability.34

Moreover, Kv1.3 channels accumulate specifically at the
immune synapse (IS) between cytotoxic and target cells in
order to modulate the killing process mediated by CTL and NK
cells.35,36 In addition, blocking of KCa3.1 in NK cells increases
their tumor cell killing ability and comprises an excellent target
for cancer immunotherapy.37

Kir channels are responsible for stabilization of the resting
membrane potential near to the K+ equilibrium potential by
passing positive charge mostly into the cell (inward direction)
rather than in the opposite direction.38 This type of channels is
present in a significant amount in macrophages, dendritic cells
and microglia.39 Studies have shown that Kir2.0 and Kir4.0
family members interact with NIL-16, neuronal variant of
interleukin 16 (IL-16).40 As the cytokine IL-16 has been
characterized mostly in the immune system, the identification

Figure 1 Fluctuations of membrane potential during activation of immune cells. Ca2+ influx in lymphocytes depends on the gradient between the extracellular Ca2+

concentration (~1 mM) and the intracellular Ca2+ concentration (~0.1 μM) as well as the electrochemical gradient established by K+ channels (specifically, Kv1.3, Kca3.1 and
partially by K2P channels) and the Na

+-permeable channel TRPM4. CRAC channels are activated upon the engagement of antigen receptors (i.e., TCRs, BCRs). This is mediated
through the activation of PLCγ, the production of IP3 and the release of Ca

2+ from ER Ca2+ stores. The subsequent activation of STIM1 and STIM2 results in the opening of ORAI1
CRAC channels and SOCE. Sustained Ca2+ entry through CRAC channels leads to the activation of Ca2+-dependent enzymes and transcription factors, including calcineurin and
NFAT.28 Additionally, P2X receptors (e.g., P2X4 and P2X7) are non-selective Ca2+ channels activated by extracellular ATP mediating Ca2+ influx in order to augment SOCE-
mediated activation of signaling molecules (according to Launay P, 2004; Feske S, 2012). Abbreviations: TCR, T cell receptor; PLCγ1, phospholipase Cγ1; NFAT, nuclear factor of
activated T cells; CRAC, calcium release-activated channels; STIM1/2, stromal interaction molecule 1/2; SOCE, store-operated calcium entry; P2X, purinergic receptor 2X
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of NIL-16 emphasizes the connection of Kir channels with the
immune and nervous system. On the basis of the observation
that memantine inhibits the amplitude of inwardly rectifying K+

current though the Kir channels in macrophages andmicroglial
cells, it is postulated that blocking the Kir channels may
influence the functional activity of macrophages.41 Kir4.1
channel has been lately also found to be a target of the
autoantibody response in a subgroup of persons with multiple
sclerosis, which suggests that autoreactive T cells are key to
the pathogenesis of this disease.42

K2P (KCNK), better known as 'leak channels' are important
for setting the resting membrane potential. Furthermore, their
action is mainly voltage-independent and can be regulated via
various stimuli including mechanical stimulation, lipids, Gq

proteins or muscarine.27,43 TASK-1/K2P3.1 and TASK-3/
K2P9.1, the two functional members of the K2P family are
expressed in T lymphocytes and contribute to the modulation
of T-cell effector function including interferon-γ (IFN-γ) and IL-2
secretion as well as T-cell proliferation. Selective blockade of
TASK channels present on T lymphocytes leads to improve-
ment of the experimental autoimmune encephalomyelitis
course, a model of multiple sclerosis.27

Transient receptor potential (TRP) channel. Among the
superfamily of 28 TRP cation channels,44 immune cells
mainly express TRPMC and TRPM subfamilies like TRPC-1,
3, 5 and TRPM-2, 4, 7.45 These channels have biophysical
properties to be non-selective and permeable to several
cations like Ca2+ and Na+ 45. Regulation of intracellular Ca2+

concentration is indispensable for lymphocyte activation, and
TRP channels may both increase Ca2+ influx (TRPC3) or
decrease Ca2+ influx through membrane depolarization
(TRPM4). The function of TRPM4 channel is well documen-
ted in maintaining the normal membrane potential of an
immune cell and controlling the Ca2+ flux mechanism.10

Interestingly, TRPM4 channel mainly conducts Na+ and K+

cations.46 Activation of TRPM4 channels occurs in response
to the increase in intracellular Ca2+ concentration resulting in
Na+ influx, membrane depolarization and a reduction in
electrical driving force for Ca2+ influx (Figure 1). Therefore,
TRPM4 channel acts as a negative feedback mechanism for
the regulation of store-operated Ca2+ entry by CRAC-ORAI
as thereby preventing the cellular Ca2+ overload.47

Purinergic receptors. P2X receptors are membrane ion
channels with the ability to influx several non-selective
cations like Na+ and Ca2+, and are activated by extracellular
adenosine 5’-triphosphate (ATP).48 P2X receptors belong to
the class of ligand-activated ion channels and there are three
P2X receptors expressed in human T cells: P2X-1, 4, 7.49

Among these three, principally P2X7 is abundantly expressed
in immune cells and regulates Ca2+ influx process resulting in
the activation of downstream signaling mediators and T-cell
proliferation.50–52

Store-operated calcium channels (SOCs). CRAC is the
major store-operated Ca2+ channel of immune cells with the
biophysical properties of higher Ca2+ dependence and low
conductivity in the range of 0.024–0.4 pS.16 CRAC channels
get opened with the signal of depleting endoplasmic

reticulum (ER) Ca2+ pool. This signal in ER is mainly
mediated by ER Ca2+ sensors stromal interaction molecule
(STIM) 1 and STIM2 and transferred to the pore-forming
subunits of the CRAC channel, mainly ORAI1–3. This results
in the activation of the CRAC channel. Lymphocytes express
two STIM isoforms, STIM1 and STIM2, which mediate store-
operated Ca2+ entry in B and T cells.53,54 CD4+ and CD8+

T cells from ORAI1- and STIM1-deficient patients exhibit
defective production of various cytokines, including IL-2,
IL-17, IFN-γ and tumor necrosis factor (TNF).55 Furthermore,
store-operated calcium entry is indispensable for the cyto-
toxic action of CTLs. STIM1- and STIM2-mediated store-
operated calcium entry in CD8+ T cells is crucial for anti-
tumor immunity.5

Anti-tumor Action of Immune Cells

Human immune system has the great potential to destroy
cancer cells either byCTL or NK cells without being toxic to the
healthy tissue and organs. These distinct immune cells are
able to recognize cancer cell by forming a Ca2+-dependent
cytotoxic IS with the cancer cell and perform a killing
mechanism either through the release of lytic granules and
granzymes, or by the activation of Fas-FasLigand receptors
(known as death receptors).2 Efficient CRAC channels and the
resulting increase in the cytosolic Ca2+ concentration are
necessary for adherence to the target cell as well as its
recognition.56 The adhesionmolecule, particularly lymphocyte
function-associated antigen 1 (LFA-1) integrin is essential for
this process and interacts with Ca2+ in diverse ways.3 This
includes inside-out (transmission of the regulatory signals
originating within the cytoplasm to the external ligand-binding
domain of the receptor) signaling-based LFA-1 activation or
outside-in (transmission of chemical signals into the cell)
signaling via LFA-1.5 Interaction between CTL and epithelial
tumor cell is integrin-dependent and promotes maturation of
the cytotoxic IS and modulates anti-tumor CTL response.56

Additionally, LFA-1 activation is implicated in mitochondria
positioning at the IS in order to control Ca2+-influx through
CRAC/ORAI Ca2+ channels.57,58 It has recently been shown
that store-operated Ca2+ release driven byORAI1 is crucial for
lytic granule exocytosis in NK cells and CTLs as well as
production of cytokines (TNF-α and IFN-γ) by NK cells.59

Furthermore, delineation of the accurate STIM-ORAI1 ratio
could be a feature of the killing efficiency of CTL and NK cells.3

Ca2+ does not directly play a role in the formation of the IS, but
it has enormous effect in controlling the duration and kinetics
of the cytotoxic IS between killer immune and cancer cell.2

Along with the depolarizing nature of cancer cells, Ca2+

concentration can also be a marker of the action of a killer T
cell. Small fluctuations from the external Ca2+ (~1.2 mM) range
of a cancerous tissue can indicate the influence of cancer cell
killing by CTL or NK cells.60,61

Ion Channels in Cancer

Ion channels comprise an important factor influencing the
formation and development of tumors. Such malignant transfor-
mation leads to enhanced proliferation, abnormal differentiation,
impaired apoptosis, and finally uncontrolled migration and
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invasion (Table 1). This is often associated with altered levels
of ion channel expression as well as their activity in the
mutated cancer cells.62 The role of ion channels in pathogen-
esis of various diseases including cancer and its treatment has
been extensively studied. The major types of ion channels
implicated in carcinogenesis are presented below.

Voltage-gated K+ channels
Shaker-like: Shaker-type of voltage-gated K+ channels reg-
ulate cell cycle progression by four mechanisms such as
controlling membrane potential oscillations, controlling the

cell volume dynamics, controlling calcium signaling and
promoting malignant growth through the migratory pathway.
Influence of voltage-dependent K+ channels in the early
stages of cancer development confirms the evidence for the
overexpression of these channel proteins in cells exposed to
chemical carcinogens.61 It has been shown that voltage-
gated K+ channels affect tumor cell proliferation through the
regulation of the membrane potential. As an example,
overexpression of Kv1.1 and Kv1.3 are found in glioma,
lymphoma, breast, lung, pancreas and prostate cancer.49,63

Furthermore, Kv1.3 channel overexpression is also linked

Table 1 The role of distinct ion channels in cancer development and progression

Ion channels Expression profile Cancer type References

Proliferation of cancer cells
Shaker-like K+ channels (Kv1.1, Kv1.3, Kv1.5) Gene and protein

upregulation
Glioma, breast cancer, lung cancer, pancreas
cancer, prostate cancer, lymphoma

64,123

EAG K+ channels (EAG1, EAG2) Gene and protein
upregulation

Medulloblastoma, breast cancer, head and
neck cancer, melanoma, gastrointestinal tract
cancer

65–67

EAG-related K+ channels (HERG/Kv11.1) Gene and protein
upregulation

Melanoma, neuroblastoma, breast cancer 68

Ca2+-activated K+ channels (KCa3.1) Gene and protein
upregulation

Glioma, breast cancer, ovarian cancer, pros-
tate cancer, melanoma

124–127

TRP (TRPC6, TRPV6, TRPM7, TRPM8) Gene and protein
upregulation

Breast cancer, prostate cancer, head and
neck cancer, human glioblastoma cell line

89,95–97,128,129

P2Y (P2Y2), P2X (P2X7), P2U Gene and protein
upregulation

Melanoma, colorectal cancer cells, lung
cancer cells

101,130,131

SOCs (ORAI1/STIM1) Gene and protein
downregulation

Lung cancer cells, cervical cancer 113,132

SOCs (ORAI1/STIM1) Gene and protein
upregulation

Cervical cancer, glioblastoma cells 113,133

Cell migration and metastasis
EAG K+ channels (EAG1/ Kv10.1) Gene and protein

upregulation
Migration of breast cancer cells 134

Ca2+-activated K+ channels (KCNMA1,
SK3/ORAI1, KCa1.1, KCa3.1)

Gene and protein
upregulation

Breast cancer→metastasis to brain
Breast cancer→bone metastasis
Migration of glioma cells, transformed renal
epithelial cells and breast cancer cells

75–78,135

Kir channels (Kir3.1/GIRK1) Gene and protein
upregulation

Primary breast cancer→axillary lymph node
metastasis

81

TRP (TRPM7, TRPM8, TRPV1, TRPV6) Gene and protein
upregulation

Lung cancer cells, primary breast cancer,
prostate cancer cells, squamos carcinoma,
hepatoblastoma

90,91,97,136–138

P2X (P2X7) Gene and protein
upregulation

Breast cancer cell line 139

SOCs (ORAI1/STIM1) Gene and protein
upregulation

Breast cancer, cervical cancer, hepatocarci-
noma, glioblastoma

111–113,140

Tumor angiogenesis
EAG K+ channels (EAG1) Gene and protein

upregulation
Breast cancer and other solid tumors 65,66

TRP (TRPC6 ) Gene and protein
upregulation

Human glioblastoma cell line 88,94,141

SOCs (ORAI1/STIM1) siRNA- or dominant-
negative mutant-mediated
knockdown

VEGF-induced angiogenesis observed in
tumors

141,142

Apoptosis resistance
Shaker-like K+ channels (Kv1.3) Gene and protein

upregulation
Large B-cell lymphoma, glioma 64

TRP (TRPA1) Gene and protein
upregulation

Lung cancer cell line 143

P2X (P2X7) Gene and protein
downregulation

Breast cancer, melanoma 104

SOCs (ORAI1) siRNA-mediated
knockdown

Prostate cancer cell line 109,144
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with resistance to apoptosis as shown by the upregulation of
Kv1.3 expression in diffuse large B-cell lymphoma and
glioma.64

EAG channels: The EAG subfamily of voltage-gated K+

channels is divided into three distinct groups including EAG
(EAG1/ Kv10.1; EAG2/ Kv10.2), EAG-like K+ (ELK) and EAG-
related (HERG/ Kv11.1). EAG1 overexpression has showed
tumorigenic potential and poor overall patient survival in
multiple cancer types.65 Additionally, EAG1 plays a significant
role in cell proliferation and tumor angiogenesis.66

Another member of the EAG subfamily of voltage-gated K+

channels, particularly EAG2, regulates cell volume dynamics
important for cell cycle progression and cell proliferation in
medulloblastoma.67 Similar to EAG1, HERG overexpression
is found in brain, breast, gastrointestinal tract, head and
neck, kidney, lung, melanoma, ovary, and thyroid cancers.63

Moreover, HERG expression correlates with TNF-mediated
tumor cell proliferation.68

K2P channels. K2P channels are typically constitutively open
as 'leak channels' in order to stabilize the negative membrane
potential. A member of this family, K2P5.1 (TASK-2 or
KCNK5) plays a major role in the regulation of cell volume,
which requires the interplay with Ca2+ and Cl- channels. This
kind of swelling-activated channel is implicated highly in
cancer cell physiology.69 Overexpression of K2P9.1 (TASK-3
or KCNK9) and K2P3.1 (TASK-1 or KCNK3) is found in breast,
gastrointestinal tract, lung, adrenal cancers and melanoma.70

Additionally, overexpression of K2P9.1 in breast cancer cell
lines promotes tumorigenesis and confers resistance to
hypoxia and serum withdrawal.71 In general, rapidly prolifer-
ating cancer cells are more depolarized in nature with a
membrane potential varying from −20 to 40mV.72 Therefore,
membrane depolarization plays a functional role in tumor
progression inducing DNA synthesis and promoting mitotic
activities, which in turn leads to tumor invasion.73 As
potassium conductance is the major regulatory factor in
maintaining relatively depolarized state of the cell, the roles of
potassium channel inhibitors in controlling polarization
phenomenon of tumor cells remains to be revealed.

Ca2+-activated K+ channels. Ca2+-activated K+ channels
are regulated by Ca2+ concentration inside the cells. This kind
of channels has a major role in cancer metastasis process,
which cause 490% of cancer deaths.74 Tumor metastasis is
a dynamic process involving mobilization of primary tumor
cells by migration into other non-tumoral regions. Thus, ion
channels are involved in migration, which plays a major role
in the initiation of metastasis process.75 As an example, BKCa

and SKCa channels are implicated in metastasis as they
have been shown to promote breast cancer cell migration.76

Furthermore, SKCa channels form a complex with the
ORAI1 channel for localized calcium entry within lipid rafts
in order to enhance cancer cell migration and metastasis.77

In general, overexpression of Kca1.1 and Kca3.1 has
been shown in bone, brain, breast, ovary, pancreas cancers
and brain, gastrointestinal tract, melanoma and prostate

cancers. Interestingly, application of Kca1.1 and Kca3.1
channel inhibitors decreases the migration of human
glioma and experimental transformed renal epithelial cells
respectively.78,79

Kir channels: As mentioned above, Kir channels allow for
easy movement of K+ into the cell. They are activated by
PIP2, but they can also be modulated by other regulatory
factors such as ATP (ATP-sensitive K+ channels) and
G-proteins (G protein-gated Kir channels) or by some non-
specific regulators including polyamines, kinases, pH and
Na+ ions.80

The mRNA upregulation of the G-protein regulated inward-
rectifier K+ (GIRK) channel called Kir3.1 (GIRK1) has been
shown in invasive breast cancer and non-small-cell lung
cancer. Additionally, overexpression of GIRK1 in both types
of tumors was correlated with poor prognosis for the
patients.81,82

TRP channels. TRP cation channels have been implicated
in various pathological states including cancer due to their
role as intracellular Ca2+ release channels. Recent studies have
shown the association of TRP channels with various cancer
types such as melanoma83 (TRPM1), prostate cancer84–86

(TRPV2, TRPV6, TRPM8), hepatoblastoma87 (TRPV1) and
glioblastoma88,89 (TRPC6). Besides the roles of volume control
and motility, TRPM8 channel serves as a potential marker for
metastatic prostate cancer.84 Another TRP channel that has
been implicated in enhanced motility and metastasis of cancer
cells is TRPM7 channel.90,91 Furthermore, TRP channels are
also involved in angiogenesis,92–94 thus their inhibitors might be
considered a good pharmaceutical target for cancer therapy.
TRPV6, TRPM7 and TRPM8 are also associated with
proliferation of breast and prostate cancer cells.95–97 Interest-
ingly, sustained Ca2+ flux through TRP channels can itself be a
diagnostic marker for a cancer cell and can be inhibited with a
TRP channel inhibitor.98,99

Purinergic Receptors

The ATP-dependent activity of P2X7 channel is associated
with various physiological functions including cell proliferation,
cell death and cytokine secretion. Recent studies have
implicated the role of P2X and P2Y receptors in B cell
leukemia,100 melanoma and colorectal cancer.101–103 Target-
ing the P2X7 receptor by selective P2X7 agonists as well
as P2X7 antagonists in cancer has shown anti-tumor
effect.101,104 Furthermore, the effect of ATP infusion in patients
with advanced lung cancer has proven the potential of ATP,
which might become an anti-cancer agent in the future.105–108

However, larger studies are required in order to verify these
findings.

Store-operated calcium channels (SOCs). SOC-mediated
sustained increase in the cytosolic Ca2+ has shown to trigger
apoptosis in tumor cells.109 STIM1-ORAI1 driven store-
operated calcium entry seems to be indispensable for
migration and metastasis of breast cancer, cervical cancer
and hepatocarcinoma, which was potently blocked by the
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store-operated calcium entry inhibitor.110–113 Moreover,
CRAC channels are implicated in VEGF-activated Ca2+ influx
promoting angiogenesis, which might be crucial for cancer
progression.111

Ion Channel Modulators

Ion channels are often overexpressed in numerous types of
tumors and their altered activity plays a significant role in
apoptosis resistance, proliferation and metastasis of cancer
cells. Thus, blocking the activity of ion channels seems to be
an obvious strategy to impair cancer growth. However, such
treatment is not as straightforward as it may look. When
targeting ion channels, we aim at efficient killing of cancer cells
without causing toxic effects in other tissues expressing the
same or related channels. A vast amount of known ion
channels blockers are used to treat cardiac arrhythmias or
epilepsy (anticonvulsants);114 thus, incorporating them into
oncology is accompanied by the risk of heart or nervous
system disorders.
Unspecificity of ion channel blockers is still a big challenge

that needs to be overwhelmed to avoid serious side effects
during oncological treatment. Specific inhibition can be
obtained by developing monoclonal blocking antibodies,
antisense oligonucleotides, small interfering RNAs, peptide
toxins and novel small organic compounds.115 As discussed
by Arcangeli and Becchetti, to improve the efficiency of ion
channels targeting cancer, one should also focus on finding
inhibitors recognizing conformational changes in ion channels
(e.g., open channel versus close channel). So far, such an
approachwas found to be possible in a case of lamotrigine and

lidocaine that preferentially target open and inactivated
voltage-gated Na+ channels, without distinguishing other
conformational states.116 Similar property exhibits in R-ros-
covitine recognizing open HERG channel.117

Interesting alternative for conventional ways of targeting ion
channels in cancer treatment are some dietary compounds.118

Curcumin, resveratrol (grape polyphenol), docosahexaenoic
acid (omega-3) and epigallocatechin gallate (catechin from
green tea) extract were shown to modulate ion channels
activity and suppress migration and growth of breast and
ovarian cancer cells.119–122 Other examples of targeting ion
channels in cancer and immune cells are presented in Table 2.

Conclusions and Future Perspectives

The main task of the immune system is to defend against
attacks by foreign invaders including bacteria, viruses, fungi,
parasites and other microorganisms. It has been shown by the
researchers from both immunology and oncology fields that
cancer cells are also recognized by the immune system, and
their proliferation can be controlled immunologically. Altera-
tions in ion channel-based Ca2+ signaling are linked to the
behavior of cancer cells. Recent studies indicate the sig-
nificance of ion channels and Ca2+ signaling in activation of
cancer killing immune cells as well as cancer progression.
Generation of an appropriate Ca2+ response, which is induced
by recognition of a tumor antigen is driven by above-described
ion channels (Figure 2). Regulation of certain features of
cancer cells by decreasing the activity of ion channel proteins
is still under investigation. The market success of Ambien
(GABAA receptor inhibitor for the treatment of insomnia) and

Table 2 Ion channel blockers in immune and cancer cells

Ion channel blocker Ion channel Cell type Comments References

Margatoxin (MgTX)
Charybdotoxin (CTX)

Kv1.3 T lymphoctyes,
Jurkat cells

Antiproliferative effect in T-lymphoytes, regulation of
immunoresponsiveness

145,146

TRAM-34, NS6180,
ShK-186

Kv1.3, KCa3.1 NK cells, leukemia
cells

Inhibition of KCa3.1 increased the degranulation of adherent NK
cells and their ability to kill K562 leukemia cells

147

R-roscovitine Kv1.3, Kv2.1,
Kv4.2, HERG
(Kv11.1)

Leukemia Roscovitine is well known cyclin-dependent kinase inhibitor 148,149

mAb56 EAG1 (Kv10.1) Pancreas carci-
noma, breast
cancer

Inhibition of tumor cell growth both in vitro and in vivo. 150

Way 123,398 HERG (Kv11.1) Colorectal cancer Reduced cell migration of H630, HCTand HCT8 cells; unaffected
growth of HEK 293 cells

151

Way 123,398; CsCl;
E4031

HERG (Kv11.1) Acute myeloid
leukemia

Impaired cell proliferation. 152,153

Cisapride HERG (Kv11.1) Gastric cancer Inhibition of cells entering S phase from G1 phase of the cell
cycle.

154

Verapamil ERG (Kv11.1) Lung cancer,
melanoma, colon
cancer

Increased survival rate for patients treated with verapamil
+chemotherapy

155,156

UNBS0 (Cardenolide) Na+/K+ ATPase Glioblastoma Decrease in intracellular ATP concentration leads to autophagy in
glioma cells
UNBS0 shows anti-proliferative activity in vitro in 58 human
cancer cell lines

18,157

Tetrodotoxin (TTX) Nav1.5, Nav1.6
Voltage-gated Na+

channels

Human mela-
noma, macro-
phages,
breast cancer

TTX and shRNA knockdown of Nav1.6 has inhibitory effects on
both cellular invasion of macrophages and melanoma cells

158,159

Charybdotoxin (CTX) Kir (IK1) Human melanoma Reduced migration of melanoma cells treated with CTX 160

Zinc, methanandamide K2P9.1 (TASK-3) Ovarian cancer Reduction in cell proliferation and increase in apoptosis 161
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Norvasc (Ca2+ channel blocker used to lower blood pressure
and to treat angina pectoris) have energized the drug market
to explore more the ion channel field searching for new
therapeutics including cancer therapy. Nevertheless, the ion
channel-based treatment comprises still far unused anti-
cancer strategy. Thus, future research will focus on ion
channels as therapeutic target in order to inhibit proliferation
of cancer cells and promote their apoptosis together with
modulation of cancer-specific cytotoxicity of immune cells.
Furthermore, studies involving mutating ion channels in
cancer using animal models should uncover novel insights
into the ion channel function in tumorigenesis.
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