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Abstract

There has been a recent explosive growth in mobile data consumption.
This, in turn, imposes many challenges for mobile services providers and
regulators in many aspects. One of these primary challenges is maintaining
the radio spectrum to handle the current and upcoming expansion in mobile
data traffic. In this regard, a radio spectrum regulatory framework based
on secondary spectrum access is proposed as one of the solutions for the
next generation wireless networks. In secondary spectrum access framework,
secondary (unlicensed) systems coexist with primary (licensed) systems and
access the spectrum on an opportunistic base.

In this thesis, aspects related to finding the free of use spectrum portions
- called spectrum opportunities - are treated. One way to find these opportu-
nities is spectrum sensing which is considered as an enabler of opportunistic
spectrum access. In particular, this thesis investigates some topics in blind
spectrum sensing where no priori knowledge about the possible co-existing
systems is available.

As a standalone contribution in blind spectrum sensing arena, a new blind
sensing technique is developed in this thesis. The technique is based on dis-
criminant analysis statistical framework and called spectrum discriminator
(SD). A comparative study between the SD and some existing blind sensing
techniques was carried out and showed a reliable performance of the SD.

The thesis also contributes by exploring sensing parameters optimization
for two existing techniques, namely, energy detector (ED) and maximum-
minimum eigenvalue detector (MME). For ED, the sensing time and periodic
sensing interval are optimized to achieve as high detection accuracy as pos-
sible. Moreover, a study of sensing parameters optimization in a real-life
coexisting scenario, that is, LTE cognitive femto-cells, is carried out with an
objective of maximizing cognitive femto-cells throughput. In association with
this work, an empirical statistical model for LTE channel occupancy is ac-
complished. The empirical model fits the channels’ active and idle periods
distributions to a linear combination of multiple exponential distributions.
For the MME, a novel solution for the filtering problem is introduced. This
solution is based on frequency domain rectangular filtering. Furthermore,
an optimization of the observation bandwidth for MME with respect to the
signal bandwidth is analytically performed and verified by simulations.

After optimizing the parameters for both ED and MME, a two-stage fully-
blind self-adapted sensing algorithm composed of ED and MME is introduced.
The combined detector is found to outperform both detectors individually
in terms of detection accuracy with an average complexity lies in between
the complexities of the two detectors. The combined detector is tested with
measured TV and wireless microphone signals.

The performance evaluation in the different parts of the thesis is done
through measurements and/or simulations. Active measurements were per-
formed for sensing performance evaluation. Passive measurements on the
other hand were used for LTE downlink channels occupancy modeling and to
capture TV and wireless microphone signals.
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Chapter 1

Introduction

1.1 Background

N 1895 Marconi succeeded to transmit the first wireless signal ever using Maxwell’s
theory. Six years later, in 1901, Marconi himself managed to send a telegraph
message wirelessly through the Atlantic as a launch of what is known as radio teleg-
raphy. Since then, wireless transmission has been continuously evolving and new
wireless advances have been appearing including broadcasting of audio and video,
walkie-talkies, satellite communications, commercial cellular phones, personal com-
munications, multimedia communications and mobile broadband (MBB) services.
In general, in today’s modern societies, communicating wirelessly is deeply rooted
in our daily life. Having that foundation in our need to exchange information,
reflects how difficult it is to imagine the globe without wireless systems.

By having all these wireless technologies, the wireless landscape is ranging from a
networks that covers thousands of kilometres known as a wireless wide area network
(WWAN) to a network that transfers signals within a human body refereed to
as a wireless body area network (WBAN). In between, there exist also wireless
regional area networks (WRAN), wireless metropolitan area networks (WMAN),
wireless local area networks (WLAN) and wireless personal area networks (WPAN).
Together with the coverage, another dimension of this landscape is the capacity
which goes inversely proportional to the coverage area. Moreover, capacity has
been more concerned about with the time progression.

Mobile operators have started with voice communication as their basic service.
Thereafter, data communications take over and have been dominating mobile ser-
vices more and more. Fig. 1.1 depicts the monthly global mobile traffic for voice
and data since 2010 with a forecast up till 2018. Fig. 1.1 exhibits the exponential
growth of data traffic termed as data tsunami faced by mobile broadband services
providers. However, there will be a point where this exponential growth in data
traffic is clipped by the availability of infrastructure and resources. One of these
resources is the usable electromagnetic radio spectrum below 6 GHz.

3
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Figure 1.1: Monthly global mobile voice and data traffic, 2010-2018 [1].

One solution to overcome this resources shortage is to use portion of the radio
spectrum above 6 GHz. This solution is motivated by the property of the availability
of more bandwidth in higher spectrum bands and in return capability of handling
higher data rates. In this regard, communicating using the frequencies around 60
GHz has emerged and standardized as a promising technology for multi-gigabit
short range links [2,3]. However, operating in high frequencies is costly in terms
of power and hardware needs. Therefore, other alternatives are still needed as
complements of opening up new bands. Approaching towards more distributed
networks architecture is also an alternative solution for providing higher data rates.
However, more distributed networks still need more resources in terms of radio
spectrum. Therefore, the need of more radio spectrum is a bottleneck. Accordingly,
better radio spectrum reuse seems to be a convincing solution.

Linked to the feasibility of improving the radio spectrum usage, several studies,
initiated by the US regulator Federal Communications Commission (FCC), have
shown that the frequency spectrum is underutilized and inefficiently exploited, some
bands are highly crowded, at some day hours or in dense urban areas, while others
remain poorly used. This paradox led the regulators worldwide to recognize that the
traditional way of managing the electromagnetic spectrum, called fixed spectrum
access (FSA), in which the licensing method of assigning fixed portions of spectrum,
for very long periods, is inefficient [4-6].

Among the efforts taken by regulators worldwide, in order to achieve better
usage of spectrum is the introduction (promotion) of secondary markets. Besides
the promotion for secondary markets, we are currently experiencing rapid evolutions
of software defined radio (SDR) techniques. Such techniques allow reconfigurable
wireless transceivers to change their transmission/reception parameters, such as the
operating frequency that can be modified over a very wide band, according to the
network or users’ demands. The efforts taken by regulators in order to make better
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usage of spectrum, in particular the promotion for secondary market, together with
the rapid evolution of the SDR techniques, have led to the development of cognitive
radio (CR) systems. The term cognitive radio was firstly introduced by J. Mitola
in 1999 [7]. Generally, CR refers to a radio device that has the ability to sense its
radio frequency (RF) environment and modify its spectrum usage based on what
it detects. In short, CR device senses the RF environment, analzses the resources
availability, decides on changing its operation parameters and finally adapts to
the changes it makes. Fig. 1.2 shows the basic functionalities of the CR cycle.
To make it omnipresent, regulators and standardization bodies have been putting
policies and standards concerning CR and coexistence of secondary users (SU)
with primary users (PU). Among the leading regulation bodies in CR arena is
the FCC. In 2010, the FCC released a report that allows secondary operation in
the UHF terrestrial TV band in what so called TV white space (TVWS) [8]. In
the UK, the Office of communication (Ofcom) has followed the FCC and opened
up the first TVWS for secondary operation in Europe [9]. In Europe also, the
Electronic Communication Committee (ECC) formed the Spectrum Engineering
group (SE43) which is responsible for regulating the license exempt access to the
licensed bands [10].

Similar to regulators, industry partners have been standardizing secondary ac-
cess to the primary users bands. Being a leader in wireless industry standardization,
Institute of Electrical and Electronics Engineers (IEEE) has released many stan-
dards concerning secondary operation, among those, the 2011 released standard by
the working group 802.22 [11]. This standard regulates the deployment of WRAN
in TVWS. More IEEE standards for secondary operation have been either released
or under preparation such as IEEE 1900 group of standards which is responsi-
ble for standardizing the new technologies for next generation radio and advanced
spectrum management [12]. A detailed survey on the IEEE standards in CR and
coexistence issues is found in [13].
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1.2 Spectrum Sharing

Spectrum sharing is a terminology used for the concurrent access of spectrum in
a specific geo-location at a specific time by multiple independent entities using
mechanisms other than the multiple access techniques [14]. Spectrum sharing can
be classified differently depending on the consideration of the classification. Be-
low are three spectrum sharing classifications with different concerns found in the
literature.

Spectrum Access Rights Classifications

This classification considers the rights of accessing the shared spectrum. this clas-
sification divides spectrum sharing systems into two categories described below [14].

Horizontal sharing: All sharing entities are equally illegible to access the spec-
trum. The ownership of the spectrum is the same as well for the different enti-
ties. This type of spectrum sharing is applicable in both licensed and unlicensed
spectrum. An example of licensed spectrum horizontal sharing is different mobile
stations (MS) accessing the uplink cellular spectrum. On the other hand, a WiFi
access point sharing a portion of the 2.4 GHz industrial, scientific and medical
(ISM) band with a microwave oven is an example of horizontal unlicensed spec-
trum sharing.

Vertical sharing: This type of sharing is also called dynamic spectrum access
(DSA). Here, sharing systems have different rights to access the spectrum. Under
the vertical spectrum sharing framework, the spectrum owned by the licensed PU
can be shared by a non-licensee SU. SUs can be dynamically allocated the empty
frequencies within the licensed frequency band, according to their requested qual-
ity of service (QoS) specifications. SUs have to share the spectrum with associated
constrains that assure PU protection such as the transmission power limits.

Access Technology Classification

Based on the spectrum access technology, spectrum sharing is categorized in [15]
into overlay, underlay and interweave sharing models as descried below.

Underlay sharing: Is the spectrum sharing approach when the SUs coexist with
the PU regardless of the PU existence or absence. However, accumulative SUs
transmission has to be kept below a specific interference limit. This definition
of underlay spectrum sharing implies restrictions on the SU transmission power.
Most noticeably, ultra wideband (UWB) systems follows underlay spectrum shar-
ing model where the UWB signal is spread over a very wide portion of spectrum
that can be owned by many PUs with a very low transmission power.
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Overlay sharing: Here SUs are allowed to coexist with the PU as in underlay
sharing model with different constrains. With overlay sharing, the PU performance
is not only maintained with no degradation caused by SUs but also can be enhanced
with the aid of SUs. One approach to enhance the PU performance by coexisting
SU is to use network coding where SUs act as relay nodes between PU weakly
connected nodes [16].

Interweave sharing: With interweave spectrum sharing, PU is the absolute owner
of the spectrum and have the right to access it exclusively whenever needed. Accord-
ingly, SUs are allowed to access the spectrum when the PU is inactive. Moreover,
SUs are required to vacate the band when the PU resumes its operation. There-

fore, interweave spectrum sharing model is also called opportunistic spectrum access
(OSA).

Cooperation Classification

Spectrum sharing is also classified based on whether sharing systems cooperate with
each other or not. This classification is directly involved in system design [17].

Coexistence sharing: With coexistence spectrum sharing, the participating sys-
tems try to avoid mutual harmful interference with no common protocol or sig-
nalling. One approach to mitigate mutual interference is employing CR capabilities
including transmission parameters adjustment.

Cooperative sharing: Cooperative spectrum sharing is the sharing model when
the sharing devices communicate using the same administrative protocol. Cooper-
ation among the participating systems is obligatory aiming at mitigating mutual
interference. The joint benefit is maximized when adopting cooperative sharing
with extra overhead of having common supported protocol(s).

The sharing model considered in the studies of this thesis is vertical, interweave
and coexistence sharing model and for that DSA and OSA are used interchange-
ably. To adopt DSA, SU needs at first to locate and later utilizes the usable free
of use spectrum. This free of use spectrum is called spectrum hole or spectrum
opportunity, these two terms are interchangeably used. Spectrum hole is defied
in [18] as "a band of frequencies assigned to a primary user, but, at a particular
time and specific geographic location, the band is not being utilized by that user”.
This definition imposes a multi-dimensional spectrum awareness concept since a
spectrum hole is a function of frequency, time and geo-location [19]. Figure 1.3
depicts the concept of spectrum hole.

According to the literature, one of three approaches can be used to find the
spectrum opportunities [20]. Those three approaches are: spectrum sensing!, geo-

ISpectrum sensing is called signal detection also. Therefore, throughout this thesis sensing
and detection are used interchangeably.
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Figure 1.3: Spectrum hole concept.

locations databases and beacon signals. These three approaches are described be-
low.

Spectrum sensing: SU scans across the usable spectrum and identify the spec-
trum holes using one of the spectrum sensing techniques, [19,21]. There are many
of those techniques with different complexity and reliability extent, Section 1.3 pro-
vides a brief review of the sensing techniques in the literature.

Geo-location databases: Spectrum opportunities with their associated con-
strains are reported in an accessible database by SUs. The geo-location databases
based spectrum opportunities are suitable when the PU usage pattern is fixed or
varies slowly over time [22]. Therefore, the TV broadcasting and the radar systems
are potential PUs to adopt the geo-location databases for spectrum opportuni-
ties [23-29]. This is - of course - after taking into the consideration the inefficient
use of the spectrum assigned for the TV broadcasting and radar systems. The
main concern when building the geo-location databases spectrum opportunities is
protecting the PU from harmful interference [30].

Beacon signals: To determine the spectrum opportunities using the beacon sig-
nals method, SUs detect PUs’ signatures through receiving a beacon signal from
those PUs [31]. Beacon signals based spectrum opportunities approach attracts
less attention since it costs burden on PUs and requires more resources in terms of
standardized channel.

In [20] spectrum sensing, geo-location databases and beacon signals have been com-
pared concerning different aspects. Table 1.1 summarizes the comparative study
held in [20]. Rest of this thesis treats aspects in using spectrum sensing as an
enabler of finding spectrum holes.
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Table 1.1: Spectrum sensing, geo-location database and beacon signals comparison

Positioning
Internet connection

Main responsibility
Infrastructure cost
Transceiver complexity]

Standardized channel
Continuous monitoring|

Spectrum sensing SU Low | High No No No Yes
Geo-location DB PU | High | Low Yes Yes No No
Beacon Signals PU | High | Low No No Yes No

1.3 Spectrum Sensing Techniques

In the literature there are many spectrum sensing enabling algorithms with different
complexity and reliability extent, following is a brief overview of the most common
spectrum sensing techniques.

Energy Detection

The detector performs spectrum sensing by calculating the signal energy and declar-
ing PU existence if this energy exceeds the noise floor level [32]. For energy de-
tection a priori knowledge about noise energy level is necessary and its uncertainty
degrades the detector performance [33]. Energy detection procedure is explained
in details in Chapter 3.

Feature Detection

These types of detectors exploit certain PU signal properties such as pilots or
cyclostationary features to perform the detection [34]. Feature detection requires
knowledge about cyclic frequencies of the PU signal. However, this type of detection
requires a very accurate synchronization which is difficult to maintain in low signal-
to noise ratio (SNR) values [35].

Matched Filtering Detection

With this technique of detection, the received signal is matched filtered with the PU
signal and accordingly the existence or absence of the PU is determined [36]. The
matched filtering detection relies on the assumption of having Gaussian noise where
the matched filtering is the optimal detection technique [37]. For matched filtering
detection, perfect knowledge regarding PU signal features including modulation
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scheme, pulse shaping and bandwidth is a requirement. Matched filtering detection
has the same limitation as feature detection in low SNRs [35].

Waveform Based Sensing

Different communication signals use different known patterns such as preambles,
pilots and spreading sequences for specific purposes like synchronization. These
known patterns can be used to identify a specific PU signal existence in what so
called waveform based sensing [38].

Eigenvalues Based Detection

For spectrum sensing, many techniques have been developed using the eigenvalues
or the eigenvectors of the received signal covariance matrix, these techniques include
maximum-minimum eigenvalue detection, energy with minimum eigenvalue, max-
imum eigenvalue detection, generalized likelihood ratio test, scaled largest eigen-
value, John’s detection and spherical test. Detailed explanations of these techniques
are included in [39-46]. Section 3.2 presents in details one of these eigenvalues based
detection techniques, namely maximum-minimum eigenvalue detection.

Basic Comparison of Sensing Techniques

Different sensing techniques achieve different levels of reliability with different com-
plexities and different grades of information needed about PU signal. Fig. 1.4 shows
a basic comparison concerning reliability, complexity and the amount of informa-
tion needed about the PU signal of the basic sensing techniques presented in this
Section. Fig. 1.4 is generated with an aid from [19].

1.4 Challenges in DSA

In this section different challenges faced by DSA are briefly overviewed. As a
transition to the next section, the challenges directly or indirectly related to the
issues addressed in this thesis are covered in more details. Challenges in DSA
arena can be categorized into business, regulatory and technical challenges [47] as
exhibited by Fig. 1.5 and elaborated more on hereafter.

Regarding business challenges, the model of DSA still lacks a lot of quantitative
evaluation methodologies for many factors including technology availability, infras-
tructure modifications and deployment costs. These undefined factors make the
economical revenue uncertain which in return leads to reluctance or at least hes-
itation from industry to invest in DSA. Moreover, the uncertainty of new players
appearance discourage the industry to get in DSA.

From regulators point of view, motivating the licensee operators to share their
spectrum seems a fundamental challenge. Therefore, incentive regulatory frame-
work for DSA to encourage license holders to adopt DSA is needed. Furthermore,
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enforcement of regulation with more dynamicity in the system that implies more
violations is a challenge for the regulators. In addition, regulatory framework has
to consider both PU protection and SU performance.

For the technical challenges, many aspects are involved. Following are the tech-
nical challenges being discussed the most in the literature. At first, the impact
of secondary operation on PU performance is a challenge faced by DSA. Another
technical challenge faces DSA is the scalability extent of the deployed secondary
systems. Associated with the scalability issues, developing sharing mechanisms that
guarantees acceptable quality of services for not only PUs but also coexisting SUs
is a big technical challenge in DSA.

Fetching and disseminating spectrum availability knowledge is a challenge that
attracts most of the research within DSA. A preliminary challenge is to decide
which approach among spectrum sensing, geo-location database or beacon signals
to use as presented in Section 1.2, Moreover, which bands are suitable for which
approach is an attractive research question. DSA technical challenges are many and
very branched which are surveyed in [15,47]. As the main area where this thesis
contributions fall, challenges in spectrum sensing are divided into the challenges
shown by Fig. 1.5 and covered in more details in the upcoming parts of this
Chapter.

1.5 Problem Formulation and Contribution Overview

This section acts as a "high level” problem formulation of the topics addressed in
the thesis with an overview of the associated thesis contribution. The high level
problem formulation is presented in a group of research questions addressed in the
thesis. The contributions of the thesis are led by these research questions and spread
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Figure 1.5: Challenges in DSA associated with the thesis contributions.

in ten publications indexed as Paper I to Paper X according to their contributions
appearance in the thesis. For the sake of coherency, some parts of some publications
are skipped and some parts of some other publications are presented in different
parts of the thesis. Moreover, contributions included fully or in part in more than
one publications are presented once. Linked to the spectrum sensing challenges
shown in Fig. 1.5, these publications contributes in each challenge differently. Fig.
1.6 maps the publications contributions to these challenges and research questions.
Following addressed challenges are ordered in accordance with the significances of
the contributions .

Figure 1.6: Challenges-contributions connections map.
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Blind Sensing

Spectrum sensing can be performed using a priori knowledge about either the noise
floor level or the PU signal pattern. However, this knowledge may not be available
in most cases. Consequently, a sensing technique for which no information about
neither the noise energy nor the PU signal are available is needed. Such a technique
is called blind sensing technique [39,40].

Related Work

The need for sensing the spectrum blindly is being widely realized for CR. In [48]
the authors proposed a blind spectrum sensing technique relies on the goodness of
fit to the ¢-distribution when the noise is uncertain. In [49] independent components
analysis (ICA) is used to blindly perform the spectrum sensing. In [50] information
theocratic criteria is proposed for blind spectrum sensing by means of estimating
the source signals in a received mixture. In [51] a blind spectrum sensing technique
based on high order statistics is developed. Using of high order statistics makes
use of the fact that for a white Gaussian noise the third and higher moments are
zeros. Kigenvalues based spectrum sensing techniques have been proposed as blind
sensing techniques [39-46]. More related work is revisited in the context of the
contributions reported in Chapter 3 and Chapter 5.

With a comprehensive literature review, one would realize that following re-
search questions are still needed to be investigated.

« RQ1: Are there mathematical techniques that can be used for developing
reliable, "not so complicated” and non-parametric blind sensing technique?

¢ RQ2: How simplicity and blindness can be traded off and gained simultane-
ously?

These two research questions direct the thesis contribution in blind spectrum sens-
ing.
Contribution

The thesis contributes in blind spectrum sensing aspects by the materials included
in Paper I, Paper II, Paper VII, Paper VIII, Paper IX and Paper X as
follows

Paper I: M. Hamid, K. Barbé, N. Bjorsell and W. Van Moer, Spectrum sensing
through spectrum discriminator and maximum-minimum eigenvalue detector: A

comparative study, IEFE International Instrumentation and Measurement Tech-
nology Conference (I2MTC), May, 2012.

In this paper we present a new spectrum sensing technique for cognitive radios
based on discriminant analysis called spectrum discriminator and compare it with
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the maximum-minimum eigenvalue detector as they are both blind sensing tech-
niques. The main difference between both techniques is that the spectrum dis-
criminator is a non-parametric technique while the maximum-minimum eigenvalue
detector is a parametric. The comparative study between both techniques has
been done based on two performance metrics: the probability of false alarm and
the probability of detection. For the spectrum discriminator an accuracy factor
called noise uncertainty is defined as the level over which the noise energy may
vary. Simulations are performed for different values of noise uncertainty for the
spectrum discriminator and different values for the number of received samples and
smoothing factor for the maximum minimum eigenvalue detector.

Paper II: M. Hamid, N. Bjorsell, W. Van Moer, K. Barbé and S. Ben Slimane,
Blind spectrum sensing for cognitive radios using discriminant analysis: A novel
approach, IEEE Transaction on Instrumentations and Measurements, 2013.

This paper is an extension of Paper I. The extensions include using the probabilis-
tic validation feature to overcome the limitations of the discriminant analysis as an
alternative approach with defining noise uncertainty. Moreover, the comparative
studies include energy detector with inclusion of sensing time in the comparisons.
The spectrum discriminator has been further developed to a peel off technique
where different PUs can be detected. The peel off technique performs wideband
sensing. The performance of the peel off technique has been tested on simulations
and experimentally verified.

Paper VII: M. Hamid and N. Bjorsell, Maximum-minimum eigenvalues based
spectrum scanner for cognitive radios, IEEFE International Instrumentation and
Measurement Technology Conference (I2MTC), May, 2012.

The fundamental problem addressed in this paper is the inability of using maximum-
minimum eigenvalue detection with ordinary time domain filtering where the white
noise becomes colored. The solution proposed here is based on frequency domain
rectangular filtering. By frequency domain rectangular filtering we take the spec-
tral lines inside each sub-band and throw out the rest. After doing the frequency
domain rectangular filtering, the corresponding time domain signal are generated
and injected into to the maximum-minimum eigenvalue detector. An experimental
verification has been performed and the obtained results show that the technique
is implementable with a performance better than the energy detector as a refer-
ence technique in terms of the probability of detection when both techniques are
designed to achieve the same probability of false alarm.

Paper VIII: M. Hamid, N. Bjorsell and S. Ben Slimane, Signal bandwidth im-
pact on maximum-minimum eigenvalue detection, IEEE Communications Letters,

2015.
The impact of the signal bandwidth and observation bandwidth on the detection
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performance of the maximum-minimum eigenvalue detector is studied in this pa-
per. The minimum descriptive length (MDL) criterion is used to split the signal
and noise corresponding eigenvalues which are then fitted to different Marchenko
Pastur densities considering Gaussian signals. The optimum ratio between the sig-
nal and the observation bandwidth is analytically proven to be 0.5 when reasonable
values of the system dimensionality are used. The analytical proof is verified by
simulations.

Paper IX: M. Hamid, N. Bjorsell and S. Ben Slimane, Energy and eigenvalue-
based combined fully-blind self-adapted spectrum sensing algorithm, IEFE Trans-
actions on Vehicular Technology, under revision.

In this paper, a comparison between energy and maximum-minimum eigenvalue
detectors is performed. The comparison has been made concerning the sensing
complexity and the sensing accuracy in terms of the receiver operating characteris-
tics (ROC) curves. The impact of the signal bandwidth compared to the observation
bandwidth is studied for each detector. For the energy detector, the probability
of detection increases monotonically with the increase of the signal bandwidth.
For the maximum-minimum eigenvalue detector, the findings of Paper VIII are
adopted and verified. Based on the comparisons outcomes, a combined two-stage
detector is proposed, and its performance is evaluated based on simulations and
measurements using real-life signals. The combined detector achieves better sens-
ing accuracy than the two individual detectors with a complexity lies in between the
two individual complexities. The combined detector is fully-blind and self-adapted
as the maximum-minimum eigenvalue detector estimates the noise and feeds it back
to the energy detector. The performance of the noise estimation process is evalu-
ated in terms of the normalized mean square error (NMSE).

Paper X: M. Hamid, N. Bjorsell and S. Ben Slimane, Sample covariance matrix
eigenvalues based blind SNR estimation, IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), May, 2014.

In this paper, the noise estimation algorithm developed in Paper IX is used to
blindly estimate the received SNR. After estimating the noise power, the signal
power is accordingly estimated using the knowledge of the mixture power. The
experimental results are judged using the NMSE between the estimated and the
actual SNRs. The results show that, depending on the value of the received vectors
size and the number of received vectors, the NMSE is changed and down to —55 dB
NMSE can be achieved for the highest used values of the system dimensionality.

Sensing Parameters Optimization

In this thesis different objectives are considered for optimizing the performance
of energy and maximum-minimum eigenvalue detectors. For energy detector, the
sensing time and periodic sensing intervals are optimized with an objective of max-
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imizing the sensing accuracy or the SU throughput. For maximum-minimum eigen-
value detector, the detection performance is enhanced by means of frequency do-
main rectangular filtering proposed in Paper VII. Moreover, the optimum occupa-
tion/detection bandwidth ratio analysis carried out in Paper VIII is an optimiza-
tion problem solved to improve the sensing accuracy of the maximum-minimum
eigenvalue detector. As shown by Fig. 1.6, the contributions in Paper VII and
Paper VIII are overlapped between blind sensing and sensing optimization areas.
Moreover, the rest of the publications contribute in sensing optimization concern-
ing sensing frequency and duration optimization. Hence, sensing optimization and
sensing frequency and duration challenges are presented as one part hereafter.

Related Work

In [52] the authors proposed a sensing time optimization and channels ordering
approach based on maximizing the SU throughput. The authors of [53] include
a penalty term in the SU reward function, this penalty term compensate for the
sensing quality in terms of the probability of miss detection which is the probability
of miss detecting the PU signal when it exists. In [54] the sensing time and periodic
sensing intervals are optimized concerning mitigating the interference with the PU
and maximizing the transmission efficiency. Optimizing the sensing time aiming at
minimizing the energy consumption in a cooperative sensing framework is explored
in [55]. Throughput based sensing parameters setting is investigated in [56] where
sensing time is set aiming at maximizing the SU throughput. The contributions
are contrasted against the related work in Chapter 4.

As continuations of what has been done in the literature regarding sensing
parameters optimization, the thesis contributes by addressing the following research
questions

¢ RQ3: What are the objectives of parameters setting concerning PU and SU
performance?

e RQ4: How frequent the sensing is performed with spectrum opportunities
utilization considerations?
Contribution

Sensing time and periodic time interval optimization related contributions are in-
cluded in Papers III, Paper IV and Paper VI as explained below.

Paper III: M. Hamid and N. Bjorsell, A novel approach for energy detector
sensing time and periodic sensing interval optimization in cognitive radios, Pro-
ceedings of the 4th International Conference on Cognitive Radio and Advanced
Spectrum Management(CogART), Oct., 2011.

In this paper a new approach of optimizing the sensing time and periodic sensing
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interval for energy detectors has been explored. This new approach is built upon
maximizing the probability of right detection, captured opportunities and trans-
mission efficiency. The probability of right detection is defined as the probability
of having no false alarm and correct detection. Optimization of the sensing time
relies on maximizing the summation of the probability of right detection and the
transmission efficiency while optimization of periodic sensing interval is subjected
to maximizing the summation of the transmission efficiency and the captured op-
portunities. The optimum sensing time and periodic sensing interval are dependent
on each other, hence, iterative approach to optimize them is applied until they both
converge.

Paper I'V: M. Hamid, A. Mohammed and Z. Yang, On spectrum sharing and
dynamic spectrum allocation: MAC layer spectrum sensing in cognitive radio
networks, IEEE International Conference on Communications and Mobile Com-

puting (CMC), China, Apr., 2010.

In contrast to Paper III, this paper considers a heterogeneous multi-channel sys-
tem where the main concern is to improve the utilization of the opportunities in the
whole system rather than the individual channels. Therefore, spectrum utilization
factor is introduced and used as a performance metric. This paper consists of other
contributions regarding reactive and proactive sensing and idle channel search delay
which are out of the scope of the thesis.

Paper VI: M. Hamid, N. Bjorsell and S. Ben Slimane, Downlink throughput
driven channel access framework for cognitive LTE femto-cells, IEEE Transactions
on Wireless Communications, Submitted.

In this paper, a downlink channel access framework for cognitive long term evolution
(LTE) femto-cell is developed. The framework objective to maximize the downlink
throughput of the femto-cells. Energy detection is used by the cognitive femto-cells
to find the free of use channels. The occupancy of the LTE downlink channels
is empirically modeled using exponential distributions mixture. The throughput
is maximized by compromising the transmission efficiency, the explored spectrum
opportunities and the interference from the macro-cell obtained using the LTE sig-
nals propagation models adopted in the 3GPP standards. The obtained results
show that the maximum achievable throughput is maximized by setting the proper
periodic sensing intervals.

PU Traffic Modeling

For reliable performance analysis of secondary systems, different PUs activities on
the licensed channels are needed to be modeled. Some PUs’ traffic patterns are
highly predictable or slowly varying over time like TV and radars systems. On the
other hand, for some other PUs, the traffic considerably varies over time such as
cellular systems. This part of the thesis targets empirical modeling of LTE macro-
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cell downlink channel occupancy which is used in the context of spectrum sharing
as a PU in LTE cognitive femto-cell scenario investigated in Paper VI.

Related Work

Many studies have been carried out to characterize the cellular channel occupancy
statistical distribution. In [57], it is shown that mobile telephony channel occu-
pancy can be approximated by exponential distribution. A great advantage of the
exponential distribution is the traceability in finding analytical solutions for opti-
mization problems. Therefore, exponential distribution has been intensively used
to model cellular channel occupancy, see [56] as an example. Nevertheless, many
research findings concluded poor similarity between exponential distribution and
empirical data [58]. One of the main disagreements between exponential distribu-
tion and empirical data is the heavy tail behaviour for the empirical channel occu-
pancy which is not properly characterized by exponential distributions. Therefore,
some heavy tail distributions are used as alternatives to model the cellular chan-
nel occupancy, among which, the log-normal distribution is found to better fit the
empirical data [59,60].

In spite of the massive amount of research being done in PU traffic model, the
literature still lacks an answer to the following research question which shapes the
thesis contribution in PU traffic modeling

« RQ5: Are there exist better statistical models to characterize the PU channel
occupancy and preserve the ease for optimization problems analytical solu-
tions with exponential distributions?

Contribution

The thesis contribution in PU traffic modeling is included in Paper V described
in brief below

Paper VI: M. Hamid, N. Bjorsell and S Ben Slimane, Empirical statistical
model for LTE wownlink channel occupancy, Springer Journal of Wireless Per-
sonal Communications, Submitted.

This paper develops an empirical statistical channel occupancy model for down-
link LTE cellular systems. The model is based on statistical distributions mixtures
for the holding times of the channels. Moreover, statistical distribution of the time
when the channels are free is also considered. The data is obtained through an
extensive measurement campaign performed in Stockholm, Sweden. Two types of
mixtures are considered, namely, exponential and log-normal distributions to fit
the measurement findings. The log-likelihood of both mixtures is used as a quan-
titative measure of the goodness of fit. Moreover, finding the optimal number of
linearly combined distributions using the Akaike information criterion (AIC) is in-
vestigated. The results show that good fitting can be obtained by using a group
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of either exponential or log-normal distributions linearly combined. Even though,
the fitting is done for a representative case with a tempo-spatial consideration, the
model is yet applicable in general for LTE and other cellular systems in a wider
sense.

The idea of using discriminant analysis for blind spectrum sensing was initiated
by Wendy Van Moer and Kurt Barbé. The author of this thesis was the leading
contributor in Paper I and Paper IT who built up the system model, performed
the simulations and the measurements, analysed the results jointly with the other
co-authors. The other co-authors took part in refining the manuscripts and pointing
the focus and directions of the two papers. For the rest of the included publications,
the author of this thesis was the main contributor who formulated the problems,
performed the associated analytical and experimental work. The results were an-
alyzed jointly with the other co-authors. The findings are presented according to
the insights given by the other co-authors.

Other Addressed Challenges

As illustrated by Fig. 1.6, the contributions of this thesis fall in other challenges in
spectrum sensing as elaborated more in this subsection.

Regarding sensing some standardized systems, Papers VI and IX provide con-
tributions as follows. In Paper VI a defined sharing scenario is investigated, that
is, LTE cognitive femto-cells where the periodic sensing is performed with the aim
of maximizing the downlink femto-cell throughput. In this scenario, one of the
distinctions regarding spectrum sensing is that there is no consideration of miss
detecting the PU or the macro-cell signal as the sensing is done within the cell
serving area where the signal power is by no means undetectable. Moreover, the
3GPP adopted propagation models for both outdoor and indoor LTE signals are
used. In Paper IX, measured TV and wireless microphone signals are plugged into
a two-stage combined fully blind detector. Sensing TV and wireless microphone sig-
nals is included as a part of IEEE 802.22 standard of WRAN sharing spectrum in
the UHF broadcasting band [11].

Even though Paper III is partially included in this thesis concerning periodic
sensing intervals optimization in a multi-channel system, yet it includes contribution
in investigating the idle channel search delays for both reactive and proactive sensing
and the trade off when applying one of them.

Spread spectrum PU detection is a challenging problem as these PU signals
are difficult to be distinguished from the noise for two reasons. At first, they
have low power spectral density which allows them to be hidden under the noise.
Secondly, spread spectrum signals are Gaussian signals. In Paper IX this problem
has been addressed in two manners. Being spread over wide bandwidth with low
power spectral density is treated by the second stage maximum-minimum eigenvalue
detector which can handles low power signal and adjust its observation bandwidth
in accordance with the findings of Paper VIII. Moreover, the noise estimation
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performed by the maximum-minimum eigenvalue detector and fed back to the first
stage energy detector makes it easier to detect these low power signals. However, a
fundamental limit is reached when these spread spectrum PUs signals occupy very
wide bandwidth.

Partially Addressed Challenges

As Fig. 1.5 exhibits, two challenges in spectrum sensing are partially related to the
thesis contributions, namely, SU hardware requirements and hidden PU problem.
Regarding SU (or sensing device) hardware requirements, sensing technique com-
plexity measured in sensing time is directly related to the sensing device hardware
complexity needed. Therefore, the thesis gives ideas regarding the required hard-
ware complexity levels for different sensing techniques. Hidden PU problem is a
terminology used for weak PU signals or passive primary receivers such as TV re-
ceivers. As the ultimate goal of performing blind sensing and optimizing the sensing
accuracy is to improve the sensing sensitivity, then the thesis partially contributes
in addressing the hidden PU problem.

1.6 Related Materials not Included in the Thesis

The following publications or presentations are not appended in the thesis due to
sake of coherency, yet, they are in the same area of study covered by the thesis.

(1) M. Hamid and A. Mohammed, MAC layer spectrum sensing in cognitive
radio networks, Book Chapter in Self-Organization and Green Applications in
Cognitive Radio Networks, IGI Global, Jan. 2013.

(2) M. Hamid, N. Bjorsell and A. Mohammed, Iterative optimization of energy
detector sensing time and periodic sensing interval in cognitive radio networks,
Book Chapter in Self-Organization and Green Applications in Cognitive Radio
Networks", IGI Global, Jan. 2013.

(3) M. Hamid and N. Bjorsell, Frequency hopping for fair radio resources dis-
tribution in TVWS | submitted to 10th International Conference on Cognitive
Radio Oriented Wireless Networks and Communications, (CrownCom,), Qatar,

Apr., 2015.
(4) M. Hamid, J. Ferrer-Coll, N. Bjorsell, J. Chilo and W. Van Moer, Multi-

interference detection algorithm using discriminant analysis in industrial envi-
ronments, 39th Annual Conference of the IEEE Industrial Electronics Society,
IECON, Austria, Nov., 2013.

(5) M. Hamid and N. Bjorsell, Power assignment for secondary users operating
in TVWS geo-locations database based cognitive radios, poster presentation
at 2012 Swedish Communication Technologies Workshop (Swe-CTW), Lund,
Sweden, Oct., 2012.
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(6)

(12)

(13)

W. Van Moer, N. Bjorsell, M. Hamid, K. Barbe and C. Nader , Saving lives by
integrating cognitive radios into ambulances, IEEE International Symposium
on Medical Measurements and Applications Proceedings (MeMeA ), Hungary,
May, 2012.

M. Hamid and N. Bjorsell, Maximum-minimum eigenvalues based spectrum
scanner in GNU radio, Radio Frequency Measurement Technology Conference
(RFMTC), Sweden, Oct., 2011.

M. Hamid and N. Bjorsell, Geo-location spectrum opportunities database in
radar bands for OFDM based cognitive radios, IEFE First Global Conference
on Communication, Science, Information and Engineering (CCSIE), UK, Jul.,
2011.

M. Hamid and A. Mohammed, MAC layer sensing schemes in cognitive ra-
dio networks, poster presentation at third International Conference on Ezperi-
ments/ Process/ System Modeling/ Simulation/ Optimization (IC-EpsMsO 09),
Greece, Jul., 2009.

N. Bjorsell, M. Hamid, J. Kerttula, E. Obregon, M.I. Rahman, Initial report
on the tolerance of legacy systems to transmissions of secon-dary users based
on legacy specifications, QUASAR Deliverable D3.1, Jun., 2010.

M. Hamid, J. Kerttula, K. Koufos, M. I. Rahman, L.K. Rasmussen, K. Ruttik,
N. Schrammar, E. Stathakis, C. Wang, Refined models for primary system

performance as a function of secondary interference", QUASAR Deliverable D
3.2, Dec., 2010.

V. Atanasovski , N. Bjorsell, J. W. Van Bloem, D. Denkovski, L. Gavrilovska,
M. Hamid, R. Jantti, S. Kawade, J. Kerttula, M. Nupponen, M. Zahariev,
Laboratory test report, QUASAR Deliverable D 2.5, Mar., 2012.

A. Achtzehn, T. Alemu, V. Atanasovski, N. Bjorsell, T. Dudda, L. Gavrilovska,
M. Hamid, T. Irnich, R. Jantti, J. Karlsson, J. Kerttula, K. Koufos, J. Kro-
nander, P. Latkoski, R. Malekafzaliardakani, G. Martinez, E. Obregon, A.
Palaios, N. Perpinias, M. Petrova, M. Prytz , K. Ruttik, L. Simic , K. W.
Sung, Final Report on Models with Validation Results, QUASAR Deliverable
D 5.4, Jun., 2012.

1.7 Thesis Outline

The thesis is composed of two parts. The first part is a comprehensive summary of
the included publications which introduces the theoretical aspects and the findings
of the thesis. This part is divided into five chapters. Chapter 2 handles the system
model and performance evaluation methodology followed throughout the thesis.



22 CHAPTER 1. INTRODUCTION

Chapter 3 presents in details energy detection and maximum-minimum eigenvalue
detection as the raw materials used in the different contributions of the thesis.
Chapter 3 ends with presenting spectrum discrimination based blind sensing with a
comparison with the pre-mentioned two techniques. In Chapter 4 the optimizations
carried out for both two detectors are included. The fully blind two-stage detector
composed of energy and maximum-minimum eigenvalue detectors is covered in
Chapter 5. Finally, Chapter 6 concludes the thesis and provides some proposed
directions for the future research in related aspects. The second part presents a
verbatim version of the included publications.



Chapter 2

System Model and Performance
Evaluation

HIS chapter presents the models for the signal and channel access used in the

thesis. In addition to, the performance metrics used for performance evalua-

tion and optimization are also introduced in this chapter. The chapter ends with

presenting the sensing performance evaluation approaches including evaluation sig-
nals and measurements setup.

2.1 Signal Model and Binary Hypothesis Framework

Suppose a received signal, X, which can be either a PU signal, S, bearing noise, Z,
or noise only components. In this context, a binary hypothesis framework can be

put as
_ Z Ho
X_{S+Z T (2.1)

where H is the null hypothesis denoting noise only existence and H; is the positive
hypothesis denoting signal bearing noise existence.

The main task of spectrum sensing is to declare either Hgy or H; from X. X is
composed of L vectors of the time domain received signal with N samples each.
Accordingly, X is an N x L complex values matrix which is composed as

1,1 r12 - T1,L
r21 22 ccc X2L

X=1 " o . (2.2)
IN,1 IN2 “°° IN,L

Z and S can be expressed using the similar notation as X. Z is a zero-mean
Gaussian random process with a variance of o2 while S is a zero mean random
series with a variance of 2. Consequently, the SNR denoted as g = 02/02.

23
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Figure 2.1: Opportunistic channel access model.

2.2 Opportunistic Channel Access Model

The available channel for secondary access are modeled as a two state Markov
process. The two states are: ON state representing occupied channel state and
OFF state when the channel is idle. Both ON and OFF states temporal lengths
are random variables (RV) with specific statistical distributions. ON and OFF
temporal lengths are assigned the RVs x and y respectively throughout this thesis.
The statistical distributions of x and y will be discussed in details with an empirical
modeling in Section 4.2. Channel utilization factor or duty cycle, u, is defined as
the ratio of time during which the channel is being utilized which is mathematically
obtainable as
E{x}
U B{ey + E(yy

with E{-} denoting the expected value.

The SU locates and utilizes the spectrum opportunities by using the following
model. The channel is sensed for a time ts and in case of Hgy, the SU starts
to transmit on the channel, otherwise, it senses another channel. The sensing is
performed periodically with a period of 7. The periodic sensing is done either
to detect PU transmission reappearance on the channel or for proactive sensing
purposes [61]. Moreover, in case of finding no free channel the sensing is resumed
periodically too.

The opportunistic channel access is depicted in Fig 2.1. The ON states are
represented by the higher level of the binary representation and the OFF states
are represented by the lower state. Missed opportunities and mutual operation are
described in Section 2.3.

(2.3)

2.3 Performance Metrics

In different parts of the thesis, for either evaluation or optimization concerns, dif-
ferent performance metrics are used. In this section these performance metrics are
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described with their corresponding notation and mathematical formulation. Later,
throughout different chapters and/or appended publications respective performance
metrics used are more explained. The performance metrics are presented in two
groups, the first group contains the metrics defined previously in the literature
while the second group is the group of the performance metrics defined in the
thesis. Following are the used pre-defined performance metrics in the literature.

1.

Conditional probability of false alarm, ps,: Is the conditional probabil-
ity of wrongfully detecting a signal existence when noise only is present [54,55].
In the binary hypothesis framework, ps, is formulated as

Do = Pr(Hi|Ho) . (2.4)

Total probability of false alarm, p,: Is the probability of falling in false
alarm through the whole time [54,55]. Therefore, py, is obtained as

Pfa = (1 — u) - Pr (H1|H0) . (2.5)

Conditional probability of detection, p;: Is the conditional probability
of truly detecting an existing signal [54,55]. Hence, p, is statistically obtained
as

Pa = PT (H1|H1) . (26)

Total probability of detection, p;: Is the detection probability through
the whole time which is found as [54,55]

Da=u-Pr(Hi|H1). (2.7)

Receiver operating characteristics, ROC: In most cases, the detectors
are designed to achieve a specific pre-set value of either conditional probability
of false alarm or conditional probability of detection and the other detector
parameters are set accordingly. For example, if the conditional probability of
false alarm is fixed, then the conditional probability of detection will change
accordingly. The relations between the values of p¢, and pg are found in form
of curves called ROC curves [62].

Sensing time, ts: Is the time required to collect the samples and perform
the sensing. Sensing time is used as a measure for sensing complexity in this
thesis

Transmission efficiency, n: Is the fraction of time during which a SU is
utilizing a free channel between two sensing instances. Transmission efficiency
is formulated assuming that SUs can perform one task at a time either sensing
or transmitting. Hence, transmission efficiency is found as

T
T

(2.8)
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8. Captured opportunities, (: As the sensing is performed periodically in a
discrete points in time, the following situation is experienced: The sensing
declares an occupied channel, however, the channel state changes from ON
to OFF state one or more times within a period of 7. Meanwhile, the SU
captures a fraction of opportunities, call it ¢ and misses (1 — ¢) of the oppor-
tunities on that channel. ( is dependant on the distributions of the ON and
OFF periods. In Chapter 4, more explanation on finding ( is provided.

Below are the major performance metrics introduced and used in the thesis.
Some other performance metrics will be introduced locally in different chapters
and sections

1. Probability of right detection, p,4: Is defined as the conditional proba-
bility of detecting the existing signals and having no false alarms. Therefore,
Prq is found as

prd = Pa(l — Pta)- (2.9)

2. Spectrum utilization factor (SUF): Is the fraction of available spectrum
opportunities in the whole sharing system that SU can locate and utilize.

3. Mutual operation (MO): In contrast to the captured opportunities, if the
sensing outcome is Hy, the channel state can change from OFF to ON state
once or more within a period of T" while the SU is utilizing it. Therefore,
during a fraction of 7" both the PU and SU mutually use the same channel.
This fraction of time of MO is derived in Chapter 4.

4. Sharing throughput drop, x: Is the ratio between the decrease in the
SU throughput due to mutual operation or channels unavailability and the
throughput if the SU takes the role of the PU and exclusively uses a specific
channel. More elaboration on x is provided in Chapter 4

2.4 Performance Evaluation Approaches

To evaluate a sensing technique, either synthetic data using simulations or empirical
data from measurements is used. Moreover, both simulations and measurements
can be used as complements to each other. This section describe the evaluation
signals and the measurements setup.

Evaluation Signals

WCDMA-like signals are adopted for either Monte-Carlo simulations or measure-
ments. WCDMA-like signals are defined as signals with similar statistical proper-
ties as WCDMA signals (i.e., colored Gaussian noise) but they are not generated in
the same way as WCDMA signals. WCDMA are therefore band limited Gaussian
signals inside their occupation bandwidth, b [63]. Besides, there exists Gaussian
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Figure 2.2: Spectra of the WCDMA-like evaluation signals.

noise that lies over the whole observation bandwidth, B. The ratio between the
WCDMA-like signal variance and the noise variance represents the SNR. Fig. 2.2
depicts an example of the power spectral density (PSD) for a WCDMA-like signal
used for simulations and measurements.

Measurements

Different measurements were carried out in the thesis for different purposes. Ex-
perimental validation together with simulations are used in functionality testing,
performance evaluation and comparison in Paper I, Paper II, Paper VII and
Paper X. Moreover, in Paper V, measurements were conducted for channel occu-
pancy empirical modeling. Furthermore, real life communication signals including
terrestrial TV signals and wireless microphone signals are captured for sensing pur-
poses in Paper IV. Even though, different measurements were performed, yet, a
generalized measurement setup is introduced in Fig. 2.3. The setup is divided into
three units, namely, signal source unit, data capturing unit and control and data
collection unit. Below are the descriptions for the three units.

Signal Source Unit

This unit represents the origin of the signal used later in the analysis. Four different
sources are used in different studies. The first source is a vector signal generator
(SG) which can produce either signals belong to different communication standards
or loaded signals from a connected computer. In all measurements that used SG
in the thesis, WCDMA-like signals are loaded from a PC into the SG. SG has been
used in the measurement reported in Paper I, Paper II, Paper VII and Paper
X. The second source is a wireless microphone transmitter placed close to a PC
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repeatedly plays an audio signal to generate a frequency modulated (FM) wireless
microphone signal. The SG and wireless microphone transmitter are the sources of
the active laboratory measurements where signal sources are controlled throughout
the measurements. The third signal source is a terrestrial TV transmitter. Both
second and third sources are used in Paper IX. The fourth source is a cellular
base station used in Paper V for PU traffic modeling. The measurements used
the third and fourth sources are passive field measurements where no control over
the signal sources takes place.

Data Capturing Unit

The measurements data is captured using one of three possible setups. The first
setup is a spectrum analyzer (SA) connected directly to the SG, in this setup no
wireless transmission takes place which is used in Paper I, Paper II, Paper
VII and Paper X. The second setup is a receiving antenna connected to an SA
where the radio signals coming from the wireless microphone or the terrestrial TV
transmitter are obtained for the studies in Paper IX. The SA is connected to
an external attenuator which is used together with the SA internal attenuation to
adjust the SNR. The third data capturing setup is a receiving antenna feeding a
real time spectrum analyzer (RTSA) to collect real time data for channel occupancy
modeling performed in Paper V.

Control and Data Collection Unit

The measurements campaigns are automatized using the control and data collection
unit which is a PC running MATLAB connected to the SG, SA and RTSA and
controls their parameters. Moreover, the PC records the data captured by either
the SA or RTSA for further analysis.
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Chapter 3

Studied Blind Sensing Techniques

HREE techniques are involved in the studies carried out in this thesis, namely,
T energy detector (ED), maximum-minimum eigenvalue detector (MME) and
spectrum discriminator (SD). ED and MME are existing techniques used in different
studies throughout the thesis. In contrast, SD is a sensing technique developed as
a stand-alone contribution of this thesis.

ED and MME parameters are optimized to achieve as reliable as possible perfor-
mance reflected by the performance metrics illustrated in Section 2.3. The optimiza-
tions carried out for both ED and MME are covered in Chapter 4. Furthermore,
after optimizing the performance of both ED and MME, a fully-blind self-adapted
two stage detector composed of ED and MME is designed. Therefore, ED and
MME are considered as row materials of most of the thesis contributions.

ED, MME processes are presented in brief in this chapter. Moreover, this chap-
ter introduces the SD and provides a comparative study of SD, ED and MME.
Thereafter, using the SD for peeling off different PUs as a wideband sensing tech-
nique is explained in this chapter. This chapter summarizes the contributions
included in Paper I and paper II.

3.1 Energy Detection

Energy detection is the process of calculating the energy of a received signal inside a
specific band and comparing it with the noise energy presents in that band. Suppose
the signal energy is calculated from N samples, single vector received signal (i.e.
L =11in (2.2). Hence, zj, s; and z; will be used to denote the j* sample in the
received signal bearing noise, signal and noise only components respectively. In
ED, the decision is taken as

oo (Ble)<r w0 o

j=1
Otherwise H1

31



32 CHAPTER 3. STUDIED BLIND SENSING TECHNIQUES

where p is the detection threshold and the way to determine it is described in
the following part of this section. The output of the ED is Chi-square distributed
which can be approximated as a Gaussian distribution under the assumption of
N — oo [54,55]. Based on this approximation, the conditional probability of false
alarm for the ED, pf , is obtained as

E _ PNU§>

where Q(+) is the Q function representing the complementary cumulative distribu-
tion function (CCDF) of a Gaussian random process and o2 is the noise variance.
If the probability of false alarm for the ED is pre-set and the other parameters are
calculated accordingly, then, from (3.2) the detection threshold, p, is determined
as

p=V2NaZQ ' (pf) + No?, (3.3)

where Q~!(-) is the inverse Q function. After obtaining the value of p, the proba-
bility of detection of the ED, p%, is calculated using

E _ p—N(y+1)o2
Pi =@ (wﬂm + 1)03) ’ (34)

with v denoting the received SNR.

3.2 Maximum-Minimum Eigenvalue Detection

Random matrix theory (RMT) in general and covariance matrix eigenvalues dis-
tribution in particular have been widely used in solving wireless communication
related problems [64,65]. MME is one of the algorithms that employ the covariance
matrix eigenvalues distribution to perform spectrum sensing. This section presents
the essence of the MME detector introduced in [39,40]. Starting from the assump-
tion of having a zero mean, o2 variance white Gaussian noise, when N and L — oo
then the noise statistical covariance matrix R, is defined as

R. = E{ZZ"} = o1, (3.5)

where (-)¥ denotes the complex conjugate and Iy, is the identity matrix of order
L. In the same way, the statistical covariance matrices of X and S are R, and R
respectively and they are defined as R, = E{XX#} and Rs; = E{SS}. Since the
signal and noise are independent, then R, is expressible as

R, = R, + o2I,. (3.6)

As there exists a finite number of samples, the sample covariance matrices (SCM)
is computed instead of the statistical covariance matrices. The SCM of the received
signal is obtained as

A

1
R, = NXXH. (3.7)
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Now suppose that R, has the descending ordered eigenvalues A, Az, ...Ar. Simi-
larly, the SCM of the signal R has the descending ordered eigenvalues AJ, A\{, ... Af.
Also the noise SCM descending ordered eigenvalues are Aj, A7, ...A\]. Accordingly,

A=A+ A2, 1<n<L. (3.8)

Under the condition of signal absence, X = Z is a zero mean Gaussian random
variable and R, is a Wishart matrix. Therefore, the maximum eigenvalue of R,

has a probability density function (PDF) that follows Tracy-Widom distribution
of order 1 [39,40,66,67]. From this background, to declare a signal existence or
absence, a detection threshold, A, of the ratio between the maximum and the
minimum eigenvalue, \; and Ar, is set. The probability of false alarm, pj\f as a
function of A is derived in [39] as

A(\/N—\/Z) (\/_+f)
(D) (54 )

where Fi(-) is the Tracy-Widom distribution of order 1. If the MME is set to
achieve a specific probability of false alarm, then A is calculated as

(VEAVEN [ WEAVDEE
A(Wﬁ) <1+ L) Fri(1—p} )), (3.10)

Py =1-F , (3.9)

where F'(-) is the inverse of the Tracy-Widom distribution of order 1. In the
context of binary hypothesis testing, MME obtains the maximum and minimum
eigenvalue of the received signal SCM and then performs the detection as

A
X — (,\L) <A Ho (3.11)
Otherwise H1

3.3 Spectrum Discriminator

Performing blind spectrum sensing is motivated by PU signal and noise information
unavailability in practice. However, blind spectrum sensing algorithms developed in
the literature are in general computationally expensive [39-46,48-51]. Therefore,
developing a computational efficient blind sensing technique is a need which is
provided in Paper I and Paper II and called spectrum discriminator (SD). SD
uses discriminant analysis statistical framework to perform sensing.

The main philosophy of discriminant analysis is to partition a data into two
groups such that the groups means are maximally separated under the constraint
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Figure 3.1: Discrimination height (red dashed line) for: a) 10 dB SNR received
signal and b) Noise only signal.

that the variance within every group is as small as possible. Discriminant analysis
is performed by maximizing the test statistic 72 which is found as

AT AJ
Az — Az

2 _
Tﬂ_&ﬁlfn+&%an

(I+J—2). (3.12)

The relation in (3.12) is called Fisher’s quadratic discriminant [68], in which A7 rep-
resents the mean amplitude of the spectral lines classified as signal. fli represents
the mean amplitude of the classified noise lines. The variables I and J represent
the respective number of classified signal and noise lines. Finally, 67 and 6% are the
respective variances of the amplitudes of the classified signal and noise lines. Since
the objective of the discriminant analysis is to maximize (3.12), therefore, the set
of frequency bins of the signal lines I and of the noise lines J should be chosen in
such a way that the numerator or distance between the group means is maximized,
and the denominator or distance within the group variances is minimized. A binary
grid search is used to come to the correct border between the two groups referred
to as the discrimination height.

Fig. 3.1a illustrates the discrimination height for a spectrum containing noise
and 10 dB SNR signal. After specifying the discrimination height, the average
energy inside the band of interest can be calculated. If this calculated average
energy exceeds the average energy of the spectral lines in the noise group (i.e. the
lower group) one assumes that a PU signal is present. A problem arises when
noise only (i.e., no signal) is applied to the test statistic. Since the noise is not
absolutely flat, a discrimination height will still be selected and two groups will
still be discriminated as depicted in Fig. 3.1b. Two solution to overcome this
limitation are proposed as explained below.

The first proposed solution is to set a noise uncertainty value, §, which reflects
the range over which the noise energy can vary. Hence, it is assumed that the noise
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energy is /Alzj + %. Since we are interested in the upper bound of the noise energy
upon our pre-set value of §, then the detection threshold is flg + %. If the band
to be sensed consists of spectral lines having indices between f; and f5, then the
detector performs the binary hypothesis testing as

1 In 0
r(t) =< (fn— 1) ,Efl Ax(k) < (AZ * 5) Ho (3.13)
Otherwise H1

As an alternative to the noise uncertainty approach, a probabilistic validation
approach can also be used to perform the detection. With the probabilistic vali-
dation, the classified signal lines are fitted to a Rician distribution while the noise
only lines are fitted to a Rayleigh distribution as the noise components are circular
Gaussian distributed [69]. Following that, the signal lines with higher probability of
falling in the Rayleigh distribution than in the Rician distribution are considered to
be misclassified. Subsequently, those lines are reclassified as noise only components
and hard decision among all the lines is performed.

3.4 Comparative Study among ED, MME and SD

The performance of SD has been compared with the performance of ED and MME.
The comparison concerns the probability of false alarm, pyq, and the probability
of detection, py. Following are the analysis of the results of the probability of
detection.

From Fig. 3.2 it can be observed that for spectrum discriminator, increasing the
noise uncertainty ¢ decreases the detector performance in terms of the probability
of detection, pg. This trend is due to the fact that more signals will be detected
as noise when the noise energy margin becomes wider. For the MME, Fig. 3.2
shows that increasing either the number of collected samples, N, or the number
of vectors, L, would increase the probability of detection py. We can conclude
that the probability of detection py of the SD is very much dependant on the
noise uncertainty value, 6 and it outperforms the MME and ED for all simulated
parameters when § = 0 dB.

The findings of the probability of detection have to be compromised by the
corresponding probabilities of false alarm and sensing times shown in Fig. 3.3 and
Table 3.1, respectively. Generally, The choice between using SD, ED and MME
with different parameters depends on the requirements of the application in order
to obtain the most appropriate trade off between the probability of detection, the
probability of false alarm and the sensing complexity.
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Table 3.1: Simulation results for sensing time for SD, ED and MME.

Sensing technique and parameters | Sensing time [sec]
SD (NU) 3.3
SD (PV) 6.5
ED 1.1
MME 7.1-276%

& sensing time for MME highly depends on N and L which have
been changed in a wide range.
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3.5 Peeling off PUs using SD

Assume that the sensed spectrum using SD contains multiple PUs with a big dif-
ference between the SNRs of the strongest and the weakest PU. The spectrum
discriminator will then consider the weakest PU as noise and will no longer be able
to detect it. This is due to that discriminant analysis partitions the spectral lines
into two groups only. Either the data falls in the noise group or in the signal group.
As a result, the weak PUs signals fall wrongfully in the noise group. In this section,
the discriminant analysis method is extended to a peel off technique that allows
detecting all PUs based on an iterative algorithm.

The probability of misclassifying a noise line as a signal line denoted as py,.(k)

is defined as
Pme(k) = p(As(k) > Ay (k)| & I). (3.14)

When analyzing this probability of misclassification for every line, one will see that
as expected the spectral lines belong to PUs present in the spectrum will have a low
probability of misclassification. Based on this observation an iterative algorithm is
developed as follows.

A set of the spectral lines injected to the SD is defined as X'. At first X’ contains
all the spectral lines in the whole band. In each iteration, the values of py,.(k)
for the spectral lines in X' are computed. Those lines for which p,,.(k) < ¢ are
considered to be PU signal lines and excluded from X. ¢ is a user-defined threshold
that sets the sensitivity of the detection method. The larger the ¢, the higher the
probability that noise lines are wrongly classified as signal, and hence the higher
the probability of false alarm. On the other hand, if the threshold ¢ is too small
then the algorithm will no longer be able to detect very weak SNRs signals. The
iterative algorithm is stopped when no lines are left over that satisfy the condition
Pme(k) < ¢.

To evaluate the performance of the peeling-off technique, two signals have been
placed in the sensed spectrum. The first signal has a fixed SNR of 10 dB while
the second signal SNR has been stepped from 0 to 10 dB with a step of 1 dB.
The probability of detection, p,, for the second (i.e., weaker) signal is evaluated by
peeling off the PUs using different values of ¢. The results in Fig. 3.4a show that
the probability of detection, pg, for the weaker signal increases when the value of ¢
increases. However, increasing ¢ would increase the probability of false alarm, p¢,,
as depicted in Fig. 3.4b.
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Chapter 4

Sensing Performance Optimization

S pointed out in Chapter 1, sensing optimization is one of the challenges
faced by spectrum sensing. Different sensing techniques perform differently
according to the used parameters. Accordingly, these parameters can be objectively
optimized. In this chapter, optimizations of sensing parameters for ED and MME
considering different objectives are carried out.

4.1 Optimization of Periodic Sensing using ED

In ED, the sensing time influences the detector performance in terms of the prob-
ability of false alarm and the probability of detection. Moreover, when periodic
sensing is adopted, the periodic sensing interval affects the ability of the detector
to grasp the spectrum opportunities and the ability of utilizing those opportunities.
If we consider optimizing the sensing time and the periodic sensing interval for each
channel in the PU spectrum, then the objective would be achieving as high detector
performance and opportunities utilization in that channel as possible.

For a multi channel system, this objective will still hold with a different inter-
pretation for opportunities utilization where it reflects the utilization for the whole
available opportunities in all channels instead of each channel individually. In this
context, one may optimize the sensing time or the periodic sensing interval for a
single channel or a multi channel system, besides, both can be mutually optimized
in both cases.

This section discusses two contributions related to sensing time and periodic
sensing interval(s) optimization. At first, how to mutually optimize the sensing
time and periodic sensing interval for an ED. Secondly, optimization of the periodic
sensing intervals in a multi channel system is investigated.

39
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Single Channel Scenario

In this investigation which is completely included in Paper III , a new approach
to mutually optimize the sensing time and the periodic sensing interval for ED
is proposed. The optimization of the sensing time objective is maximization of
the summation of the probability of right detection, p,q, and the transmission
efficiency, 7. On the other hand, the optimization of periodic sensing interval
is subjected to maximizing the summation of the transmission efficiency and the
captured opportunities.
The optimal sensing time referred to as t% is obtained by maximizing the average
of n and p,q as
t = argtmax {0.5(n +pra)} - (4.1)

For the periodic sensing interval, T', consideration, increasing I" would increase the
transmission efficiency, 7, however, it would decrease the captured opportunities,
¢, and vice versa. Therefore, the optimal value of T', call it T, is reached by
maximizing the average of n and ( as

T = arngaX{O.S(n + ()} (4.2)

From (4.1) and (4.2), it is noticeable that both t* and T* are influenced by n
which itself depends on t5 and T'. Thus, in order to solve this optimization problem,
an iterative calculation of t¥ and 7™ is proposed. The iterative mutual solution
starts from an arbitrary value for either t5 or 7" and stop when they converge.
To test the iterative mutual optimization algorithm, simulations are performed
assuming that the PU channel ON and OFF periods are exponentially distributed
with perfectly estimated means, pi, and j,.

Figure. 4.1a shows the values of ¢, obtained at each iteration for different values
of u; and p,, starting from an arbitrary value of 10 ms for ¢5. Similar to Figure
4.1a, Fig. 4.1b shows the values of T obtained iteratively for different values of p,
and p,. For better visibility Fig. 4.1b is split into two sub-figures due to the big
differences in the values of T* when channel parameters change. As a general trend
shown by Fig. 4.1, both ¢} and 7™ increase when the channel utilization factor, wu,
increases.

Periodic Sensing Optimization in a Multi Channel Scenario

In Paper III the sensing time and the periodic sensing interval have been opti-
mized for a single channel. For the periodic sensing interval the optimization is
done in order to maximize the summation of the captured opportunities, ¢, and
the transmission efficiency, n. In Paper IV a multi channel system is considered
for optimizing the periodic sensing interval for each channel. In a multi channel
system, we assume that one channel is sensed at a time. The optimization of the
periodic sensing intervals for the different channels can be done concerning max-
imizing the captured opportunities and the transmission efficiency for the whole
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Figure 4.2: SUF with the consideration of whole system and individual channels
utilization in optimizing periodic sensing intervals.

system. Consequently, for a multi channel system, the definition of the transmis-
sion efficiency is modified to consider the time spent on sensing other channels while
communicating. Therefore, for a system with N, channels, the optimum periodic
sensing intervals vector, f*, is optimized as

Nec
T — arngin {Z (n; + Cl)} , (4.3)

i=1

where 7; and (; are the transmission efficiency and the captured opportunities in
channel ¢ respectively.

Fig. 4.2 exhibits the attained spectrum utilization factor (SUF) (defined in
Section 2.3) when individual channels’ periodic sensing intervals are optimized in-
dependently and when the whole system is considered as in (4.3). According to
the figure, average achieved SUF when optimizing the periodic sensing intervals
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concerning the whole system outperforms the average SUF when each channel is
treated independently by ~ 11%. Moreover, more consistent SUF is obtainable
with the whole system consideration.

4.2 Empirical Channel Usage Modeling

This part of the thesis contribution, which is included in Paper V, is mainly ex-
ploring fitting the empirical data for the LTE channel occupancy into a mixture of
exponential distributions combined linearly. Using distributions mixture is moti-
vated by keeping the advantageous of the ease of exponential distributions in finding
analytical solutions for the optimization problems (see Section 1.5). Moreover, dis-
tribution mixtures are more general than single distributions and can be used to fit
the data under different conditions. Consequently, the algorithms developed based
on exponential distributions as in Section 4.1 can still be used with a modification
of considering the linear combination of multiple exponential distributions.

In [70] a linear combination of exponential pdfs is introduced to fit a heavy
tail distributed data. For exponential mixture distribution, the pdf of a random
variable 0 is expressed as

e L,
f(9):Zwi~;e i, (4.4)
i=1 v

where k is the number of the distributions linearly combined, w; is a weighting
k
parameter satisfying > w; = 1 and p; is the mean of the distribution i.

=1

Assuming that p; > p;41, then there is a region in the distribution tail that
can be exclusively fit with wy - 1/p1e~1/#1%. Moreover, there is a preceding region
that can be fit with (wy - 1/p1e /"1 4wy - 1/poe=1/#29) and so on. Accordingly,
finding w; and p; can be done as a recursive procedure starts with fitting the tail
and moving backwards. Fig. 4.3 illustrates the idea of the exponentials mixture
recursive fitting procedure. The full explanation on the recursive procedure is found
in [70].

The empirical downlink LTE traffic is obtained through a measurement cam-
paign performed in Kista, Stockholm, Sweden. The measurement setup is depicted
in Fig. 2.3 with an LTE base station acting as the signal source unit and an antenna
connected to an RT'SA acting as the data capturing unit. Since different channels
experience different loads at different times, the measurements are treated in time
spans of 2 hours. Below is a representative case of the results. This representative
results are for the measurements carried out for a 1.4 MHz channel lies between
2650.6 and 2652.0 MHz during the period: Wednesday, October, 02, 2013, 09:00
am to 11:00 am. Fig. 4.4 shows the empirical distribution and the fitted exponen-
tial distributions mixtures. The figure shows how the fitted mixture approaches
towards the empirical distribution with the change of k.
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Figure 4.3: Hlustration of exponential distributions mixture fitting methodology.

As it is shown in Fig. 4.4, the lower values of & make the exponential mixture
to fit the tail with poor fitting for the lower values of x. In contrast, increasing
k improves fitting the lower region of x. This is explained as follows; as the first
pair (w1, 1) always characterizes the heaviest part of the distribution tail, then
there is always a guarantee that all the values in that heaviest part are well fit-
ted, depending on the obtained values of (w1, 1) and the value of k, rest pairs
(wi, 1;) are obtained and the last pair (wg, pug) is fully dependant on the previ-
ous obtained pairs. Therefore, when k increases the part that is characterized by
(wp, i) decreases.

A quantitative evaluation of the fitted distribution is obtained by means of the
log likelihood estimation which is defined as [71]

o(0]9(0) /f ( Z))de (4.5)

where ®(0]f(0)) is the log-likelihood estimation for a random variable 6 having an
empirical pdf f(0) and fitted to a distribution with a pdf g(6). Table 4.1 shows the
log-likelihood estimation for different distributions. The log-likelihood estimation
is calculated for fitting both = and y in the same period as the one used to generate
Fig.4.4.



44

CHAPTER 4. SENSING PERFORMANCE OPTIMIZATION

—— Emperical

CDF

03 Ri

0.1 e

0.2t RIRE

Figure 4.4: The empirical and fitted CDF for exponential distributions mixture
with different values of k.

Table 4.1: Log-likelihood for fitting different distributions. The fitted date is for
the ON lengths, z, and the OFF lengths, y in the period Tuesday, October ; 01,
2013, 12:00 - 16:00.

Distribution O(x|f(x)) P(ylf(y))
Exponential 0.368 0.377
Lognormal 0.017 0.013
Generalized Pareto 0.032 0.029
k= 0.292 0.244
k=3 0.220 0.228
k=4 0.136 0.131
Exponentials mixture k=5 0.068 0.066
k=6 0.064 0.063
k=17 0.020 0.019
k= 0.005 0.004

4.3 Sensing Optimization in LTE Cognitive Femto-cells

In the context of handling the demands of higher data rates in mobile networks, net-
work operators are approaching towards more distributed networks architecture. In
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this regard, the third generation partnership project (3GPP) framework standards
support deployment of low power reduced scale plug and play access points known
as femto-cells [72]. Femto-cells are attached to the mobile core network through the
internet cloud. The network composed of macro-cells which offload portion of their
traffic into femto-cells is called two-tier heterogeneous cellular network as shown in
Fig. 4.5.

From radio resources prospective, femto-cells can use the same radio spectrum
assigned for the macro-cell base station (MBS). In this case, MBS and femto-cells
share the spectrum under DSA framework where MBSs act as PUs and femto-cells
with CR capabilities called cognitive femto-cells base stations (FBS) take the role of
SUs. Consequently, higher network throughput is achieved using the same licensed
spectrum owned by the network operator [73]. The reader is referred to [74-76] for
more literature review on the potentials of FBS deployment.

In Paper VI periodic sensing intervals for ED are optimized in LTE two-tier
network with the objective of maximizing the FBS throughput in a multi channel
scenario. Energy detector is used to locate the free channels. Moreover, the findings
of Paper V summarized in Section 4.2 are used as a representative of a real life
channel occupancy statistical pattern.

Downlink Throughput Maximization Based Sensing

FBS are deployed to enhance the network throughput using the same spectrum
assigned for the MBS. Hence, the periodic sensing is optimized with an objective
of maximizing the FBS throughput as explained hereafter.



46 CHAPTER 4. SENSING PERFORMANCE OPTIMIZATION

SuU | T |
transmission v v

Miss @ ..... - I :---
T R —
PU ® | |

transission
within T

Figure 4.6: PU-SU mutual operation cases.

MBS-FBS Interference Model

With the low transmission power of the FBS compared to the MBS, the interference
due to the mutual operation is assumed to be from the MBS to the FBS but not
in the opposite direction. In general, with spectrum sensing, three cases of mutual
operation can occur depending on the sensing outcome. These three cases are
explained below

1. Case 1: An active PU for a time longer than 7" is miss-detected. Subsequently,
the SU starts transmitting on the channel simultaneously with the PU.

2. Case 2: Same miss-detection takes place as in case 1. However, the activity
of the PU changes within a period of T one or more times.

3. Case 3: In this case, the SU operates on a channel based on a correct detec-
tion of PU absence. However, after a time less than 7', the PU resumes its
transmission with or without changing its status thereafter.

Fig. 4.6 demonstrates graphically the three cases of mutual operation. For LTE
FBS, the FBS shares the same spectrum used by the MBS serving the area where
the FBS is deployed. Therefore, high MBS received SNR is expected which assures
a robust detection. Accordingly, the probability of miss-detection is practically
zero and therefore occurrences of cases 1 and 2 are neglectable. If 7 is defined as
the fraction of time during which MBS and FBS mutual operation is experienced
due to case 3, and the OFF periods, y, are distributed as a mixture of exponential
distributions, then 7 is obtained as

k 71T
T=(=ppa) [ 1= wleti |. (4.6)
=1

In order to calculate the interference during the mutual operation periods, the
interfering power from the MBS is calculated using the outdoor-to-indoor (O-I)
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LTE signal propagation model in [77]. where the path loss from the MBS to an
indoor terminal, PL,;, is found by

PLy = 36.7log,(R) + 26logo(f.) + 0.5d + 42.7, (4.7)

where R, d and f. denote the distance between the MBS and the building contain-
ing the terminal, the indoor distance between the wall and the terminal and the
operation frequency respectively. To count for the shadow fading the path gain is
modeled as a zero-mean log-normal distributed RV with a standard deviation oy;.
In the same way, the path loss from the FBS to the terminal, PLp, is calculated
using the indoor LTE path loss model in [77] as

PLp = 43.3log;,(d) + 20logyo(f.) + 11.5. (4.8)

Similar to the O-I propagation model, the indoor path gain is modeled as a log-
normal zero-mean RV with a standard deviation op.

Periodic Sensing Optimization

The FBS provides two classes of throughput; when it is transmitting in the in-
terference free instances and when it experiences interfered transmission. The in-
terference free transmission throughput denoted as Cp, is limited by the SNR, g
as

Co = Wlog, (1 +0), (4.9)

where W is the channel bandwidth. On the other hand, during the interfered
transmissions periods, the throughput, C, is limited by the signal to interference
plus noise ratio (SINR), 7, and is equivalent to

C = Wlog,(1+ 7). (4.10)

To compute the throughput during the whole operation time denoted as Cg;, Co
and C are weighted by (1 — 7) and 7 respectively and accumulated. Moreover,
it should be noted that the FBS is efficiently transmitting with a factor of the
transmission efficiency, 7, during a fractional time equivalent to the captured op-
portunities '. In a multi channel system having N, channels available for sharing,
the captured opportunities for the whole system, call it (, is found as

Nc
G=1-J[a-¢), (4.11)
i=1
where (; is the captured opportunities on channel i. Accordingly, Cy;; is expressible

as
Cant = nCs [(1 77‘)00 +7‘C]. (4.12)

11t is assumed that no transmission during sensing and no transmission takes place if no free
channels are found.
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From Section 2.3, the throughput drop y is defined as the ratio between the drop in
the expected throughput due to the opportunistic access and the interference free
expected throughput. Mathematically, x is obtained as

E{Cau}
=1- —. 4.13
X B{Col (4.13)
x is then calculated as a function of 7 using
-
x=1-1G (1*2)’ (4.14)

where A is a constant found as

A (Bf—PLp -0t
PthpLI\/[fo'g ’

with P and PM denoting the equivalent isotropic radiated power (EIRP) of the
FBS and MBS respectively. Minimizing the throughput drop, x, gives the optimal
solution for the periodic sensing intervals vector T*. Accordingly,

T = arg min {1 e (1 - %)} . (4.15)

Key Results

The occupancy in a span of 40 MHz in the 2.6 GHz LTE band is measured. The mea-
surements findings in terms of the modeled channel occupancy using exponential
distributions mixture are used as an input for a simulation study. The simulation
is carried out to evaluate the throughput based sensing optimization discussed in
the preceding part of this section. The used simulation and model parameters are
presented in Table 4.2 below.

For benchmarking purposes, senseless throughput, Csr, is defined as the FBS
senseless throughput when no sensing is performed [78]. Fig. 4.7 exhibits the sense-
less throughput in contrast to the optimal throughput achieved, C,p¢, when sensing
is adopted and optimized with an objective of maximizing the FBS throughput.
Fig. 4.7 also shows the available interference free opportunities for FBS, (1 — u),
and the optimal throughput drop. All of the results shown in Fig. 4.7 are obtained
using the measurements data taken in different periods of the day October, 02,
2013. This day has been randomly picked up. As shown by Fig. 4.7, the more
the interference free opportunities, the higher the senseless throughput and the
lower the optimal throughput drop. Therefore, with periodic sensing intervals op-
timization, the highest gain in the throughput is achieved with the lowest available
opportunities. This result reflects the creditability of optimizing the periodic sens-
ing intervals as the necessity of optimizing the throughput increases at the peaks
of the traffic.



4.4. PERFORMANCE OPTIMIZATION OF MME 49

Table 4.2: Simulation and model parameters

Parameter Value
Probability of false alarm, py, 1x1073
Sensing time, ¢ 20 ms
MBS EIRP, PM 40.0 dBm
FBS EIRP, PF 23.85 dBm *
MBS - building distance, R 200 m
FBS - terminal distance, d 5—10mP
log-normal standard deviation, oas 7 dB [77]
log-normal standard deviation, op 4 dB [77]
Noise power, o2 —170 dBm/Hz
Number of channels N, 2 channels
Combined exponential distributions k 8

® The value of PtF is adjusted to give an average interference free
throughput of 100 Mbps.

b The value of PtF is adjusted to give an average interference free
throughput of 100 Mbps.
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Figure 4.7: The senseless throughput, the optimal achieved throughput, the avail-
able opportunities for FBS and the minimum achieved throughput drop.

4.4 Performance Optimization of MME

Herein, MME performance is investigated and optimized considering two issues.
Namely, filtering problem when using MME and signal bandwidth with respect to
observation bandwidth. These two issues are both originated from the fact that
MME requires an existence of noise only components when perform sensing. The
filtering consideration tackles the problem of coloring the white noise when using
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g v P :
Generate corresponding time domain signals and do MME for each
Figure 4.8: Tllustration of sub-band spectrum scanning using FDRF. The spectrum
of the whole band (black) is divided into three parts (blue, pink and red) each one
represents one sub-band.

ordinary time domain filters. On the other hand, signal and observation bandwidth
relation impact on detection accuracy is studied to find out how optimum detection
is hit if adjusting observation bandwidth is doable, or, if not, then how the detection
probability is mathematically formulated as a function of signal and observation
bandwidths.

Frequency Domain Rectangular Filtering

With filtering, the spectrum of a received noise only components will be reshaped
similarly to the filter transfer function. Therefore, the noise it is no longer Gaussian
and MME can not be used.

To preserve the signal spectrum shape, a filter with a transfer function as in

(4.16) is needed
H(f) = { 3) gtﬁe{w?sgh ’ (4.16)

where f; and f;, are the lower and upper frequency bounds of the band under
sensing. To attain a transfer function as in (4.16), using of frequency domain
rectangular filtering (FDRF) is proposed in Paper VII . FDRF preserves the
signal frequency domain properties by slicing the spectrum into pieces, picking up
the piece that represents the band under sensing, generate the corresponding time
domain signal from that piece by means of the inverse Fourier transform and finally
apply MME to the generated time domain signal. The remaining spectrum pieces
are thrown away. Fig. 4.8 illustrates the idea of FDRF.

Bandwidth Impact on MME Detection

For MME detection, existence of noise only components is a necessary condition.
Therefore, a question arises here is how the bandwidth of this noise only components
would influence the MME detection performance. In this regard, the investigation
in Paper VIII provides an analytical proof of the optimal signal and noise only
bandwidths. The analytical proof is supported by simulations.
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Gaussian Noise Covariance Matrix’s Eigenvalues Distribution

The L eigenvalues of the of the N x L covariance matrix of a zero mean Gaussian
process are distributed with a pdf follows Marchenko Pastur density function when
N and L — oo [79,80]. If L/N = ¢, the variance of the Gaussian process is o2 and
the L eigenvalues are assigned the RV v then

V(= 02(1 = 0)?) (02(1 + /o) —v) (4.17)

2nolve ’

fu(v) =

with a support of
o2(1—Ve)? <v <aZ(l+Ve)

The density function shown in (4.17) is called Marchenko Pastur density function
which is presented and proved in [81]. Hereafter, Marchenko Pastur density with
the parameters ¢ and o2 will be denoted as MP(c,0?).

Gaussian Signal Bearing Gaussian Noise Covariance Matrix’s
Eigenvalues Distribution

When a mixture of a signal occupying part of the observation bandwidth and a
noise lies all over this observation bandwidth is received; then the samples covari-
ance matrix, R,, is not a Wishart matrix any longer and the distribution of its
eigenvalues is unknown according to the best of our knowledge [39,79,80]. There-
fore, finding a close form distribution for such scenario is a need which is one of
the significant contributions of this thesis explained in the upcoming part of this
section.

For the Gaussian signals, the occupation bandwidth contains a Gaussian process
resulted from adding the Gaussian signal on top of the Gaussian noise, hence, the
covariance matrix of the components inside the occupation bandwidth is a Wishart
matrix. In addition to, the Gaussian noise has a Wishart covariance matrix. There-
fore, the distribution of the eigenvalues of these two covariance matrices can be split
into two Marchenko Pastur densities with different parameters as it is shown below.

Among the L eigenvalues of the mixture covariance matrix, there is [ eigen-
values represent the signal on top of the noise and the rest (L — ) are the noise
only eigenvalues representatives. The quantity (I/L) will be denoted as § which is
equivalent to the occupation/observation bandwidth ratio [79]. From (3.6), if the
signal, S, is a zero mean Gaussian inside the occupation bandwidth with a variance
of 02 | then the following relation is valid

R, =¥+ 021, (4.18)

2
O, = oI 01,1
' Or—11 Or—yn—1)’

where
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with 04, 4, denoting a null matrix of size a; X ag. A reliable estimate of [ called I
is obtained using minimum descriptive length (MDL) criterion [82] as

[ = arg}nin (—(L — )N log, (%) + %Z(QL —1) 1og10N) , (4.19)

where 0(1) and ¢(I) are the geometric and arithmetic means of the smallest (L —1)
eigenvalues found by

L L
1/(L—1 1
()= T »/*" and o) = +— >
i=l+1 i=l+1

Consequently, B is estimated as B = ([ / L). Following that, the Marchenko Pastur

density function corresponds to each group is found as

MP (e, (02 + af)) N <v<)

v = ~ . 4.20
fulw) MP ((1-B)c, 02) AL <v < A (4.20)

z

Optimum Observation/Occupation Bandwidth Ratio for MME: A proof

Below is an analytical derivation of the required observation/occupation bandwidth
ratio for MME to achieve the highest sensing accuracy for a specific SNR. Assume
that § =1, then (4.18) turns out to be

R, = (02 + o))1;. (4.21)

The covariance matrix at 5 = 1 takes the form in (4.21) due to that there are two
independent zero mean Gaussian random series, the signal and the noise, added
on top of each other. Consequently, the resultant output of this addition is a zero
mean Gaussian random series with a variance of (62 + ¢2). Therefore, the null
hypothesis, Hg, will be declared when there is no signal or there exist a Gaussian
signal occupying the whole observation bandwidth. In those two cases, the condi-
tional probability of detection hits its minima which is the conditional probability
of false alarm. Subsequently, the MME conditional probability of detection is a
concave function of § and it has a maximum or maxima. Now if we move over
to the covariance matrix domain, this conditional probability of detection curve
maximum is reached when the probability of having a ratio of (A1/Ar) greater than
A is maximized.?

From (4.20), the eigenvalues correspond to both signal and noise components
are bounded. Therefore, the maximum of (A;/\1) is reached when \; reaches its

2Refer to Section 3.2 to revisit how MME performs the detection
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upper bound and Ay, is at its lower bound. From (4.22) and (4.23) one can derive
how (A1/AL) is related to 8, ¢ and g as

max{/\/ﬂ)(ﬂc o? +U )}

Aa/Ae) = min {MP ((1—-p)c,02)} (4.22)
This yields
1
/o) = @ +¢_)2’
2(1_— —

o2 (1= VI =5)) 2 o

- 1+ +/Be

= (1+) (—1_ (1_@6) 0<pB<1.
Equalizing the derivative d()\;ig)%) with zero will give a value of ﬂ as

B = % + QCT%Q (4.24)

Keeping in mind that the signal components are digitized to L portions when
L eigenvalues of the received covariance matrix are computed. Hence, a single
eigenvalue is representing (1/L) of the signal components. Consequently, to have
all the signal components represented by covariance matrix eigenvalues, ﬂ should
be a multiple integer of (1/L), call it ,,; which is found as

Bopt = % E (14 Vac- c2)J : (4.25)

where || denotes the closest smaller integer. In general, N > 1 which makes
¢ < 1, Therefore, (4.25) is approximated as Bopt =~ 0.5.

For simulation verification, WCDMA like signals having different SNRs and dif-
ferent occupation bandwidths. The generated WCDMA like signals are injected to
an MME detector that uses 5000,20, and 0.1 as values for N, L, and pf respec-
tively. As Fig. 4.9 shows, the probability of detection for the detector, p! 4, reaches
its maximum value for each SNR when 5 ~ 0.5 which verifies the previously shown
analytical proof.

The occupation/observation bandwidth impact on MME performance exhibited
in Fig. 4.9 can be applied in two types of systems differently as follows. For the
systems such as terrestrial TV, in a specific geographical location, a number of
channels are spread throughout the full broadcasting band. Therefore, the observa-
tion bandwidth is set as twice the channel bandwidth when detection is performed
to achieve the optimal 3. This setup is used under the assumption of having no
two TV active adjacent channels in the same location. For other systems, such as
cellular systems, the channels assignment is demand driven. Therefore, the guar-
anteed noise only portions are the guard bands. Hence, the curves in Fig. 4.9 are
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Figure 4.9: The probability of detection for MME for different values of observa-
tion/occupation bandwidth, /3, and different values of the SNR, ~.

used to determine the achievable probability of detection at a specific received SNR
considering the corresponding value of .



Chapter 5

Blind Multi-stage Detection

HEN comparing spectrum sensing techniques, the trade offs are mostly be-
tween the sensing accuracy and the complexity as depicted by Fig. 1.4. In
general, more reliable detectors are more complex and consequently more costly
in terms of hardware requirements and sensing time. Therefore, when the sensing
is performed with no prior information about the received SNR, then going for
an accurate and complicated technique is safe to assure the detection of low SNR
signals '. However, performing complicated detection when the SNR is high is not
needed when simple detection is capable. Hence, we can set an objective of gaining
simplicity when high SNR signals are received and assuring reliable detection for
the low received SNRs. This objective is not attainable using the same detector
all the time, instead, one of two strategies can be employed. The first strategy
is to switch among more than one detector connected in parallel depending on
the received SNR which implies having SNR estimation phase assembled to the
detection process [83-85]. The second alternative is to pass through a bank of de-
tectors sequentially as explained in Section 5.1, this sequential approach is adopted
in [86-88]. Both parallel and sequential approaches are referred to as multi-stahe
spectrum sensing.

If blindness is considered together with the pre-mentioned objective, then when
no information are available regarding the received signal, SNR estimation process
adds more complication to the detection process. Therefore, sequentially connected
detectors better perform blind detection concerning the simplicity-reliability objec-
tive.

In contrast to the state of the art in multi-stage spectrum sensing, Paper IX
addresses the following missing points in the literature. At first, the literature seeks
a generalized model for sequential multi-stage spectrum sensing which is developed
in Paper IX and explained in this chapter. Secondly, a fully-blind, self-adapted

IThe reliability here is reflected by the probability of detection dependency of the received
SNR. It can also be seen as the value of the SNR wall of each technique [33]. Therefore, the lower
the SNR wall, the more reliable the technique is.

95
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Figure 5.1: Sequential multi-stage spectrum sensing model.

multi-stage detector is proposed by using ED and MME. The explanation of the
self-adaptability and full-blindness is provided in Sections 5.2 and 5.3. Moreover,
with an exception to the SNR, influences of other signal parameters on detection
performance are very limitedly studied. In this context, an investigation on the
impact of the signal bandwidth inside the observation bandwidth on the detection
performance of ED, MME and the proposed detector is carried out. This investi-
gation employs and verifies the findings of Paper VIII. The proposed combined
detector is tested with a measurement campaign for real-life signals.

5.1 Generalized Sequential Multi-stage Sensing Model

A generalized sequential multi-stage spectrum sensing model is proposed and ex-
plained in this section. The received signal is input to a bank of M detectors serially
connected. Hereafter, this M bank detectors is denoted as M-stage detector. Let
each stage to take an index ¢ where ¢ = 1,2,..., M with ¢ = 1 and ¢ = M rep-
resenting the first and last stages respectively. Assume that the stage number 4
complexity is denoted as C* and at a specific SNR, 7o, it achieves a detection prob-
ability of p% (o). Accordingly, the M detectors are placed from the simpler to the
more complex which goes inversely with the reliability. This M-stages placement
satisfies p}(7) < pA(7) < ... <p(y) and C* < C? < ... < CM.

The detection stops when #H; is declared at first. o is declared when all
of the detection stages detect no signal. Therefore, the signals with high SNRs
are detected in one of the early stages while the low SNR signals are required to
pass through higher order stages. Fig. 5.1 depicts a schematic of the multi stage
spectrum sensing. From the flow of the detection process in the sequential multi
stage spectrum sensing shown in Fig. 5.1, the probability of detection for the whole
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detector denoted as p'’*(vp) is found as

M i—1
ptd"t(%):pb(%HZ pf;(vo)H(lfpi(%)) : (5.1)

Similarly, if p; is the i'" stage false alarm probability, then the probability of false
alarm for the M stage detector is denoted as p’}Ot which is obtained by

M i—1
it =vp 3 (W IT(1-27) |- (5:2)
i=2 j=1

The total complexity for the multi stage detector is obtained by summing up the
individual complexities weighted by their usage. In the case of signal absence, each
stage is used as long as no false alarm is introduce by one of its preceding stages.
In the case of signal existence, each stage is used when the signal is miss detected
by all of its preceding stages. Accordingly, the total complexity of the M stage
detector, C!°!, is derived as

M i—1

ctot =C* + (1 — ) Z H (Ci(l *p?f))

==t (5.3)

M i—-1

+u-> ] (Ci (1 fpf;(v))) :

i=2 j=1

where u is the channel utilization factor explained in Chapter 2.

5.2 ED-MME Fully Blind Detector

As a specific case of multi stage detection, a two stage combined detector composed
of ED and MME is developed. The developed detector is called 2EMC standing
for 2-stages ED-MME Combined detector. Choosing ED and MME is motivated
as follows. ED is used as a first stage detection for its simplicity which is the main
concern in the first stage. MME is used as a second stage for two purposes. At
first, MME can perform blind spectrum sensing. Secondly, MME can be used to
estimate the noise power as explained in Section 5.3. The estimated noise power
is used by the ED to make the 2EMC fully-blind technique. Therefore, having the
noise estimation part is a distinction of the 2EMC. Fig. 5.2 shows a schematic
diagram of the 2EMC.

Setting-up the 2EMC

If a certain probability of false alarm has to be achieved by the 2EMC, then the
parameters of both ED and MME stages have to be set accordingly. From (5.2)
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Figure 5.2: Schematic diagram of the 2EMC detector.

the probability of false alarm for the 2EMC denoted as p? is obtained as

p§ =pf + (1 -pf)p}. (5.4a)

Subsequently, if a specific probability of false alarm is set for the ED aiming at a
specific probability of false alarm for the 2EMC, then the probability of false alarm
for the MME is calculated as

p§ —pf
pY = {—7pfzf' (5.4b)
Very high values of pJIZJ , implies higher probabilities of detection and more usage
of the ED as reflected by (3.2), (3.3) and (3.4). In return, this would make less
efficient MME stage as its probability of false alarm will be too low and it will
not be capable of detecting weak SNRs. In contrast, if pj‘? is too low, then the ED
stage needs higher SNRs to detect, and therefore the decision will be mostly handed
over to the MME, which in return, leads to a 2EMC with higher complexity. To
compromise these two behaviours, a mid-way solution of having equal probabilities
of false alarm of both ED and MME is applied. Consequently, by solving (5.4a),
the probabilities of false alarm for both stages are found as

p?:p}”:l—,/l—p?. (5.4c)

After setting p? and pj\f , the detection thresholds for both detectors are obtained
using (3.3) and (3.10).

Signal Bandwidth Impact on 2EMC Performance

For the signal and observation bandwidth ratio, 5, consideration, as explained in
Paper VIII and Section 4.4, MME performance changes with 8 which satisfies the
following relations
arg min (py') = [0,1], (5.5a)
B
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arg max (p') = 0.5. (5.5b)
B

For ED, as the signal energy increases when the signal bandwidth increases inside
a specific bandwidth, then the probability of detection is a monotone function of 3
and can be written as

arg min (py) =0, (5.6a)
B

arg max (p5 ) = 1. (5.6b)
B

Since the performance of both ED and MME depends on the value of 3, then
for unknown 3, 2EMC takes the advantages of each detector as evidenced by the
simulations results shown in Fig. 5.3. Fig. 5.3 illustrates the regions of 5 where
each detector performs better. The figure is generated considering —8 dB SNR
WCDMA-like signal, N = 5000, L = 20, and p? = 0.1. The values adopted in
Fig. 5.3 ar used for illustrative purposes as a representative case. In general the
same trends shown by Fig. 5.3 are valid for other values of SNR, N, L and p](f.
As the figure shows, at very low values of g both detectors perform poorly. Yet,
MME outperforms ED. Hence, with very low values of 5, MME is the dominating
detector of the 2EMC. In the middle range values of 5, MME performs better than
ED and still dominates the detection with more usage of the ED. Finally, at the
high values of 8, MME performance is poor while ED perform the best and serves
as the dominating detector. As shown in the figure, the 2EMC always outperforms
each detector individually.

5.3 Noise Variance Estimation

The relation between the white Gaussian noise variance and the minimum eigen-
value of the SCM is the base of different source separation algorithms such as Pis-
arenko and multiple signal classification (MUSIC) algorithms [89]. Based on this
relation, the noise variance can be blindly estimated from the received signal. Ex-
tracting the noise variance from the received signal is the main idea behind MME.
Therefore, MME can be used as a blind noise estimator. This blindly estimated
noise variance can be fed back to the ED in order to make the 2EMC fully-blind
detector as shown in Fig. 5.2.

The noise variance estimation by MME is mainly based on Marchenko Pastur
density fitting for the noise eigenvalues. Therefore, the noise estimation process
starts with splitting the two groups of eigenvalues representatives, namely signal
and noise groups. The process of splitting the eigenvalues groups is explained in
Section 4.4 where [, representing the number of signal plus noise eigenvalues, is
estimated as fusing (4.19). Thereafter, B = Z/L is computed. In Section 4.4 it has
been shown that the two bounds of Marchenko Pastur density are noise variance,
o2, dependant which results in having two equations and o2 as a single variable
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Figure 5.3: The probability of detection changes with § for ED, MME and 2EMC.

in both equations. Therefore, using each equation separately, two values of o2 call
them o2, and o2, are obtainable as

2 AL

01~ —2
(1—-+ve)
s
o2y = —HL (5.7b)
(14 e)
where ); denotes the SCM eigenvalue number i. Following that, K linearly spaced
values between 02, and o2, denoted as 7 are generated as

) (5.7a)

k—1
ﬂ-kzagl—’—(ﬁ) (0’32—0’31),1<I{3<K. (58)

Consequently, K Marchenko Pastur densities of parameters (1 — B)c and 7, Vk are
generated. The pdf of the noise group eigenvalues is obtained and then compared
with the K Marchenko Pastur densities. The goodness of fit is used to pick the
best m(k) as an estimate of 02 denoted as 2. The goodness of fit for each 7y, is
denoted as Dy, and obtained by

Dy = Hf(A) ~MP ((1 ~Be, wk)’

A1<EkE<K, (5.9)
2

where f(\) is the pdf of the (L — [) noise representatives eigenvalues and ||.||2
denotes the norm 2. The noise variance estimate is then given by

62 = arg min(Dy,)). (5.10)

Tk
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To evaluate the noise estimation performance, Monte-Carlo simulations are car-
ried out to compute the normalized mean square error (NMSE) between the actual
and the estimated noise variance. The simulated noise variance is considered as
the actual variance. The NMSE is calculated for different values of N, L and §.
As shown in Fig. 5.4, the noise estimator performance is enhanced by increasing
both N and L which is due to that more realizations are used for the estimation.
Moreover, increasing 3, decreases the estimator performance because with lower 3,
there exist more noise components and therefore the noise is estimated from higher
number of eigenvalues representatives, L — l.

Noise estimation by MME can also be used for other applications such as blind
SNR estimation as in Paper X. In Paper X, the noise power is estimated by
MME following the noise estimation procedure explained in the previous part of this
section while the signal power is estimated from the mixture power by deduction
the estimated noise power. Accordingly, a ratio between the estimated signal and
noise powers is calculated as a blind estimate for the SNR.






Chapter 6

Conclusions and Future
Recommendations

HERE has been increasing lack of resources in terms of radio spectrum to handle

the recent enormously growing demand for wireless data traffic. One promis-

ing solution for this spectrum shortage is to open up some frequency bands for

secondary access under cognitive radio and dynamic spectrum access framework.

This thesis contributes in the area of dynamic spectrum access by means of study-

ing spectrum sensing related aspects as an enabler for dynamic spectrum access.

By spectrum sensing, the free of use frequency bands are found and can then be

opportunistically utilized which contributes in making dynamic spectrum access
omnipresent.

In this thesis, different challenges faced by spectrum sensing are studied. The
challenges involved in the studies of this thesis are categorized into three categories,
namely, blind spectrum sensing, sensing parameters optimization and primary users
traffic modeling. Below are the concluding remarks drawn from the studies carried
out in this thesis.

6.1 Concluding Remarks

In this thesis, two blind spectrum sensing techniques are developed. The first
technique is based on discriminant analysis called spectrum discriminator (SD).
The SD is a non-parametric technique used to split the noise and signal components
in frequency domain. Moreover, to be able to deal with spectra that contains
multiple PU signals with different SNRs, the SD is used as a basis for a multiple
primary users peeling off technique. The second blind sensing technique developed
in this thesis is a two-stage detector called 2EMC composed of energy detector
(ED) and maximum-minimum eigenvalue detector (MME) as the first and second
stage respectively. The second stage detection is used when the signal SNR is low
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Figure 6.1: SD, 2EMC, ED and MME comparison.

Complexity

and can not be detected by the first stage. Furthermore, the second stage is used
as a noise estimator for the first stage.

A comparative study has been carried out among SD, 2EMC, ED and MME.
The comparisons consider sensing reliability measured by the probabilities of false
alarm and detection and the needed complexities measured in sensing times. Fig.
6.1 shows a general comparison of the pre-mentioned sensing techniques where the
extent of blindness is color-coded and included in the comparison. As the figure
depicts, SD performs blind, reliable and simple detection. On the other hand,
2EMC is a blind sensing technique with a higher reliability than the SD and largely
varying complexity depending on the received SNR.

Regarding sensing optimization, the sensing time and periodic sensing interval
are optimized mutually for ED with the aim of enhancing sensing reliability and
increasing the utilization of the available opportunities. Furthermore, optimizing
the periodic sensing intervals in a multi-channel sharing system where increasing the
utilization of the whole sharing system spectrum is studied. Moving forward, a real-
life sharing scenario of LTE cognitive femto-cell is considered for sensing intervals
optimization with an objective of maximizing the femto-cell downlink throughput.
Priori to solving the optimization problem in LTE cognitive femto-cells, an empirical
statistical modeling for the LTE macro-cell channel occupancy is accomplished. The
empirical modeling is based on fitting the length of both ON and OFF periods into
a mixture of exponential distributions.

Under the umbrella of sensing optimization, MME limitation with ordinary time
domain filtering is overcome by using frequency domain rectangular filtering where
the signal spectrum shape is preserved. Moreover, the optimal ratio between the
observation and occupation bandwidths for MME is analytically proven to be 0.5
with simulation verifications.
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6.2 Future Recommendations

The studies of this thesis are centred around blind spectrum sensing, sensing op-
timization and primary traffic modeling. All addressed points are open for future
research continuation. Following are some recommendations for further investiga-
tions regarding related aspects treated in this thesis.

Studying the feasibility and credibility of applying the spectrum sensing tech-
niques developed in this thesis in different sharing scenarios and different appli-
cations is recommended. This also implies placing these techniques in a wider
multidimensional landscape of the state of the art of spectrum sensing techniques.
This wider multidimensionality can include, for example, the hardware complexity
needed. For sensing parameters optimization, the optimization algorithms consid-
ered in this thesis can be further applicable for other sensing techniques apart from
ED and MME which represents a direction of continuation. In the area of primary
traffic modeling, investigating not only different primary systems, but also potential
secondary systems is needed as a future research.

All the research performed within this thesis assumes single device spectrum
sensing. Yet, the attained results can be used differently under cooperative spec-
trum sensing framework. As an example, the developed sensing techniques together
with other existing techniques can be applied at different sensing devices and then
their outcomes can be weighted differently for sensing fusion according to each
technique reliability.

Moreover, the thesis considers the received signal characteristics impact on sens-
ing performance. However, these received characteristics are associated with the
transmitter side by means of the wireless channel properties which is not covered
in the thesis. Therefore, it is recommended for the future studies to investigate
different communication channel impacts on sensing performance. These commu-
nication channels include, but not limited to, multipath fading channels and fast
fading channels.
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