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Abstract

It is shown that Deutsch’s algorithm and the Deutsch-Jozsa algorithm
for two and three qubits can be efficiently implemented on a classical
computer. This is done by analysing the structure of the oracles con-
tained in these algorithms, followed by an implementation in the toy
theory proposed by Robert W. Spekkens which uses 2 classical bits to
simulate a qubit. Further discussion is given about how to analyse,
and possible implementations, of the Deutsch-Jozsa for higher number
of qubits in the toy theory.
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Chapter 1

Introduction

This document considers the subject of quantum computation in cor-
relation to the contextuality of a quantum measurement, both which
will be briefly explained in the first part of the document. The later
sections cover a study of this correlation and an outlook for further
studies.

This text aims at being comprehensible to any technical graduate, re-
gardless of their field of study.

1.1 Background

A quantum computer is a device believed to have superior computa-
tional power compared with today’s modern computers, which in this
text is referred to as classical computers, since they obey the same logic
as classical physics. A realization of a quantum computer in the same
extent as today’s classical computer will yield great leaps forward in
different fields of science and technology.

The theory of quantum computation emerges from the creation of hy-
pothetical algorithms based on quantum mechanical "reasoning”. It is
therefore not always known whether one needs a quantum computer



to evaluate these algorithms. However, for some problems these al-
gorithms offers an exponential speed-up compared with their known
solutions in classical computation. Little is known about which quan-
tum mechanical property that gives raise to this speed-up, but a good
candidate seems to be the contextuality dependence of a quantum mea-
surement. By studying this, and thereby gaining more insight in how a
quantum computer works, and what advantages it offers, one will take
one step closer to realizing such a device. Also there is the possibility
of discovering more of these fast algorithms than what is known to this
day.

1.2 Quantum Theory

This chapter will try to motivate why the theory of classical physics is
not sufficient to explain the observed nature, and that the new theory
is only allowed to make statistical predictions. After this motivation we
will skip directly to the results of quantum theory needed throughout
the text.

As explained by [1], in classical physics, true or false statements posed
to a system form a Boolean algebra. However, this is not true for a
quantum mechanical system, and more specific, it is the distributive
law that fails

(Aor B)and C < (A and C) or (B and C). (1.1)

As an example, consider the double-slit experiment in which one directs
a beam of light onto a barrier with two slits, and the light that passes
through the slits will be detected on a screen. If one consider a single
photon passing through slit (A or B) and then arriving at the screen
C we have the case to the left of (1.1). A large ensemble of these
experiments will produce a wave-like interference pattern on the screen.
If one utilizes a detector to decide if the photon passes through slit A
or slit B, and thus switching to the case (A and C) or (B and C), the
interference pattern disappears. This indicate a particle-like behaviour.
Hence, the equivalence of (1.1) cannot hold for this system.



The above experiment also shows wave-like behaviour of other parti-
cles, and these phenomena, among others, led to the development of
quantum mechanics. It postulates that the state of a physical system
can be described by a wave function 1 that obey the superposition
principle, but unlike a classical wave v is an abstract quantity with the
probabilistic measure |||,

1.2.1 Vector Formalism

It is useful to represent the wave function with an abstract state vector
[)) [2]. The notation |¢) indicating that it is a column vector and
its dual (| is a row vector. More explicitly (1| = |1)7 where T is
the Hermitian conjugate, which in vector formalism corresponds to the
transpose taken along with the complex conjugate.

The inner and outer products are then given by (11]12) and |11)(1)q]
respectively. Further the condition (¢|¢)) = 1 expresses that the prob-
abilities of all possible outcomes sums up to one, and is also known as
the normalisation condition.

The mathematical space in which the state of our system resides, is
therefore a complete inner product space (Hilbert space), and under
the normalization condition this is called a projective Hilbert space
H [1]. Also, in this representation we have constrained ourself to a
finite-dimensional space.

1.2.2 Operators and Measurement

Physical quantities such as, position, momentum, energy, etc. are re-
ferred to as observables. Information about these observables are stored
as truth values in H, and the truth values are subspaces to H. We can
now generate statements P; about this information by creating orthog-
onal projections from H onto these subspaces. Such a projection is
given by a projection operator Py, which project a vector space W
onto a subspace V. Suppose that W is a d-dimensional vector space
and V a k-dimensional subspace of W. It is possible to produce an
orthonormal set {|¢1), |d2), ..., |¢a)} acting as a basis for W, such that
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{l#1), |¢p2),- -, |¢r)} forms an orthonormal basis for V [3]. The projec-
tion of W onto V is then given by

k
Py = Z|¢n><¢n| (1'2)

n=1

To acquire knowledge about whether our statement is true or false, one
has to announce the statement and not just generate it; one has to
measure. This is done by letting the projection operator act on our
state. By not allowing the measurement to change the state of the
system, we end up with

Alp) = aly) (1.3)

where A is now the operator to which we relate the observable, and
a is a scalar labelling the value of the observable. Equation (1.3) has
non-trivial solutions only when a is an eigenvalue of A, and |¢)) its cor-
responding eigenvector. If A is unitary, and the state |¢) is described in
a n-dimensional vector space, then A has n discrete eigenvalues {A;}7_4
with eigenvectors {|¢;)}7_; that forms an orthonormal set.

The state of the observed system can then be described by

n

) = ZC]|¢j ( ZP ) hence I:ZPj. (1.4)

j=1 j=1

This is called the spectral resolution of the identity. By recognizing that
|¢;) is an eigenvector to A, one gets A|¢;) = Aj|¢;) and therefore

Alyp) = Z/\ cjle;) = (ZA P )|¢ hence A=Y \;P;. (1.5)

j=1
Where P; is the projection onto the eigenspace of A, and the eigenvalues
A; are the possible outcomes of the measurement. This is the spectral

representation of A [4]. The Born rule tells us that the probability of
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measuring A; is given by |cj|2 and the average of a large ensemble of
measurements can be written

(A) = (W]AlY) = ch Cndn(Pmldn) =D lenl*An. (16)

If the outcome A; occurred, the state of the system immediately after
the measurement is |¢;). A measurement under these conditions is
called a projective measurement.

With the word observable one also implies that its value is real and
produced by a Hermitian operators. For an operator A to be Hermitian
the condition A = AT has to be fulfilled. Also A is said to be unitary
if AAT = ATA = I, where I is the identity operator.

Two operators A and B are said to commute if

[A,B] = (AB — BA) =0 (1.7)

which implies that their observables can be measured simultaneously.

1.2.3 Composite Systems

A system composed by two or more subsystems, where the state of the
subsystems are [1)1), |t2), ..., |1,) then the state of the total system is
the tensor product between the subsystems

) = 1) © [tho) ® ... ® |n) = ({|005)}7=1) " (1.8)

and in general, superposition between these subsystem makes up the
space ‘H in which |¢) is represented.

1.3 Quantum Computation

The use of quantum theory for solving computational problems possi-
bly offers an advantage over classical computation. This have however
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not been proven strictly, and there is a possibility that quantum com-
puters are no more powerful than a classical computer. A tool for
analysing the difference between classical and quantum computation
is the computational complezity theory where computational problems
are categorized by their difficulty into complexity classes. Examples of
complexity classes are: P the set of problems that can be efficiently
solved on a classical computer; NP the set of problems whose solutions
can be easily verified, and PSPACE is the set of all problems that can
be solved with resources that are few in spatial size. It is known that
P C NP, and PSPACE is believed to be bigger than NP. The com-
plexity class of problems which can be efficiently solved by a quantum
computer, can be shown to contain P, but not outside of PSPACE.
However, how the class fits with respect to these two and NP is not
known. Quantum algorithms have shown to efficiently solve some prob-
lems that are believed to be outside of P, but a better understanding
of which principles that governs quantum algorithms advantage over
its classical counterpart is still needed.

One principle of quantum computation without classical counterpart is
quantum parallelism, in which one evaluation of the algorithm super-
imposes all answers on the initial state. However, readout can only be
done of one of these answers, since a measurement will reduce the state
to obtain only the result that was actually measured.

We say that a quantum algorithm can be efficiently simulated if it can
be implemented on a classical computer, without the time and physical
resources needed to evaluate the algorithm, growing exponentially as
the problem grows.

The rest of this chapter will focus on the basic framework in which
quantum algorithms are explained.

1.3.1 Qubit

A classical bit can take on the values 0 or 1 while a qubit |¢)) can take
on the values |0) or |1) and any linear combination thereof

[¥) = col0) + c1[1) (1.9)
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under the normalisation condition |cg|? +|c1|? = 1. One can effectively
write

0 ; 0
[¢)) = cos §|0> + e'¥sin §|1> (1.10)

which have a geometrical representation of a three-dimensional unit
sphere, often called the Bloch sphere.

0)
P

4
-

Figure 1.1: Graphical representation of the Bloch sphere.

FEach point on the Bloch sphere represents a state of the qubit, however,
a measurement can only yield 1 or 0 with the qubit ending up in state
[1) or |0) respectively.

1.3.2 Quantum Gates

A quantum gate is a unitary transformation of the state that one puts
through the gate. Moreover, any unitary transformation specifies a
valid quantum gate [3].

Some specific and important single qubit gates are the Pauli matrices
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O = (2 é) =—xX}— (1.11)
((1) 2) =—z}— (1.12)
oy = <? _é) =—{v}— (1.13)

H= G _i) =—|H}— (1.14)

Multiple qubit gates are gates that can take two or more qubits as an
argument, or rather an unitary transformation that can act on multiple
qubits. For our purpose the most important one is the controlled-NOT
gate (CN)

|z) —e— |z) (1.15)

ly) —D— ly®x)

which actually apply o, to the target qubit |y) if the controll qubit
|z) =]1). In (1.15) @ is addition modulo-2.

1.3.3 Quantum Circuitry

A sequence of quantum gates acting on a set of qubits is called a quan-
tum circuit. A schematic representation can for example look like

0

0) ——D—
) ) )
[Y0) [¥1) |12)
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and is evaluated from left to right. The initial state |ig) is prepared as
|0) ® |0), and is often abbreviated as |00). Continuing the evaluation
gives

00) + |10)

1) = (H @ I)[o) = 7

00) +[11)

[tp2) = CN(H @ I) o) = 73

and at last one measures the first qubit with an outcome of 1 or 0, both
with probability %

Another important part of many circuits is when a set of qubits is all
put through individual Hadamard gates

1)

)

and it is shown in [3] that it can be written like

HO )& 1)%|2) (1.16)

-

where x - z is the bitwise product of z and z, summed modulo 2.

1.4 Deutsch’s Algorithm

Consider the quantum circuit shown in Figure 1.2 as described by [3]
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[2) = 10) —{H}—
) =) —{H}—_—

) ) T )
[Y0)  |31) [Y2)  [1b3)

Figure 1.2: Quantum circuit performing Deutsch’s algorithm.

where Uy is an oracle performing a unitary transformation defined by
the mapping |z,y) — |2,y ® f(z)), with the condition that f(z) €
{0,1} is constant for all values of x or else it is balanced (returning 0
exactly as many times as it returns 1). The initial state is prepared as

ltho) = 10) ® |1) = |0)[1) = [01) (1.17)

applying the Hadamard gates to both qubits gives

IR CETATRET ) EROEETLET Ui

Next one applies Uy to obtain

‘w2> — |O’f(0)> — ‘07 1@ f(0)> —; ‘1’ f(1)> — |17 1 f(1)> (1.19)

() (22 p0) = s (1.20)

% % . f0)# f(1)

+l0) (L2218 1 f(0) = f(1)
[¥s) = |o>{§u>

(1.21)
1) (9210 f0) £ (1)




A measurement of |x) will yield 1 if f(0) # f(1) and 0 if f(0) = f(1).
Hence, f(0)® f(1) can be determined by just one evaluation, compared
with the classical solution which require at least two evaluations of f(x).

Deutsch’s algorithm is a special case of a more general algorithm, that
[3] refers to as the Deutsch-Jozsa algorithm. Consider now again a
balanced or constant function f(x), with a domain

x€{0,1,2,3,...,2" —1}. (1.22)

To classically determine if f(z) is constant with certainty, one needs to
make 2"/2 + 1 queries to f(x), while Deutsch-Jozsa require only one,
and hence enabling an exponential speed-up of the classical solution.

The Deutsch-Jozsa algorithm is evaluated as the circuit shown in Figure
1.3.

|0>®" Hen gen

) ]

) ) ) )
[Yo) 1) [Y2)  [¢3)

Figure 1.3: Quantum circuit performing the Deutsch-Jozsa algorithm.

The prepared state |0>®n|1> is put through Hadamard gates yielding

Y1) = (WZI )(l};”) (1.23)

Followed by the oracle

) = (ﬁZ )(If(w)>—\|/1§@f(x)>>_ 2

Since f(z) € {0,1} this is equivalent with
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[2) = (\/272 1)7@)|z) )(W) (1.25)

Applying Hadamards to the n first qubits under the convention that
x - z is addition modulo 2 of the bitwise product

o G D) (1)
(G ) () o
-(Sh ) (752).

At last we measure the n first qubits along |O>®", that is, we make the
statement "the first n qubits are unchanged under one evaluation”. This
is a reasonable statement since we seemingly just alter the (n + 1):th
qubit. The state after the measurement becomes

(;n 2;2)1(_1)f(m)>|0>®" (|O>\;§|1>> (1.27)

and we see that the probability for the statement being true is

2" —1

QLn 3 (-1)f@

=0

(1.28)

2 _J1, f(x) is constant
~ 10, f(x) is balanced -

If f(x) is balanced then the probability amplitudes undergo total de-
structive interference (the state is being projected onto the nullspace
of the subspace related to our statement) and our statement is there-
fore false. A constant function, on the other hand, will result in the
amplitudes interfering constructively; answering that the statement is
true with certainty.
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1.5 Contextuality

As explained in [5], one first assumes that a measurement of an operator
A depends only on the choice of the operator, and the system that the
operator acts on. If A commutes with the operators B and C, then A
can be measured simultaneously with B or C. The result of measuring
A does not depend on whether A is measured alone or together with
either B or C. However, this assumption is in contrary to what actually
happens.

A measurement of a function f(A, B) of the operators A and B, must
also produce the outcome f(«, ) if @ and 3 are the supposed outcomes
of A and B respectively. As an example, take the Mermin-Peres array
below,

I ®o, |0, 1 | 0,00,
0: Q1 | I Qo, | 0, Q0 (1.29)
O, R0, | 0, Q0; | 0y 0y

each of the nine operators have eigenvalues +1. The operators in each
row and in each column commute, and their product is the identity
operator except for the third column which multiplies according to

(0. ®0.)(0; ®0z)(0y ®0y) =—1. (1.30)

It is therefore not possible to assign a measurement outcome of +1 or
—1 to the operators in (1.29), and also produce the result of measuring
the functions that multiplies the three operators of each column and
row. Or another example, to clarify further, lets define the operators
in (1.29) as A;;, where j is the number of the column and i the row.
Now consider the function that is adding each product along the rows
and columns, except the last column that is subtracted.

f(Aij) = A11A12A13 + Aoy Agp Aoz + Az Asp Ags+

1.31
A11A21 A1 + A1 Axg Agy — A1 AgpAsg (1.31)

A measurement of this function has an upper bound of 6, but if we
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instead try to address a value a;; = £1 to each individual operator;
simulating individual measurement, the upper bound becomes 4.

The conclusion being that, in general, measurement of an operator
cannot be independent of the context of the measurement.

1.6 Hypothesis

Our hypothesis is that the exponential speed-up of Deutsch’s and the
Deutsch-Jozsa algorithm, compared with their classical counterpart is
achieved by utilizing a process that is violating non-contextuality, and
that their oracles, in this way can be associated with operators that
have the same properties as those in the Mermin-Peres array. By find-
ing these operators we hope to show that quantum contextuality is the
resource used in these algorithms. If this is not the case, one should be
able to efficiently simulate these algorithms in a toy theory by Robert
W Spekkens [6] which uses 2N classical bits to simulate N qubits.
Spekkens’ toy theory is able to reproduce phenomena such as interfer-
ence and noncommutativity, but is unable to reproduce contextuality.
Therefore if a simulation in Spekkens’ toy theory is possible, contextu-
ality can then instead be excluded from being the resource utilized by
these algorithms.

14



Chapter 2

Spekkens’ Toy Theory

The toy theory, described in [6] by Spekkens, centers on a principle
that restrict the amount of knowledge an observer can have about the
system, called the knowledge balance principle. The maximal knowledge
one can have about the state of a system equals the amount that is
unknown. One defines knowledge so that it can be measured; knowledge
is the minimal canonical set of answered yes/no questions that is enough
to fully specify the real state of the system (ontic state). According to
the knowledge balance principle this set is assumed to contain an even
amount of elements, otherwise one could not have an equal amount of
answered and unanswered questions. The simplest case is when the
canonical set only contains two questions, which gives a system with
the ability of possessing one of four ontic states. This system is called
an elementary system. To clarify, labelling the ontic states 1,2, 3,4 and
asking the questions 1V 2 and 1V 3 to the system (V read as ‘or’) would
determine the systems ontic state. Theses two questions are then by
definition a canonical set to the system. However, according to the
knowledge balance principle only one of them can be answered to an
observer.

The states of maximal knowledge that can be perceived by an observer
(epistemic states); specified as disjunctions of the ontic states of an
elementary system are

15



Iv2=EEO0=0 (2.1a
1

)
3v4=00mE= (2.1b)
Iv3=m0OmO=0+; 1 (2.1c)
2v4a=O00m=0+,1 (2.1d)
IVA=ROOM =0 +41 (2.1e)
2v3=0Ommd=0+; 1. (2.1f)

for which one defines a graphical representation. The four cells in
the graphical representation denote the ontic states, and filled cells
represent the observers knowledge about which ontic state the system
possesses.

The operations denoted by +; +2 +3 and +4 are called coherent bi-
nary operations and are analogue to coherent superposition of states in
quantum theory. The first operation can be described as defining a new
epistemic state by keeping the first ontic state of both epistemic states
included in the operation. In the same way +2 is keeping the second
ontic state of the epistemic states. These operations are thought of as
a combination between 0 and 1 with equal weights, but with a relative
phase of the second term to the first by 0,7, 7/2 and 37 /2 respectively.

A single elementary system in the toy theory is analogous to a qubit
in quantum theory. The six epistemic states of maximal knowledge,
shown above, are analogue to the following six qubit states

mECO < o) (2.2a)
COmm < [1) (2.2b)
o P \%(|o> +]1) (2.20)
OmOm & %(m ) (2.24)
mOOm & \%(m 1) (2.20)
OmEO < (o) +i[1)) (2.26)

V2

16



Note that the epistemic states associated with |0), |4+) and |+%) are
chosen by convention and are eigenstates to o, 0, and o,. In the same
way as a qubit can be graphically represented by the Bloch sphere, an
elementary system in the toy theory can be represented in a similar
manner.

| [H]

[ |

ml | |

|

Figure 2.1: Graphical representation of an elementary system, and its
six possible epistemic states.

2.1 Transformations

Transformations of an elementary system, that are allowed by the
knowledge balance principle, are one-to-one maps and one-to-many
maps. As an example consider the many-to-one map that transforms
the ontic states 1 and 2 to the ontic state 3. This is clearly a violation of
the knowledge balance principle, and all many-to-one maps will cause a
violation. The transformations of our interest are the one-to-one maps
which are just permutations of the ontic states. These transformations
can be graphically depicted with arrows between the ontic states.

Qv (23)
PR (2.4)
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The first transformation (2.3) is an anti-unitary map in Hilbert space.
The second (2.4) is a unitary transformation, specifically analogue to
the Pauli matrix o,. Anti-unitary maps do not represent possible trans-
formations of a quantum system, since they are assumed to be contin-
uous in time. Transformation analogous to anti-unitary maps arises
from the fact that the toy theory is discrete.

2.2 Measurement

The knowledge balance principle also restricts the sort of reproducible
measurements that can be implemented; reproducible in the sense that
if measured twice on the same system it will yield the same result.
The fewest possible ontic states that one can associate with a single
measurement are two. Therefore, the valid measurements are those
that separate the ontic states into sets of two ontic states.

{1v2,3v4} = 6400 (2.5)
{1Vv3,2Vv4} = 4040
{1v4,2V 3} = 4004.

These sets are analogous to the three bases in quantum theory

{1v2,3v4} < {|0),|1)} (2.8)
{1v3,2v4} < {|+),|-)} (2.9)
{1v4,2v3} e {|+i),|—0)}. (2.10)

As an example, take the epistemic state

EEOC (2.11)

and perform the measurement that distinguish the states 1V2 and 3V 4

$400. (2.12)
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Then the outcome 4 will occur with certainty. While if one performs
the measurement that distinguish the states 1V 3 and 2Vv 4

*040 (2.13)

the outcome is not determined. Over a large number of such measure-
ments the outcomes, ¢ and ¢, will occur an equal amount of times in
average. If the outcome of this measurement is ¢, then one knows that
the system was in the ontic state MO before the measurement. How-
ever, in order not to violate the knowledge balance principle, and keep
the measurement reproducible, the state is updated to be in HCIEC]
after measurement.

2.3 Composite Systems

Every system is assumed to be composed by elementary systems. For
a pair of elementary systems there are four questions in its canonical
set, and sixteen possible ontic states. For n systems there are 4™ pos-
sible ontic states and 2n questions in the canonical set. For composite
systems the principle will impose more constraint, since it needs to be
upheld not only for the whole system, but also for each individual part
of the system.

A pair of elementary systems can be graphically represented with a 4 x4
array. ‘-‘ reads as ‘and‘; then consider the epistemic state (3V4)-(3Vv4).
This can be represented graphically as follows:

) UL
1]
Qo]
| |

|
N
H (2.14)
4

19



20



Chapter 3

Deutsch’s and the
Peres-Mermin Square

The oracle transformation of Deutsch’s algorithm clearly creates a sepa-
ration between constant and balanced functions. Getting an outcome of
a measurement with the value 1 we know that the function applied were
constant, while measuring a value of —1 the function were balanced.
The initial thought where that one could identify the realizations of
the oracle with rotations of the operators in the Mermin-Peres square
(1.29). Rotations in such a way that they pair together the eigenvalues
and states in the same way as described above.

3.1 Dismantling the Oracle

The oracle performing the mapping |z,y) — |z,y @ f(x)) is realized
with four unitary transformations, since the domain and range of f(z)
are defined only for two discrete values. These mappings are

fl@)=0: |z,y) = |z,y ®0) = [z, y) (3.1a)
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fl@)=1: |z,y) = |z,y® 1) (3.1b)
f@)y=z: |z,y) = |z, y®T) (3.1¢)

f@)=zel: |z,y) = |r,ye (@al)). (3.1d)

Figure 3.1 show the circuits with oracles that realize these mappings.

a) — b) ‘777

o fHHEEE ) ER
e HHo-{X—

Figure 3.1: Quantum circuit performing Deutsch’s algorithm with re-
alizations of the oracle highlighted. a),b),c) and d) shows the circuits
with an oracle performing (3.1a), (3.1b), (3.1c¢) and (3.1d) respectively.

Mappings (3.1a) and (3.1b) differs from each other only by a controlled-
NOT, which results only in a global phase-shift in the output state.
Since a statistical measurement depend on the square of a state, global
phase will have no observable effect. These mappings can therefore be
thought of as the same transformation, or at least to produce equal
states. The same argument can be made for the mappings (3.1c) and
(3.1d). This leaves us with only two distinguishable transformations
that can be identified with transformations in the Peres-Mermin square
(1.29). The identification is done by rotating the eigenspaces of the
operators in the square in such a way that the eigenvalues +1 and
—1 correspond to |[0) and |1) on the first qubit respectively. By doing
this one can identify that the transformations of Figure 3.1 a) or b) is
the required rotation for the operator o, ® I, while the transformation
of Figure 3.1 ¢) or d) is the rotation to o, ® o,. However, these two
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transformations are insufficient to produce the same properties as those
of the Mermin-Peres square, since we need at least three distinguishable
transformations.

To confirm that contextuality is not being responsible for the speed-
up, we set out to simulate these algorithms with a model that lacks the
phenomenon of contextuality, namely Spekkens’ toy theory.

3.2 Simulation of Deutsch’s algorithm

We start by obtaining the operations analogous to Hadamard, Pauli-X
and the control-NOT gates. The control-NOT analogue transformation
CN is given in [6] as:

3 (3.2)

R

and it can be easily verified that the Pauli-X analogue is given by

PR =, (3.3)

A Hadamard analogue is hard to find by the means of permutations.
However, a rotation around the axis connecting the two eigenstates of
gy in (Figure 2.1) is given by

Y = 4. (3.4)

and this is exactly what we need to evolve the state before arguing it
to the oracle.

To reproduce the realizations of Figure 3.1 in the toy theory we start
by preparing a system composed by two elementary system in the epis-
temic state (1V 2)-(3V4) (analogue to |01))



and then applying H to both elementary systems
ciod _A-A, Cece
[ | | OO0 (3.6)
| Wl W] |

The unitary analogues to the mappings (3.1a) - (3.1d) will produce the
same result as the quantum oracle, except from global phase. Global
phase; as previous stated, have no observable effects. Applying the
oracle; followed by the inverse permutation of H (lets call it H ) on
the first elementary system yields:

o Lo B et B
L - - L

EENE EENE m (W | (3.7a)
m OmCE OECE

W re G i, B

EENE EENE m (W | (3.7b)
m [m | m OO

0000 - OmCm s - OECm

OmCom _ CN . Ooog _H'-T, OmOm

0000 m (m| | 0000 (3.7¢)
m 0000 0000

0000 s - COECOE -~ : COECE

omom CN(-o.) goon H'-1. Omom

OO0 ————— OEOE * OuOog (3.7d)
OECE EEE 0000

Performing the measurement 440 on the first elementary system,;
the one depicted vertically, will clearly outcome ¢ if the function was
balanced; 4 if constant. Thus allowing a determination of this property
by query the oracle only once.

This shows that Deutsch’s algorithm can be efficiently implemented on
a classical computer through Spekkens toy theory. Deutsch’s algorithm
is therefore not a valid example for how a quantum computer has an
advantage over classical computers.
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Chapter 4

Spekkens and the
Deutsch-Jozsa

In the general case, with a data register of n bits, one gets functions
f(x) with a domain of 2". The amount of non-equivalent balanced
functions grow as

(2"
(N

!
cay

which grows as 6, 70, 12870, 601080390 which is referred to in the online
encyclopedia of integer sequences as the central binomial coefficients for
powers of 2.

A general implementation of the n-qubit oracle is shown in Figure 4.1
where the f(z)-gates are given by the Pauli-X or identity operators if
f(x) is 1 or 0 respectively.
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Figure 4.1: A general implementation of the oracle in the Deutsch-
Jozsa algorithm; with |21) as the least significant qubit and |z,,) as the
most significant qubit.

The oracle in Figure 4.1 is illustrative, but not the most efficient. For
n = 2 we get functions with four numbers in its domain. Then instead
of two constant functions and two balanced functions one has to realize
two constant functions and siz balanced functions. The resulting ora-
cles can be simplified to only contain control-NOT and Pauli-X gates.
This is because in a two bit binary system the individual bits along with
their Boolean inverse, and combination of these by addition modulo 2,
can create all balanced functions. The oracles are given by

e Control-NOT from the first qubit to the target qubit |y);

e Control-NOT from the second qubit to the target;

e Two control-NOTs from both qubit to the target;

and these along with a Pauli-X gate at the target qubit.

For n = 3 we get functions with a domain of eight bits, which yields
a number of 70 non-equivalent balanced function, all of which can be
generated by control-NOT, Toffoli and Pauli-X gates. This is shown in
Appendix A.

26



4.1 Simulation of the Deutsch-Jozsa
algorithm

We will now verify that an oracle performing the balanced functions,
generated by a two qubit register, can be simulated in the toy theory
by:

e C'N from the first elementary system to the target; C; N

e C'N from the second elementary system to the target; Co N

e CN from both elementary systems to the target; C1 N + Co N
and those three modulated with ¢, on the target.

Following is a composite of three elementary system first prepared in
the state 0 -0 - I, and then individual permutations H on all three
systems:

g
| S ===
e

The system is then in a state invariant to ¢, we need therefore only
consider ourselves with the three above listed permutations. Starting
with CN from the first elementary system to the target
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continuing with C'N from the second elementary system to the target:

e - o
e N
= A = o
e

2 ; yr ~ 4
y - 4
HY . H.T

%’:
e
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and last we got the case of two C'N from the first and second elemen-
tary system to the target:

= -
e R
=4 p ==
e e

:.'?

=
L

H.H .

Any statement claiming that the first and second system (depicted
horizontally) are unchanged in the above three examples, will always
be false. In the case of a constant function the oracle is performed by
the unity map and the unity map along with o, (for which the state is
invariant), and it is obvious that in these cases the statement will be
true.

For an oracle with n = 3 qubit register, as shown in section 2.2, all
70 balanced functions can be generated from control-NOT, Toffoli and
Pauli-X gates. We need now a transformation analogue to the Toffoli,
and what works is
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Figure 4.2: Transformation analogue to the Toffoli gate with the control
systems in the horizontal plane, and the target system along the vertical
axis. To clarify, the transformation is split; to the left the target system
ontic states 2 and 4 ; to the right the target system ontic states 1 and
3.

As an example we will simulate this in the toy theory for the balanced

function (f(m))izl = (0,0,0,1,1,1,1,0) generated by the following

oracle
|[21) ———
|w2) —¢——
|z3)
ly) ——D

Figure 4.3: An oracle performing the balanced function ( f (33))8 =

r=1
(0,0,0,1,1,1,1,0).

However, we will only depict the three first elementary systems, the first
and second in the horizontal plane, and the third along the vertical.
Keep in mind that the target system is in the epistemic state 3 V 4
initially and in 2 V 4 after the first transformation.

We start by preparing the systems in the state 0-0-0-1 and apply H
to all four systems.
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Applying the Toffoli transformation in Figure 4.2 followed by the CN

e~ =
e
e —
=

At last we apply H' to the first three systems and get.

-—
_—
e
=

This state is clearly disjunct from the initial state so any statement
made about the initial state being unchanged is false.
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This shows that the Deutsch-Jozsa algorithm for two and three qubits
can also be efficiently simulated on a classical computer, and we assume
that this is valid for the general case with an arbitrary number of qubits.
This conjecture is base on the fact that the generalized Toffoli, or n-
Toffoli gates can be decomposed into Toffoli gates [7].
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Chapter 5

Conclusion

Since N elementary systems in the toy theory can be implemented
by 2N classical bits, defining the ontic states, we have shown that
Deutsch’s algorithm and the Deutsch-Jozsa algorithm for two and three
qubits can be efficiently implemented on a classical computer. Because
of this, the resources that these algorithms utilize are not quantum
resources. These algorithms should instead be viewed upon as new,
and more efficient classical algorithms brought forward by the counter-
intuitive thinking of quantum mechanics; made intuitive by the epis-
temic view in the toy theory. To analyse the Deutsch-Jozsa algorithm
for four qubits and more, one need to obtain a transformation analogue
to the generalized Toffoli gate, and we leave this as an open problem.
However, if the Toffoli transformation that we have provided here (Fig-
ure 4.2) takes all possible input states into the correct epistemic states,
that is, states corresponding to quantum mechanical states given that a
Toffoli is argued with the analogue input state, then a generalized Tof-
foli gate can be composed by single Toffoli gates in the way described
by [7].

It would also be interesting to analyse other quantum algorithms in this
manner. The algorithm to be next in line should be Simon’s algorithm,
since Deutsch-Jozsa is a special case of Simon’s. Also Simon’s algorithm
and its classical counterpart are both stochastic algorithms, meaning
that they will produce the correct result with a bounded probability,
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compared with The Deutsch-Jozsa and its classical solution who are
deterministic algorithms.

In the toy theory the available states are |0), |1) and four equally
weighted states of those two. Many quantum algorithms depends on
unequally weighted states, one being Grover’s search algorithm that
searches an unsorted database. Another important set of quantum
algorithms are those dependent on a subroutine known as quantum
Fourier transform, which uses a continuum of equally weighted states.
It should therefore be interesting to analyse the above algorithms with
a toy theory extended to produce a continuum of states.
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Appendix A

Number of Balanced
Functions

Following is a function that returns a matrix and the number of all
unique balanced functions, with a domain of 8 bits, that can be gener-
ated by CNOT, Toffoli and Pauli-X gates.

function [Number Matrix] = NumOfBalanced

%Defining the funtions generated by single CNOT and Toffoli.
SingleCNOT = [01010101;

00110011;

0000111 1];

SingleToffoli = [

3

o O O
o O O
o O O

= e

0
0
1

O O =
o O O
o = O

1;

[y

% Creating funtions generated by combinations of CNOT.
CombinedCNOT = [
mod (SingleCNOT(1, :)+SingleCNOT(2,:),2);
mod(SingleCNOT(1, :)+SingleCNOT(3,:),2);
mod (SingleCNOT(2, : ) +SingleCNOT(3,:),2)
mod (SingleCNOT(1, :)+SingleCNOT(2, : )+SingleCNOT(3,:),2)];
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% Creating funtions generated by combinations of Toffoli.
CombinedToffoli = [
mod(SingleToffoli(l,:)+SingleToffoli(2,:),2);
mod (SingleToffoli(1,:)+SingleToffoli(3,:),2);
mod (SingleToffoli(2,:)+SingleToffoli(3,:),2)
mod(SingleToffoli(l,:)+SingleToffoli(2,:)+
SingleToffoli(3,:),2)];

% Creating funtions generated by combinations between
% CNOTs and Toffoli.
CNOT = [SingleCNOT;

CombinedCNOT] ;

Toffoli = [SingleToffoli;
CombinedToffoli];

[M Domain] = size(Toffoli);
[N Domain] = size(CNOT);

Mat = [CNOT;Toffoli];

forn=1:N
form=1:M
func = mod(Toffoli(m,:)+CNOT(n,:),2);
Partial(m,:) = func;
end
Mat = [Mat; Partiall;
end

% Appending the alterations from adding a Pauli-X
BoolInverse = mod(Mat + ones(size(Mat)),2);
Mat = [Mat ;BoollInverse];

% Discarding all unbalanced functions
m=1;
[K Domain] = size(Mat);
for k =1 : K
if sum(Mat(k,:)) == Domain/2
Balanced(m,:) = Mat(k,:);
m=m+ 1;
end
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end

% Sorting out all unique functions
Matrix = unique(Balanced , ’rows’);

[Number Domain] = size(Matrix);
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