
Solving Sudoku by Sparse Signal

Processing

MUHAMMAD MOHSIN ABBASI

Master’s Degree Project

Stockholm, Sweden February 2015

XR-EE-SB 2015:001

KTH ROYAL INSTITUTE OF TECHNOLOGY

KTH Royal Institute of Technology

The Department of Electrical Engineering

Author: Muhammad Mohsin Abbasi

Email Address: mmabbasi@kth.se

Study Programme: Master in Wireless Systems, 120 Credits

Supervisor: Magnus Jansson

Date: January 19, 2015

mailto:mmabbasi@kth.se

i

Abstract
Sudoku is a discrete constraints satisfaction problem which is modeled as an underdetermined linear

system. This report focuses on applying some new signal processing approaches to solve sudoku and

comparisons to some of the existing approaches are implemented. As our goal is not meant for

sudoku only in the long term, we applied approximate solvers using optimization theory methods. A

Semi Definite Relaxation (SDR) convex optimization approach was developed for solving sudoku. The

idea of Iterative Adaptive Algorithm for Amplitude and Phase Estimation (IAA-APES) from array

processing is also being used for sudoku to utilize the sparsity of the sudoku solution as is the case in

sensing applications. LIKES and SPICE were also tested on sudoku and their results are compared with

l1-norm minimization, weighted l1-norm, and sinkhorn balancing. SPICE and l1-norm are equivalent

in terms of accuracy, while SPICE is slower than l1-norm. LIKES and weighted l1-norm are equivalent

and better than SPICE and l1-norm in accuracy. SDR proved to be best when the sudoku solutions are

unique; however the computational complexity is worst for SDR. The accuracy for IAA-APES is

somewhere between SPICE and LIKES and its computation speed is faster than both.

Sammanfattning
Sudoku är ett diskret bivillkorsproblem som kan modelleras som ett underbestämt ekvationssystem.
Denna rapport fokuserar på att tillämpa ett antal nya signalbehandlingsmetoder för att lösa sudoku
och att jämföra resultaten med några existerande metoder. Eftersom målet inte enbart är att lösa
sudoku, implementerades approximativa lösare baserade på optimeringsteori. En positiv-definit
konvex relaxeringsmetod (SDR) för att lösa sudoku utvecklades. Iterativ-adaptiv-metoden för
amplitud- och fasskattning (IAA-APES) från gruppantennsignalbehandling användes också för sudoku
för att utnyttja glesheten i sudokulösningen på liknande sätt som i mättillämpningen. LIKES och SPICE
testades också för sudokuproblemet och resultaten jämfördes med l1-norm-minimiering, viktad l1-
norm, och sinkhorn-balancering. SPICE och l1-norm är ekvivalenta i termer av prestanda men SPICE
är långsammare. LIKES och viktad l1-norm är ekvivalenta och har bättre noggrannhet än SPICE och l1-
norm. SDR visade sig ha bäst prestanda för sudoku med unika lösningar, men SDR är också den
metod med beräkningsmässigt högst komplexitet. Prestandan för IAA-APES ligger någonstans mellan
SPICE och LIKES men är snabbare än bägge dessa.

ii

iii

Acknowledgement

First of all I am thankful to Allah Almighty for giving me abilities to complete this task. There is no

power and strength except with Allah.

Secondly I am thankful to my project supervisor professor Dr.Magnus Jansson for encouraging me

and motivating me with his ideas to accomplish my goal. His constant concern, innovative ideas,

motivation and constant help has made me to reach to the final goal of my project.

Finally I would like to take this opportunity to thank my parents whose prayers are always with me. I

am thankful to them for encouraging me morally to get the higher education and supporting me

financially to complete it. My sweet wife who stood beside me and kept my spirit high during the

entire course, and she is as happier as me on accomplishment of this task. My Siblings and my

friends, in one or other way, are all part of this.

I thank you all and wish you all the best.

iv

v

Contents
1 Introduction .. 1

1.1 Aim of the Project .. 1

1.2 Methodology ... 2

1.3 Report Organization .. 2

1.4 Related Work ... 2

2 Sudoku as a Linear System ... 4

2.1 Problem Formulation .. 4

3 Algorithms’ Description .. 7

3.1 L1-Norm minimization ... 7

3.2 Reweighted l1-norm minimization .. 8

3.2.1 Algorithm .. 8

3.3 SPICE and LIKES.. 9

3.3.1 SPICE ... 9

3.3.1.1 Problem formulation ... 9

3.3.1.2 Algorithm ... 10

3.3.2 LIKES ... 11

3.3.2.1 Algorithm ... 11

3.4 Semi Definite Relaxation ... 12

3.5 Iterative Adaptive Approach based on Weighted Least Squares .. 14

3.5.1 Data Model ... 14

3.5.2 IAA-APES ... 15

3.5.2.1 Algorithm ... 16

3.6 Sinkhorn Balancing .. 16

4 Puzzles .. 17

5 Results and Discussions .. 18

5.1 Puzzle Set 1 .. 18

5.2 Puzzle Set 2 .. 21

5.3 Puzzle Set 3 .. 22

6 Conclusion and Future Work .. 25

7 References .. 26

 Appendix .. 28

vi

List of Figures

Figure 1: Array processing example .. 14

Figure 2: Execution time for first 20 puzzles (in seconds) ... 20

Figure 3: Increase in computation time with puzzle size .. 20

Figure 4: Singular value plot for incorrectly solved puzzle .. 24

Figure 5: Singular value plot for correctly solved puzzle ... 24

file:///C:/Users/Mohsin%20Abbasi/Desktop/report%20draft2/Report.docx%23_Toc409410235
file:///C:/Users/Mohsin%20Abbasi/Desktop/report%20draft2/Report.docx%23_Toc409410236
file:///C:/Users/Mohsin%20Abbasi/Desktop/report%20draft2/Report.docx%23_Toc409410237
file:///C:/Users/Mohsin%20Abbasi/Desktop/report%20draft2/Report.docx%23_Toc409410238
file:///C:/Users/Mohsin%20Abbasi/Desktop/report%20draft2/Report.docx%23_Toc409410239

vii

List of Tables
Table 1: Example 9 X 9 sudoku .. 4

Table 2: Comparison of methods for number of incorrectly solved entries of the puzzle set 1 18

Table 3: Comparison table for number of solved puzzles in puzzle set 1 ... 19

Table 4: Comparison for puzzle set 2 .. 21

Table 5: Puzzle set 2, number of solved puzzles ... 22

Table 6: Comparison table for puzzle set 3 ... 22

Table 7: Total puzzles solved for puzzle set 3 ... 23

Table 8: Puzzle set 1 .. 28

Table 9: Puzzle set 2 .. 31

Table 10: Puzzle set 3 .. 34

viii

Terminologies
LDPC: Low Density Parity Check codes

BP: Belief Propagation

SPICE: Sparse Iterative Covariance-based Estimation

LIKES: Likelihood-based Estimation of Sparse Parameter

SDR: Semi Definite Relaxation

IAA: Iterative Adaptive Approach

IAA-APES: Iterative Adaptive Approach for Amplitude and Phase Estimation

SVD: Singular Value Decomposition

ix

1

1 Introduction

Sudoku is an 𝑁 × 𝑁 logical based puzzle in which 𝑛 = 𝑁2 entries are arranged in such a way

that the arrangement satisfies given clues and constraints. For example considering a 9 × 9

puzzle as shown in Table 1, it is required to fill each empty box in such a way that each row

each column and each 3 × 3 box should contain each digit 1 to 9 once. The initial given boxes

are called clues. Based on total number of given clues and their locations, the puzzles can be

categorized from easy to hard.

The sudoku puzzle is a discrete constraints satisfaction problem and the reason why it got

interest in signal processing community is that it has ties to decoding error correcting codes

which is also a discrete constraints satisfaction problem. In fact, the methods used for error

correcting codes like Low Density Parity Check (LDPC) Belief Propagation (BP) decoding can

directly be apply on sudoku as a sudoku puzzle has a tanner graph representation. Therefore

a good decoding algorithm can be applied to sudoku and alternatively a good sudoku solver

can be applied to the problem of decoding error correcting codes which results in an

interesting interplay between sudoku and error correcting codes.

There are two main solution approaches for sudoku puzzles. First approach is to get the exact

solution of the sudoku puzzles. Sudoku solving algorithms which use this approach are

efficient as they tend to get exact unique or all solutions of the puzzle but their complexity

increases as the puzzle size increases. The other group of sudoku solvers does not guarantee

the exact solution satisfying all constraints, rather they tend to get optimum approximate

solution of the puzzle by relaxing some of the hard constraints and in most cases they get to

the exact optimum solution. Relaxing constraints may result in a lower computational

complexity and hence fast processing speed.

1.1 Aim of the Project

It has been noticed from the literature that sudoku can be modeled as an underdetermined

linear system [1], and that the traditional calculus and mathematical approaches can be used

to solve sudoku. Our aim for this project is to use optimization theory methods to see their

effects on sudoku puzzle problem. In particular sparsity of the sudoku system is aimed to be

utilized as a tool for this project along side of the convex optimization strategies. Our aim is

to analyze and implement the following techniques to sudoku problem and to compare the

accuracy and computational complexity to solve the puzzle.

 SPICE [2]

 LIKES [2]

 SDR [3]

 IAA-APES [4]

Some of the existing approaches for sudoku are also implemented and are compared with

the above techniques. These are as following:

2

 l1-norm minimization [5]

 Weighted l1-norm minimization [5] [6]

 Sinkhorn balancing [7]

1.2 Methodology

This thesis report involves in-depth literature study in optimization theory and to use it to

sudoku puzzles. The literature taken is from highly recognized books and from research

papers. The knowledge gained is implemented in matlab. After deep understanding of the

algorithms, they are modeled to suit the sudoku puzzles taken from different resources, the

puzzles are generated, algorithms are implemented in matlab and the results are drawn as

mentioned in section 5. The generated puzzles are also included in the Appendix of the

report in order to make it possible to reproduce the results or to compare the results for

further research.

1.3 Report Organization

Section 1 introduces the problem definition and related work. Section 2 discusses the

problem formulation of the sudoku and how it is being used as an optimization problem.

Section 3 describes the detailed description of the algorithms used in this project. Section 4

describes the puzzles used for the results. Section 5 contains the results of the algorithms

used. Section 6 concludes the report. Section 7 shows the related references and Appendix

contains the puzzles used for this project

1.4 Related Work

Sudoku can be solved by logical elimination techniques as described in [8]. Back tracking,

exact cover problem and brute force algorithms as described in [9] [10] are techniques which

tend to get to the exact solution of the problem. Guessing, back tracking and brute force

algorithms visit empty cells in some order, they assigned a value which is legal for that cell,

and then recursively check if this value leads to a sudoku solution by filling the next empty

cell values. If for some cell value there is no legal choice the algorithm goes back to the

previous cell (hence backtracking) discards its current value and changes it to other legal

value if exists, if again no value is allowed here, the algorithm goes back one more cell and

does the procedure again until all cells are filled with legal values. These Algorithms

guarantee the solution if the sudoku puzzle is a valid puzzle. The most efficient method in

this category is Dancing Links [11], an exact cover problem which proved to be the most

efficient algorithm for solving sudoku. Dancing links is a recursive, back tracking depth first

search algorithm which implements the Knuth’s X algorithm [12] in an efficient and fast way.

In sudoku case the sudoku problem is divided into a matrix of 0’s and 1’s and the goal is to

find the subset of rows which have exactly one element ‘1’ in each column. Sudoku is also

3

solved as constraint satisfaction problem [13]. In [1], sudoku constraints are mathematically

described as integer linear system of equations which are then solved by integer linear

programing. These algorithms guarantee the one or all solutions of the sudoku puzzle

however the complexity increases exponentially as the puzzle size tends to increase.

Other category of sudoku solution is suboptimal solutions as they do not guarantee the exact

solution all the time, but in these methods some of the hard constraints of the puzzles are

relaxed so as to improve the computational complexity. These methods are where traditional

calculus and signal processing approaches are used to solve sudoku. There are number of

approximate methods for solving sudoku based on randomly assigning numbers for each cell,

calculating errors and then shuffling the numbers around the whole sudoku grid to reduce

the error. The approaches for shuffling the numbers include genetic algorithm [14],

simulated annealing [15] and tabu search [16]. Sinkhorn balancing [7] is an approximate

probabilistic solver that tends to solve all but most difficult puzzles by projecting matrix onto

doubly stochastic matrix. A description of message passing algorithm (Belief Propagation) for

solving sudoku is given in [17]. BP only solves easy puzzles due to the loopy nature of the

sudoku in its tanner graph representation. In [1] it is shown that the sudoku problem can be

written as an underdetermined system of linear equations which has a sparse solution.

Therefore techniques to exploit sparsity and linear equality are used in l1-norm minimization

[5] which is first traditional calculus based optimization technique for sudoku solution.

Sudoku was formulated as an optimization problem over a set of probabilities in [18] and

they proposed an entropy minimization approach to solve not all but most of the puzzles

having varying difficulties.

4

2 Sudoku as a Linear System

2.1 Problem Formulation
Let 𝑆 be an 𝑁 × 𝑁 sudoku puzzle. The contents of cell 𝑛 of 𝑆 can be represented as 𝑆𝑛 =

{1,2,… ,𝑁} for 𝑛 = {1,2,… ,𝑁2} .

Let 𝑖𝑛 = [𝐼(𝑆𝑛 = 1), 𝐼(𝑆𝑛 = 2),… , 𝐼(𝑆𝑛 = 𝑁)]𝑇 is an indicator vector where 𝐼(𝑆𝑛 = 𝑘) is an

indicator function which is given as

 𝐼(𝑆𝑛 = 𝑘) = {
1, 𝑖𝑓 𝑆𝑛 = 𝑘
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Let 𝑥 = [𝑖1, 𝑖2, … , 𝑖𝑁2] 𝑇of size 𝑁3. Taking the 9 × 9 sudoku puzzle for example, there are four types

of constraints that need to be satisfied in order to solve sudoku puzzle.

Row constraints: Each row of 𝑆 should contain all digits from 1 to 9.

Column constraints: Each column of 𝑆 should contain all digits 1 to 9.

Box constraints: Each 3 × 3 box of 𝑆 should contain all digits 1 to 9.

Cell constraints: Each cell of 𝑆 should be filled.

In addition to these, there are some clues given for each puzzle which must also be satisfied. Each of

the above constraints and the clues can be written as a linear combination to the elements of 𝑥.

For example, the row constraints of the puzzle in Table 1 can be expressed as,

9 4 3 5 1 2

7 8 5 4 2 6 3 1

2 3 1 7 8 9 5 6 4

 7 3 9 2 8 1

6 1 9 7 5

 2 5 1 7 9

3 5 4 9 6 8 2 7

 9 7 2 3 6 5 8

8 6 2 1 7 5 9 4 3

Table 1: Example 9 X 9 Sudoku

[𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 09×648]𝑥 = [

1
1
⋮
1

]

[09×81𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×909×567]𝑥 = [

1
1
⋮
1

]

⋮

5

[09×648 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9 𝐼9×9]𝑥 = [

1
1
⋮
1

]

Similarly for column constraints, we can write,

[𝐼9×909×72𝐼9×909×72𝐼9×909×72𝐼9×909×72𝐼9×909×72𝐼9×909×72𝐼9×909×72𝐼9×909×72𝐼9×909×72]𝑥 = [

1
1
⋮
1

]

[09×9𝐼9×909×72𝐼9×909×72𝐼9×909×72 … 𝐼9×909×72𝐼9×909×63]𝑥 = [

1
1
⋮
1

]

⋮

[09×72𝐼9×909×72𝐼9×909×72𝐼9×9 … 09×72𝐼9×9]𝑥 = [

1
1
⋮
1

]

Similarly the box constraints can be written. For example for box 1 we can write,

[𝐽9×2709×54𝐽9×2709×54𝐽9×2709×540]𝑥 = [

1
1
⋮
1

]

where, 𝐽9×27 = [𝐼9×9 𝐼9×9 𝐼9×9]

Similarly for box 2, [09×27𝐽9×2709×54𝐽9×2709×54𝐽9×2709×513]𝑥 = 𝟏 and so on.

Now for cell constraints, for example, the constraint that 1st and 2nd cells should be filled can be

written respectively as,

[1 1 1 1 1 1 1 1 1 0 0 0 0…0 0]x = 1 and [0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0…0 0]x = 1

Finally the clues can also be written as linear combination of x. For example the clue that cell 2

contains value 4 can be written as 𝑖2 = [0 0 0 1 0 0 0 0 0]𝑇 i.e.

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0…0]𝑥 = 1.

By combining all of above constraints, we can write the Sudoku problem in more generic form as

𝐴𝑥 =

[

𝐴𝑟𝑜𝑤

𝐴𝑐𝑜𝑙

𝐴𝑏𝑜𝑥

𝐴𝑐𝑒𝑙𝑙

𝐴𝑐𝑙𝑢𝑒]

𝑥 = [

1
1
⋮
1

] = 𝑏 (1)

6

Where 𝐴𝑟𝑜𝑤 , 𝐴𝑐𝑜𝑙 , 𝐴𝑏𝑜𝑥 , 𝐴𝑐𝑒𝑙𝑙 , 𝐴𝑐𝑙𝑢𝑒 are the matrices associated with different constraints. Size of

matrix A is (4𝑁2 + 𝐶) × 𝑁3 where 𝐶 denotes number of clues.

In the rest of this report, we will investigate the type of problem in equation (1) and will use different

methods to solve it.

7

3 Algorithms’ Description

3.1 L1-Norm minimization
From equation (1), we have an under determined linear system 𝐴𝑥 = 𝑏 which leads to infinite

number of solutions. However not all the solutions are sudoku solutions. In fact, for the sudoku

having a unique solution there is one and only solution 𝑥𝑠 which consists of only 0’s and 1’s.

Therefore we have to look for one particular solution among many solutions. This problem leads us

to optimization theory literature which strives to find the optimal solution through some cost

function.

Recently emerged field of compressive sensing uses the notion of sparse signal processing. A signal is

sparse if it has few none zero elements. The idea in compressive sensing is to reconstruct a signal

from far fewer measurements than the traditional methods used. As we can show that sudoku

solution is the sparsest solution of 𝐴𝑥 = 𝑏, we can use the ideas presented in the literature of

compressive sensing to get to the solution, where we can find that one of the ideal cost function for

finding the sparsest solution of (1) is l1-norm.

As described in [5], it can be shown easily that the solution 𝑥𝑠 , which is unique solution of sudoku, is

the sparsest solution of equation (1).

As we can see that 𝑥𝑠 is 𝑁2 sparse, that is there are 𝑁2 none-zero elements out of 𝑁3 elements.

Therefore ‖𝑥𝑠‖0 = 𝑁2, where ‖𝑥𝑠‖0 represents the number of none zero elements in 𝑥𝑠 . Suppose

we have some solution 𝑥𝑝 such that 𝑥𝑠 ≠ 𝑥𝑝 and

 𝑥𝑝 =

[

𝑖𝑝1

𝑖𝑝2

𝑖𝑝3

⋮
𝑖𝑝𝑁2]

Assume ‖𝑥𝑝‖
0

< 𝑁2

It implies that at least one of the vectors 𝑖𝑝1 𝑡𝑜 𝑖𝑝𝑁2 must be all 0’s but this will violate the cell

constraints of our sudoku which states that all cells must be filled. Hence 𝑥𝑝 will not be a feasible

solution. So all feasible solution of (1) must satisfy the equation

 ‖𝑥‖0 = ∑‖𝑖𝑗‖0

𝑁2

𝑗=1

≥ 𝑁2

This implies that the least number of none zero elements in a feasible solution is 𝑁2 and it will exists

only when 𝑥 = 𝑥𝑠 . Therefore 𝑥𝑠 is the sparsest solution of equation (1).

To find the sparsest solution of (1) we will consider the following optimization problem.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑥‖0 𝑠𝑢𝑏. 𝑡𝑜 𝐴𝑥 = 𝑏 (2)

8

As equation (2) is combinatorial problem and solving it in a mathematical tractable way is NP-hard

problem. Literature in compressive sensing is trying to prove its equivalence to alternative convex

minimization problem which is l1-norm minimization problem. The equivalence exists under certain

conditions based on the matrix 𝐴 used.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑥‖1 𝑠𝑢𝑏. 𝑡𝑜 𝐴𝑥 = 𝑏 (3)

Where ‖𝑥‖1 = ∑ |𝑥𝑗|
𝑁3

𝑗=1 is the 1 norm of 𝑥.

Most of the time solution to (3) leads to solution of (2) but it does not guarantee the correct solution

all the time, because presently known conditions for equivalence of (2) and (3) does not hold for

sudoku. However solution to (3) solves most of the sudoku puzzles and moreover as (3) is

mathematically tractable problem we used (3) to get to the solution. Equation (3) can easily be

expressed as a linear programing model and we have many standard software packages to solve it.

We used the linear programing package as in [19] for this thesis work.

3.2 Reweighted l1-norm minimization
Due to limited accuracy of l1-norm minimization, research has been carried out to look for some

methods comparable to l1-norm minimization or which can outperform l1-norm method. Numerical

results in this thesis and also from some other related work like in [5], it has been shown that in most

situations reweighted l1-minimization outperforms l1-norm method. Reweighted l1 is basically a

weighted some of series of l1-norm minimization. The idea is to assign some weights to iteration 1,

then do the l1-norm minimization using those weights, and then use the solution to form new

weights for the next iteration. Weights are used to reduce the small components as small as possible

by minimizing the weighted l1-norm. Complete algorithm as mentioned in [5] is as below.

3.2.1 Algorithm

Initialize weights 𝑊0 = 𝐼 for 0th iterations. Where 𝐼 is identity matrix of size 𝑁3 × 𝑁3

Solve the weighted l1-minimization problem for the solution 𝑥𝑖 as below, where super-index 𝑖

represents ith iteration number.

min
𝑥

‖𝑊𝑖−1𝑥‖
1
 𝑠𝑢𝑏. 𝑡𝑜 𝐴𝑥 = 𝑏

where, 𝑊𝑘,𝑘
𝑖−1 =

1

|𝑥𝑘
𝑖−1|+𝜖

, 0 < 𝜖 < 1

represents the diagonal element (𝑘, 𝑘) of 𝑊 in iteration 𝑖 − 1.

𝜖 can be tuned to different values to obtain the sparsest solution. We used 𝜖 = 0.5

Iterations are terminated when a certain threshold is achieved. We used a threshold of 10−4. That is

when ‖𝑥𝑖 − 𝑥𝑖−1‖
2

< 10−4 the iterations are terminated.

9

3.3 SPICE and LIKES
As we have seen that for our sudoku case the solution is the sparsest solution of equation (1).

Therefore we have opened a door to exploit different methods to get to the solution of sudoku using

the literature in sparse parameter estimation. One of the methods we have presented is l1-norm

minimization and its iterative version. Here we are introducing another two methods of sparse

parameter estimation and their results on sudoku. One is Sparse Iterative Covariance-based

Estimation (SPICE) and the other one is Likelihood-based Estimation of Sparse parameters (LIKES).

For more details of these methods we refer to [2]. Here we will modify the problem presented in [2]

to suit sudoku problem presented in equation (1).

3.3.1 SPICE

In sparse parameter estimation most of the methods are parameter based methods which depends

on selection of one or more user parameters which is usually a difficult task. SPICE is a newly

proposed method in [2] which does not have this drawback. SPICE is based on statistically sound

covariance based selection criteria. It is shown in [2] that SPICE has more accuracy than l1-norm.

Here in this report we are implementing SPICE and will present the results based on sudoku problem.

3.3.1.1 Problem formulation

Here we present the problem formulation of SPICE and then we will modify it to sudoku case.

SPICE considers the following linear model as described in [2].

𝑦 = ∑ 𝑎𝑘𝑥𝑘 + 𝑒 = [𝑎1, … , 𝑎𝑀 𝐼] [
𝑥
𝑒
] = 𝐵𝛽

𝑀

𝑘=1

Where 𝑥 = [𝑥1, … , 𝑥𝑀]𝑇 is unknown sparse parameter vector.

𝛽 = [𝑥𝑇 𝑒𝑇]𝑇 , 𝐵 = [𝑎1, … , 𝑎𝑀 𝐼] and 𝑒 is a noise term.

SPICE makes a working assumption that elements of 𝛽 are random uncorrelated variables having

zero means and variances denoted by 𝑝𝑘 for 𝑥𝑘 and 𝜎𝑗 for 𝑒𝑗 with k from 1 to M and j from 1 to N.

We can write the covariance matrix for 𝑦 as

𝑹 = 𝐸(𝑦𝑦𝑇) = 𝐸(𝐵𝛽𝛽𝑇𝐵𝑇) = 𝐵𝐸(𝛽𝛽𝑇)𝐵𝑇 = 𝐵𝑃𝐵𝑇

Where,

𝑃 =

[

𝑝1 0 ⋯ 0
0 ⋱ ⋮

⋮

⋮

0 …

⋱
𝑝𝑀 ⋮

𝜎1

… ⋱ 0
… … … 0 𝜎𝑁]

For our sudoku problem, as we do not have noise 𝑒 we can modify the above mentioned problem as

following.

𝛽 = 𝑥, 𝐵 = [𝑎1, … , 𝑎𝑀] = 𝐴

10

If we consider 𝑦 = 𝑏 as in equation (1), Then SPICE problem can be written exactly as our sudoku

problem in equation (1). That is

𝑦 = 𝐵𝛽 ⇒ 𝑏 = 𝐴𝑥

Therefore 𝑅 = 𝐴𝑃𝐴𝑇 where,

𝑃 = [

𝑝1 0 …
0 ⋱ 0
⋮ 0 𝑝𝑀

]

Then as mentioned in [2], SPICE estimation merit function can be written as following weighted

covariance fitting criteria

‖𝑅−
1
2(𝑅 − 𝑦𝑦𝑇)‖

2

Where ‖. ‖ represents Frobenius norm for the matrices.

It has been verified in [2] that,

𝑥 = 𝑃𝐴𝑇𝑅−1𝑏

From the definition of Frobenius norm, we know that ‖𝐴‖𝐹 = [𝑇𝑟(𝐴𝑇𝐴)]1/2, Tr=Trace.

We can write,

‖𝑅−
1
2(𝑅 − 𝑏𝑏𝑇)‖

2

= 𝑇𝑟[(𝐼 − 𝑏𝑏𝑇𝑅−1)(𝑅 − 𝑏𝑏𝑇)] = 𝑇𝑟(𝑅) + ‖𝑏‖2𝑏𝑇𝑅−1𝑏 − 2‖𝑏‖2

Where,

𝑇𝑟(𝑅) = ∑ 𝑝𝑘‖𝑎𝑘‖
2

𝑀

𝑘=1

So the SPICE minimization problem will become,

min(‖𝑅−
1
2(𝑅 − 𝑏𝑏𝑇)‖

2

) = min
𝑝

𝑏𝑇𝑅−1𝑏 + ∑ 𝑤𝑘
2𝑝𝑘

𝑀

𝑘=1

Where the weights,

𝑤𝑘 =
‖𝑎𝑘‖

‖𝑏‖

In [2], methods for solving above convex minimization problems are discussed in general form. Here

we are using CA-based solver discussed in [2] for sudoku problem. The algorithm we used is as below

3.3.1.2 Algorithm

𝑝𝑘
𝑖 = |𝛽𝑘

𝑖 |/𝑤𝑘,

𝛽𝑘
𝑖+1 = 𝑝𝑘

𝑖 𝑎𝑘
𝑇𝑅−1(𝑖)𝑏; 𝑅(𝑖) = 𝐵𝑃(𝑖)𝐵𝑇

11

where 𝑘 = 1,2, … ,𝑀 𝑎𝑛𝑑 𝑖 = 1,2,…

This iterative algorithm converges to the solution of the SPICE minimization problem. The

initialization is done as following.

𝛽𝑘
0 =

𝑎𝑘
𝑇𝑏

‖𝑎𝑘‖2
, 𝑘 = 1,2,… , 𝑀 (4)

3.3.2 LIKES

LIKES tends to minimize the following negative log likelihood function.

𝑓(𝑝) = 𝑙𝑛|𝑅| + 𝑏𝑇𝑅−1𝑏

The second term 𝑏𝑇𝑅−1𝑏 is a convex function of 𝑝 as seen in SPICE, however 𝑙𝑛|𝑅| is not a convex

function rather it is a concave function and therefore it is hard to find its global minimum. An

iterative algorithm to solve above minimization problem is discussed in [2] which decreases 𝑓(𝑝) at

each iteration and hence expected to converge at least locally.

Let �̃� be an arbitrary point in the parameter space, and �̃� is its covariance matrix, then by using the

majorization principals it has been shown in [2] that 𝑙𝑛|𝑅| can be written as:

𝑙𝑛|𝑅| ≤ 𝑙𝑛|�̃�| − 𝑁 + 𝑡𝑟(�̃�−1𝑅) = 𝑙𝑛|�̃�| − 𝑁 + ∑ �̃�𝑘
2𝑝𝑘

𝑀

𝑘=1

Where,

 �̃�𝑘
2 = 𝑎𝑘

𝑇�̃�−1𝑎𝑘. (5)

Hence we can write,

𝑓(𝑝) ≤ 𝑏𝑇𝑅−1𝑏 + 𝑙𝑛|�̃�| − 𝑁 + ∑ �̃�𝑘
2𝑝𝑘

𝑀

𝑘=1

= 𝑔(𝑝)

Note that 𝑓(�̃�) = 𝑔(�̃�)

So it can be derived from above equation that we can decrease 𝑓(𝑝) from 𝑓(�̃�) to 𝑓(�̂�) such that

𝑓(�̂�) < 𝑔(�̂�) < 𝑔(�̃�) = 𝑓(�̃�)

So LIKES minimizes 𝑔(𝑝) in order to minimize 𝑓(𝑝).

As we can see that 𝑔(𝑝) is under a constant a SPICE like convex minimization problem and hence by

choosing �̃� and updating it iteratively we expect to converge to minimum of 𝑓(𝑝) using a convex

minimization problem. The algorithm consists of the following step

3.3.2.1 Algorithm

Inner step: using the recent estimated �̃� and its covariance �̃� solve the SPICE minimization problem

and get its solution �̂�.

12

Outer step: Set �̃� = �̂� and repeat inner step.

We used same initialization as in SPICE depicted in equation (4) and the weights are then updated

adaptively as in equation (5).

Due to the maximum likelihood characteristics of LIKES and also the fact that it uses adaptive weights

it has been shown in [2] that the LIKES estimates are more accurate than the SPICE. We have used

this algorithm for sudoku and our results also show the improvements in LIKES accuracy.

3.4 Semi Definite Relaxation
In recent years Semi Definite Relaxation (SDR) got interest in signal processing as a very powerful

computationally efficient optimization technique for very difficult optimization problems in particular

to none convex quadratically constraint quadratic programs [3]. In this section we are going to

reformulate our sudoku problem in such a way that it becomes SDR problem. So let us write our

problem of interest in a different way.

From equation (1), we have 𝐴𝑥 = 𝑏 where 𝑥 ∈ {0,1}.

Let us reformulate the problem such that, �̃��̃� = �̃� where �̃� ∈ {−1,1}. We may write 𝐴𝑥 = 𝑏 as,

𝐴(2𝑥 − 1) = 2𝑏 − 𝐴. 𝟏 (𝟔)

If we let �̃� = 2𝑥 − 1, then �̃� ∈ {−1,1} if 𝑥 ∈ {0,1}.

So our reformulated problem will be,

�̃��̃� = �̃� (7)

Where �̃� = 𝐴, �̃� = 2𝑥 − 1 and �̃� = 2𝑏 − 𝐴. 𝟏

Now our goal is to solve equation (7) by SDR approach.

Our goal is to minimize ‖�̃� − �̃��̃�‖
2

2
, which can be written in matrix form as

‖�̃� − �̃��̃�‖
2

2
= ‖𝑀𝑧‖2

2 (8)

Where 𝑀 = [�̃� − �̃�] and 𝑧 = [
1
�̃�
] and ‖. ‖2 now represents Frobenius norm.

By the definition of Frobenius norm, we know that ‖𝐴‖𝐹 = [𝑇𝑟(𝐴𝑇𝐴)]1/2.

Therefore,

‖𝑀𝑧‖2
2 = 𝑇𝑟((𝑀𝑧)𝑇𝑀𝑧)) = 𝑇𝑟(𝑧𝑇𝑀𝑇𝑀𝑧)

By using the circular shift property of trace it will become

‖𝑀𝑧‖2
2 = 𝑇𝑟(𝑀𝑇𝑀𝑧𝑧𝑇)

13

Now we can see that the objective function is linear in the matrix 𝑧𝑧𝑇 . if we assume 𝑍 = 𝑧𝑧𝑇 , that

will make Z a rank 1 positive semi definite matrix. So our minimization problem will be translated to

following:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑇𝑟(𝑀𝑇𝑀𝑍)) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 3 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

1. Rank of Z is 1

2. Z >0, that is Z is positive semi definite

3. As 𝑍 = 𝑧𝑧𝑇, where 𝑧 = [
1
�̃�
] and �̃� ∈ {−1,1} therefore diagonal of

Z is all 1’s.

That is,

minimize(𝑇𝑟(𝑀𝑇𝑀𝑍)) 𝑠𝑢𝑏𝑗 𝑡𝑜 𝑅𝑎𝑛𝑘(𝑧) = 1, 𝑍 > 0, 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔(𝑍) = 1 (9)

Until now we have achieved nothing as equation (9) is still hard to solve. However the only problem

in (9) is the constraint 𝑅𝑎𝑛𝑘(𝑧) = 1 which is a non-convex function. If we drop this constraint then

we will get the following relaxed version of the problem

 minimize(𝑇𝑟(𝑀𝑇𝑀𝑍)) 𝑠𝑢𝑏𝑗 𝑡𝑜 𝑍 > 0, 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔(𝑍) = 1 (10)

Problem (10) is known as an SDR problem of problem (8) and it can be effectively solved in

numerically reliable and efficient fashion. SDR can be handled easily by the readily available software

package. We used CVX package [19].

To retrieve 𝑧 from 𝑍 we used Singular Value Decomposition (SVD) of Z and took the singular vector
corresponding to the largest singular value for reconstruction as it is its best rank 1 approximation.

SVD is theorem based on the linear algebra, which says that any rectangular matrix A can be written
as a product of three matrices as below.

𝐴𝑚𝑛 = 𝑈𝑚𝑚𝑆𝑚𝑛𝑉𝑛𝑛
𝑇

Where columns of U are orthonormal Eigen vectors of 𝐴𝐴𝑇, coloums of V are orthonormal Eigen
vectors of 𝐴𝑇𝐴, and S is the diagonal matrix containing square roots of the eigenvalues of 𝐴𝐴𝑇 or
𝐴𝑇𝐴 in its diagonal in descending order.

For matrix Z in our case, the SVD of Z leads to the U matrix containing Eigen vectors of 𝑍𝑍𝑇, which is
equivalent to (𝑧𝑧𝑇)2, the reconstruction for ‘z’ is straight forward according to the Eigen values
definition. According to Eigen values and Eigen vector properties, if λ is the Eigen value of 𝑍𝑍𝑇 =
(𝑧𝑧𝑇)2 then Eigen value of (𝑧𝑧𝑇) will be square root of λ with the same corresponding Eigen vector.
As multiplying Eigen value with its Eigen vectors will reconstruct matrix Z. Then according to Eigen
values properties, multiplying square root of Eigen values with Eigen vectors will reconstruct z.
However in our case since the matrix was assumed to be rank 1, the best approximation for the rank
1 matrix is to use Eigen vector corresponding to the largest Eigen value. Since by definition, for rank 1
matrix all the information should lie in its largest Eigen value while other Eigen values should be zero.
Hence to reconstruct z we multiplied square root of largest Eigen value S(1,1), with the
corresponding Eigen vector in U.

14

After having ‘z’, since we know that the first component of ‘z’ should be 1 in our case, as it is in the
problem formulation above. We normalized vector ‘z’ by dividing its components with first element.

Finally we took the sign of the values of vector ‘z’, ignoring the magnitude. As our original vector was
consisting of +1 and -1 only. So negative sign for a value in ‘z’ corresponds to -1 and positive sign
approximates +1.

3.5 Iterative Adaptive Approach based on Weighted Least Squares
As we are using sparse signal processing techniques to solve the sudoku problem, here we are using

another technique from sparse signal literature. The one of the challenge of sparse signal processing

techniques is they are much computationally heavy and slow, and the techniques we have discussed

earlier also have varying computational complexity for our sudoku case. Here we tried another

method which we assumed should work faster. The method we are going to use is from the literature

of array processing and is described in [4]. Here we will explain a bit about the mathematical model

of the algorithm and then we will use it for our sudoku case.

Array processing is used for sensing location and waveforms of the sources by combining the signal

from different sources using a set of sensors separated spatially (e.g. an array of antennas). The goal

is to enhance the signal by combining received signals in such a way that the noises and other

unwanted interferences are suppressed. If the environment in which the sources are sensed is

stationary only for a limited time, then the number of snapshots available can be very few which

makes it challenging to localize the sources and also the near field sources which are near to each

other, spatially and with respect to Doppler shifts, are difficult to discriminate. In [4], it is described

that the array processing scenario can be modeled in sparse signal representation as the number of

actual sources is much smaller than the number of potential source points that are considered.

Moreover sparse based techniques can work for as low snapshot as one, so it is considered to solve

the array processing localization using sparse signal based technique which they named as Iterative

Adaptive Approach for Amplitude and Phase EStimation (IAA-APES).

3.5.1 Data Model

Consider the wave field generated by 𝐾 narrow band sources located at angle ɵ1, ɵ2, … , ɵ𝑘from

the sensor array as shown in figure.

Figure 1: Array Processing example

15

By using the complex envelop representation the array output can be represented as (in sense of

superposition),

𝑥(𝑡) = ∑ 𝑎(

𝐾

𝑘=1

𝜃𝑘)𝑠𝑘(𝑡) + 𝑛(𝑡)

Where:

𝑥(𝑡) is the signal received by the array.

𝑎(𝜃𝑘) is the steering vector of the array towards the direction of source 𝑘.

𝑛(𝑡) is the noise vector.

𝑠𝑘(𝑡) is signal emitted by the 𝑘𝑡ℎ source as received by the first sensor of the array.

In vector forms, we can write it as

𝑥(𝑡) = 𝐴(𝜃)𝑠(𝑡) + 𝑛(𝑡)

Let us say we have only one snapshot (that is the case in our sudoku model) we may write

𝑋 = 𝐴𝑠 + 𝑛

Also if we assume there is no noise (as is the case in our sudoku model) we can skip the term 𝑛, and

hence the model becomes

𝑋 = 𝐴𝑠

By comparing it to sudoku model we can see that if we assume X= b as in equation (1), A as in

equation (1) and s as x (our required solution) then we can use this array processing model to reach

to the solution x which will eventually be our sudoku solution.

3.5.2 IAA-APES

IAA-APES is a non-parametric algorithm based on weighted least squares. Let us modify the model

presented in [4] for our sudoku case.

Let 𝑃 be a 𝐾 × 𝐾 diagonal matrix, whose diagonal contains the power at each angle on the scanning

environment. Then 𝑃 can be expressed as, for single snapshot case,

𝑃𝑘 = |𝑠𝑘|
2

Also we do not have noise in the sudoku case. Then we need to minimize the following least square

cost function:

∑‖𝑦(𝑛) − 𝑠𝑘(𝑛)𝑎(𝜃𝑘)‖2

𝑁

𝑛=1

16

[4] contains the details of the algorithm derivations. We will present only the algorithm here to suit

our sudoku case. For our case we have only one snapshot so N=1.

Therefore our cost function for sudoku case is

‖𝑦 − 𝑠𝑘𝑎(𝜃𝑘)‖2

The complete algorithm is presented in the next section.

3.5.2.1 Algorithm

𝑃�̂� =
1

(𝑎𝑇(𝜃𝑘)𝑎(𝜃𝑘))2
|𝑎𝑇(𝜃𝑘)𝑦|2, 𝑘 = 1,2,… , 𝐾

Repeat

𝑅 = 𝐴(𝜃)�̂�𝐴𝑇(𝜃)

for k=1: K

�̂�𝑘 =
𝑎𝑇(𝜃𝑘)𝑅−1𝑦

𝑎𝑇(𝜃𝑘)𝑅
−1𝑎(𝜃𝑘)

�̂�𝑘 = |�̂�𝑘|2

End for: Until convergence (15 iterations approximately are enough)

Comparing it with our sudoku case in equation (1)

 b=y, A as in (1) and s=x

3.6 Sinkhorn Balancing
A slightly different algorithm than those we have already discussed is presented in [7]. The problem

formulation for Sinkhorn balancing algorithm is different from those presented earlier. Sinkhorn

balancing computes the solution based on a probabilistic representation of the sudoku puzzle.

Sinkhorn balancing is presumed to solve all puzzles but the most difficult ones. We have included this

method in our report to compare its results to our presented methods for the sudoku. For more

details of this algorithm we refer to [7]. Here we only present the results of this algorithm on our

Sudoku puzzles. We are thankful to Todd Moon for providing us the matlab code for Sinkhorn

balancing.

17

4 Puzzles

In this thesis work we used the sudoku generator from [20] which creates sudoku of varying difficulty

level and tries to create as hard as possible sudoku puzzles. It also gives the solution of the puzzles by

using some simple and complex algorithms which guarantees to get to the solutions. One of the

methods used for these solutions is as described in [9]. The method used in getting these solutions in

sudoku generator are not mathematical but interactive as people used to do it on paper like guessing

and back tracking. One of the popular algorithms of such category to solve the sudoku on computer

is Dancing Links which uses programming techniques and data structures to solve the sudoku. As in

this thesis work we are comparing different mathematical algorithms for the solution and we are

interested in the performance of the algorithm in terms of the entries solved, it is good idea to have

the solution of these sudoku in advance using some of above mentioned techniques to compare the

results. It would at least give a good comparison of the solved entries for the puzzles which have

unique solutions. As choosing the puzzles in [20] helped us having a solution in advance and mostly it

tries to create varying level of difficulty with unique solution we are presented puzzle set 1 for these

sudoku. Puzzle set 2 is taken from the web generator [21] with different difficulty levels and puzzle

set 3 [22] also provides puzzles with multiple solutions without guarantee of uniqueness. Table 8, 9

and 10 in the Appendix contain the puzzles for these 3 sets respectively.

18

5 Results and Discussions

Here we will present different puzzle sets with different observations and conclusion.

5.1 Puzzle Set 1
Table 2 shows the results from the 50 randomly generated 9x9 puzzles as in [20]. This puzzle

generation method tries to generate as hard as possible puzzles and also ensures that the puzzle has

a unique solution. The used puzzles are shown in Appendix. Here we present the results of all our

methods on these puzzles to see the comparison. Numeric entry in the table shows the number of

unsolved or number of incorrectly solved entries out of total of 81 entries for each puzzle. As this

puzzle generation method also gives the solution in advance, this is being matched with the results to

get the incorrect entries.

Table 2: Comparison of methods for number of incorrectly solved entries of the puzzle set 1

 Linear
program
(L1)

Weighted
l1 method

SDR Sinkhorn SPICE LIKES IAA

PUZZLE 1 50 0 7 16 50 47 0

PUZZLE 2 0 0 0 0 0 0 7

PUZZLE 3 32 0 0 6 32 30 0

PUZZLE4 0 0 0 0 0 0 0

PUZZLE 5 47 0 1 23 47 43 28

PUZZLE 6 0 0 0 0 0 0 0

PUZZLE 7 41 29 18 17 41 33 12

PUZZLE 8 0 0 0 0 0 0 0

PUZZLE 9 0 0 0 0 0 0 0

PUZZLE 10 42 0 0 8 42 41 24

PUZZLE 11 48 39 16 17 48 40 40

PUZZLE 12 28 19 0 12 28 0 12

PUZZLE 13 0 0 0 0 0 0 0

PUZZLE 14 0 0 0 0 0 0 0

PUZZLE 15 0 0 0 0 0 0 0

PUZZLE 16 46 38 0 18 46 34 8

PUZZLE 17 40 35 0 18 40 37 34

PUZZLE 18 0 0 0 0 0 0 0

PUZZLE 19 0 0 0 0 0 0 0

PUZZLE 20 0 0 0 0 0 0 13

PUZZLE 21 0 0 0 0 0 0 0

PUZZLE 22 0 0 0 0 0 0 0

PUZZLE 23 47 0 0 11 48 0 0

PUZZLE 24 0 0 0 0 0 0 0

PUZZLE 25 0 0 0 0 0 0 0

PUZZLE 26 0 0 0 0 0 0 0

PUZZLE 27 0 0 0 0 0 0 34

PUZZLE 28 0 0 0 0 0 0 0

PUZZLE 29 16 0 0 2 16 16 0

PUZZLE 30 36 0 0 10 36 25 25

19

PUZZLE 31 26 0 0 6 26 26 22

PUZZLE 32 51 40 0 16 51 41 37

PUZZLE 33 43 21 0 17 43 42 18

PUZZLE 34 0 0 0 0 0 0 0

PUZZLE 35 0 0 0 2 0 0 0

PUZZLE 36 50 43 0 20 50 46 43

PUZZLE 37 0 0 0 0 0 0 0

PUZZLE 38 0 0 0 0 0 0 0

PUZZLE 39 0 0 0 0 0 0 0

PUZZLE 40 0 0 0 0 0 0 7

PUZZLE 41 0 0 0 0 0 0 0

PUZZLE 42 0 0 0 0 0 0 21

PUZZLE 43 0 0 0 0 0 0 0

PUZZLE 44 45 38 0 19 45 42 34

PUZZLE 45 0 0 0 0 0 0 0

PUZZLE 46 37 0 0 14 37 33 31

PUZZLE 47 43 31 0 20 43 36 30

PUZZLE 48 34 24 0 16 34 24 26

PUZZLE 49 42 23 0 13 42 39 25

PUZZLE 50 0 0 0 0 0 0 0

Table 3 shows the number of solved puzzles out of total of 50 puzzles. The puzzles here are the same

as are in Table 2.

Table 3: Comparison Table for Number of solved puzzles in puzzle set 1

 L1 Weight l1 SDR Sinkhorn SPICE LIKES IAA

Total
Puzzels
solved

29 38 46 28 29 31 28

Summarizing Table 2 and Table 3.

As expected the SPICE and l1-norm minimization are almost the same in terms of their performance.

LIKES is not much of improvement over SPICE in terms of number of solved sudoku as in Table 3. But

the numbers of solved entries for LIKES are much better than those in SPICE see Table 2 for the

corresponding columns of SPICE and LIKES. Also here weighted l1 norm minimization behaves better

than the LIKES and as expected LIKES performs better than l1-norm minimization. IAA method

performs somewhere around LIKES and SPICE in terms of accuracy, as we can see in Figure 3 that the

execution speed for IAA is faster than those of SPICE and LIKES.

Sinkhorn method shows us the least accurate results than the other methods. Sinkhorn only can

solve half of the puzzles and mostly for the hard puzzles the sinkhorn was unable to solve all the

entries. It is also clear that the puzzles solved by sinkhorn are also solved by all the other methods.

Therefore Sinkhorn is the lowest performer of our comparison table.

20

The best performer of our tried methods is SDR which solves more than 90 % of the puzzles and

those which are not solved have also the least number of unsolved entries than the other methods.

So idea of using SDR is successful in terms of the accuracy of the method. However the huge

difference lies in terms of computational complexity. In fact the computational complexity for SDR is

worse than all of the other methods, which is kind of a dilemma for using SDR. However the accuracy

is highest among all and it solves mostly the hard to extremely evil puzzles.

Figure 2: Execution time for First 20 puzzles (in seconds)

Figure 3: Increase in computation time with puzzle size

21

We also tried to get an idea to know how the computation speed increases with the increase of

puzzle size. For this purpose we test randomly generated puzzles from different web resources of

size 4x4, 6x6 and 9x9 respectively. We found the computation speed for each method to solve 20 set

of puzzles of the above mentioned sizes and took the average computation speed for each method.

Finally this average speed is plotted as shown in Figure 3. Vertical axis is the log scale of the average

computation speed taken on 20 set of puzzles of each size.

5.2 Puzzle Set 2
Here we present other 40 puzzles generated by the web generator [21] with different level of

difficulties. The puzzles used can be found in Appendix. Table entry 0 represents that puzzle has

been solved with no errors while entry ‘X’ represents that puzzle was not solved completely.

Table 4: Comparison for puzzle set 2

 Difficulty
Level

Linear
program
(L1)

Weighted
l1
method

SDR Sinkhorn SPICE LIKES IAA

PUZZLE 1 Easy 0 0 0 0 0 0 0

PUZZLE 2 Easy 0 0 0 0 0 0 0

PUZZLE 3 Easy 0 0 0 0 0 0 0

PUZZLE 4 Easy 0 0 0 0 0 0 0

PUZZLE 5 Easy 0 0 0 0 0 0 0

PUZZLE 6 Easy 0 0 0 0 0 0 0

PUZZLE 7 Easy 0 0 0 0 0 0 0

PUZZLE 8 Easy 0 0 0 0 0 0 0

PUZZLE 9 Easy 0 0 0 0 0 0 0

PUZZLE 10 Easy 0 0 0 0 0 0 0

PUZZLE 11 Medium 0 0 0 0 0 0 0

PUZZLE 12 Medium 0 0 0 0 0 0 0

PUZZLE 13 Medium 0 0 0 0 0 0 0

PUZZLE 14 Medium 0 0 0 0 0 0 0

PUZZLE 15 Medium 0 0 0 0 0 0 0

PUZZLE 16 Medium 0 0 0 0 0 0 0

PUZZLE 17 Medium 0 0 0 0 0 0 0

PUZZLE 18 Medium 0 0 0 0 0 0 X

PUZZLE 19 Medium 0 0 0 0 0 0 0

PUZZLE 20 Medium 0 0 0 0 0 0 0

PUZZLE 21 Hard 0 0 0 0 0 0 X

PUZZLE 22 Hard 0 0 0 0 0 0 0

PUZZLE 23 Hard 0 0 0 0 0 0 0

PUZZLE 24 Hard 0 0 0 0 0 0 0

PUZZLE 25 Hard 0 0 0 0 0 0 0

PUZZLE 26 Hard 0 0 0 0 0 0 0

PUZZLE 27 Hard X 0 X X X 0 0

PUZZLE 28 Hard 0 0 0 0 0 0 0

PUZZLE 29 Hard 0 0 0 0 0 0 0

PUZZLE 30 Hard 0 0 0 0 0 0 X

PUZZLE 31 Evil 0 0 0 0 0 0 0

PUZZLE 32 Evil 0 0 0 0 0 0 0

PUZZLE 33 Evil 0 0 0 0 0 0 0

22

PUZZLE 34 Evil 0 0 0 0 0 0 0

PUZZLE 35 Evil 0 0 0 0 0 0 X

PUZZLE 36 Evil 0 0 0 0 0 0 0

PUZZLE 37 Evil 0 0 0 0 0 0 X

PUZZLE 38 Evil 0 0 0 0 0 0 0

PUZZLE 39 Evil 0 0 0 0 0 0 0

PUZZLE 40 Evil 0 0 0 0 0 0 0

Table 5: Puzzle set 2, number of solved puzzles

 LP WLP SDR SINKHORN SPICE LIKES IAA

Easy 10 10 10 10 10 10 10

Medium 10 10 10 10 10 10 9

Hard 9 10 9 9 9 10 8

Evil 10 10 10 10 10 10 8

Most of the puzzles generated by the web generator for puzzle set 2 are easily solved by each of the

methods. However there exits only 1 strange puzzle that is not solved by any, actually this puzzle has

multiple solutions and in the next puzzle set we will look into more detailed results of multi solution

sudoku.

5.3 Puzzle Set 3
Following puzzles are generated from web generator [22]. This generator mostly generates puzzles

without guarantee of uniqueness as opposite to puzzle set 1 which generates puzzles with unique

solutions. Here the solved puzzles by the algorithm are mostly distinct from the one we have from

the puzzle generator. Here we will focus more on SDR and will see how rank deficiency effects the

accuracy as depicted in Figure 4 & 5. Type of solution shows the number of solutions exists for the

puzzles. To find the number of solutions a puzzle contains we used the web source [23]. Tick sign

indicates that puzzle is solved successfully while cross sign represents failure.

Table 6: Comparison Table for Puzzle Set 3

 Difficult
y Level

Linear
progra
m (L1)

Weighte
d l1
method

SDR Sinkhorn SPICE LIKES IAA Type of
Solution

PUZZLE 1 Easy unique

PUZZLE 2 Easy unique

PUZZLE 3 Easy unique

PUZZLE 4 Easy unique

PUZZLE 5 Easy unique

PUZZLE 6 Easy unique

PUZZLE 7 Easy unique

PUZZLE 8 Easy unique

PUZZLE 9 Easy unique

PUZZLE 10 Easy unique

PUZZLE 11 Easy unique

23

PUZZLE 12 Easy unique

PUZZLE 13 Easy Unique

PUZZLE 14 Easy Unique

PUZZLE 15 Easy Unique

PUZZLE 16 Medium X X X X 4

PUZZLE 17 Medium X X X X 6

PUZZLE 18 Medium Unique

PUZZLE 19 Medium X X X 5

PUZZLE 20 Medium Unique

PUZZLE 21 Medium Unique

PUZZLE 22 Medium Unique

PUZZLE 23 Medium Unique

PUZZLE 24 Medium Unique

PUZZLE 25 Medium Unique

PUZZLE 26 Medium Unique

PUZZLE 27 Medium Unique

PUZZLE 28 Medium X X X X 4

PUZZLE 29 Medium X X X X 7

PUZZLE 30 Medium X X X X 18

PUZZLE 31 Hard X X X X 9

PUZZLE 32 Hard Unique

PUZZLE 33 Hard Unique

PUZZLE 34 Hard X X X X 14

PUZZLE 35 Hard X X X X 6

PUZZLE 36 Hard X X X X 3

PUZZLE 37 Hard X X X X 54

PUZZLE 38 Hard X X X X X 13

PUZZLE 39 Hard Unique

PUZZLE 40 Hard X X X X X 6

PUZZLE 41 Evil X X X X 12

PUZZLE 42 Evil X X X X 102

PUZZLE 43 Evil X X X X 54

PUZZLE 44 Evil X X X X 23

PUZZLE 45 Evil Unique

PUZZLE 46 Evil X X X X 103

PUZZLE 47 Evil X X X X X 67

PUZZLE 48 Evil X X X X 145

PUZZLE 49 Evil X X X X 3

PUZZLE 50 Evil X X X X X X 92

Table 7: Total Puzzles solved for puzzle set 3

 L1 Weight l1 SDR Sinkhorn SPICE LIKES IAA

Total
Puzzels
solved

28 49 28 29 28 48 48

24

In the multi solution environment, IAA, LIKES and weighted l1 proved to be the best however SDR is

not as optimal. Sinkhorn also performed poorly for this puzzle set.

Figure 4 and 5 show the singular value plots for unsolved puzzle 27 of puzzle set 2. It can be seen that

matrix rank is not 1 as the singular component other than 1 are not 0. As in SDR we skip the

constraints of matrix rank to be one, so here we can see that the more better the rank 1

approximation holds the more accurate the result is. Following figures show this scenario for one

correct and one incorrectly solved puzzles.

Following figure shows singular values for Puzzle 36, a solved puzzle. As the rank is approximately 1

as the first singular values is more dominant and others are approximately near zero.

Figure 4: Singular Value Plot for incorrectly solved puzzle

Figure 5: Singular value plot for correctly solved puzzle

25

6 Conclusion and Future Work

Inspired by [1] and [5] we presented sudoku as a system of underdetermined linear system of

equations. This system is being solved with a number of approximate methods and it is been

presented in the report that the approximate solution techniques for solving sudoku suffers in

accuracy as compared to the exact solutions but the gain is that the computations complexity for

approximate solvers is better when the puzzle size increases. Accuracy is the key for solving sudoku

or any other puzzle, however as our goal is not meant for sudoku only in the long term, the research

presented in the report can be useful to extend to some of the more practical communication and

signal processing areas as solving sudoku has ties with scenarios in the communication world like

decoding error correcting codes.

We showed numerically that how mathematical techniques used in signal processing and

optimization theory can solve many representative puzzles. Semi Definite Relaxation (SDR) proved to

be the best in accuracy for the puzzles with unique solutions by solving more than 90% puzzles. SPICE

and l1-norm minimization techniques are equivalent in accuracy, in fact for our puzzle sets used

SPICE and l1-norm have exactly same accuracy in terms of number of solved puzzles. Weighted l1-

norm minimization and LIKES are equivalent in the accuracy and they are better than l1-norm and

SPICE with increased cost of computation speed. When the puzzle solutions are not unique, SDR

performance seems to be degraded mainly because the rank 1 approximation has more error for

these puzzles. LIKES and weighted l1-norm performed best for these puzzles and they mostly

converge to one of the possible solutions.

The real challenge in using SDR is that the computation speed is worst and when the size of the

puzzle is increased the result for solving a puzzle can take several minutes and hours. LIKES, weighted

l1 also work slowly due to their iterative nature. To achieve the goal of SPICE and LIKES with

increased computation speed, the Iterative Adaptive Algorithm (IAA) was presented which can

provide accuracy somewhere near SPICE and LIKES with better computation speed. Results were

compared with Sinkhorn balancing whose accuracy seems to be the worse of all.

One can further research on the possibility of better rank 1 approximation of SDR to get the better

results. Sparsity is desirable in many applications. The sparse solution representation of sudoku can

be further utilized to suit many practical areas. As mentioned earlier many practical scenarios in tele-

communication and signal processing exists which are similar to sudoku puzzles, work can be done to

utilize the good algorithms working for sudoku to those areas and vice versa.

26

7 References

 [1] A. C. Bartlett and A. N. Langville, "An integer programming model for the Sudoku problem,"
Preprint, available at http://www. cofc. edu/langvillea/Sudoku/sudoku2. pdf, 2006.

 [2] P. Stoica and P. Babu, "SPICE and LIKES: Two hyperparameter-free methods for sparse-
parameter estimation," Signal Processing, vol. 92, no. 7, pp. 1580-1590, 2012.

 [3] Z. q. Luo, W. k. Ma, A. C. So, Y. Ye, and S. Zhang, "Semidefinite relaxation of quadratic
optimization problems," Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 20-34, 2010.

 [4] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, "Source localization and sensing: A
nonparametric iterative adaptive approach based on weighted least squares," Aerospace and
Electronic Systems, IEEE Transactions on, vol. 46, no. 1, pp. 425-443, 2010.

 [5] P. Babu, K. Pelckmans, P. Stoica, and J. Li, "Linear systems, sparse solutions, and Sudoku,"
Signal Processing Letters, IEEE, vol. 17, no. 1, pp. 40-42, 2010.

 [6] Y. B. Zhao and D. Li, "Reweighted \ell_1-Minimization for Sparse Solutions to
Underdetermined Linear Systems," SIAM Journal on Optimization, vol. 22, no. 3, pp. 1065-
1088, 2012.

 [7] T. K. Moon, J. H. Gunther, and J. J. Kupin, "Sinkhorn solves sudoku," Information Theory, IEEE
Transactions on, vol. 55, no. 4, pp. 1741-1746, 2009.

 [8] T. Davis, "The mathematics of Sudoku," [Online] available at http://www. geometer.
org/mathcircles/sudoku. pdf, 2006.

 [9] M. Mepham, "Solving sudoku," Daily Telegraph [Online]. Available: http://www. sudoku. org.
uk/PDF/Solving_Sudoku. pdf., 2005.

 [10] "Sudoku Solving Algorithms," (2014) Retrieved January 19, 2015, from
http://en.wikipedia.org/wiki/Sudoku_solving_algorithms

 [11] D. E. Knuth, "Dancing links," Millenial Perspectives in Computer Science, vol. 18, no. arXiv:

cs/0011047, p. 4, 2009.

 [12] "Knuth's Algorithm X," (2014). Retrieved January 19, 2015, from

http://en.wikipedia.org/wiki/Algorithm_X

 [13] H. Simonis, "Sudoku as a constraint problem,", In CP Workshop on modeling and
reformulating Constraint Satisfaction Problems, 12 ed Citeseer, 2005, pp. 13-27.

 [14] J. Almog, "Evolutionary computing methodologies for constrained parameter, combinatorial

optimization: Solving the Sudoku puzzle," in Proc. IEEE AFRICON, 2009, pp. 1-6.

 [15] R. Lewis, "Metaheuristics can solve sudoku puzzles," Journal of heuristics, vol. 13, no. 4, pp.

387-401, 2007.

http://www/
http://www/
http://www/
http://en.wikipedia.org/wiki/Sudoku_solving_algorithms
http://en.wikipedia.org/wiki/Algorithm_X

27

 [16] "Tabu Search," (2014). Retrieved January 19, 2015, from

http://en.wikipedia.org/wiki/Tabu_search

 [17] T. K. Moon and J. H. Gunther, "Multiple constraint satisfaction by belief propagation: An
example using Sudoku," in Mountain Workshop IEEE, 2006, pp. 122-126.

 [18] J. Gunther and T. Moon, "Entropy minimization for solving Sudoku," Signal Processing, IEEE
Transactions on, vol. 60, no. 1, pp. 508-513, 2012.

 [19] M. Grant, S. Boyd, and Y. Ye, "CVX: Matlab software for disciplined convex programming,"

2008 [Online]. Available: http://stanford.edu/~boyd/cvx

 [20] [Online]. Available: http://www.mathworks.se/matlabcentral/fileexchange/28168-sudoku-

generator

 [21] [Online]. Available: http://www.websudoku.com/

 [22] [Online]. Available: http://www.mathworks.se/matlabcentral/fileexchange/13846-solve-and-

create-sudoku-puzzles-for-different-levels/all_files

 [23] [Online]. Available: http://www.sudoku-solutions.com/

http://en.wikipedia.org/wiki/Tabu_search
http://stanford.edu/~boyd/cvx
http://www.mathworks.se/matlabcentral/fileexchange/28168-sudoku-generator
http://www.mathworks.se/matlabcentral/fileexchange/28168-sudoku-generator
http://www.websudoku.com/

28

Appendix

Table 8: Puzzle Set 1

Puzzle1 Puzzle2 Puzzle3 Puzzle4

 3 9 8 4 3 8 7 6 1 9 1

 7 3 5 3 7 1 7 2 7 3

 1 3 4 8 9 2 5 7 6 1 7 6 5 2

 5 4 6 2 3 1 5 1 9 9 8 5 1

 9 4 2 7 2 7 4 6

6 2 5 9 1 8 3 5 2 6

 4 5 8 6 5 4 1 4 8 3

7 9 6 8 1 9 3 4 2 1 8 9 3 4

 2 3 5 9 2 5 3 4 1 8 7

Puzzle5 Puzzle6 Puzzle7 Puzzle8

 1 2 6 9 5 3 1 2

 9 5 7 2 8 5 9 4 2 6 3 8 9

7 5 6 3 7 8 2 9 8

 2 9 5 8 5 6 4

 9 1 3 5 1 1 2 5 3 6 1

 8 2 4 6 4 9 2 6 9 7 9 8 2 1

 2 7 8 7 4 7 9 1 7 5 8

4 2 8 3 6 2 9 1 4 3 1 7

 4 5 7 1 8 3 7 8 5 7 2 6

Puzzle9 Puzzle10 Puzzle11 Puzzle12

 1 3 9 6 8 7 1 9 7 6 4 2 1

5 7 4 3 1 8 2 6 4 7 2 3

 8 4 5 5 3 2 6 2 4 3

 8 1 7 9 8 1 8 4

 4 6 4 3 1 2 7 8 4 1 7 3

2 9 7 8 9 1 3 2 1 5

3 7 9 2 5 4 1 8 9 4 2 8

 2 6 3 2 4 6 8 1

 7 7 9 5 1 2 6 7 9 3 6 2 9 7

Puzzle13 Puzzle14 Puzzle15 Puzzle16

 8 3 4 2 6 4 5 1 1 9 4 6 3 7 4

 7 2 6 4 4 4

 2 1 3 8 7 2 9 7 8

8 3 2 5 9 8 1 7 3 9 3 8 6

6 5 7 3 6 4 3 1 2 9

 3 6 4 1 7 2 5 1 4 9 5 2

 4 9 2 3 4 5

29

 7 8 2 7 3 2 6 3 1 7 6

7 4 5 9 7 2 6 4 5 8 2 4 1

Puzzle17 Puzzle18 Puzzle19 Puzzle20

4 3 5 6 1 3 4 6 8 2 7 1

 9 7 3 6 6 8

 1 5 2 4 8 9 2 3 5 4 3 8 1 4

6 3 8 9 5 6 9

 3 6 2 5 8 4 8 3 9

3 9 2 7 8 2 4 7 4 3 9 5 3 6 7

 4 9 1 2 6 8 7 2 5 4 1 6 5 8

 4 9 3 5 6 9 9

 7 6 4 1 7 2 1 7 3

Puzzle21 Puzzle22 Puzzle23 Puzzle24

 2 4 3 6 8 6 9 3 4 7 9 5

 6 9 3 6 7 5 3

 1 7 4 5 2 1 8 6 1 7 7

 3 5 7 9 2 8 3 3 7 9 6 8

 5 6 7 9 1 6 8 4 6 3 9

 7 3 9 1 5 8 3 1 6 8 5 4 1

 9 2 7 5 6 5 1 8 2 5 6 5 9

4 5 8 9 4 1 2

 1 2 4 9 9 4 7 2 5 6 9 8 7 3 4

Puzzle25 Puzzle26 Puzzle27 Puzzle28

 8 2 5 3 5 3 9 7 9 2 4 8

5 2 4 6 9 6 6 3 9

 7 3 9 9 4 3 5 1 8 6

 6 4 1 5 4 6 5 6 7 7

2 8 6 5 6 8 9 8 6 4 2 5 6 3

1 7 8 2 4 2 2 3 5

 6 7 5 4 1 7 4 7 9

 9 3 8 2 3 1 9 2 6 4 6 9

 6 2 4 9 1 2 5 3 7

Puzzle29 Puzzle30 Puzzle31 Puzzle32

 3 2 9 1 3 2 9

 8 2 9 6 6 5 1 1 5 7 2 1

2 5 4 2 7 1 6 5 8 4 9 7 6

5 9 8 1 7 3 5 1 4 9 7

 3 7 8 6 2 9 5 2 8 6

 4 7 2 6 3 1 8 9 1 7 3 5 4 9

 2 6 7 9 6 9 3 8 9

7 1 2 4 1 3 7 5 8 6 5 1 3 4

 3 4 9 8 2 6 7 2

Puzzle33 Puzzle34 Puzzle35 Puzzle36

 4 3 9 8 2 9 8 3 6 2

8 5 3 1 6 9 7 2 5 4 6 9 5 1

30

 1 9 4 1 6 1 3 8 5 8 4 7

6 1 9 8 9 2 7 4 5 7 6 1 8 3

 9 3 6 5 2 8 2 3 7 8 9

 9 5 1 8 9 5 2 1 4

 2 7 6 8 3 7 5 8 7 6

 5 6 4 6 5 2 9 7

7 4 8 9 2 4 8 9 8 7 5

Puzzle37 Puzzle38 Puzzle39 Puzzle40

4 8 5 7 1 9 5 8 3 2 3

 3 2 1 6 2 2 9 7 1 5 4 6

 5 9 3 4 1 2 9

9 8 7 6 3 9 8 2 3 9 7 5 4

 1 3 8 9 1 4 6 3

 6 5 1 4 1 4 2 6 5 5 3 8 7 3 6 7

 8 7 4 5 4 5 5 3 3 9 2

 8 3 4 8 6 1 8

 9 2 3 6 8 7 4 2 4 8

Puzzle41 Puzzle42 Puzzle43 Puzzle44

 6 8 9 5 4 1 8 9 2

3 9 1 3 8 4 4 9 3 1 8 9

 2 4 3 7 6 9 3 7 7 3

8 3 1 5 4 6 4 3 5 7

 7 3 7 1 9 4 5 5 9 8

1 5 4 9 7 2 7 3 5 4 1

 8 1 4 3 5 1 2 4 6 3 2

 9 6 8 2 6 5 1 4 1 8 3 9 2 6

 5 9 1 6 8 2 7 3 9 8

Puzzle45 Puzzle46 Puzzle47 Puzzle48

 5 1 7 3 2 2 9 4 1 4 5

2 4 7 5 5 1 9 2

 2 3 8 2 5 3 8 2 1 9 7

 6 4 9 4 2 8 8

9 8 8 5 9 2 4 9 6 7 7 1 3

 9 2 4 8 1 7 8 1 3 2

 8 7 2 6 3 1 8 3 4 7 9 1 3 8 2

 3 1 6 9 1 8 4 1 2 5 7 9

 4 8 5 3 9 7 7 9 4 8

Puzzle 49 Puzzle 50

4 2 3 1 9 6 7

7 9 5 6 3 6

 4 8 7 4

8 1 9 4

 6 8 5 7 2 8 9

 1 7 4 1 9

 7 1 5 4 9

31

9 8 6 3 4 7

 5 2 7 8 5

Table 9: Puzzle set 2

Puzzle1 Puzzle2 Puzzle3 Puzzle4

7 8 5 4 2 3 9 1 9 6 5 3 7 2 9 4 3 5 1 2 7 2 4 1 3 9

2 3 7 9 5 4 3 2 8 9 5 6 4 7 8 5 4 2 6 3 1 9 1 3 8

 4 6 3 5 1 8 2 7 8 7 6 3 1 2 3 1 7 8 9 5 6 4 1 9 8 7 6 5

6 1 9 4 2 5 3 7 5 3 9 2 6 4 8 7 3 9 2 8 1 9 7 3 2 5

5 6 4 8 2 4 8 1 3 5 7 6 6 1 9 7 5 2 8 3 5 9 7

 8 7 6 1 6 9 4 7 8 3 5 2 5 1 7 9 5 3 2 6 8

1 9 2 3 6 8 5 5 4 8 1 2 7 3 5 4 9 6 8 2 7 6 8 5 7 4 9 3

 6 2 7 9 3 4 6 8 2 7 1 9 4 9 7 2 3 6 5 8 9 7 4 5 6 8

3 5 4 9 8 1 7 3 4 2 8 8 6 2 1 7 5 9 4 3 4 8 6 9 2 1 7

Puzzle5 Puzzle6 Puzzle7 Puzzle8

4 9 5 3 2 7 8 9 6 4 5 3 8 2 2 1 9 8 7 6 7 5 8 6 2 4 1

8 7 6 4 3 7 5 8 6 4 3 8 7 5 6 1 6 4 3 2

 2 1 9 8 4 6 5 1 9 7 4 6 5 3 2 7 8 2 1 9 8 4 5

1 6 4 5 3 2 4 8 2 3 5 7 6 1 6 7 4 8 5 3 4 8 3 5 7

7 5 4 5 3 9 2 4 1 2 4 3 1 5 6 7 5 7 2 6 8 1 4

 4 8 3 1 5 6 1 4 8 2 5 7 5 3 2 9 1 8 4 7 4 3 5 2

6 8 2 5 7 1 3 4 8 2 6 5 9 3 4 9 7 4 5 6 1 7 9 4 3 2 6

9 1 5 6 1 7 9 4 2 6 5 5 3 4 8 6 9 7 2 1 3 4 8 9 2 7

5 3 4 8 6 9 7 2 1 4 5 6 1 2 6 2 5 7 1 4 9 8 2 6 7 1 4 3 9

Puzzle9 Puzzle10 Puzzle11 Puzzle12

8 7 5 2 9 1 8 5 2 4 9 1 6 1 3 2 7 7 4 5

4 9 5 3 7 4 9 1 3 2 8 7 7 6 2 4 9 1 3 5 9 3

3 2 8 9 6 5 3 1 2 8 9 7 6 2 1 8 7 5 9 3 5 1 7 8

1 9 4 8 5 3 1 6 4 7 8 5 2 3 4 8 2 3 5 9 7 5 7 6 9 8 1 4

7 5 3 9 2 1 8 4 5 2 6 1 4 6 9 1 4 8 5 3 4 2 8 1 9 6 7

 8 1 5 3 9 7 2 8 3 6 7 5 3 7 2 6 1 8 4 6 1 9 8 4 7

6 8 2 7 1 5 3 4 9 5 4 3 8 7 1 1 7 9 4 3 8 5 6 1 9 7 2 3 4 5

9 1 2 8 5 6 9 7 4 2 8 6 5 4 5 8 9 7 2 8 6 2 1 5 4 3 9

5 4 6 9 8 7 2 1 6 2 8 7 5 4 7 1 3 4 9 5 9 6 8 7 1

Puzzle13 Puzzle14 Puzzle15 Puzzle16

 6 3 1 7 8 7 8 4 6 3 1 3 2 1 9 4 6 9 1 2

2 1 8 5 4 2 1 3 7 8 5 4 6 4 9 1 5 3 3 1 2 6

7 2 4 3 9 9 5 8 2 8 7 5 6 2 4 9 1 8 3 9

5 3 7 2 8 1 4 2 5 1 3 7 1 6 9 7 4 8 2 5 3 7 3 2

6 9 1 4 8 7 3 5 6 9 8 7 2 3 7 5 3 2 9 6 4 1 8 7 6 9 1

 2 1 5 3 9 6 3 7 9 2 4 8 2 4 8 3 1 5 6 9 2 8 3 5 9 6

1 9 2 4 5 6 2 6 1 7 5 9 3 4 9 1 4 3 6 8 5 5 4 8 6 1 7

32

3 4 5 9 8 1 7 9 4 8 5 6 8 2 7 1 9 3 4 4 2 5 6 8

8 5 4 9 4 5 9 1 7 2 5 3 4 8 6 9 1 7 2 8 4 9 3

Puzzle17 Puzzle18 Puzzle19 Puzzle20

 5 9 1 3 8 7 4 5 1 2 3 7 4 6 4 6 1 7

6 5 1 8 6 3 1 8 6 5 7 8 1 9

1 8 6 9 8 6 9 2 1 9 7 8 5 4

3 7 4 6 5 1 8 3 7 2 9 8 5 5 1 2 8 7 6 5

 2 5 7 9 5 9 7 8 2 4 4 6 5 1 6 7 5 9 1 4 2

 6 1 3 8 2 1 4 5 3 9 7 6 1 4 9 6 1 3 9

2 8 7 3 4 7 2 5 6 8 9 8 1 7 3 4 8 2 7

4 5 3 1 7 2 2 8 1 9 3 7 1 6 8 6 2 1 5 4

9 1 7 3 6 8 5 4 5 1 7 2 8 5 1 4 3 2 3 4 5

Puzzle21 Puzzle22 Puzzle23 Puzzle24

 5 8 8 5 7 4 1 9 7 9 6 5 4 4 6 5 3 1 8

 2 7 6 4 5 4 6 5 1 7 4 2 9 3 1 2 9 8 7 6 5 4

 9 3 5 8 2 2 9 5 6 9 4 1 5 2 8 8 5 2 1

 2 4 9 6 2 4 8 5 9 6 9 7 3 2 1 5 8 6

8 4 2 5 9 4 8 7 2 3 5 1 5 9 1 4 2 7 6 9 4 2

 6 7 1 3 8 2 4 7 6 5 3 1 8 2 4 1 2 9 6 7 9 8 2 3

 3 9 8 6 1 1 2 4 5 2 6 5 4 9 4 3 8 9 6 2

2 8 6 7 1 4 3 4 7 9 3 4 2 6 2 8 1 3 9

9 7 1 4 3 5 6 8 2 1 5 7 4 3 6 9 1 1 7 3 5

Puzzle25 Puzzle26 Puzzle27 Puzzle28

1 3 2 7 5 6 5 4 6 3 1 5 8 7 4 6 9 1 9 4 6 3

7 5 2 4 9 1 9 3 1 2 2 1 8 4 2 3 1 8 9 7 5

 9 5 3 1 8 7 3 7 5 9 3 7 8 4 9

5 1 9 2 8 8 9 6 2 1 3 1 2 8 5 6 9 9 8 7 2 5 3

 9 6 1 3 3 2 1 5 8 7 6 9 2 6 1 2 8

3 4 5 6 7 9 6 9 3 2 4 6 9 3 4 8 2 4 9 6

2 7 5 9 2 8 7 5 1 3 1 9 3 2 4 5 8 1 4 3

 5 8 9 1 1 7 4 3 2 6 5 4 6 9 2 3 5 4 8 2 7

 7 4 3 8 6 4 3 8 1 7 8 5 9 4 2 6 5

Puzzle29 Puzzle30 Puzzle31 Puzzle32

 2 6 7 3 4 8 9 6 1 9 4 3 7 8

5 7 8 2 6 4 3 9 1 6 2 7 1 3 2 7 1 3

6 9 3 5 7 2 8 9 1 4 1 6 4 5 7 5 9 7 8 2

 5 1 4 9 6 7 1 4 8 6 7 7 6 7 1 3

 6 3 6 8 2 4 6 8 5 4 3

8 6 3 5 9 4 3 8 7 6 9 3 3 4 8

2 7 3 8 1 7 5 9 6 1 7 9 2

 4 3 2 6 6 1 3 8 4 5 1 9 8 2 7

 3 5 6 8 8 1 2 5 9 8 1 5 7 9

Puzzle33 Puzzle34 Puzzle35 Puzzle36

5 9 7 2 1 3 2 8 5 7 8 2 6 7 3

 7 5 4 3 5 1 6 2 5 2 1 4 5 8 2 1

33

7 5 1 9 3 7 9 9 1 3 4 2 6 1 4 5

2 9 5 3 7 4 7 2 9 1 7 8 9 2 3 4 6 7 8 3 4 5

1 7 8 4 5 9 5 2 7 1 2 9 6 3 7 2 8 6 4

 3 5 9 8 2 9 1 9 2 3 5

 1 9 2 7 2 6 5 1 2 9 6 9 4

3 5 8 2 4 5 2 2 3 5

4 7 5 9 1 8 3 2 4 6 1 3 4 5 7 6 9 8

Puzzle37 Puzzle38 Puzzle39 Puzzle40

 9 8 9 7 1 5 8 9 3 2 4 9

 3 7 9 4 6 7 1 6 8 9 4 7 3 5 2

 7 5 6 9 1 5 2 9 2 5 1 8 6 5 2 3

 8 4 1 7 5 8 5 6 8 4 7 6 3 5 8

 6 8 8 7 1 5 4 2 8 9 4 2 4 3

 1 9 6 4 4 2 1 5 8 7 1 2

 6 8 1 4 9 2 8 3 7 9 4 8 6 5 9 1

 5 2 3 7 5 7 4 2 3 7

1 3 4 2 7 5 6 6 1 3 1 9 3 5 9 3 2 7

Puzzle41 Puzzle42 Puzzle43 Puzzle44

5 2 8 7 9 1 5 7 1 4 2 8 3 9 5 6 4

 3 8 6 4 8 2 5 1 4 2 6 9

 8 3 7 9 5 5 6 7 8 3 5 1 8 6 3 4 5 7

 7 9 8 1 9 2 8 9 2 7 8

2 5 9 3 6 3 9 8 1 3 9 6 8

 1 7 9 5 4 3 6 1 9 2 1 4 7 5 9 8 6 7 8

 4 1 2 4 5 6 3 6 1 9 3 2 4

 4 5 2 5 7 9 8 4 3

 8 9 4 3 9 3 8 9 1

Puzzle45 Puzzle46 Puzzle47 Puzzle48

 5 6 7 4 6 8 3 9 7 1 2

7 4 1 8 5 3 3 5 7 6 4 3 7 9 6

 2 5 7 2 8 1 4 8 2 6 5 3 2

 5 1 4 9 2 9 8 4 1 3 6 4 7 5 6 5 3 1 8

1 9 4 6 5 8 2 9 4 7 2 9 3 6 6 4 7 5

4 7 9 1 3 6 3 6 4 5 5 6 4 7 4 3 6

 6 3 7 9 7 8 9 2 7 1 8 8 9

 1 3 2 9 3 4 4

 8 6 1 5 8 5 4 6 9 3 4

Puzzle 49 Puzzle 50

1 5 2 8 1 4 2 5 8

2 9 1 3 4 5 7 4 2

 8 5 7 2 6 9 1

 6 1 9 8 5

8 1 3 9 5 2 8 4 2 7

9 4 1 9

 4 7 1 7

34

 8 2 4 8 1 9 2

 1 8 3 7

Table 10: Puzzle set 3

Puzzle1 Puzzle2 Puzzle3 Puzzle4

9 8 4 2 5 1 9 9 3 4 5 6 8 2 5 9 2 1

2 5 7 9 6 5 8 7 3 7 4 1 3 4 7 8 9

 3 2 7 8 1 6 2 7 3 9 2 8 4

3 2 7 9 2 6 7 4 1 3 4

4 7 9 1 3 6 8 1 2 6 8 9 5 7 3 6 2

 5 3 8 1 9 6 1 9 5 4 6

 5 7 1 3 9 2 7 5 9 7 5 3 8

 2 5 4 9 1 8 7 9 8 4 9 6 3 8 7 2 5

1 3 2 7 4 2 1 5 9 2 7 3 6 8 2 5 9 4

Puzzle5 Puzzle6 Puzzle7 Puzzle8

 9 6 1 7 8 9 5 4 7 4 3 6 9 2 3 8

1 8 2 3 5 6 3 7 9 7 4 5 4 5 7

 1 1 9 7 5 4 3 9 5 1 3

 4 2 1 6 8 3 8 1 7 2 9 8 6 2 7 2 3 8 5 9

 7 3 8 9 1 3 6 5 3 1 2 5 6 9 7 4 8 6 8

 5 2 9 6 1 9 4 2 1 7 7 8 2 9 5 8 4 7 6 3

 9 2 3 9 1 1 6 2 7 9 2

4 2 9 3 6 6 3 2 4 5 9 6 5 4 7

7 3 5 8 2 7 8 9 6 3 4 3 2 7 8 5

Puzzle9 Puzzle10 Puzzle11 Puzzle12

 1 3 7 9 7 6 3 9 5 4 8 4 6 9 8 7 2 7 3 4 6

 6 1 9 5 2 1 6 5 9 6 4 6 5 7

7 4 9 2 6 5 6 8 5 7 9 3

3 2 1 2 3 9 4 3 8 7 6 9 7 1

 6 1 9 3 2 5 9 8 2 6

 7 4 5 5 6 7 1 2 8 4 9 4 8 6

 8 3 2 5 9 3 5 4 4 9 5 4

 3 8 2 6 2 8 3 7 2 8 6 7 6 5

 1 6 5 7 9 5 4 8 2 7 1 3 9 6 4 2 5 8 2 1 9

Puzzle13 Puzzle14 Puzzle15 Puzzle16

 2 1 5 3 9 2 1 4 3 3 8 2 3 7 8 5

9 6 2 7 7 1 5 7 9 3 2

 7 2 6 9 7 9 3 6 5 4 5 4 9 2

4 9 1 2 2 8 4 7 1 9 5 8 2 9

 5 4 8 5 4 2 7 4 8 5 7 4 6 2 3

2 4 6 3 7 3 2 9 3 2 4 9 4 8

 8 2 5 6 2 5 6 7 2 4 6 5 8 9

35

 1 6 3 4 2 1 9 4 3 3 4

5 9 2 1 6 9 2 4 6 1 9 9 8 7 4 2

Puzzle17 Puzzle18 Puzzle19 Puzzle20

 8 1 7 5 1 8 6 5 3 9 9 4 7 3 5 6 1 8

6 9 4 7 5 1 2 1 7 3 1 6 9 4

7 5 4 3 2 9 4 9 1 3 6

 7 3 8 3 2 2 6 1 5 7 9

8 3 5 6 2 3 6 6 9

 4 1 9 7 6 9 5 6 1 8 6

 2 5 6 4 1 6 3 9 8 5 6

3 8 1 6 7 5 4 4 2 8 5 8 1 2

 4 3 8 7 4 5 9 6 7 3 7 6 1 9 7 2 3 9

Puzzle21 Puzzle22 Puzzle23 Puzzle24

 6 5 1 8 6 7 3 1 8 2 3 5

 9 8 4 9 4 5 2 4 6 9 7 2

 4 3 6 2 7 3 1 5 3 2 6

4 1 6 7 2 5 2 6 8 1 9 5 9 5 2 1

 7 8 6 1 4

 7 2 8 3 4 2 5 1 3 8 5 4 7 1 5 6

7 1 2 6 4 3 6 5 1 5 2

 2 7 9 6 2 1 2 7 9 3 9 5

5 1 6 1 3 2 2 8 1 5 8 6

Puzzle25 Puzzle26 Puzzle27 Puzzle28

 9 6 1 2 7 5 1 3 5 2 7 9

 5 3 4 1 5 8 1 9 1 4

 3 8 6 1 2 9 6 5 3 8 2

 4 5 6 3 9 7 6 2 7 6 5 6 7 3 4 1

 8 9 1 4 3 8 7 4 6 1 7

 3 6 7 2 5 4 1 9 4 8 7 8 6 1 5 9

 7 3 4 3 5 9 9 2 4 9 7

3 8 8 2 3 1 5 4 8 6

4 1 2 7 5 7 7 4 6 4 1

Puzzle29 Puzzle30 Puzzle31 Puzzle32

 9 2 8 7 2 1 2 3 8 6 5 9

 4 2 3 6 5 7 1 3

 3 4 9 7 5 3 4 1 6 1 8 6 6 4 7 8

6 2 8 5 1 8 5 5 4 3 8 6

 1 7 4 5 8 1 7 3 5 8 4

 5 9 4 6 2 3 6 5 9 2 1 6

 9 3 5 7 1 7 5 3 6 1 6 2 9 2 3 8

4 4 5 3 4 2 5 1

7 4 1 7 9 1 2 4 3 2 4 7

Puzzle33 Puzzle34 Puzzle35 Puzzle36

 6 3 4 6 5 4 2 7

 9 1 5 2 1 4 7 5 2 5 6

36

5 1 6 8 7 5 2 2 7 3 9 7 3 8

8 3 5 1 2 4 7 5 8 9 5 1 4 9

 1 3 2 5 9 7 9 3 1

6 8 4 9 7 7 6 2 6 1 4 4 1 3

 6 2 5 3 7 1 5 1 8 3 3 2 8 5

 7 9 3 9 5 6 9 1 4 1 7

 9 7 2 4 9 7 3 5

Puzzle37 Puzzle38 Puzzle39 Puzzle40

 2 7 5 9 9 5 3 2 9 4 4 3 8

 3 4 7 4 6 9 6 3 5 9

 3 6 6 1 7 1 9 6 2 7 3 9

 7 3 5 8 3 4 6 5 7 6

 3 4 9 8 6 4 6 1 9 9 4

6 5 5 8 2 3 8 2 1 8

7 3 4 3 1 5 2 9 1 6 4 7

 1 5 6 5 1 5 6 4 7 6

 4 2 1 9 3 4 2 9 7 9 5 2 3

