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Abstract. This chapter provides a practical guide on how to use the meta data 
repository ConceptBase to design information modeling methods by using meta-
modeling.  After motivating the abstraction principles behind meta-modeling, the 
language Telos as realized in ConceptBase is presented. First, a standard factual 
representation of statements at any IRDS abstraction level is defined.  Then, the 
foundation of Telos as a logical theory is elaborated yielding simple fixpoint 
semantics. The principles for object naming, instantiation, attribution, and 
specialization are reflected by roughly 30 logical axioms. After the language 
axiomatization, user-defined rules, constraints and queries are introduced. The first 
part is concluded by a description of active rules that allows the specification of 
reactions of ConceptBase to external events. The second part applies the language 
features of the first part to a full-fledged information modeling method: The Yourdan 
method for Modern Structured Analysis. The notations of the Yourdan method are 
designed along the IRDS framework. Intra-notational and inter-notational constraints 
are mapped to queries. The development life cycle is encoded as a software process 
model closely related to the modeling notations. Finally, aspects managing the 
modeling activities are addressed by metric definitions. 

 
 
3.1 Introduction 
The engineering of a modeling method is per se a software development effort. The result is software 
implementing a consistent set of modeling tools that are used to represent information about some 
artifacts. Modeling tools obey to some underlying principles that make a dedicated environment for 
method engineering useful. The strongest underlying principle is the common artifact focus: the result 
of applying a method is a set of models which all make statements about the same set of artifacts. 
Consequently, the models are interrelated. A statement in one model has implications on other 
statements in the same or other models about the common set of artifacts. The artifact focus of method 
application regards single models as viewpoints on the artifact. A model is not containing all 
information about the artifact but only the information that is relevant for the viewpoint. The second 
principle is modeling lifecycle. Any model has a purpose. The content of the model is the result of 
some modeling step and pre-requisite for some other modeling, development, or analysis step. The 
model content must be represented in a way that is useful for the purpose.  
This chapter presents a logical approach to method engineering. It uses a simple yet powerful logic to 
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cover the following aspects of method engineering. First, the set of allowed symbols and the allowed 
combination of these symbols is represented in the so-called notation level. Second, the semantics of 
modeling notations is investigated by incorporating a model and data level. Third, a method is defined 
as combination of several notations interrelated by inter-notational constraints. Fourth, method 
application is represented by process models that pre- or describe the modeling steps of human experts. 
Finally, the issue of model quality is discussed. The construction of new methods is facilitated by a 
multiple perspective approach in which a high level meta-model (the notation definition level) encodes 
which modeling viewpoints shall be supported and which interrelationships between viewpoints 
require method support. The chapter uses the ConceptBase meta database system as method 
engineering tool. It implements the logic underlying our approach and provides the necessary functions 
for notation definition. Furthermore, it can be used as a prototyping environment for method 
application. The examples in this chapter are tested with ConceptBase and are also available on the 
companion CD-ROM. 
The chapter is organized as follows. First, the meta-modeling approach is introduced defining the four 
abstraction levels mentioned above in a propositional logic. Then, the propositional statements are 
aggregated into frame-like objects using the Telos language. After a small primer on deductive 
databases, we discuss pre-defined propositions for classification, specialization, and attribution and 
define their semantics by first-order logic axioms. Then, user-defined deductive rules and integrity 
constraints are introduced into the language framework. The framework description is completed by 
subsections on the Telos query language and so-called active rules. The second main part of the 
chapter is a case study on engineering the Yourdan system modeling method. It starts with engineering 
the entity-relationship diagramming technique in Telos using the four abstraction levels. The same 
principle is applied to the second major Yourdan technique, the data flow diagrams. We discuss how 
interrelationships between notations can be represented as constraints in a query language. Some of the 
interrelationships between notations can be derived from common patterns of instantiation. After 
having discussed the definition of two notations, a software process layer is introduced which treats 
models as products and their creation as development steps. The software process model itself is 
created from the same abstraction principles as the Yourdan notations.  
 
3.2 Modeling is knowledge representation  
ConceptBase has been developed within an academic context but has been applied in both research and 
industrial projects. Originally, it was designed as a repository system aiding the development of data-
intensive software. The modeling notations were covering the whole range from requirements analysis 
to implementation. Hence, the repository had to be able to manage quite heterogeneous modeling 
languages and their interrelationships. It was decided to use the features of the Telos (Mylopoulos et 
al., 1990) knowledge representation language that has its roots in requirements analysis (Greenspan, 
1984). As a knowledge representation language, Telos has not a rich set of predefined features. All 
information in Telos has the basic format: 
  statement number: subject is-related-to object 
A statement relates two things ‘subject’ and ‘object’ to. The statement itself is identified and can occur 
as subject or object in other statements. The simplicity of this representation is the key to its 
extensibility. Since the statement is identified (also known as reification), one can express statements 
about the statement itself. Indeed, the tokens ‘subject’ and ‘object’ are standing for other statements 
defining them. The statement structure is so universal that is can represent objects, classes, meta 
classes, attributes, specializations, classifications, queries, rules, and constraints.  

To use statements for modeling and meta-modeling, the statements are assigned to IRDS 
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levels (see chapter sec-12) that express their concreteness or abstractness. The following motivating 
example illustrates the abstraction levels: 
 

statement 1: Bill earns 10000 Dollars.    
(Token level) 
statement 2: Employees earn salaries.    
(Class level) 
statement 3: Entities can have attributes taken from a domain. 
 (Meta class level) 
statement 4: Nodes are connected to nodes. 
 (Meta meta class level) 

 
The statements become more abstract from one level to the next. More specifically, each 

statement can be regarded as an example (=instance) of the subsequent. This principle is called class 
abstraction. From the viewpoint of the more abstract statement, it is called instantiation. Rather than 
defining what a class is, we define the instance-to-class statement. This view allows treating objects 
completely uniformly independent from their abstraction level.  

statement 5: Bill is an instance of Employee.  
(Token to class) 
 
statement 6: 10000 Dollars is an instance of salary. 
(Token to class) 
 
statement 7:The concept Employee is an instance of the concept entity. 
(Class to meta class) 
 
statement 9: An entity is an instance of the concept node. 
(Meta class to meta meta class) 

 
Meta-modeling as well as modeling is seen as expressing statements about an artifact. The 

artifact of meta-modeling is a modeling environment: the meta-model expresses what provisions the 
modeling environment shall have. Hence, meta-modeling is just like any conceptual modeling of 
information systems. The only specialty is that the artifact of meta-modeling is modeling. In other 
words: a flexible modeling environment should also be able to model-modeling environments.  

The statement structure is so generic that it not only allows expressing relations between 
‘simple’ objects like ‘Bill’ and ‘1000’ but also between statements themselves: 
 

statement 10: statement 1 is an instance of statement 2. 
statement 11: statement 1 is an instance of an attribute. 
statement 12: statement 2 is an instance of an attribute. 
statement 13: statement 5 is an instance of instantiation (InstanceOf). 
statement 14: Bill is an ordinary object (Individual).  
 

The last 4 statements are referring to predefined statements of the Telos language to express 
objects, their instantiation, and their attributes. There is one additional predefined statements standing 
for specialization (IsA). Its use is shown further below. 



 

 
 
A Telos database is essentially a semantic network where concepts (nodes) and their interconnections 
(links) are treated uniformly as objects. An object can be at any abstraction level as motivated above. 
Even abstraction levels beyond the meta meta class level are allowed. The feature that allows this 
flexibility is the explicit representation of the instance-to-class relationship. In programming languages 
and databases, the type of a variable or field (e.g. INTEGER) is only visible in the program code or 
schema definition. At run time, the data is held at a location of memory of suitable size. All references 
to the type label INTEGER are compiled either into memory layout or have been employed for type 
checking during compile time (or database creation time). In Telos, the instance-class relationships are 
data themselves. We express them as a binary relationship1 (x in c) with the reserved label ´in´. 
The following facts encode the class abstractions of the motivating example: 
 
(Bill in Employee), (10000 in Integer) 
(Employee in Entity), (Integer in Domain) 
(Entity in Node), (Domain in Node) 

 
The example has four abstraction levels. Hence, there are 3 instance-to-class gaps between the 

objects. The instance-to-class relationship is not sufficient to express all phenomena of knowledge 
representation. In particular, there are relationships between objects of the same (or different) 
abstraction levels that are not interpreted as instantiations. An example is the fact the objects Bill and 
10000 are connected by a binary relationship ´earns´. Obviously, this is considered to be an example of 
the fact that Employees have salaries. In Telos, we use a predicate (x m/l y) to express such 
attribution relationships. We say that the objects x is having an attribute relationship with label l and 
category m to the object y. The example completes as follows: 
 
(Bill salary/earns 10000) 
(Employee feature/salary Integer) 
(EntityType connectedTo/feature DomainOrObjectType)2 
(Node attribute/connectedTo Node) 

 
The pair of attribute category and attribute label crosses two abstraction levels. For example 

the category ´salary‘ in the fact (Bill earns/salary 10000) is defined at the class level in the 
fact (Employee feature/salary Integer). The expressive power of this pair becomes apparent when two 
attributes use the same attribute category, for example: 
 

(Employee feature/colleague Employee)    
 

The ´colleague´ attribute is a feature of Employee just like the ´salary´ attribute. This 
phenomenon is called multiple instantiation: the attribute category ´feature´ defined at 
EntityType is instantiated multiple times for defining Employee. Multiple instantiation is useful 
at all abstraction level, for example: 
 
(Bill colleague/col1 Mary) 
(Bill colleague/col2 Jim) 

 
Multiple instantiation also occurs for ordinary objects as well. For example, the class Employee can 



 

have multiple instances: 
 
(Bill in Employee) 
(Mary in Employee) 
(Jim in Employee) 

 
There is a reverse application of this principle is called multiple classification: the same object can be 
instance of multiple classes. For example, the object Bill may be known to be instance of 
Employee but also of Pilot: 
 
(Bill in Employee) 
(Bill in Pilot) 

 
The third and last structural relationship in Telos is the specialization (reverse: generalization). While 
instantiation can be roughly compared to the element-vs-set relationship in set theory, specialization is 
the counterpart of the subset relationship. A specialization is denoted by a predicate  
(c isA d). We say that c is defined as subclass of d (or: d is superclass of c). Specialization can be 
applied to objects of any abstraction level. For example, one can define a subclass Manager of 
Employee and a superclass ObjectType of EntityType: 
 
(Manager isA Employee) 
(Manager feature/salary HighInteger) 
(HighInteger isA Integer) 
(HighInteger in Domain) 
(EntityType isA ObjectType) 
 
The subclass Manager refines the salary attribute of Employee to a subclass of Integer. An 
instance of Manager is then automatically regarded as an instance of Employee as well: 
 
(John in Manager) 
(John salary/gets 500000) 
(500000 in HighInteger) 
 

The logical foundation of Telos as presented in section 3.6 makes sure that (John in 
Employee) as well as (500000 in Integer) do not need to be stated explicitly but are 
derivable via built-in rules of Telos. Sometimes, we shall include derived facts in a list of explicit facts. 
The semantics of the logical framework removes such duplicates automatically. Indeed, the facts as 
shown above are based on even more basic facts using the P-predicate from which they are derived. 
The P-predicate is explained in section 3.6. 
 



 

3.3 Universal references to objects 
 

The factual representation of Telos statements as presented in the previous section always 
referred to two objects and their relation. For example, the statement (John in Manager) is a 
binary relationship between the objects John and Manager. The relationship ‘in’ is interpreted as ‘is 
an instance of’. While John and Manager are object names on their own right, it is unclear whether 
the binary relationship between the two is also an object, i.e. a statement that we can refer to. In fact, 
Telos allows regarding all relationships between objects as full-fledged objects that are subject to 
participate in further relationship. For example, the object standing for (John in Manager) is an 
instance of another object standing for the fact that objects can be instance of other objects3. The 
problem now is that we have so far no expression for the objects that are establishing a relationship (or 
link). This is overcome by the subsequent naming convention. 

Objects in Telos are either node objects or link objects. All abstraction principles then also 
apply to link objects. To do so, one has to define syntax for referring to link objects. This is achieved 
by the following recursive definition: 

 
R1. The reference of a node object is its label, e.g. Employee, Bill, etc. 
R2. If an object O has the reference N and has an explicit attribute with label a, then the 

reference of this attribute is (n!a). The parentheses can be omitted when there is no 
ambiguity in the reading of the expression. Example: Employee!salary, 
Bill!earns, EntityType!feature. 

R3. If there are two objects O1 and O2 with references N1 and N2 and O1 is an explicit 
instance of O2, then (N1->N2) is the reference of the instantiation object. Examples: 
 (Bill->Employee), (Employee->EntityType), 
 ((Bill!earns)->(Employee!salary)). 

R4. If there are two objects O1 and O2 with references N1 and N2 and O1 is an explicit 
subclass of O2, then (N1=>N2) is the reference of the specialization object. 

 
The term 'explicit' requires some explanation. As to be seen later, logical rules can be used to 

define how to derive attribute, instantiation, and specialization statements. We call a statement like 
(Bill in Employee) explicit if it is explicitly stored in the database. Then, this statement is 
regarded as an object on its own right that can have a reference, here  
(Bill->Employee). Derived facts do not have this object identity property. Hence, if (Bill in 
Employee) is a consequence of some derivation rule, then one cannot refer to this fact. It can just 
occur in other rules, queries, and constraints. In particular one cannot attach further attributes to a 
derived fact. 

With the reference convention, one can express instantiation and specialization relationships 
between attributes: 
 
(Bill!earns in Employee!salary) 
(Manager feature/salary HighInteger) 
((Manager!salary) isA (Employee!salary)) 
 

The first fact corresponds to statement 10 in the motivation.  The specialization definition in 
the third fact can be referenced by a rather complicated expression. Note that a reference to an object is 



 

different from its definition. The object referred by 
 ((Manager!salary)=>Employee!salary)) 
is indeed a specialization object between two attribute objects. On the other hand, the fact  

((Manager!salary) isA (Employee!salary)) represents the statement that there is a 
specialization relationship between two attributes (regardless of whether this is an explicit fact or 
derived by some rule).   

We use the operator '#' to de-reference object references: If N is the object reference of an 
object O, then  #N is returning O. 

 

 
Figure 3.1: Graphical representation of Telos objects 
 
 

 
Figure 3.1 shows a part of the objects defined so far. Node objects appear as nodes. Instance-

class relationships appear as broken directed links (between the instance and the class). Specialization 
links are thick links from the subclass to the superclass. Attributes are labeled links from the object to 
the attribute value (which itself is an object). Note that the attribute Manager!salary is a subclass 
of the attribute Employee!salary. Hence, the attribute John!gets is also regarded as an 
instance of Employee!salary via deduction. 

Our motivating example has as highest abstraction level a meta meta class Node. It uses an 
attribute category attribute to define a link connectedTo. This category had never been defined 
before. Indeed, we assume that a built-in object Proposition with an attribute 'attribute' exists. 
It is defined as follows: 
 
(Proposition in Proposition) 
(Proposition attribute/attribute Proposition) 

 



 

The first statement is indeed a logical consequence of the built-in axioms of Telos as shown 
subsequently. It makes however no difference to include the statement as factual data as well. All 
explicit objects are automatically regarded as instances of Proposition, another built-in axiom of 
Telos. Hence, any Telos object can at is instance of Proposition and can instantiate the attribute 
‘attribute’.  

 
 

 
Figure 3.2: Abstraction levels in Telos 
 
Figure 3.2 presents the motivating example in a graphical way. It should be observed that not 

all definitions of the running example are shown in the figure. For example, the instantiation of Mary 
and Jim into Employee is omitted. The membership of an object to a certain IRDS level is solely 
based on its current instantiation. Bill, Mary, 10000 etc. are regarded as tokens because they 
happen to have no instances. The object Employee is a (simple) class because all its instances are 



 

tokens; the object EntityClass is a meta class because all its instances are simple classes and so on. 
From a logical point of view the levels are not relevant at all. Instead of maintaining “correct” 
assignment to levels, Telos enforces correct use of instantiation. Nevertheless, the IRDS levels shown 
in Figure 3.2 are useful for enhancing the understandability of models that are placed ate different 
IRDS abstraction levels. 
 

There can well be relations other than instantiation between objects placed at different IRDS 
levels. Consider for example 

  
(EntityType attribute/author PeterChen) 
 
with the intended meaning “The Employee concept was authored by PeterChen”. Here, the 

object PeterChen is naturally placed at the token level whereas the object EntityType is placed 
at the meta class level. It is important to note that the EntityType is just an object like any other 
object. It becomes a meta class just by the fact that is has instances that themselves have instances.  
 

Another remark is on the definition order. ConceptBase places no restriction on the order in 
which objects are defined, i.e. created in the meta data repository. With the instantiation strategy, one 
starts top-down at the level of meta meta classes (called notation definition level in IRDS terminology), 
then define meta classes (establishing the constructs of modeling notation), and then continue with 
simple classes (example models), and tokens (example objects conforming to the models). In the 
classification strategy, one starts with token objects, then establishes classes to classify the tokens, then 
meta classes to classify the classes and so on. Mixed strategies are also possible and the most likely 
scenario since some classes emerge only when one finds example instance that cannot be classified 
into the existing set of classes. The only restriction imposed on object definition strategies are the 
Telos axioms stated in section 1.3.7. In particular, one can only create links between objects that have 
been defined before.  

The top-most level in Figure 3.2 is reserved for five predefined objects of Telos. 
Proposition is the most general object and has any other object as instance including itself. 
Individual has all objects as instances that are displayed as nodes (i.e. not as attributes, 
instantiation, or attribution). The InstanceOf link of Proposition has all explicit instantiations 
as instance, for example  

Bill->Employee and 
(Employee!salary->EntityType!feature).  
 
The IsA link has all specializations as instance, for example Manager=>Employee. 

Finally, the attribute link has all attributes as instances. The precise definition of the five objects is 
presented in section 3.8. 
 
3.4 The Telos frame syntax 
 

The definitions in the preceding sections are utilizing the predicate notation that part of the 
query language of ConceptBase. The advantage of the logical representation is its preciseness. 
However, readability suffers from the fact that all information is decomposed into small pieces. The 
so-called frame syntax is therefore introduced. It provides a denser representation of object definitions 
by grouping all information regarding one object into one textual frame. In this section, we use the 



 

motivating example to introduce it: 
 
Bill in Employee,Pilot with 
 salary 
  earns: 10000 
 colleague 
  col1: Mary; 
  col2: Jim 
end 
 
Mary in Employee end 
Jim in Employee end 
 
John in Manager with 
 salary 
  gets: 500000 
end 
 
500000 in HighInteger end 

 
The attribute category salary precedes the attribute definitions. If more than one attribute fall 

under the same category, then a semi-colon separates them. A comma separates multiple classes of an 
object. Note that objects like Mary can exist without instantiating all or even any attribute category of 
their class. 
 
Employee in EntityType with 
 feature 
  salary: Integer; 
  colleague: Employee 
end 
Manager in EntityType isA Employee with 
 feature 
  salary: HighInteger 
end 
 
Pilot in EntityType end 
Integer in Domain end 
HighInteger in Domain isA Integer end 
Employee in Domain end 

 
The frame definition of Employee shows that the same syntax is applied for class 

definitions. Super classes are declared within the definition of the subclass. The subclass Manager in 
the example refines the attribute ‘salary’ of Employee. In such cases the attribute value 
(HighInteger) at the subclass level has to be a subclass of the corresponding attribute value 
Integer of the superclass Employee. If a class has more than one super class, then commas 
separate them. 
 
EntityType in Node isA ObjectType with 
 connectedTo 
  feature: DomainOrObjectType 
end 



 

ObjectType in Node isA DomainOrObjectType end 
Domain in Node isA DomainOrObjectType end 
DomainOrObjectType in Node end 

 
We include a meta class DomainOrObject as a superclass of Domain and ObjectType. 

By this, an instance of EntityType can either have a domain as feature (e.g. the attribute ‘salary’) 
or a reference to an object type (e.g., the ‘colleague’ attribute). The example is completed by the 
definition of the meta meta class: 
 
Node in Proposition with 
 attribute 
  connectedTo: Node 
end 
 

Figure 3.3 displays the example using the ConceptBase graph browser. The dotted links are 
instantiations, the thick links are specializations, and the thin links are ordinary attributes. 

 

 
 

Figure 3.3: Display of the Telos example in the ConceptBase graph browser 



 

3.5 A small primer in logic for databases 
 

The implementation of Telos in ConceptBase is based on a simple logic, which is called 
Datalog. The advantage of this framework is that the semantics of a Telos model can be precisely 
defined. It is also the foundation of the expressive query language in ConceptBase and its extensibility 
at all abstraction level. To understand these features, a few basic concepts have to be understood. 

We assume that the reader has some initial knowledge of the relational database model and of 
predicate logic. In Datalog, a database is defined as a pair (DB,R) where DB is set of so-called base 
relations and R is a set of so-called deductive rules. A base relation is referred to in logic by a predicate 
R(x1,x2,...,xk) as known in the domain calculus of relational database theory. A deductive rule 
has the form 
 
forall x1,x2,...  
R1(x11,...) and ... Rn(xn1,...) and  
not Q1(y11,...) and ... not Qm(ym1,...) 
==> S(x1,x2,...) 
 

Different from standard Datalog notation, the logical quantifier 'forall' is made explicit 
here4. The predicates Ri are positive literals of the condition; the predicates Qi are negative literals. 
The number m may be zero, i.e. a deductive rule without a negative literal is allowed. The predicate S 
is the conclusion literal. There is exactly one conclusion literal. All variables are universally quantified. 
If a variable occurs in a negative literal of the condition it must also occur in a positive literal of the 
condition. Recursive rules are those deductive rules where the conclusion predicate also occurs in the 
condition.  

The interpretation of a deductive database is based on Herbrand semantics. In this semantic, a 
constant like '10' is interpreted by itself. A ground (=variable free) occurrence of a predicate is also 
interpreted by itself. A rule with empty condition must be ground. Such a degenerated rule is also 
called a fact. We assume that all facts are in DB, i.e. R does not contain rules with empty conditions. 
Datalog only allows constants or variables as arguments of predicates. Then, the interpretation of a 
deductive database (DB,R) is computed as the smallest set of facts (the so-called fixpoint) fulfilling 
the following conditions If R(c1,...,ck) is a fact in a base relation of DB, then R(c1,...,ck) 
is in the fixpoint. 

 
1. If there is a combination c1,c2,... of constants and a rule r 

forall x1,x2,... R1(x11,...) and ... Rn(xn1,...) and  
                 not Q1(y11,...) and ... not Qm(ym1,...) 
==> S(x1,x2,...) 

such that the substitution s=[x1=c1,x2=c2,...] yields facts Ri[s] that are already in 
the fixpoint and Qj[s] that are not in the fixpoint, then S(c1,c2,...) is also in the 
fixpoint. 

 
A substitution is an operator that replaces variables in a formula by terms, in our case by 

constants. The fixpoint computation requires that recursive rules fulfill a so-called stratification 
condition. Stratification is an assignment of levels (numbers) to predicates. A predicate referring to a 
base relation gets the level 0. A conclusion predicate must be assigned a level that is greater or equal 
than the level of all positive literal occurrences in the condition and strictly greater than all negative 



 

literal occurrences in the condition. If there is such a level assignment, then the rule set R is called 
stratified. One can prove that in this case there is a unique smallest fixpoint, the so-called perfect 
model.  

An example of a non-stratifiable rule set consisting of just one rule is: 
forall x P(x) and not Q(x) ==> Q(x) 

 
Intuitively, non-stratifiable rule sets are expressing paradoxes5.  Consider for this the 

definition of a set M to the set of all sets that do not contain themselves as elements. In logic, this is 
expressed as equivalence: 

forall s Set(s) and not Element(s,s)  
<==> Element(s,M) 

 
We can read the formula as the conjunction of two implications 

 
forall s Set(s) and not Element(s,s)  
  ==> Element(s,M) 
 
forall s Element(s,M) ==> Set(s) and not Element(s,s) 
 

The first logical implication would is not stratifiable because the implied predicate occurs 
negatively in the condition. 
 

Integrity constraints in deductive databases are special rules of the form 
forall x1,x2,...  
R1(x11,...) and ... Rn(xn1,...) and  
not Q1(y11,...) and ... not Qm(ym1,...) 
==> inconsistent 
 

A deductive database (DB,R) is called consistent, if the fact 'inconsistent' is not in its 
fixpoint, i.e. the fact 'inconsistent' cannot be derived. The predicate ‘inconsistent’ may not 
occur in a condition of any rule. We assume that an update to a base relation may not lead to 
inconsistency. If ‘inconsistent’ is derivable after an update, the update is rejected and the 
database is rolled back to the state before the update.  

Integrity constraints are useful to guarantee that certain database states are never reached 
because they represent errors. In modeling and design environments, we are sometimes less strict with 
integrity constraints. Rather than forbidding certain database states, we are interested in minimizing the 
number of violations with the goal of zero violations at the end of the modeling process. The rationale 
behind this viewpoint is that the database is incomplete at the start of the modeling process and the 
integrity constraint violations are removed when the database containing the models is becoming more 
and more complete. If we would use traditional integrity constraints, then the incomplete early 
database states would be rejected. This would be unacceptable in a modeling environment. A way out 
of this dilemma is to define ordinary deductive rules, which derive violations facts that formally are not 
regarded as integrity violations: 
 
forall x1,x2,...  
R1(x11,...) and ... Rn(xn1,...) and  
not Q1(y11,...) and ... not Qm(ym1,...) 
==> violator(x1,x2,...) 



 

 
The current violations can be computed by querying the violator predicate. The solutions 

indicate to the modeler where the current database has to be extended or modified in order to reach 
fewer violations.  
 
Example 1: Consider the following rule set and check it for satisfiability. The predicate R(.,.)  refers to 
a base relation. 
forall x P(x,y) and R(x,z) and not Q(x,z) ==> L(z) 
forall x,y L(x) and L(y) ==> Q(x,y) 
The base relation R gets the lowest stratification level: 

strat(R)=0 
The first rule induces the following conditions: 

strat(P) ≤ strat(L) 
strat(Q) < strat (L) 

The second rule adds the condition 
strat(L)  ≤ strat(Q) 

Thus, there is no stratification for this rule set. 
 
Example 2:  Consider the rule set 
forall x P(x,y) and R(x,z) and Q(x,z) ==> L(z) 
forall x,y L(x) and L(y) ==> Q(x,y) 
This rule set is stratifiable: 

strat(R)=strat(P)=strat(L)=strat(Q)=0 
 
Example 3: Let move(.,.) be a base relation. Consider the rule set consisting of a single rule 

forall x,y move(x,y) and not win(y) ==> win(x) 
This rule set is obviously not stratifiable because is would require  

strat(win) < strat(win). The example is however interesting as is encodes ‘win’ positions of 
simple games. If the move database is acyclic, i.e. there is no cyclic path in the database matching 

move(x1,x2),....,move(xk,x1) 
then no fact win(x) is derived from the negation of itself. While the rule is not stratifiable, we still 
can compute a unique fixpoint. Hence, there are cases where the above static stratification test is 
stricter than necessary. The companion CD contains the ‘Win’ example in Telos and shows some 
further interesting applications. More on the theoretical foundations of Datalog and its extensions can 
be found in (Ceri, Gottlob, Tanca 1990) and (Chen, Warren 1996). 
 



 

3.6 The logical foundation for Telos 
The Telos object definitions are up to now just pieces of text in certain syntax. One could 

imagine that they are stored in a file and then looked up by a standard word processor. The Telos 
language only becomes useful if some automation is offered. In ConceptBase, this automation is 
primarily based on a logic-based facility that allows analyzing large sets of Telos definitions (also 
called a Telos model). This facility comes in three flavors: 
 
1.A constraint expresses a necessary condition that has to be fulfilled by the Telos model. For 

example, one might define that no employee may earn more than her boss. 
2.A deductive rule can be used to derive new predicate facts from existing. For example, the boss of an 

employee may be derived from the head of the department where the employee works. 
3.A query class is syntactically a Telos class with a constraint definition. However, the constraint is not 

regarded as a necessary condition for being an instance of the class but as a sufficient condition. 
 

We introduced Telos by the three predicates (x in c) for class abstraction, (c isA d) 
for generalization, and (x m/l y) for attribution.  The clue of Telos is however that all these 
predicates are based in a single base predicate: the P-predicate or “proposition”: 
P(o,x,l,y) 

It is used to represent all explicit Telos objects. The component o is called the object 
identifier, x is the source, l the label, and d the destination of the object. The P-predicate is used to 
define the already known predicates by the four subsequent axioms: 
 
forall o,x,c P(o,x,in,c) ==> (x in c) 
 
forall o,c,d P(o,c,isa,d) ==> (c isA d) 
 
forall o,x,l,y,p,c,m,d P(o,x,l,y) and P(p,c,m,d) and (o in p) 
    ==> (x m/l y) 
 
forall x,m,l,y (x m/l y) ==> (x m y) 
 

The formulas should be read as a deductive rule: If the condition before the implication sign is 
true for some substitution of variable, then the correspondingly substituted predicate behind the 
implication sign is true. We assume that the above deductive rules are predefined, i.e. they are axioms 
of the logical theory. We define that a Telos database is a triple (OB,IC,R) where 

• OB ⊆ {P(o,x,l,y)|o,x,y object identifier,l label} is the finite extensional 
database of Telos objects, 
• IC is a finite set of integrity constraints, and 
• R is a finite set of deductive rules. 

 
An element of the OB database is called a P-fact or Telos object. Sometimes, we refer to an 

occurrence of P(o,x,l,y) as a P-predicate. Then, we assume that it occurs inside a logical formula 
where some parameters of the P-predicate can be logical variables.  

The axioms are predefined entries in IC or R respectively. We demand that any object must 
be instance of some class. The object with name Proposition was already mentioned as predefined 
(in OB). Indeed, we demand at least the following five objects to be predefined: 
P(p1,p1,Proposition,p1) 



 

P(p2,p2,Individual,p2) 
P(p3,p1,attribute,p1) 
P(p4,p1,InstanceOf,p1) 
P(p5,p1,IsA,p1) 
 

For reasons of readability, we occasionally use expressions like #Individual to refer to 
the identifier of an object like Individual. The expression stands for the object identifier of 
Individual, here p2. The operator '#' is left out when its clear that we refer to the object with the 
given name. The purpose of the five predefined objects becomes clear with the following axioms (to be 
read as deductive rules): 
forall o,x,l,y P(o,x,l,y) ==> (o in #Proposition) 
forall o,l P(o,o,l,o) ==> (o in #Individual) 
forall o,x,c P(o,x,in,c) ==> (o in #InstanceOf) 
forall o,c,d P(o,c,isa,d) ==> (o in #IsA) 
 
forall o,x,l,y P(o,x,l,y) and (o \== x) 
 and (l \== in) and (l \== isa) 
 ==> (o in #Proposition!attribute) 
 

The five deductive rules ensure that we automatically know each object is an instance of the 
class Proposition and that the membership to the four other classes is based on the structure of the 
P-fact. We use where possible the reference of an object (e.g. Proposition) instead of the object 
identifier (p1) to enhance readability. Object references are precisely defined in section 3.3. 

The predicate (c isA d) for subclasses is supposed to be reflexive and transitive. 
Moreover, we demand that any instance of a subclass is also an instance of any superclass of that 
subclass: 

 
forall o (o in Proposition) ==> (o isA o) 
 
forall c,d,e (c isA d) and (d isA e) ==> (c isA e) 
 
forall x,o,c,d (x in c) and P(o,c,isa,d) 
 ==>  (x in d) 
 

Finally, we demand that instances of classes must use the attribute definitions of the class in a 
conformant way (attribute typing axiom): 

 
forall o,x,l,y,p,c,m,d P(o,x,l,y) and P(p,c,m,d) and (o in p) 
   ==> (x in c) and (y in d) 
 

The last formula is a predefined constraint of IC. Consider as example the attribute 
Bill!earns which is an instance of Employee!salary. Then, the constraint forces that Bill is 
an instance of Employee and 10000 (the attribute value of Bill!earns) is an instance of 
Integer (the attribute value of Employee!salary). 

There are more built-in constraints on attribute specialization and on preventing mal-formed 
P-facts. They are left out here since they are mainly of technical nature. The complete list of axioms is 
presented in section 3.8. All axioms can be transformed into Datalog with stratified negation.  



 

 
3.7 From frames to objects and vice versa 
 

The frame syntax presented before is the standard way to express textual definitions of Telos 
objects. A frame indeed clusters class membership, superclasses and attributes into one textual object. 
In order to understand the precise meaning, one has to define the mapping of such frames to P-
predicates. This is necessary, because the semantics of relationships like specialization is defined in 
terms of P-predicates! As an example, we consider the frame 
 
EntityType in Node isA ObjectType with 
 connectedTo 
  feature: Domain 
end 

 
In a first step, these frames are re-written into the flat predicate facts for classification, 

specialization, and attribution. It should be noted that the facts establish binary relationships between 
named objects. The attribution is a special case since it has two labels as infix symbols: first the label 
of the attribute itself, second the label of the attribute category of the attribute.  
 
(EntityType in Node) 
(EntityType isA ObjectType) 
(EntityType connectedTo/feature Domain) 

 
In the second step, consider each predicate fact individually and look for an axiom in R whose 

conclusion predicate matches the predicate fact. We only consider the following three axioms: 
 
D1. forall o,x,c P(o,x,in,y) ==> (x in c) 
 
D2. forall o,c,d P(o,c,isa,d) ==> (c isA d) 
 
D3. forall o,x,l,y,p,c,m,d P(o,x,l,y) and 
    P(p,c,m,d) and (o in p) ==> (x m/l y) 
 

Before mapping a predicate fact to a P-fact, one has to check whether a fact like 
(EntityType in Node) can already be derived. It could for example be derivable via the class 
membership axiom of the specialization relationship. If not, we match the fact (EntityType in 
Node) to the conclusion predicate  (x in c) of rule D1 leading to a variable substitution 
[x=EntityType,c=Node]. In order to make (EntityType in Node) deducible via rule D1, 
the predicate P(o,#EntityType,in,#Node) must be true for some filler of variable o. If the 
database OB already contains such an object, then nothing has to be done. If not, then a new object 
identifier like o1 has to be generated and the object P(o101,#EntityType,in,#Node) can be 
inserted into OB.  In the same way, (EntityType isA ObjectType) is mapped to an object 
P(o102,#EntityType,isa,#ObjectType). 

The third fact (EntityType connectedTo/feature Domain) is an attribute 
definition. It is matched against rule D1 leading to a substitution 
[x=EntityType,m=connectedTo,y=Domain,l=feature]. Its mapping is slightly more 
complex because the attribute-typing axiom demands us to exclude attributes that are not conforming 



 

the attribute definition at the class level. So, for the partially substituted predicate 
P(p,c,connectedTo,d) the predicates (EntityType in c) and (Domain in d) must be 
derivable. Consequently, we can limit the search for P(p,c,connectedTo,d) accordingly. 
Theoretically, more that one such object may exist since the same object x can be instance of multiple 
classes. However, the built-in Telos axiom A17 (see section 3.8) prevents such ambiguity. Once, the 
fillers for the variables in P(p,c,connectedTo,d) are looked up, one can insert a new object 
P(o103,#EntityType,feature,#Domain) with o103 substituting the variable o. Given the 
current database state, the resulting substitution is [p=o11,c=Node,d=Node]. It remains the 
obligation to make (o103 in o11) true. Since o11 is a constant, we can use the first rule D1 to do 
so. Hence, the resulting Telos objects are: 
 
P(o101,#EntityType,in,#Node) 
P(o102,#EntityType,isa,#ObjectType) 
P(o103,#EntityType,feature,#Domain) 
P(o104,#EntityType!feature,in,#Node!connectedTo) 

 
It should be noted that all object references are resolved on the fly against the object 

identifiers. For example, the reference EntityType!feature is resolved to o103. This 
replacement is for the sake of efficiency and uniformity. The P-fact o104 shows how attribute 
categories are treated in Telos. They are mapped to instantiation relationships between an attribute 
object and another attribute object. After replacing object references by identifiers, the stored P-facts 
will be 
 
P(o101,o12,in,o11) 
P(o102,o12,isa,o13) 
P(o103,o12,feature,o14) 
P(o104,o103,in,o15) 
 
where we assume the existence of 
 
P(o11,o11,Node,o11) 
P(o12,o12,EntityType,o12) 
P(o13,o13,ObjectType,o13) 
P(o14,o14,Domain,o14) 
P(o15,o11,connectedTo,o11) 
 

The mapping from Telos frames to objects is directly usable for implementing the 'insert' 
operation, i.e. adding new objects to the Telos database. A similar method can be employed when one 
wants to remove a Telos frame from the database. First, the frame is mapped to P-facts, and then the P-
facts are removed from the database.  
 

A side remark: Since not all axioms of Telos are discussed here, the complete method to 
translate a Telos frame objects is a bit more complex. For example, a subclass may refine an attribute 
that is already defined at the superclass like the Manager!salary attribute. In such a case, an 
instance of Manager would instantiate the more special attribute whereas an instance of Employee 
would instantiate the more general attribute. The theoretic framework for mapping method is called 
abduction. Abduction is an approach where a user can specify which derived predicates shall be 



 

inserted (i.e. should be derivable after an update) and which shall be deleted (i.e. no longer derivable 
after the update). Abduction has to cope with the problem that for the same predicate multiple 
deductive rules can exist. Hence, the mapping is in principal ambiguous and one has to develop notions 
of minimality to prioritize the rule selection. In our case, we do only consider the three 'basic' rules for 
the instantiation, attribution, and specialization predicates.  
 

It should be noted that the mapping method allows to 'insert' Telos frames where certain 
attributes are already derivable from the database. In such cases, no new objects are inserted. Because 
of this we call the method TELL and the reverse method UNTELL. User of the ConceptBase system 
can display the P-facts generated (removed) for a TELL (UNTELL) operation by setting the parameter 
trace mode to 'veryhigh'.  See ConceptBase user manual (Jarke, Jeusfeld, Quix 2003) for instructions. 
 

The reification of all Telos statements is the precondition for using the Telos for method 
engineering, in particular for defining the semantics of certain symbols in modeling notations. The 
treatments of attributes as ordinary objects allows to formulate rules and constraints for such objects 
regardless whether they are at data level, model level, notation level, or an even higher level.  The 
subsequent list of Telos axioms effectively defines the semantics of the three Telos relationship types: 
instantiation, specialization, and attribution. User-defined relationship types and the definition of their 
semantics are presented afterwards. 
 



 

3.8 List of Telos predicates and axioms 
 

Telos has a single base relation, the P-facts, on which further predicates are defined via logical 
axioms. Some of these axioms are deductive rules; others are constraints, which forbid certain 
combinations of P-facts to occur. The list of Telos predicates is as follows: 
 
P(o,x,n,y) 

This predicate ranges directly over the P-facts. We say: there is a P-fact identified by o which 
links two P-facts identified by x,y, the link is labeled by n. 
 

From(o,x) 
There is a P-fact identified by o whose second argument is x (the source of object o). 
 

Label(o,n) 
There is a P-fact whose third component is n (the label of object o).  
 

To(o,y) 
There is a P-fact identified by o whose fourth argument is y (the destination of object o). 
 

(x in c) or In(x,c) 
The object x is an instance of class c, or in other words, c is a class of object x.  
 

(c isA d) or Isa(x,c) 
The class c is a subclass of the class d, or in other words, the class d is a superclass of class c. 
 

(x m/n y) or AL(x,m,n,y) 
There are two objects x,y that are linked to each other by a P-fact that has label n. That P-fact is 
an instance of another object, which has the label m. We say that m is the category of the link 
between x and y. 
 

(x m y) or A(x,m,y) 
There are two objects x and y that are related to each other by a binary relationship m.  
 

Aid(x,m,o) 
There is a P-fact o which has x as its source and has category m. 
 

(x < y), (x > y), (x = y), (x =< y), (x >= y) 
Numerical comparison between objects x and y. Both objects must be instances of the built-in 
classes Integer or Real. 
 

(x == y) or IDENTICAL(x,y) or UNIFIES(x,y) 
The two objects x and y are the same.  

 
Around 30 rules and constraints are predefined in the variant of Telos presented here (Jeusfeld 1992).  
To distinguish this axiomatization of Telos from earlier Telos definitions, we sometimes refer to it is 
O-Telos. The O-Telos axioms precisely define what we understand by instantiation, specialization, and 



 

attribution. Furthermore, they define the extension (= logical interpretation) of some of the predicates 
listed above. 
 
 
 
Axiom A1: Identifiers of P-facts are unique, or in other words the first field of P facts is a key for the 
rest. 

forall o,x1,n1,y1,x2,n2,y2 
       P(o,x1,n1,y1) and P(o,x2,n2,y2) ==> 

 (x1=x2) and (n1=n2) and (y1=y2) 
 
Axiom A2: The name of an individual object is unique.  

forall o1,o2,n 
P(o1,o1,n,o1) and P(o2,o2,n,o2) ==> (o1=o2) 

 
Axiom A3: Names of attributes are unique in conjunction with the source object. Or in other words: no 
object may have two attributes with the same name. This does not necessarily hold for instantiation and 
specialization objects (see axiom A4) 

forall o1,x,n,y1,o2,y2 
P(o1,x,n,y1) and P(o2,x,n,y2) 
==> (o1=o2) or (n=in) or (n=isa)  
 

Axiom A4: The name of instantiation and specialization objects (labels  in, isa) is unique in 
conjunction with source and destination objects. 

forall o1,x,n,y,o2 P(o1,x,n,y) and P(o2,x,l,y) and ((n=in) or 
(n=isa)) ==> (o1=o2) 

 
 
Axiom A5: Instantiation objects lead to solutions for the In predicate. 

forall o,x,c P(o,x,in,c) ==> In(x,c) 
 
Axiom A6: Specialization objects induce a specialization relationship Isa between the two referenced 
objects. 

forall o,c,d P(o,c,isa,d) ==> Isa(c,d) 
 
Axiom A7: If there is an attribute with name n between two objects x and y, and this attribute is an 
instance of an attribute class with name m, then a solution for the AL predicate can be derived: 

forall o,x,n,y,p,c,m,d P(o,x,n,y) and P(p,c,m,d) and In(o,p) 
==>AL(x,m,n,y) 

 
Axiom A8: The ordinary attribute predicate A is based on the AL predicate by omitting the attribute 
label n. 

forall x,m,n,y AL(x,m,n,y) ==> A(x,m,y) 



 

Axiom 9: An object x may not neglect an attribute definition in one of its classes. If some attribute 
predicate can be derived for x, then it will be due to an instantiation of an attribute category defined at 
class level of x. Note that solutions for the A predicate can only be obtained from the Telos axioms. 
User-defined rules are not interfering with this axioms since their attribution predicates are formally 
distinguished from the A predicate. 
 

forall x,y,p,c,m,d In(x,c) and A(x,m,y) and 
P(p,c,m,d) ==> exists o,n P(o,x,n,y) and In(o,p) 
 

Axiom A10: The isa relation is reflexive. The object identifier #Proposition (=p1) is declared in axiom 
A24. 

forall c In(c,#Proposition) ==> Isa(c,c) 
 
Axiom A11: The isa relation is transitive.  

forall c,d,e Isa(c,d) and Isa(d,e) ==> Isa(c,e) 
 
Axiom A12: The isa relation is anti-symmetric. 

forall c,d Isa(c,d) and Isa(d,c) ==> (c==d)  
 

Axiom A13: Class membership of objects is inherited upwardly to the superclasses. This is the only 
‘inheritance rule’ in Telos. Inheritance of attributes to subclasses is a redundant principle that is 
subsumed via axioms A13 and  A14: any instance of a subclass is also instance of the superclasses 
(axiom A13) and thus can instantiate the attributes of the superclasses (axiom A14). 

forall p,x,c,d In(x,d) and P(p,d,isa,c) ==> In(x,c) 
 
 
Axiom A14: Instance attributes are "typed" by attributes defined at class level.  

forall o,x,l,y,p P(o,x,l,y) and In(o,p) 
==> exists c,m,d P(p,c,m,d) and In(x,c) and In(y,d) 
  
 

Axiom A15: Subclasses which define attributes with the same name as attributes of their superclasses 
must refine these attributes. Hence, the attribute definition of a superclass is never violated by a 
refinement of that attribute at subclass level. Specifically, the refined attribute is a specialization of the 
superclass attribute and the attribute value of the refined attribute is a specialization of its counterpart 
at superclass level. 
 

forall c,d,a1,a2,m,e,f Isa(d,c) and P(a1,c,m,e) and P(a2,d,m,f) 
==> Isa(f,e) and Isa(a2,a1) 

 
 
Axiom A16: If an attribute is a refinement (subclass) of another attribute then it must also refine the 
source and destination components. Note that the two attributes do not necessarily have the same label 
as was the case in axiom A15.  However, all refinements cf. axiom A15 are also governed by axiom 
A16 because of the implied truth of Isa(a2,a1) in axiom A15. 

forall c,d,a1,a2,m1,m2,e,f 



 

Isa(a2,a1) and P(a1,c,m1,e) and P(a2,d,m2,f) ==> Isa(d,c) and 
Isa(f,e)  
 

Axiom A17: For any object there is always a unique "smallest" attribute class with a given label m. 
Hence, whenever two different attribute with same label are applicable to be instantiated by object x, 
then there is a third attribute a3 which is specializing both other attributes a1, a2. 

forall x,m,y,c,d,a1,a2,e,f 
In(x,c) and In(x,d) and P(a1,c,m,e) and P(a2,d,m,f) 
==> exists g,a3,h In(x,g) and P(a3,g,m,h) and  
      Isa(g,c) and Isa(g,d) 

 
Axioms A18: Any object is an instance of the class Proposition. Anu instance of Proposition 
is an object. 

forall o,x,n,y P(o,x,n,y) <==> In(o,#Proposition) 
 
Axioms A19: Any individual object is an instance of the class Individual. Any such instance must 
be an individual object. The operator ‘\==’stands for inequality of object identifiers. Note that an 
individual object is determined by its structure, i.e. identifier, source and destination are the same. 

forall o,l  P(o,o,n,o) and not  (n \== in) and  
not  (n \== isa)  <==> In(o,#Individual) 

 
 
Axioms A20: All instantiation objects are instance of the InstanceOf attribute of Proposition. 
Any such instance must be an instantiation object. 

forall o,x,c P(o,x,in,c) and (o \== x) and 
 (o \== c)  <==> In(o,#Proposition!InstanceOf) 
 

Axioms A21: All specialization objects are instance of the InstanceOf attribute of 
Proposition. Any such instance must be a specialization object. 

forall o,c,d P(o,c,isa,d) and (o \== c) and 
 (o \== d) <==> In(o,#Proposition!IsA) 

 
Axioms A22: All attribute objects are instance of the attribute named attribute of 
Proposition. Any such instance must be an attribute object. 

forall o,x,n,y P(o,x,l,y) and (o \== x) and 
 (o \== y) and (n \== in) and (n \== isa) <==> 
In(o,#Proposition!attribute) 
 

 Axiom 23: Any object, i.e. any P-fact, is either an individual object, an instantiation relationship, a 
specialization relationship, or a regular attribute.  Note that the axioms A22 to A23 exclude P-facts like 
P(o,o,n,p) and P(o,p,n,o).  
 
forall o In(o,#Proposition) ==> 
In(o,#Individual) or In(o,#Proposition!InstanceOf) 
 or In(o,#Proposition!IsA) 
 or In(o,#Proposition!attribute) 



 

 
 
Axioms A24-A28: There are exactly five built-in classes. Note that these are the Telos built-in classes. 
ConceptBase has a lot more pre-defined classes to manage itself and to provide data structures for its 
functionality, in particular for user-defined rules, constraints, and queries. The object identifiers p1 to 
p5 are arbitrary. Any other set of five different identifiers will also work. 
 

P(p1,p1,Proposition,p1) 
P(p2,p2,Individual,p2) 
P(p3,p1,attribute,p1) 
P(p4,p1,InstanceOf,p1) 
P(p5,p1,IsA,p1) 

 
 
Axiom A29: Objects must be known before they are referenced. The operator ‘*prec’ is some 
predefined total order on the set of object identifiers. 
 

forall o,x,n,y P(o,x,n,y) ==>  
(x *prec o) and (y *prec o) 
 

 
Axiom schema A30: Let P(p,c,m,d) be an arbitrary object. Then, any binary instantiation predicate 
In(o,p) leads to a solution for its unary version In.p(o).  

forall o In(o,p) ==>  In.p(o) 
 

Axiom schema A31: Let P(p,c,m,d) again be an arbitrary object. An attribute between x and y that 
is an instance of object p induces a binary attribute predicate A.p .  

forall o,x,l,y P(o,x,l,y) and In(o,p) ==> A.p(x,y) 
 
 

The last two axiom schemas are distinguishing the In and A predicates as defined by the 
Telos axioms from those declared in user-defined rules and constraints. User-defined rules are always 
transformed into versions that use In.c and A.p predicates instead of In and A predicates. By this 
transformation, the definition of In and A cannot be altered by user-defined rules. 

We will further restrict user-defined rules to In.c and A.p predicates in their conclusion 
part. This completely shields the axioms from any further definition made by a user. For sake of 
readability, the user-defined formulas use predicates in their original syntax like 
In(x,c) or (x in c) 
A(x,m,y) or (x m y) 

Internally, all such occurrences are replaced by predicates In.c or A.p, respectively. Thus, 
internally each class object and each attribute category has its own predicate symbol. Without this 
transformation, only few rule sets would be stratifiable due to the small number of predicate symbols. 

The stratification explained in section 3.5 is based on predicate names, i.e. independently 
from the arguments of a predicate occurrence in a formula. This type of stratification is also called 
static stratification. Dynamic stratification extends the principle to predicate occurrences including 
their arguments. Like its static counterpart, dynamic stratification guarantees perfect model semantics. 



 

Any statically stratified Datalog theory is also dynamically stratified but not vice versa. For the 
purpose of this book, it is sufficient to assume static stratification. We like to mention however that 
ConceptBase supports dynamic stratification. It is tested at the time when a formula is evaluated rather 
than when it is defined. The accompanying CD-ROM contains some examples of dynamically 
stratified Telos models as well as examples of Telos models that are not dynamically stratified. 

The axioms A1 to A31 can be represented in Datalog either as deductive rules or integrity 
constraints or a combination of both. For example, the direction left-to-right of axioms A18 to A22 
should be represented as a deductive rule, whereas the direction right-to-left should be represented as 
an integrity rule. 

One can argue why we have chosen for the 31 axioms and axiom schemas. The majority of 
the axioms are about the interpretation of the three abstraction principles classification (instantiation), 
generalization (specialization), and attribution. These three principles occur so frequently in modeling 
that a pre-definition makes sense. As an alternative, one can start with an empty list of axioms and 
regard them all as user-defined. The advantage is an even greater flexibility at the expense of 
interference between domain-specific rules and domain-independent abstraction principles. For 
example, a user-defined rule could instantiate an individual object to the attribute object of Proposition. 
This would however destroy the intended interpretation of attribute and individual objects as links and 
nodes. Hence, the reason for having pre-defined axioms is to start from a well-understood set of 
abstraction principles that are protected via axioms A30 and A31 against unwanted interference thru 
user-defined rules. 

Section 3.13 will present a technique to define more abstraction principles via so-called meta-
level formulas. In fact, a method engineer can define her own brand of attribution, instantiation, and 
specialization by creating meta-level formulas. Instead of using the labels attribute, in and isA, 
she would define new attribute categories like myAttribute, myIn, and myIsA then constrain their 
interpretation by user-defined rules. 
 



 

3.9 User-defined constraints and rules in Telos 
 
The previous section introduced Telos as a deductive database with a single base relation (the P-facts) 
and some deduction rules and integrity constraints. The three predicates (x in c), (x m/l y) and 
(c isA d) were defined in terms of the P-facts by predefined deductive rules. Some predefined 
integrity constraints define which Telos databases are regarded consistent. In this section, the logical 
language of Telos (as implemented in ConceptBase) is presented. It allows formulating deductive rules 
and integrity constraints at any abstraction level. ConceptBase provides a predefined object Class, 
which offers the two attributes 'rule' and 'constraint'. These attribute categories allow to specify 
user-defined rules and constraints: 
 
Class in Proposition with 
 attribute 
  rule: MSFOLrule; 
  constraint: MSFOLconstraint 
end 
   

The acronym MSFOL stands for many-sorted first order logic: all variables are typed by a 
class name. The formulas ware well-formed expressions over the predicates defined earlier. As a 
syntactic abbreviation, quantified variables are assigned to class ranges: 

forall x/C F  
is an abbreviation for 
forall x (x in C) ==> F 
 
exists x/C F 
is an abbreviation for 
exists x (x in C) and F 

 
In ConceptBase, logical formulas are included between two dollar ('$') signs. The example can 

now be continued. We assume that a constraint on the lower bound of salaries shall be formulated: 
 
Employee in Class with 
 constraint 
  c1: $ forall e/Employee s/Integer 
                   (e salary s) ==> (s > 1500)$ 
end 
 

The reader should be aware that Telos frames are incremental. The above frame has to be 
understood as additional information about the object Employee. More precisely, the object is made 
an instance of Class and one constraint with label ´c1´ is added6.  

Deductive rules are employed to derive new attribute relationship (x m y) or class 
memberships (x in c) from the database.  As an example, we model Department as a class that 
can have subordinate departments. A deductive rule is then used to define when a department has 
another department as its part: 
 



 

Department in EntityType,Class with 
 feature 
  directSubordinate: Department; 
  subordinate: Department 
 rule 
  r1: $ forall d1,d2/Department 
     (d1 directSubordinate d2) 

==> (d1 subordinate d2) $; 
r2: $ forall d1,d2/Department 

     (exists d/Department 
(d1 directSubordinate d) and 
(d subordinate d2)) 
==> (d1 subordinate d2) $ 

end 
 

The two deductive rules effectively realize the transitive closure of the 
´directSubordinate‘ relation. The derived predicate ´subordinate´ can be used in other 
logical formulas, e.g.: 
 
Department with 
 constraint 
  c1: $ forall d1,d2/Department 
    (d1 subordinate d2) ==> 
    not (d2 subordinate d1) $ 
end 
 
[source: Logic-1.sml] 
 

Note that attribute labels are local to objects. Thus, the attribute Employee!c1 is 
distinguished from the attribute Department!c1. The logical expressions in constraints and 
deductive rules can be arbitrarily nested using the logical operators 'and', 'or', 'not', 'forall', 
'exists', and '==>'. The predicates must be correctly typed, i.e. an attribute expression 
(x m y) or (x m/l y) is only allowed if the class of x has an attribute with label m. For example, 
the constraint Department!c1 is valid because the variable d1 is assigned to class Department 
which has an attribute 'subordinate'. 

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3782791/Logic-1.sml.txt


 

3.10 Query classes 
 

The last and most flexible incarnation of logical expressions in ConceptBase are the so-called 
query classes. A query class resembles an ordinary class with a constraint definition. The constraint is 
however interpreted as a sufficient condition for class membership: all instances that match the query 
class definition and fulfill the constraint are regarded as instances of the query class. As an example, 
we first consider a class definition of Department, which has a 'head' attribute and a constraint 
that each class must have a manager: 
 
DepartmentWithBoss in EntityType,Class 
                   isA Department with 
 feature 
  head: Manager 
 constraint 
  c2: $ forall d/DepartmentWithBoss 
                exists m/Manager (d head m) $ 
end 
 

An attempt to create such a class with an instance without filling the 'head' attribute like 
'dept1' will fail. The second instance 'dept2' is fulfilling the constraint. 
 
dept1 in DepartmentWithBoss 
end 
 
dept2 in DepartmentWithBoss with 
 head 
  manager: John 
end 
 

The idea of a query class is to let objects like 'dept1' and 'dept2' be instance of the 
superclass (Department) and to compute the class membership to the query class:  

 
Department with 
 feature 
  head: Manager 
end 
 
DepartmentWithBossQ in QueryClass isA Department with 
 constraint 
  c2: $ exists m/Manager (~this head m) $ 
end 
 
[source: Logic-2.sml] 
 

The special variable '~this' denotes any instance object of the query class that fulfills the 
constraint. It can be regarded as an implicit universal quantification7: 
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DepartmentWithBossQ isA Department with 
 constraint 
  c1: $ forall this/Department 
      exists m/Manager (this head m) $ 
end 
 

In many cases, it is useful to compute those objects that violate a constraint like 
DepartmentWithBoss!c2. A query class with a negated constraint definition serves this purpose. 
In our example, we are interested in those departments that do not have a head: 
 
DepartmentWithoutBossQ in QueryClass isA Department with 
 constraint 
   c2: $ not exists m/Manager (~this head m) $ 
end 
 
 

Department 'dept1' is an instance of the query class DepartmentWithoutBossQ while 
'dept2' is an instance of DepartmentWithBossQ. The classification of objects into query classes 
is a deductive computation. The class membership rule of DepartmentWithoutBossQ would be: 
 
forall this/Department  
 (not exists m/Manager (this head m)) 
==> (this in DepartmentWithoutBossQ) 
 

ConceptBase generates internally such a rule in its implementation of query classes. Since the 
classification predicate ‘(x in c)’ is used as the conclusion, query classes can be referred to like an 
ordinary class in other query classes or even inside itself. The following example shows the reference 
to a query class as a superclass and as a constant within the constraint.  

 
TopSalary in QueryClass isA HighInteger with 
 constraint 
  c3: $ exists e/Employee (e salary ~this) 

and (~this > 1000000) $ 
end 
 
TopDepartmentQ in QueryClass  
isA DepartmentWithBossQ with 
 constraint 
  c2: $ exists m/Manager s/TopSalary 

(~this head m) and (m salary s) $ 
end 
 
 

Query classes can be considered as classes that offer a method ‘ask’: whenever the method is 
called, those objects are returned that fulfill the constraint of the query class. Like other Telos classes, a 
query class can have more than one superclass: 



 

 
Academic in EntityType end 
 
AcademicEmployee in QueryClass  
isA Employee,Academic end 
 

The interpretation of this frame is that any instance of AcademicEmployee must be both 
an instance of Employee and Academic, or logically: 
 
forall x (x in Employee) and (x in Academic) ==> (x in 
AcademicEmployee) 
 

The rule is deducing the instances of the query class. Such a deductive rule deriving class 
membership is generated for each query class. The logical representation allows query classes to 
appear anywhere where classes can appear. For example, the class Academic can itself be a query 
class. If a query class has some constraint, then its logical representation is added to the conjunction of 
the precondition in the above rule: 
 
RichAcademicEmployee in QueryClass 
   isA AcademicEmployee with 
 constraint 
   c: $ exists s/TopSalary (~this salary s) $ 
end 
 
[source: Logic-2.sml] 
 
The class membership rule is in this case: 
 
forall x (x in AcademicEmployee) and (exists s/TopSalary (x salary 
s)) 
==> (x in RichAcademicEmployee) 
 

ConceptBase compiles the class membership rule from the query class. If Q is a query class, 
then all objects x for which (x in Q) is true are called answer objects of Q, or simply instances of 
Q. Besides the simple class membership, a query class can also specify answer attributes. These are 
either attributes that the answer object has in the database (so-called retrieved attributes) are they are 
attached to the answer object by a condition formulated in the query class constraint: 

 
 

 
3.11 Attributes and parameters in queries 
 

So far, query classes are just capable to express the instantiation of an object in their answer 
set. In practical application, one needs to retrieve properties of those answer objects as well. Query 
classes provide two attribute categories for this. Retrieved attributes are attributes that an object has 
independent from the query class definition. Computed attributes are properties that are attached to the 
answer object via the query class definition. The subsequent definition shows a typical use of retrieved 
attributes: 
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RichAcademicEmployee1 in QueryClass 
  isA AcademicEmployee with 
 retrieved_attribute 
  salary: Integer 
 constraint 
   c: $ exists s/TopSalary (~this salary s) $ 
end 
 
ConceptBase generates a query rule for the retrieved attribute: 
 
forall x,s  (x in RichAcademicEmployee1) and (s in Integer) and (x 
salary s) and ((s in TopSalary) and (x salary s)) 
==> Q(RichAcademicEmployee1,x,salary,s) 
 
The class membership rule is derived from this rule: 
forall x,s  Q(RichAcademicEmployee1,x,salary,s) 
==> (x in RichAcademicEmployee1) 
 

A side effect of this method is, that an object x that has no salary, i.e. no filler for the retrieved 
attribute, is not in the answer set of the query class. So retrieved attributes are necessary. They are not 
necessarily single-valued however: an employee may for example have more than two salaries. Both 
would be derived by the complex query rule. The destination of the retrieved attribute may be a 
specialization of the attribute defined at the direct or indirect super class of 
RichAcademicEmployee. In our case, the salary attribute is defined for the class Employee and 
has the destination type Integer. Since we defined a subclass TopSalary of Integer, we can 
formulate a new version of the query: 
 
RichAcademicEmployee2 in QueryClass 
  isA AcademicEmployee with 
 retrieved_attribute 
  salary: TopSalary 
end 
 
[source: Logic-3.sml] 
 
 

This equivalent query definition no longer requires the constraint of the previous version. By 
co-incidence, the class TopSalary is also a query class. Since the class membership rule for this 
query yields instantiations 

  
(s in TopSalary), this is a correct and feasible way. The query rule is in this case: 
 
forall x,s  (x in RichAcademicEmployee2) and (s in TopSalary) and (x 
salary s) 
 ==> Q(RichAcademicEmployee2,x,salary,s) 
 

The reader can verify that it is logically equivalent to the previous version. In general, a query 
class can have any number of retrieved attributes. The use of retrieved attributes can be compared to a 
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projection in classical relational algebra: only the required attributes are returned in the answer.  The 
difference to relational algebra is that retrieved attributes can be defined at any superclass of the query 
class. They may be derived by a deductive rule: 
 
DepartmentWithBossQ1 in QueryClass 
  isA Department with 
 retrieved_attribute 
  head: Manager; 
  subordinate: Department 
 constraint 
  c2: $ exists m/Manager  
                  (~this head m) and 
                  not (m head ~subordinate) $ 
end 
 

The query returns department with their heads and subordinate departments where the head is 
not head of the subordinate department.  

The second type of answer attributes is the computed attribute. A computed attribute is 
derived within the query constraint. As an example, consider the ‘head’ attribute of Department. 
Instead of attaching the ‘head’ in DepartmentWithBossQ1 to departments, one can formulate a 
query that returns instances of Manager together with the department they are head of: 
 
BossWithDeptQ in QueryClass isA Manager with 
 computed_attribute 
  dept: Department 
 constraint 
  c2: $ (~dept head ~this) and  
                 not (exists upper/Department 
                   (upper subordinate ~dept)) $ 
end 
 
 

The second part of the constraint expresses that only those managers shall be returned which 
head a department that is not subordinate of an upper level department. Only those managers shall be 
returned which are heads of at least one department. This is due to the fact that the expression ‘~dept’ 
stands for an existentially quantified variable in the constraint: 
 
exists ~dept/Department (~dept head ~this) and  
            not (exists upper/Department  
                  (upper subordinate ~dept)) 
 

The construct for computed attributes is per se redundant. Deductive rules have the expressive 
power to deduce them as well. However, deductive rules are not allowed in a query definition but only 
for ordinary classes. We show the equivalent deductive rule for the sake of clarification: 
 
Manager in Class with 
 attribute 
  dept: Department 
 rule 
  deptrule: $ forall m/Manager d/Department 



 

    (d head m) ==> (m dept d) $ 
end 

  
Note that the dept attribute is not using the attribute category ‘feature’ but rather the 

predefined category 'attribute' that is available to all Telos objects. Moreover, the object 
Manager is classified into two classes: EntityType (see above) and Class. The latter provides 
the attribute category ‘rule’ which is instantiated by deptrule, more precisely 
(Manager!deptrule in Class!rule). Assuming that 'deptrule' is defined, the query 
class is expressed as follows: 
 
BossWithDeptQ1 in QueryClass isA Manager with 
 retrieved_attribute 
  dept: Department 
 constraint 
  c2: $ (~this dept ~dept) and  
                 not (exists upper/Department  
                      (upper subordinate ~dept)) $ 
end 
 

The solution with the computed attribute is preferable here since it does not require extending 
a class by an attribute plus a deductive rule. 

The last remaining option for query classes is parameterization. A so-called generic query 
class can contain parameter definitions. Logically, a parameter definition introduces an existentially 
quantified variable in the query constraint. When calling a query, a user can supply values for 
parameters (parameter instantiation) or restrict a parameter to some subclass of its original range 
(parameter specialization).  As an example, consider the definition of the class EntityType. It 
mentions an attribute 'feature' with Domain as value. Assume we are interested in getting the list 
of all instances of EntityType that have some instance of Domain as feature. The filler for 
whatDomain shall be provided not at query definition time but at query call time. The generic query 
class is then: 
 
EntityTypeByDomainQ in GenericQueryClass 
  isA EntityType with 
 parameter 
  whatDomain: Domain 
 constraint 
  c2: $ (~this feature ~whatDomain) $ 
end 
 

The constraint expresses that only those instances of EntityType are returned that have a 
feature matching the parameter 'whatDomain'. The parameter is a shortcut for a constraint formula 
that has an existentially quantified variable for it: 
 
 
exists ~whatDomain/Domain  
   (~this feature ~whatDomain) 
 

The query rule for a generic query class is built like for ordinary query classes. The parameter 



 

becomes a variable in the conclusion predicate: 
 
forall x,w (x in EntityType) and (w in Domain) and  (x feature w) ==> 
Q(EntityByDomainQ,x,whatDomain,w) 
 

Side remark on quantification: The query rule has a universal quantification for the parameter 
variable w. This is consistent with the existential quantification of the parameter ~whatDomain in the 
constraint since the constraint is part of the condition of the rule. Consider the general example of a 
deductive rule: 

forall x,y A(x,y) ==> B(x) 
This is equivalent to the version where the exists is pushed into the condition: 

forall x (exists y A(x,y)) ==> B(x) 
 

In case of parameter instantiation, a user calls a query expression of the form 
 QC[parameter-subst1,...,parameter-substn] 
where QC is the name of the generic query class.  The parameter substitutions are enclosed in square 
brackets. A parameter substitution for instantiation has the form 
 v/p 
meaning that the query parameter p is replaced by the value v. In our example, the query call 
 EntityTypeByDomainQ[Integer/whatDomain] 
returns all instances of EntityType which have some feature with domain Integer, e.g. 
Employee. A parameter substitution replaces the parameter variable p by the constant value v 
supplied in the query call. The substitution is applied to the conclusion predicate of the query predicate 
and instantiates all matching parameter variables. In the running example, the substitution for 
parameter variable w (whatDomain) yields the substituted query rule: 
forall x (x in EntityType) and (Integer in Domain) and  (x feature 
Integer)  
==> Q(EntityByDomainQ,x,whatDomain,Integer) 
 

A query class may have more than one parameter. A query call may provide parameter 
substitutions for all or some of the parameters defined for the query. The parameters that are not 
substituted remain existentially quantified. 

The second type of parameter substitution is to specialize it. Each parameter has a range 
associated to it by the query class definition (for example Domain is the range of the parameter 
whatDomain). When calling the query, the user can provide a stricter range, i.e. a subclass of the 
original range. 
 

NumberDomain in Node isA Domain end 
Integer in NumberDomain end 
Real in NumberDomain end 

 
Here, the NumberDomain is a subclass of Domain and thus a possible stricter range for the 

parameter whatDomain. The syntax for parameter specialization is 
 p:C 
where C is the name of a subclass of the original range of the parameter p. A parameter specialization 
replaces the range of the parameter's variable in the query rule. For example, the query call 
 EntityTypeByDomainQ[whatDomain:NumberDomain] 
is evaluated on the substituted query rule 



 

forall x,w (x in EntityType) and (w in NumberDomain) and  (x feature 
w) 
 ==> Q(EntityByDomainQ,x,whatDomain,w) 
 

If a generic query class contains more than one parameter then a query call can contain any 
mixture of parameter instantiations and specializations for all or part of the query's parameters. One 
parameter may however not be both instantiated and specialized in the same query call. The attribute 
category parameter is defined for generic query classes. It may be combined with the categories 
retrieved_attribute and computed_attribute. For example, the query class 

 
EntityTypeByDomainQ1 in GenericQueryClass isA EntityType with 
 parameter, retrieved_attribute 
  feature: Domain 
 constraint 
  c2: $ (~this feature ~feature) $ 
end 
 
returns as answer attribute the feature(s) of instances of EntityType. At the same time, the user can 
parameterize this attribute. The query call expression 
 EntityTypeByDomainQ1[Integer/feature] 
returns all instances of EntityType that have at least one feature of domain Integer and would 
return those features in the answer. 

In principle, a query call is allowed at all positions in a Telos frame where a Telos class is 
allowed. ConceptBase does however only allow them inside Telos frames of ordinary classes.  
 
3.12 Views as extended query classes 
 

Views are extending the functionality of generic query classes in two directions. First, they 
allow complex attributes. Second, they introduce a variant for retrieved attributes that allows answers 
to have zero fillers or more on specified attributes. The definition if the class View introduces the new 
features as follows. 
 
View in Class isA GenericQueryClass with 

attribute 
      inherited_attribute : Proposition; 
      partof : SubView 
end 
 

Attributes of the category 'inherited_attribute' are similar to retrieved attributes of 
query classes, but they are not necessary for answer objects of the views, i.e. an object must not 
necessarily instantiate the attribute to be a solution of the view. 
 
 

The 'partof' attribute allows the definition of complex nested views, i.e. attribute values are 
not only simple object names. They can also represent complex objects with some further attributes. 
The following view retrieves all employees with their departments, and attaches the head attribute to 
the departments. 
 



 

EmpDept in View isA Employee with 
retrieved_attribute, partof 

      dept : Department with 
           retrieved_attribute 
               head : Manager 
        end 
end 
 

The subview at EmpDept!dept is an abbreviated view definition where the attribute value 
(here: Department) has the role of the subview's superclass. ConceptBase internally decomposes the 
nested view definition into several un-nested view definitions: 
 
 
EmpDept in View isA Employee with  
  retrieved_attribute, partof 
     dept : SV_EmpDept_dept 
end 
 
SV_EmpDept_dept in SubView isA Department with  
  retrieved_attribute 
     head : Manager 
end 
 

A view definition can have arbitrarily many subviews. Each subview can itself have subviews. 
The level of nesting in the view definition determines the nesting within the answer objects. In frame 
syntax, they appear as follows: 
 

 
John in EmpDept with 
dept 
    JohnsDept : Production with 
        head 
            ProdHead : Phil 
    end 
end         
 
Max in EmpDept with 
dept 
    MaxsDept : Research with 
        head 
            ResHead : Mary 
    end 
end 
 

If one specifies 'inherited_attribute' instead of 'retrieved_attribute', then 
the corresponding attribute may have zero fillers in the answer. As example consider the following 
view definition:  
 
EmpDept1 in View isA Employee with 

retrieved_attribute, partof 
      dept : Department with 



 

           inherited_attribute 
               head : Manager 
        end 
end 
 
Then, an employee like Mary whose department has no head might also be in the answer set: 
 
Mary in EmpDept1 with 

dept 
      MaxsDept : Marketing  
end 
 

To make the definition of views easier, we allow some shortcuts in the view definition for the 
classes of attributes. For example, if you want all employees who work in the same departments as 
John, you can use the term John.dept instead of Department. In general, the term 
object.attrcat refers to the set of attribute values of object under the attribute category 
attrcat, i.e. all objects x such that (object attrcat x) holds. This path expression can be 
extended to any length, e.g. John.dept.head refers to all managers of departments in which John 
is working. 
 

A second shortcut is the explicit enumeration of allowed attribute values. The following view 
retrieves all employees, who work in the same department as John, and earn 10000, 15000 or 20000 
EUR. 
 
EmpDept2 in View isA Employee with 

retrieved_attribute 
dept : John.dept; 
salary : [10000,15000,20000] 

end 
As mentioned before, subviews use the same syntax as normal view definitions. You can also 

specify constraints in subviews, which refer to the object of the outer frame(s). 
 
EmpDept_likes_head in View isA Employee with 
retrieved_attribute,partof 
    dept : Department with 
        retrieved_attribute, partof 
            head : Manager with 
                constraint c :  
                $ (~this likes ~this::dept::head) $ 
        end 
    end 
end 
 

The variable 'this' in nested always refers to the object of the main view, in this case an 
employee. Objects of the nested views can be referred by '~this::label' where label is the 
corresponding attribute name of the subview. In the example, we want to express that the employees 
must like their bosses. Because the subview for managers is part of the subview for departments, we 
must use the '::' operator twice: '~this::dept' refers to the departments of '~this' and 
'~this::dept::head' refers to the heads of the departments of '~this'. 



 

 
3.13 Meta-level formulas 
 

Deductive rules and integrity constraints are formulas over the set of allowed predicates. In 
our examples, the formulas are attached to classes and make statements about the instances of the 
classes. For method engineering, one has to design modeling notations where the symbols like nodes 
and links have a pre-defined semantics: when a model is created using these symbols, then their 
interpretation has to be consistent with the definition of the modeling notation. In such cases, the 
formulas range not just over instances of classes but over the instances of instances of classes. As an 
example, consider the sub class relationship. In Telos, this is encoded by the ‘isA’ predicate. Its 
interpretation is defined by the Telos axioms, namely  
 
forall o (o in Proposition) ==> (o isA o) 
forall c,d,e (c isA d) and (d isA e) ==> (c isA e) 
forall x,o,c,d (x in c) and P(o,c,isa,d) ==> (x in d) 
 

The interesting formula is the last one. It quantifies over variables c,d which themselves are 
classes that stand in sub class relationship.  
 
 
Definition: Let f be a Datalog formula. The f is called a meta-level formula iff a predicate (x in c) with 
variable c occurs in f. 
 

As such, meta-level formulas are nothing special. They do however have serious implications 
on the stratification in a Telos database: about half of all Telos objects are instantiation objects. If we 
would stratify on the predicate ‘in’ for instantiation, then we would not be allowed to use a negative 
literal ‘not (x in c)’ in any rule which directly or indirectly derives the predicate ‘(x in c)’. 
Because the ‘in’ predicate is so frequently used in Telos, this would basically eradicate the use of 
negation. To overcome this problem, ConceptBase applies stratification to the predicate symbol 
‘In.c’, i.e. the combination of the predicate name plus the second argument. This method however 
doesn’t work directly for meta-level formulas since they feature ‘in’ predicates with a variable as 
second argument. 

The problem can be overcome by partial evaluation. If the meta level formula f contains a 
positive literal Q(…,c,…), which binds the variable c, then we compute the extension of Q and rewrite 
the meta-level formula with all facts from the extension of Q. In the case of the ‘isA’ rule, we can take 
the predicate P(o,c,isa,d) in the role of the Q-predicate. Assume that we have two facts 
P(o1,Emp,isa,Person) and P(o2,Manager,isa,Emp) in the extension of the P-predicate. 
Then the meta-level formula is replaced by two partially evaluated formulas: 
forall x (x in Emp) ==> (x in Person) 
forall x (x in Manager) ==> (x in Emp) 
 

The partially evaluated formulas have now constants as second arguments of the ‘in’ 
predicates yielding better stratifiability opportunities. The partial evaluation algorithm for meta level 
formulas is more complex than the above example suggests. In general, there can be more than one Q-
predicate to be used for partial evaluation. The system has then to select one, which does not have too 
many facts in its extension.  A huge extension would result in a huge number of partially evaluated 



 

formulas. In some cases, the partial evaluation must be applied more than once in order to eliminate all 
free variables of ‘in’ predicates.  

 
Example 1. As an example for meta-level formulas consider cardinality of attributes. Let’s assume that 
we want to specify that certain attributes require a filler (‘necessary’) or have at most one filler 
(‘single’).  
 
Manager in Class with 
 attribute 

dept: Department; 
leads: Project 

 constraint 
  onDept: $ forall m/Manager 
                    d1,d2/Department 
                     (m dept d1) and (m dept d2)  
                     ==> (d1 == d2) $; 
  onLead: $ forall m/Manager  
                     exists p/Project (m leads p) $ 
end 
   

Obviously, the ‘dept’ attribute is single-valued and the ‘lead’ attribute is necessary. 
However, the constraints are formulated at the model level (here with Manager). We require a generic 
formulation of single and necessary attributes that we can re-use for any class.  To do so, we extend the 
class Proposition by two more attributes and define two meta-level formulas. 
 
 
Proposition in Class with 
  attribute 

single: Proposition; 
necessary: Proposition 

  constraint 
singleIC: $ forall p/Proposition!single c,d/Class x,m/VAR  
       P(p,c,m,d) and (x in c)  ==>  
          (forall y1,y2/VAR  
          (y1 in d) and (y2 in d) and (x m y1)  
                   and (x m y2) ==> (y1 == y2)) $; 
necessaryIC: $ forall p/Proposition!necessary  
                 c,d/Class x,m/VAR  
           P(p,c,m,d) and (x in c) ==>  
           (exists y/VAR (y in d) and (x m y)) $ 
end 
 

The pseudo class range VAR can be used when the corresponding variable gets a range by the 
partial evaluation or is replaced by a constant. For example, the variables x gets a range by the partial 
evaluation of predicate P(p,c,m,d). The same predicate replaces the variable m by constants. The 
meta formulas for single and necessary allow the re-use of their semantics just by using the appropriate 
attribute categories: 

 
 
 



 

 
Manager in Class with 
 single 

dept: Department 
necessary 

lead: Project 
end 
 
The partial evaluation for the single attribute works as follows: The database implies the facts 
(Manager!dept in Proposition!single) and  
P(Manager!dept,Manager,dept,Department). This matches the conjunction ‘(p in 
Proposition!single) and P(p,c,m,d)’8 in singleIC leading to a substitution 

[Manager!dept/p, Manager/c, dept/c, Department/d] 
 

 
 
Applying this substitution to the singleIC formula yields the partially evaluated formula 
 
forall x/VAR (x in Manager) ==>  
       (forall y1,y2/VAR  
       (y1 in Department) and (y2 in Department) 

 and (x dept y1)  and (x dept y2)  
 ==> (y1 == y2)) 

 
which can be rewritten to 
 
forall x/Manager y1,y2/Department 
(x dept y1)  and (x dept y2) ==> (y1 == y2)) 
 
 

Figure 3.4 illustrates that meta-level-formulas are defined at the level of meta classes. They 
define properties of the instances of classes, which are themselves instances of the meta classes. Hence, 
if we use the meta class level for defining modeling notations, the meta-level formulas can be 
employed to define part of the semantics of the notational symbols, in our example the semantics of the 
‘single’ and ‘necessary’ symbols. Note that the class Proposition serves as meta class. 
Since any object is instance of Proposition, this is a consistent use of classification. In the 
example, the token object Mary is a proper instance of Manager because neither the singleIC nor 
the necessaryIC is violated. The object Bill violates both constraints. 

 
Example 2. The second example is about defining the meaning of transitivity, symmetry and similar 
relation properties. These properties are so frequent that they are part of any textbook in algebra. 
Hence, it would be useful to have pre-defined attribute categories for them rather than formulating 
transitivity over and over again for specific relations like the subordinate attribute of section 3.9. 
The subsequent definitions solve the problem at the most generic level, the level of Proposition. 
 
 
 



 

 
Figure 3.4: Metalevel formulas as properties of metaclasses 
 
 

Proposition with 
  attribute 
    transitive: Proposition; 
    antisymmetric: Proposition 
end 
 
The two meta-level formulas for transitivity and anti-symmetry are then defined by: 
 
RelationSemantics in Class with 
  rule 
   trans_R: $ forall x,z/VAR  
                     (exists  
                         AC/Proposition!transitive 
                         C/Proposition y/VAR M/VAR 
                      P(AC,C,M,C) and (x in C) and  
                     (y in C) and (z in C) and 
                (x M y) and (y M z)) ==> (x M z) $ 
  constraint 
   antis_IC: $ forall AC/Proposition!antisymmetric 
                      C/Proposition x,y/VAR M/VAR 



 

                     P(AC,C,M,C) and (x in C) and  
                     (y in C) and 
                     (x M y)  ==> not (y M x) $ 
end 
 
[source:LinkSemantics.sml] 
 
 

The reader will recognize the pattern in the last lines of the two formulas. The clauses above 
are for defining the scope of the variables. By defining transitivity and ant-symmetry at the most 
generic object, Proposition, these attribute categories are applicable to any attribute definition by 
just attaching them as attribute categories. Consider a class Person that has an ancestor attribute 
which should be anti-symmetric and transitive. Given the above-mentioned formulas, the attribute can 
be fully specified by: 

Person with 
  attribute,antisymmetric,transitive 
    hasAncestor: Person 
end 
 
The properties symmetry and reflexivity can be defined by similar expressions. The full 

details are in the example models provided on the CD-ROM.  
 
ConceptBase supports meta-level formulas for rules and constraints of proper classes but not 

for query classes. While meta-level formulas do not extend the formal expressiveness of Telos, they 
save a lot of coding effort and they seamlessly integrate into the IRDS-based strategy of defining 
modeling notations. The more of such formulas are expressed at the meta-class level, the deeper is the 
explicit knowledge about the modeling notations, in particular the meaning of the symbols in the 
modeling notations. Section 3.16.5 comes back to this issue to define the meaning of cardinality 
expressions in data modeling notations. Chapter 7 elaborates on an even more complex application of 
meta-level formulas. 
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3.14 Active rules 
 

Rules, constraints and queries are the principal means to express computation in the 
ConceptBase meta database system. Since they are all mapped to Datalog with negation, one can 
guarantee termination of any computation within this logical framework. Any computation beyond the 
Datalog scope is supposed to take place in application programs that interact with the meta database 
system. 

In order to extend the computational scope, so-called active rules have been introduced in 
ConceptBase. An active rule has three parts. The event section specifies on which external event the 
active rule is activated. With ConceptBase, an external event can be an update to the database or a call 
of a query9.  The event section binds variables to values. The second part is the condition section. It is a 
logical formula over a superset of the variables bound by the event section. The formula is evaluated 
over the database state. The last part is the action section. It consists of a sequence of procedural calls 
that either update the database (insert, delete), or invoke further query calls including built-in queries. 
Built-in queries are queries without a logical constraint. Instead they execute a piece of program code. 
The class definition of active rules is as follows: 
 
ECArule in Class with  
  attribute 
     ecarule : ECAassertion; 
     priority_after : ECArule; 
     priority_before : ECArule; 
     mode : ECAmode; 
     active : Boolean; 
     depth : Integer 
end 
 

The attribute ecarule holds the specifications for the event, condition and action parts. The 
three parts are sometimes referred to by the acronym ECA. An ECA rule is represented as a string that 
starts with variable declarations: 

 
 $ v1/c1 v2/c2 ... 
  ON event 
  IF condition 
  DO actions-1 
  ELSE actions-2 $ 

 
The first line contains the declaration of all variables used in the ECAassertion. The 

specified classes of the variables are only used for compilation of the rule, during the evaluation of the 
rule it is not tested if the variables are instances of the specified classes. The variables are bound to 
objects by event, condition or action statements.  

Possible events are the insertion (Tell) or deletion (Untell) of attributes (predicate A), 
instantiation links (predicate In), or specialization links (predicate Isa). For example, if the rule 
should be executed if an object is inserted as instance of Manager, then the event statement is: 

Tell(In(x,Manager)) 
Furthermore, an event may be a query, e.g. if you specify the event 



 

Ask(find_instances[Employee/class]) 
 the ECA rule is executed before the evaluation of the query find_instances with the parameter 
Employee. It is possible to use a variable as a placeholder for a parameter.  

The event detection algorithm takes only extensional events into account. Events that can be 
deduced by a rule or a query are not detected. However, the algorithm cares about the predefined Telos 
axioms, e.g. if an object is declared as an instance of a class, the object is also an instance of the super 
classes of this class.  The condition is a predicate evaluated on the database. It can be either a normal 
literal (A, In or Isa) or a query like In(x,EmpDept1). If the condition contains a free variable the 
actions of the 'DO' block are executed for each result for this variable. If the condition contains only 
constants or bound variables and can be evaluated to TRUE, the 'DO' action block is executed once. 
Otherwise the 'ELSE' block is executed. By default, queries are evaluated on the old state of the object 
base before the transaction started. If one wants to take into account new information one has to use the 
new operator. For example, if one wants to check the instantiation of an object on the new database 
state, one has to specify 

new(In(x,Person) 
 in the condition. 

Actions are specified in a comma-separated list. The syntax is similar to that one of events, 
except that you can also ask queries (Ask). All variables in Tell and Untell actions must be bound. 
The Tell of an attribute A(x,ml,y) is only done, if there is no attribute of category ml with value y 
for object x. Then, a new attribute with a system-generated label is created. If an attribute 
A(x,ml,y) should be deleted, then all attributes of category ml with value y for object x are deleted. 
In Ask actions, only one free variable is allowed. In that case, the rest of the action block is executed 
for each result of this variable.  

Active rules are linked to transactions on the database. A transaction is a sequence of updates 
(insertions or deletions) and queries. All events are derived from the entries in the transaction. The 
attribute mode controls when an active rule is evaluated. There are three possible modes: 
 
Immediate:  The condition is evaluated immediately after the event has been detected. If it evaluates 
to TRUE, the action is executed immediately, too.  
ImmediateDeferred: The condition is evaluated immediately after the event has been detected. If it 
evaluates to true, the action is executed at the end of the current transaction.  
Deferred: The condition is evaluated at the end of the current transaction. If it evaluates to true, the 
action is executed immediately after the evaluation of the condition. 

 
The default mode is Immediate. The attributes priority_after and 

priority_before establish a partial order on the set of active rules. In case that more than one 
active rule is matching an event, the partial order determines the sequence in which the active rules are 
evaluated.  The attribute active has possible values TRUE and FALSE. It allows to 
deactivate/reactivate an active rule without having to delete or re-insert it to the database. 

Finally, the attribute depth controls the depth of the call tree of active rules: the action part 
of an active rule can produce a new event, which triggers the call of another active rule which itself can 
trigger further active rules. When the specified nesting depth is reached, the execution of nested active 
rules is aborted. This feature prevents infinite loops. The default value for the depth is 0, i.e. no nested 
calls are permitted. 
 



 

Example:  
We model a situation where employee candidates are entered into the database. Those objects fulfilling 
a certain exception condition are put on a ‘watch list’ (first ECA rule). Otherwise they are entered as 
ordinary employees into the system. As soon as we acknowledge that we have looked at such a 
candidate, she is removed from the watch list and entered as normal employee. First, the necessary 
classes have to be defined. The query class UnderPayed is defining what is an exception employee 
candidate. 
 
EmployeeCandidate in Class with 
  attribute 
    salary: Integer 
end 
 
Employee isA Employee end 
ToBeWatched end 
AlreadyWatched end 
 
UnderPayed in QueryClass isA EmployeeCandidate with 
  constraint 
    c1: $ exists s/Integer (~this salary s) and  
             (s < 1000) $ 
end 
 

The first ECA rule is triggered whenever an instance of EmployeeCandidate is entered 
into the database. If so, the exception condition UnderPayed is checked for that candidate on the 
new database state. If the condition is true, the candidate is set on the watch list; otherwise she is 
entered as normal employee. 
 
 
WatchForUnderpayed in ECArule with 
     mode m: Deferred 
     ecarule 
        er : $ e/Employee 
             ON Tell(In(e,EmployeeCandidate)) 
             IF new(In(e,UnderPayed)) 
             DO  
                Tell(In(e,ToBeWatched)) 
             ELSE 
                Tell(In(e,Employee)) 
             $ 
end 
 

The second ECA rule is for removing a candidate from the watch list. It is triggered by an 
instantiation of the class AlreadyWatched. 
 



 

Okayed in ECArule with 
     mode m: Deferred 
     ecarule 
        er : $ e/EmployeeCandidate 
             ON Tell(In(e,AlreadyWatched)) 
             IF TRUE 
             DO  
                Untell(In(e,ToBeWatched)), 
                Tell(In(e,Employee)) 
             $ 
end 
 

The second ECA rule has no ELSE part, i.e. when the condition would be false no action 
would be executed. Note that the action part contains two actions. The example can be executed by 
inserting the following frames. 
 
mary in EmployeeCandidate with 
  salary s: 500 
end 
    
mary AlreadyWatched end 
 
[source: EcaExample.sml] 
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3.15 Engineering the Yourdan method 
 

The Modern Structured Analysis (Yourdan, 1989) is an example of a collection of modeling 
languages that is comprehensive while still rather simple. It has been proposed before the shift to 
object-orientation. The purpose of the structured analysis method is to specify a system in a more 
formal way by graphical notations. A system here is an object that receives information from the 
environment and reacts to it by generating output or changing its internal state.  The Yourdan method 
serves here as a test case to demonstrate the meta-modeling approach with Telos. 

Developers of the system modeling methods observed that a system could be viewed from 
multiple perspectives. First, one represents functions (or processes) of the system with their inputs and 
outputs. This is the functional perspective. Second, the data perspective specifies about which entities 
of the external world the system shall make records and what is the structure of the data elements 
processed by the system. A control perspective augments the other two perspectives defining how the 
system reacts to control event triggered by some object (or person) from the environment. 

This section discusses the engineering of the Yourdan method in order to highlight the various 
aspects of method engineering and meta-modeling. The presentation starts with the data perspective 
because of its relative simplicity. A very simple notation definition level is assumed which is then 
applied to the functional perspective. We then discuss the development of inter-notational rules and 
constraints, which relate models developed in different perspectives. Finally, process models are 
presented which encode the steps of a modeling method (rather than the results of the steps which are 
encoded on the modeling notations). The Telos formalizations of the Yourdan method are contained in 
the companion CD-ROM. They can directly be tested with the ConceptBase system. The detailed 
structure of the Yourdan method case study is as follows: 
 

• Modeling the ERD-simple notation: This is a basic version of the entity-relationship 
diagramming notation. It features entity types, relationship types, and attributes. 

• Modeling the ERD-advanced notation: This notation extends the previous one by ISA relations 
and cardinalities. 

• Modeling the DFD notation: This notation encodes data flow diagrams 
• Modeling inter-notational constraints: This section shows how constraints and queries can be 

used to manage the connections between models for different perspectives of the same artifact. 
The generation of theses constraints can be managed via a richer notation definition level. 

• Modeling process model notations: Here, the individual steps of a method are themselves 
encoded in a notation 

 
[source:Yourdan-Complete] 
 

3.15.1 Modeling the ERD-simple notation 
 

Figure 3.2 introduced abstraction levels that can be used to define modeling notations as well 
as models, and their incarnations. Entity-Relationship diagrams (ERD) are models to specify data sets. 
So-called entity types are the denotations of sets of identifiable objects (entities) that can have 
descriptive properties (attributes). An attribute has a label. Its values are elements from a domain, for 
example integer or string. A relationship type is denoting a set of relationships. A relationship links 
several participating entities. The relationship type defines so-called roles under which entities can 
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participate. For example, a product entity can be linked to a customer entity by a relationship of type 
'orders'. 

Relationship types can restrict the cardinalities of the entities that participate in a relationship. 
For example, in an 'orders' relationship there must be exactly one customer and at least one product. 
The Telos model of the ERD notation is first defining the base concepts mentioned above: 
 
Notation definition level 
 
Node with 
  attribute 
    connectedTo: Node 
end 
 

This simple notation definition level just provides the concepts Node and 
Node!connectedTo, i.e. the ability to represent graphs. It is sufficient for the moment. We will 
later extend it to represent software development steps.  

 
Notation level  for a simple ERD notation  
 
ObjectType in Node end   {* used later *} 
 
EntityType in Node isA ObjectType with 
  connectedTo 
    ent_attr: Domain 
end 
 
RelationshipType in Node isA ObjectType with 
  connectedTo 
     role: EntityType 
end 
 
Domain in Node end 
 
 
 
Model level for an example ERD 
 
Integer in Domain end 
Domain String end 
Date in Domain end 
String isA Date end   
 
Employee in EntityType with 
ent_attr 
    e_name: String; 
    earns: Integer 
end 
 
Project in EntityType with 
  ent_attr 



 

    budget: Integer 
end 

 
 

worksFor in RelationshipType with 
  role 
   toEmp: Employee; 
   toProj: Project 
end 
 
[source: ERD-Simple] 
 

The first 3 objects define the three domains Integer, String, and Date. The classes 
Integer and String are pre-defined in ConceptBase. The class Date is defined here to subsume 
String. In other words, any instance of String is allowed as an instance for Date. This is a 
technical trick when the details of the Date domain are not of further interest in the modeling. The 
domains are part of the model level because their instances (the values) are at the data level. 

The remainder of the model defines two entity types and one relationship type. Note that the 
relationship type uses the role names 'toEmp' and 'toProj'. Since they point to different entity types, 
these role names are not displayed in an ERD. However, the Telos representation has to assign such 
names because the role links have to be identifiable. An equivalent definition would be: 
 
worksFor in RelationshipType with 
  role 
   role1: Employee; 
   role2: Project 
end 
 
 

 
Figure 3.5: ERD versus its Telis representation 
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Figure 3.5 displays the model in a conventional ER diagram and contrasts it to the Telos 
representation. The difference is that the Telos representation uniformly assigns role names and 
attaches domains to attributes. The ER diagram has different graphical symbol for entity types and 
relationship type. The Telos model contains this information via the classification links (Employee 
in EntityType), (Project in EntityType), and (worksFor in 
RelationshipType). The role links in the ER diagram appear undirected but they always link a 
relationship type with an entity type. Therefore, the role links are implicitly directed. It follows that the 
ER diagram can always be reconstructed from the Telos representation.  
 

The ERD-simple notation has no user-defined constraints (called balancing rules in the 
Yourdan textbook) and lacks symbols for ISA relationship types and complex object types (called 
associative object indicators by Yourdan). The subsequent section introduces them and gives extensive 
examples how to model constraints on ERD models and their semantics. 

 
 
3.15.2 Modeling the ERD-advanced notation 
 

Besides the properties introduced in ERD-simple, we might want the following new features: 
 
1. There shall be a special relationship type ISA that has one entity type as 'super type' and several 

entity types as 'sub types'. For a given entity type, there can be several ISA relationship types which 
have this entity type as super type. Similarly, an entity type may occur as sub type in multiple ISA 
relationship types. The intended semantics is that each instance of a sub type is also an instance of 
the super type. 

 
2. A new object type shall be introduced which is both an entity type and a relationship type, 

sometimes called a complex object type. Classical example is an order that has role links to several 
entity types but also has some attributes and may be referred to by other relationship types. 

 
3. Cardinalities for role links have to be introduced. We limit consideration to the cardinalities 1, 2 

and many. Cardinalities have to be enforced at the data (base) level. Cardinalities have to be used 
in a consistent manner. For example, one may not specify that a role link is both 'minimum 2 fillers' 
and 'maximum 1 filler'. 

 
4. Key attributes identify entities, i.e. there may not be two different entities with the same value for 

the key attribute(s). 
 
The models for the ERD-advanced notation are on the companion CD-ROM.  
[source: ERD-Advanced] 
 
 
 
3.15.3 Modeling the DFD and Event list notations 
 

Data flow diagrams consist of so-called processes, data stores, data flows, terminators, control 
processes, and control flows. The DFD notation has as new element the so-called leveling. Leveling is 
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a way to decompose a process into a DFD diagram consisting of DFD elements (processes, stores, 
etc.). The processes in the leveled DFD diagram can themselves be leveled or they are specified by a 
so-called process specification (pseudo code).  

Since we now employ a second notation, it makes sense to introduce a slightly extended 
notation definition level that allows to keep models apart from each other and to express that certain 
models belong to the same modeling project. 

 
 

 
Notation definition level with Model and Project 
 
Node in Individual with 
  attribute 
    connectedTo: Node 
end 
 
Project in Individual with 
  attribute 
    produces: Model 
end 
 
Model in Individual with  
  attribute 
   contains: Node 
end 
 

The new meta concept Model aggregates some content (here: nodes) and can be compared 
with a file containing some records. The meta concept Project aggregates several models that 
belong to the same modeling project.  Among others, the two new concepts at notation definition level 
allow to express constraints on models that depend on whether they are belonging to the same 
modeling project.  
 
 
Notation level for the DFD notation 
 
Node DFD_Node in Node with 
  connectedTo 
    dataflow: DFD_Node 
end 
 
DFD_Node!dataflow with 
  attribute                    
    withType: DataType 
end 
 
Process in Node isA DFD_Node with 
    connectedTo 



 

      leveledTo: DFD_Figure 
end 
 
Terminator in Node isA DFD_Node with 
End 
 
 

 
Store in Node isA DFD_Node with 
  connectedTo 
    withType: ObjectType 
end 
 
DataType in Node with 
end 
 
DFD_Model in Model with 
  connectedTo 
     contains: DFD_Node 
end 

 
DFD_Figure in Node,Model isA DFD_Model end 
 
nowhere in DFD_Node end 
 
 
PreliminaryBehavioralModel isA DFD_Model end 
 
DataType in Node with   
end {* reference to data dict. *} 
 
ObjectType in Node isA DataType with   
end {* reference to ERD notation *} 
 
[source: DFD] 
 

The notation level for DFD makes use of the fact that some model components (DFD_Node) 
can be aggregated to model (DFD_Model). The leveling related a process to a DFD_Figure (a 
special DFD model). The leveled DFD_Figure can contain data flow links whose source or 
destination is not part of the DFD_Figure. Such data flows are called dangling links in the Yourdan 
method. The object ‘nowhere’ serves as artificial source/destination for those data flows. The concept 
‘preliminary behavioral model’ refers to a DFD model that is created from the so-called event list (see 
below). 
 

The DFD notation also contains the notion of a so-called control process. A control process 
has no dataflows but so-called control flows. Incoming control flows are labeled by control events 
denoting that some condition in the environment or in the system has become true. Outgoing control 
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flows have no label and always connect a control process with an ordinary process: the control process 
can activate the process under certain conditions. The additional definitions for control processes are: 

 
DFD_Node in Node with 
  connectedTo 
    incomingCF: ControlProcess 
end 
 
 
DFD_Node!incomingCF with 
  attribute 
     withEvent: EventType 
end 
 
ControlProcess in Node isA DFD_Node with 
   connectedTo 
     outgoingCF: Process 
end 
 

So-called event types decorate the incoming control flows. Some of these event types are 
originating from the environment. In such cases they are grouped in the so-called event list. External 
event types can be associated to a terminator who originates the event. We distinguish three sub-classes 
of external event types: flow event types are defined as data inputs from a terminator to the system, 
control event types are stating that a certain condition has become true in the environment, and 
temporal event are true when a certain point of time has been reached. The precise definition can be 
looked up in the textbooks about the Yourdan method. It is worth noting here that models group some 
details together, here: an event list is a just a list of external event types.  

 
[source: ERD-Simple] 
 
Notation level for the event list notation 
 
EventType in Node with 
   attribute 
     eventtext: String 
end 
 
ExternalEventType in Node isA EventType with 
   connectedTo 
     agent: Terminator; 
     answeredBy: Process  {* links events to processes *} 
end  
 
EventList in Model with 
  contains 
    containsEvent: ExternalEventType 
end 
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FlowEventType in Node isA ExternalEventType end 
ControlEventType in Node isA ExternalEventType end 
TemporalEventType in Node isA ExternalEventType end 
 
 

Figure 3.6 visualizes the DFD notation and its relation to other Yourdan notations. The cross-
notational links called ‘withType' and ‘withEvent’ happen to start from concepts of the DFD 
notation. It’s also possible to have them start from the concepts of the other notations and let them end 
in the DFD concepts (as is the case for the link ‘respondedBy’ of ExternalEventType). The 
method engineer has to decide to which notation the cross-notational links belong.  Here, we assume 
that they belong to the DFD notation. The reader may have noticed that a cross-notational link is not 
distinguished from other notational links, e.g. the ‘dataflow’ link of the DFD notation. The decision 
to put certain node and link types into a certain notation is made to manage the complexity of a 
modeling notation within a method. One could also define a single ‘Yourdan’ notation with all node 
and link types, i.e. the union of DFD, ERD, and all other Yourdan notations. Such a union notation is 
however too complex for human modelers to handle. Experience has shown that modeling is more 
successful when a modeler concentrates on specific aspects of the modeling task. 

 

 
Figure 3.6: The DFD notation cross-related to other Yourdan notations 
 
 
 We observe that the DFD notation is inter-related to other notations in various ways. First, 

data stores have so-called object types as data structure. The class ObjectType is a reference to the 
ERD notation where it serves as the common superclass of EntityType and 
RelationshipType. The data types attached to data flows are can also be regarded as cross-
notational links: data types are defined in so-called data dictionaries10. Second, the event types attached 



 

to incoming control flows of DFD control processes can be external event types enumerated in the 
event list notation.  
 
Model level for an example DFD and event list 

 
MyDFD in PreliminaryBehavioralModel with 
  containsDFDNode 
    n1: CUSTOMER; 
    n2: CREDITCARDCOMPANY; 
    n3: UpdateAccounts; 
    n4: Accounts 
end 
 
CUSTOMER in Terminator with 
   dataflow 
      d1: UpdateAccounts 
end 
 
CREDITCARDCOMPANY in Terminator with 
  dataflow 
    d2: UpdateAccounts 
end 

 
UpdateAccounts in Process with 
  dataflow 
    d3: Accounts 
end 
 
Accounts in Store end 
 
CUSTOMER!d1 with 
  withType 
    datatype: payment 
end 
 
CREDITCARDCOMPANY!d2 with 
  withType 
    datatype: maximumcredit 
end 
 
UpdateAccounts!d3 with 
  withType 
    datatype: verifiedpayment 
end 
 
payment in DataType end 
maximumcredit in DataType end 



 

verifiedpayment in DataType end 
 
MyEventList in EventList with 
   containsEvent 
     ev1: E1; 
     ev2: E2 
end 
 
E1 in FlowEventType with 
  agent a1: CUSTOMER 
  eventtext t: “A customer makes a payment” 
end 

 
E2 in TemporalEventType with 
  eventtext t: “At 18:00 the invoices of current orders are sent out” 
end 
 
 
 
3.15.4 Modeling intra-notational constraints 
 

An intra-notational constraint is a constraint ranging over concepts of a single notation, e.g., 
the ERD notation. In this section, we only consider constraints, which restrict the set of allowed 
diagrams11. Some of these constraints are already given by the use of Telos. For example, the ERD 
notation defines 
 
RelationshipType in Node isA ObjectType with 
  connectedTo 
     role: EntityType 
end 
 

Then, axiom A14 demands that any instance of relationship type that uses the ‘role’ link 
must end in an instance of entity type. Furthermore, any instance of relationship type is also an 
instance of object type by means of axiom A13. Beyond such pre-defined rules of well-formedness, a 
notation definition should also include internal constraints.  

With ConceptBase, there are two principal strategies to encode notational constraints. First, 
they can be represented as ordinary class constraints. The second option is to encode them as query 
classes, which return the ‘violators’ of the constraint. To show the principle, let us consider the 
following constraint for the ERD notation: 
 

C1: Any entity type must have at least one describing attribute. 
 
If we want to realize the condition as a class constraint, we have to instantiate the concept 
EntityType to the built-in object Class, which defines the attribute category constraint.  

 
EntityType in Node,Class isA ObjectType with 
  connectedTo 



 

    ent_attr: Domain 
  constraint 
    c1: $ forall e/EntityType  
           exists a/EntityType!ent_attr From(a,e) $  
end 
 

The above class constraint is a realization of our example but it has one important drawback:  
no database violating the constraint shall be accepted by the ConceptBase system. In practical 
modeling applications, we do however want that violations are tolerated during the modeling process, 
i.e. when we constructing the diagrams. During a modeling process, the models are typically 
incomplete. Only at certain milestones, the incompleteness is expected to be resolved and violations 
are regarded as not acceptable. For the above constraint, the strict enforcement would prevent us to 
define any entity type without providing at least one entity attribute. One solution to the problem is to 
tell the constraint to the system at the milestone. If the constraint is fulfilled, it is accepted by the 
system. Otherwise, an error message is generated.  

There is a second alternative, which is in most cases preferable: represent the constraint as a 
query class, which returns the violators. This method works for all constraints that have the format the 
format  
forall X A(X) ==> B(X) 
 The violators of the constraints are all X that fulfill the condition  
A(X) and not B(X) 
In the above example, we can apply the pattern as follows for X=e: 

A(e) = In(e,EntityType)   where the In predicate is implicit by the typed 
quantification e/EntityType 
B(e) = exists a/EntityType!ent_attr From(a,e) 

 
Given that transformation, we can mechanically create the query class, which computes the violators of 
the constraint: 
 
EntityTypeWithoutAttribute in QueryClass 
                           isA EntityType with 
  constraint 
    c1: $ not exists a/EntityType!ent_attr 
              From(a,~this) $  
end 
 

The answer variable ‘~this’ assumes the role of the variable ‘e’ in the first solution, as 
elaborated in the section on query classes. The query class representation doesn’t have the problem of 
the first solution. At any point of time, a modeler can ask for the violators of the original constraint. It 
is a matter of the process model of the method to define when the query class has to return an empty 
answer.  

Being more complex than the ERD notation in terms of the number of concepts, the DFD 
notation also features more intra-notational constraints. Let us consider the following excerpt: 
 

C2: Any process must have at least one ingoing and one outgoing dataflow. 
C3: Dataflows between terminators are forbidden 
C4: Dataflows must have data types attached to it except for dataflows starting from or ending 
in data stores. 



 

 
The following query classes encode these constraints. Constraint C2 is split in two query classes for the 
sake of readability and usability.  
 
ProcessWithoutInput in QueryClass isA Process with 
  constraint 
    c21: $ not exists d/DFD_Node!dataflow 
               To(d,~this) $  
end 



 

ProcessWithoutOutput in QueryClass isA Process with 
  constraint 
    c22: $ not exists d/DFD_Node!dataflow  
            From(d,~this) $  
end 
TerminatorWithforbiddenCommunication in QueryClass isA Terminator 
with 
  constraint 
    c3: $ exists t/Terminator d/DFD_Node!dataflow  
               From(d,~this) and To(d,t$  
end 
 
DataflowWitoutLabel in QueryClass isA 
 DFD_Node!dataflow with 
  constraint 
     c4: $ not (exists s/Store From(~this,s) or 
              To(~this,s)) or 
         not (exists dt/DataType (d withType dt)) $ 
end 
 

The complexity of a notation can be measured in the number and size of intra-notational 
constraints. The more such constraints are defined, the more is known about syntactically correct 
models in that notation. As a consequence, there are also more opportunities to violate the constraints, 
which makes the notation more difficult to handle. The method engineer should take such 
considerations into account when defining a notation.  

 
 
3.15.5 Modeling inter-notational constraints 

Inter-notational constraints are constraints that are referring to concepts from more than one 
notation. Since Telos provides a uniform framework for all notations (as well all models, data, and 
process executions), such constraints are looking like ordinary intra-notational constraints. In fact, the 
decision to assign concepts to more than one notation is arbitrary and for the sake of readability of the 
models and understandability of the notations themselves. A simple example for an inter-notational 
constraint is the following: 

C5: Each data store must have an object type associated to it and vice versa. 
 
Two query classes realize this constraint: 
 
ObjectTypeWithoutStore in QueryClass isA ObjectType with 
  constraint 
    c21: $ not exists s/Store (s withType ~this) $  
end 
 
StoreWithoutType in QueryClass isA Store with 
  constraint 
    c21: $ not exists o/ObjectType  
             (~this withType o) $  
end 

 
The constraint uses the cross-notational link ‘withType’ that has been defined as part of the 



 

DFD notation. The concept ObjectType is part of the ERD notation whereas Store is a concept of 
the DFD notation. Besides that, there is nothing special with the intra-notational constraint.  
 

We observe that the concepts ObjectType and Store are closely related. They have to 
occur in pairs. So apparently, they are two aspects of the same abstract thing. This observation leads 
indeed to a principle of method engineering that can be represented in the notation definition level and 
then exploited for the detection of inter-notational constraints. In the example, both ObjectType and 
Store are incarnations of an abstract Data concept. Object types are referring to the interrelationships 
between data concepts (as handled by the ERD notation). Stores are about the location of data in the 
network of communication processes (as handled by the DFD notation).  The common abstract object 
is the manifestation of the artifact focus mentioned earlier: the models and notations are interrelated 
because they make statements about the same artifact, e.g., an information system. 

Hence, it is logical to enrich the notation definition level by such abstract concepts and then 
investigate the links between their incarnations in different notations. The following richer notation 
definition level may be suitable for system analysis methods like Yourdan.   

 
Notation definition level with abstract concepts 
 
Node in Individual with 
  attribute 
    connectedTo: Node 
end 
 
Project in Individual with 
  attribute 
    produces: Model 
end 
 
Model in Individual with  
  attribute 
   contains: Node 
end 
 
DataConcept in Individual isA Node end 
ActivityConcept in Individual isA Node end 
ControlConcept in Individual isA Nod end 

 
The three abstract concepts here are data concept, activity concepts, and control concept. 

Whenever two different notations instantiate the same abstract concept, there is an obligation to check 
the necessity of a cross-notational link and inter-notational constraints. In the case of object type and 
stores, we have the following scenario displayed in Figure 3.7. 

If we would deal with the data concept in a single notation, there would be no need to 
distinguish the Store aspect of data from the ObjectType aspect. By separating them, we need to 
manage the fact that their definitions are synchronized. In Telos, the synchronization is realized by the 
cross-notational link plus the inter-notational constraints as shown before. The Yourdan method 
features more examples of the phenomenon. Two further examples are 
 



 

• Process and process specification are both incarnations of the activity concept. 
• Control process and state transition diagrams are incarnations of the control concept. 

 
 

 
 

Figure 3.7: Incarnation of DataConcept in ERD and DFD 
 
 

The artifact focus in method engineering has another consequence: only when two models are 
about the same artifact like an information system, they need to be synchronized. Assume that we 
would maintain models of different modeling projects in the same repository. How can we keep them 
separate from each other? The answer lies in the objects Project and Model of the notation 
definition level. If the repository stores details of several independent projects, then the notational 
constraints need to be made 'project-aware'. For example, if a modeling project contains a DFD model 
which itself contains a store, then there must be an object type linked to this store that is defined in an 
ERD model of the same modeling project: 
 
YourdanProject in Project end 
 
StoreWithoutTypeV2 in QueryClass isA Store with 
  constraint 
    c21: $ exists p/YourdanProject dfd/DFD_Model 
    (p produces dfd) and(dfd containsDFDNode ~this) 
     and not (exists erd/ERD_Model o/ObjectType  
               (p produces erd) and 
               (erd containsType o) and 
                (~this withType o) $  
end 
 

The object YourdanProject is at the notation level. It subsumes all modeling projects 
using Yourdan notations. Such project-aware intra-notational constraints can be written in various 
combinations and versions. For example, assume that the method engineer wants to check whether a 



 

given Yourdan project violates constraint C2. In this case, a generic query class is a facility for 
formalization of the constraint: 

 
DFDwithUntypedStore in GenericQueryClass isA DFD_Model with 
  parameter,computed_attribute 
     project: YourdanProject 
  computed_attribute 
     store: Store 
  constraint 
    c21: $ (~project produces ~this) and  
    (~this containsDFDNode ~store) 
    and not (exists erd/ERD_Model o/ObjectType  
    (~project produces erd) and 
    (erd containsType o) and (~store withType o) $  
end 
 

The query will return all DFD model together with their project and the violating store. The 
parameter ‘project’ can be left free. Then, the query will scan all known Yourdan projects in the 
repository. The attribute category ‘computed_attribute’ makes sure that the involved project 
and data store are returned together with the name of the violating DFD model. 

 

 
Figure 3.8: Internotational constraints at notation level 

 
 
 

3.15.6 Multi-level statements to express semantics 
The queries discussed above constrain the set of acceptable models of an information systems 

development method. A violation of some intra- or inter-notational constraint is detected just by 
analyzing the models. We can regard the set of all notational constraints as the syntax of the modeling 
notations.  A characteristic of the query classes for notational constraints is that their variables range 
over objects at the IRDS model level 

Figure 3.8 displays the query DFDwithUntypedStore of the last section. The query is an 



 

example of an inter-notational constraint. It is defined at the notation level: it is a subclass of 
DFD_Model and refers to objects defined at the notation level. Its variables like ~this and store 
are ranging over objects at the model level. The query returns those DFD models that violate a certain 
inter-notational constraint, namely that all data stores of a DFD must be linked to an object type in an 
ERD model belonging to the same system development project. All intra- and inter-notational 
constraints share the property of being defined at the notation level and having variables ranging over 
objects at the model level. However, there are more ways to express knowledge about modeling 
notations, namely to express semantics of certain notational symbols. 

In predicate logic, the semantics of a logical theory, i.e. a collection of logical formula, is 
based on sets of objects. In particular, mathematical relations with matching arity interpret predicates. 
In the restricted framework of Datalog, predicates are interpreted by sets of facts where variables in the 
predicates are replaced by constants. Consider the example predicate In(x,Employee). A possible 
interpretation ext computed by the fixpoint algorithm for Datalog could be: 

ext(In(x,Employee)) =  
{In(bill,Employee), In(mary,Employee)} 

Remembering that Employee is the name of a class, we can say: the interpretation of the class 
Employee is the set {bill,mary}. Analogously, attribute predicates can be interpreted by 
relational facts: 

ext(A(e,salary,s)) = 
{A(bill,salary,1000),A(mary,salary,2000)} 

We can easily extend this type of semantics to the other IRDS abstraction levels, e.g. the 
semantics of the predicate In(e,EntityType) is computed by the Datalog fixpoint mechanism and 
yields sets like 

ext(In(e,EntityType)) =  
{In(Employee,EntityType), 
 In(Project,EntityType} 

There are however properties of notations that do not fall directly into this simple kind of 
semantics. For example, the cardinality of role links in the ERD notation is checked at the data level 
while the semantics of cardinality tags like "1:n" ought to be defined at the notation level. A solution to 
this problem is the use of meta-level formulas. They are formulated at a meta class level can have 
variables ranging over objects that are instances of instances of the objects occurring in the formula. 
Figure 3.9 shows the situation with a relationship type worksFor whose role link to Employee has 
a "1:n" cardinality. The example in the data level violates the cardinality. Hence, the semantics is 
dependent on the database content while we consider cardinalities to be part of the notation. The 
following meta-level constraint defines the semantics: 

 



 

Cardinality in Class with 
  constraint 
    c1: $ forall R1,R2/RelationshipType!role  
                     RT/RelationshipType ET1,ET2/EntityType  
                     x/VAR 
                     From(R1,RT) and To(R1,ET1) and 
                     From(R2,RT) and To(R2,ET2) and 
                     not (R1 == R2) and 
                     (R1 card "1..n") and (x in ET2) 
               ==> 
                 ( exists  y/VAR r1,r2/VAR rt/VAR 
                     (r1 in R1) and (r2 in R2) and 
                     (rt in RT) and (y in ET1) and 
                     From(r1,rt) and To(r1,y) and 
                     From(r2,rt) and To(r2,x) 
                 ) 
        $ 
end 
 

 
Figure 3.9: The semantics of the notational concept ‘cardinality’ 

 
 
The constraint refers to the notation level concepts EntityType, RelationshipType, 

card and "1:n". All other objects are ranged over by variables. The variables R1, R2, RT, ET1, and 
ET2 are ranging over objects at the model level. Possible values for ET1 and ET2 are Employee and 
Project, respectively. A possible value for RT is worksFor. The variables x, y, r1, r2 and rt are 
ranging over objects at the data level. For example, a possible value for x is proj45. So, whenever an 



 

object like proj45 (x) is defined to be an instance of Project (ET2), then there must be at least 
one instance y of class Employee (ET1) that stands in the worksFor (RT) relationship to it. The 
cardinalities "1:1", "0:1" etc. can be expressed in a similar way. ConceptBase will partially evaluate the 
meta-level formulas to compile them into a set of simple formulas ranging over just one IRDS level as 
explained in the subsection on meta-level formulas.  

Another example on the use of meta-level formulas is the definition of the disjoint 
specialization in UML class diagrams (see section 1.3 and figure 1.5). UML has a variant of class 
specialization that demands any two subclasses of a superclass to be disjoint, i.e. no object x may be an 
instance of two such classes at the same time. While the specialization in UML is defined at the 
notation level, the object x is part of the data level. The Telos realization of the semantics of the 
disjoint specialization is contained on the accompanying CD-ROM. 

 

 
Figure 3.10: Understanding the data level from the notation level 

 
 
Besides specifying the semantics of notational link symbols, meta-level formulas create 

opportunities to clarify the semantics of node symbols as well. Consider again the class EntityType 
defined at the notation level. Its Herbrand interpretation ext(EntityType) is the set of all its 
instances. The instances of the instances of EntityType are called entities and they are located at the 
data level. Let us use the predicate (x [in] mc) to express that the object x is an instance of some 
instance of mc. Then, the concept of an entity is formalized as: 

forall x/Individual c/EntityType 
(x in c) ==> (x [in] EntityType) 



 

Analogously, the set of all values is the set of all objects that are instance of some instance of the class 
Domain: 

forall x/Individual c/Domain 
(x in c) ==> (x [in] Domain) 

Both formulas are structurally derived from the generic formula 
forall x/Individual c/Individual mc/Individual  

(x in c) and (c in mc) ==> (x [in] mc) 
 
By coding the generic formula in ConceptBase, one can query the data level independently 

from the model level. In the ERD case, one can ask for all entities or all values that are currently 
known regardless to which entity type or domain type they belong. Even more, one could ask for 
all entities that are related to some other entity regardless of the underlying ERD model, i.e. database 
schema. An example is shown in figure 3.10:  the currently known entities are mary, bill and anne. 
The values, i.e. instances of instances of Domain, are 10000, 15000, and 20000.  A ConceptBase 
implementation of the predicate (x [in] mc) can be found on the accompanying CD-ROM.  

Please note that not all meta-level formulas are eligible for partial evaluation. The ERD 
example shows that the semantics of certain notational symbols can be expressed by constraints in 
Telos. Moreover, the concepts at the notation level can be used to directly query the objects at the data 
level. The semantics of dynamic models like data flow diagrams are more difficult to capture since 
they express complex transformations. Mapping models of such notations to simulation environments 
appears to be more suitable to capture their semantics. Alternatively, they can be analyzed by formal 
methods such as axiomatically defined partial functions.  
 



 

3.15.7 Modeling process model notations 
 

The notations discussed so far are the languages to record models about some artifact. The 
models are restricted by constraints, some of them ranging over models recorded in different notations. 
There is another relevant connection between models: some models are created out of others. In the 
case of system development, the code of a program module is constructed from some module chart and 
the specification of the processes that are part of the module. There is some process model that tells the 
modeler, out of which input models a new output model can be created. We regard such a process 
model to be part of the engineering of a method.  

Process models can be descriptive (a structured documentation of what steps have been 
performed during a modeling project) or prescriptive (a set of rules that define which development 
steps are allowed in a given situation). Process models play a major role in any modeling method 
because they are the basis to refine the modeling method as a whole and to define new services like the 
traceability of model details. 

A specialty of process models is that they apparently blur abstraction levels. Consider the 
following excerpt from a fictional software development project: 

 
10-Oct-2002, 10:23: Mary has completed interviews with the user group and publishes her 
interview report REQ14.doc. 
12-Oct-2002, 15:56: John has read the report REQ14.doc and produces the event list EL1 out of it. 
13-Oct-2002, 9:45: John produces the preliminary behavioral model MyDFD1 out of EL1. 

 
The statements themselves are concrete (i.e. data level in the IRDS framework) and cannot be 

instantiated. They constitute the trace of an actual modeling project. On the other hand, some parts in 
the trace are referring to concepts that we previously classified into the model level: the report 
REQ14.doc, the event list EL1, and the preliminary behavioral model MyDFD1 are all models whose 
content are at class level (i.e. they do have instantiations). The reason for this mixture of levels is that 
the very activity we are observing is producing models not concrete data. The concrete statements of a 
process trace follow some patterns. The patterns for the above example could be: 
 

An interviewer completes interviews and publishes interview reports. 
An analyst reads interview reports and produces event lists. 
An analyst produces preliminary behavioral models out of event lists. 
 

A collection of such statements is called a process model (for modeling projects). We can 
continue this abstraction and conclude that all three statements of the process model are examples of 
the generic statement: 
 

An expert reads models and creates models. 
 

The last statement is defining how process models shall look like; hence it is part of a notation 
for process models. Note that the term ‘Model’ is occurring in the notation definition level of the 
modeling products. Hence, the mixture of levels that was observed at the trace continues with the more 
abstract statements. 

As such, the statements about model production have the same nature as the statements that 
were used to describe various abstractions at the product side (data, models, notations, notation 



 

definition levels). The extra property is that they relate in a new way to objects defined at the product 
side. Figure 3.11 relates production-oriented process models (right side) to their products (left side). 
The known IRDS abstraction levels are applicable to process modeling as well but the two sides are 
skewed by one level against each other. The reader should note the similarity with the fact (Entity 
Type attribute/author Petersen) discussed in the first part of this section. There like in 
this case, objects from different IRDS levels are associated with each other. The origin for the skewing 
of levels lies in the nature of models. A model can on the one hand be seen as a collection of classes 
whose instances are possible interpretation of the classes. On the other hand, the objects in a model are 
input/output of some development steps, i.e. they are data themselves. 

The companion CD-ROM contains in folder SPM an example for software process modeling, 
i.e. a notation plus examples on how to specify the modeling steps of a notation. The example also 
features an almost complete representation of the notations of the Yourdan method.  The reader is 
advised to take the definitions as an example: they show how the process model integrates with the 
notations defined earlier. The notational constraints are realized as query classes and can be attached to 
individual modeling steps: whenever such a step is executed, the specified constraints should be 
checked.  
 

 
 
Figure 3.11: Production and product side of modelling.  
NDL: notation description level; NL: notation level; ML: model level; DL: data level 



 

Simplified notation level for the process model  
ModelingStep in Node with 
  connectedTo 
    precedes: ModelingStep    
  attribute 
    inputObject: Node; 
    outputObject: Node; 
    postcondition: QueryClass 
end 

 
Methodology with 
  attribute 
    containsStep: ModelingStep 
end 
 
Project with 
  attribute 
    produces: Model; 
    uses: Methodology 
end 
 

 
 
Model level for the process model (excerpt) 
 
YourdanProject in Project with 
  produces 
    eventlist: EventList; 
    prelimbehavioralmodel: PreliminaryBehavioralModel; 
    processspecification: ProcessSpecification; 
    erd: ERD; 
    std: STD; 
    sourceProgram: SourceProgram; 
    testPlan: TestPlan; 
    testData: TestData; 
    testResult: TestResult 
  uses 
    methodology: YourdanMethod 
end 
 



 

YourdanMethod in Methodology with 
  containsStep 
    extractEventList: ExtractEventList; 
    mapToDFD: MapToDFD; 
    specifyProcess: SpecifyProcess; 
    codeProcess: CodeProcess; 
    createTestPlan: CreateTestPlan; 
    executeTest: ExecuteTest 
end 
 
YourdanStep in ModelingStep with 
  attribute 
    input: Proposition; 
    output: Proposition; 
    starttime: Real; 
    endtime: Real 
end 
 
ExtractEventList in ModelingStep isA YourdanStep with 
  inputObject 
    input1: UserRequirements 
  outputObject 
    result1: EventList 
end 
 
ProduceLeveledDFD in ModelingStep isA YourdanStep with 
  inputObject 
     prelimDFD: PreliminaryBehavioralModel 
  outputObject 
     levDFD: LeveledDFD 
  postcondition 
     r1: NotLeveledNotSpecifiedProcess; 
     r2: BothLeveledAndSpecified; 
     r3: DanglingInputNotMatchedAtProcess; 
     r4: DanglingOutputNotMatchedAtProcess; 
     r5: InputNotMatchedByDangling; 
     r6: OutputNotMatchedByDangling; 
     r7: IllegallyLeveledProcess 
end 
 
 
 
[source: spm.sml] 
 
 
 
 

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3782920/07spm.sml.txt


 

 
Data/trace level for the process model (excerpt) 
 

step1 in ExtractEventList with 
  result1 el: MyEvent_456 
  starttime t1: 3.0 
  endtime   t4: 4.0 
end 
 
step2 in MapToDFD with 
  input1 el: MyEvent_456 
  output1 dfd: MyDFD_023  
  starttime t1: 5.0 
  endtime   t4: 7.0 
end 

 



 

3.15.8 Managing modeling processes by metrics 
 

The uniform representation of the development trace, the software process model (here: 
Yourdan example), and the process model notation together with the product counterparts (example 
models, modeling notations, notation definition level) allows analyzing complex modeling situation by 
means of queries. In particular, one can express metrics on any of the objects defined in the repository. 
As example, consider the metric CodingProductivity, which measures the lines of code created 
per time unit in a coding step. The following query realizes the metric in terms of two other metrics 
Duration and ProgSize: 
 
ProgSize in GenericQueryClass isA Integer with 
  parameter,computed_attribute 
    whatProg: SourceProgram 
  constraint 
    c: $ (~this in  
           COUNT_Attribute[~whatProg/objname, 
                    SourceProgram!lines/attrcat]) $ 
end 

 
Duration in GenericQueryClass isA Real with  
  parameter,computed_attribute 
     step : YourdanStep 
  constraint 
     c1 : $ exists t1,t2/Real (~step starttime t1) 
            and (~step endtime t2)  
            and (~this in MINUS[t2/r1,t1/r2]) $ 
end  

 
CodingProductivity in GenericQueryClass isA Real with 
  parameter,computed_attribute 
     cstep: CodeProcess 
  constraint 
     c1: $ exists sp/SourceProgram dur/Real  
                  size/Integer 
             (~cstep program sp) and  
              (dur in Duration[~cstep/step]) and 
             (size in ProgSize[sp/whatProg]) and  
             (~this in DIV[size/r1,dur/r2]) $ 
end 
 
[source: metric.sml] 
 

The queries exploit built-in queries (Jarke, Jeusfeld, Quix 2003) of ConceptBase for simple 
arithmetic (PLUS, MINUS, DIV). The combination of the attribute categories parameter and 
computed_attribute makes sure that the query answer can be interpreted in case the parameter is left 
undefined at query call time. For example the query CodingProductivity (without filler for 
parameter cstep) will return the coding productivities of all coding processes (attached as computed 

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3782932/10metric.sml.txt


 

attribute cstep). The metric queries can be integrated into the process models as post-conditions of 
modeling steps very much like the queries for checking notational constraints. More insights on the use 
of metrics in software development are in (Fenton, Pfleeger 1999). 

Chapter 8 contains more details on how metrics can be incorporated into design processes 
supported by the ConceptBase repository. The application there is a repository for managing the 
quality of data warehouse systems. 



 

3.16 Discussion and conclusions 
 

This chapter presented the use of the ConceptBase repository for meta-modeling and the 
engineering of modeling methods. The approach as presented here is focused on notation definition 
and one may ask the question whether this is sufficient to cover all aspects of a complete method like 
Yourdan’s Modern Structured Analysis. The syntactic features of the Yourdan notations for entity-
relationship diagrams, data flow diagrams, process specifications, state transitions diagrams etc. can 
rather easily be translated into suitable Telos meta classes. Correctness rules (called balancing rules by 
Yourdan) map straightforward into query classes. There are however a few soft rules that are naming 
conventions to make models easier to read for humans, e.g. the name of a process should be a verbal 
phrase. Such rules are vague by nature of human communication and a violation of such soft rules is 
acceptable to a certain degree.  

Another aspect of method engineering is instructional examples. All textbooks on modeling 
methods are cluttered by examples that demonstrate a feature. This is in fact easily supported by the 
repository approach since example models are just one IRDS level below the notations and are 
represented in the same Telos frameqork as the notations themselves. They have an even bigger role 
with our approach, as the relation of example models to notations is now fully formalized as a Telos 
instantiation relation. During the design of a new notation, the creation of example models is validating 
the correctness/usefulness of certain notational constructs. Hence, not only the student of a method is 
supported but also the method engineer in her search for the right notation definition.  

A method description is incomplete when it doesn’t contain some kind of step-by-step 
instructions on how to proceed with a modeling project. Process models as presented above can cover 
this aspect. The integration of correctness rules as post-conditions to the modeling steps goes beyond 
the original description of the Yourdan method. Originally, the rules are formulated as part of the 
respective notations. With process models, one can precisely design when to perform certain checks on 
the models created so far. 

Finally, the quality of a collection of models can be managed by metric definitions. This 
feature of ConceptBase covers some of the soft aspects of model development (in teams). In the 
Yourdan case, there are rules on the desirable complexity of diagrams that easily map into metric 
definitions. The same technique applies to controlling the quality of the modeling steps, e.g. by 
measuring their productivity. 

So what remains uncovered? Insights on proper usage of modeling techniques are hard to 
represent as part of a notation. The proper usage depends on the knowledge of the application domain 
and the cognitive skills of the modeling expert. Modeling textbooks cover this by including case 
studies that are extensively commented and where reasons for certain design decisions are elaborated. 
One way to support experience knowledge with the repository approach is to keep the results of earlier 
modeling projects within the repository. Then, novice modelers can search in the archive of old 
projects for solutions to certain problems. Of course, the models of old projects would need to be 
further annotated and indexed. Moreover, design decisions should be made an integral part of the 
process models and include the rationale behind them. 

A frequently cited aspect of modeling methods are their pragmatics, i.e. what resources are 
needed to apply them, in particular how much time should be spent on teaching the methods. If 
individual modeling steps have known requirements for resources, then they can be easily included. 
Essentially, one has to create a plan for project management where resources, time, and cost play some 
important role. That plan can be encoded with a Telos-based notation for workflow management. 
However, such a notation doesn’t really solve the problem. The problem is the allocation of spare 



 

resources, e.g. installing a help desk for questions on a modeling method. 
Finally, the decision to uses Datalog as a foundation for the semantics deserves a critical 

discussion. The perfect model semantics of Datalog is excluding any formal ambiguity in the 
interpretation (via stratification) and is always finite. The latter restriction forbids a complete coverage 
of the semantics of dynamic models such as state transition diagrams or program code. Still, the 
syntactic features of such notations and their inter-relationships with other notations can well be 
represented. A semantics specification powerful enough for dynamic modeling notations would stand 
in conflict to the effeciency of the model management. 

Perfect model semantics essentially allows to answer queries, i.e. find out which objects of a 
given finite extension fulfill the membership condition of the query. It does not support reasoning 
about elements of a model, e.g. whether some class definition is subsumed by another as in section 1.3 
on formal modeling languages. One can argue that such reasoning services can be attached to the 
model repository as external tools.  
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Footnotes 
 
1 Telos statements can be expressed as binary predicate facts in infix form. Basically, the statement 
number is omitted because it is system-generated and carries no meaning as such. At a later stage, it is 
shown how to map the predicate facts into a reified format, called the P-facts. The reified form is 
crucial for defining the semantics of a set of Telos statements, and for providing facilities for 
engineering the semantics of modeling notations. 
 
2 The meta class DomainOrObjectType is a superclass of both ObjectType and Domain. Its 
proper definition is in the subsequent subsection on Telos frame syntax. 
 
3 The latter object is a pre-defined Telos object with name InstanceOf whose definition can be looked 
up in section 3.8. There are in total just 5 pre-defined Telos objects. 
 
4 The advantage of explicit quantifiers is that one can formulate also logical expressions with nested 
quantifications. It can be shown that any such formula can be transformed to a set of Datalog-style 
deductive rules that have the same semantics. 
 
5 There are however non-stratifiable rule sets that are not at all paradoxical. They even have a unique 
model. We refer the reader to articles describing stable model semantics for more information. 
 
6 The constraint text itself is an instance of MSFOLconstraint. We omit the Telos frame, which defines 
this instantiation. ConceptBase will include this instantiation automatically. The same holds for rule 
texts, which are automatically classified into the class MSFOLrule. 
 
7 The query class with the explicit variable 'this' is shown for illustration only. It does not represent a 
syntactically correct query class. Note that the variable 'this' ranges over all instances of 'Department', 
i.e. the superclass of the query class. 
 
8 The predicate (p in Propositions!single) is translated from the variable range 
p/Proposition!single. See also syntax definition for formulas in Telos. 
 
9 Full-fledged active database systems provide more event types and a complex event composition 
language to express sequences of events (e1 after e2), logical connectives (e1 or e2), and 
temporal events. More on active databases can be found in (Paton, 1999). 
 
10 We do not discuss the data dictionary notation in great details here. 
 
11 One can regard such rules as part of the syntax definition for a notation. The syntax circumscribes 
the set of allowed statements (=models) in a given notation. 
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