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Coalitional Games in MISO Interference Channels:

Epsilon-Core and Coalition Structure Stable Set
Rami Mochaourab, Member, IEEE, and Eduard Jorswieck, Senior Member, IEEE,

Abstract—The multiple-input single-output interference chan-
nel is considered. Each transmitter is assumed to know the
channels between itself and all receivers perfectly and the re-
ceivers are assumed to treat interference as additive noise. In this
setting, noncooperative transmission does not take into account
the interference generated at other receivers which generally
leads to inefficient performance of the links. To improve this
situation, we study cooperation between the links using coalitional
games. The players (links) in a coalition either perform zero
forcing transmission or Wiener filter precoding to each other. The
ǫ-core is a solution concept for coalitional games which takes into
account the overhead required in coalition deviation. We provide
necessary and sufficient conditions for the strong and weak ǫ-
core of our coalitional game not to be empty with zero forcing
transmission. Since, the ǫ-core only considers the possibility of
joint cooperation of all links, we study coalitional games in
partition form in which several distinct coalitions can form.
We propose a polynomial time distributed coalition formation
algorithm based on coalition merging and prove that its solution
lies in the coalition structure stable set of our coalition formation
game. Simulation results reveal the cooperation gains for different
coalition formation complexities and deviation overhead models.

Index Terms—interference channel; beamforming; coalitional
games; epsilon-core; coalition structure stable set

I. INTRODUCTION

In multiuser interference networks, interference can be the

main cause for performance degradation of the systems [2].

With the use of multiple antennas at the transmitters, interfer-

ence can be managed through cooperative beamforming tech-

niques. For this purpose, backhaul connections are necessary

in order to exchange information for cooperation between the

transmitters [2]. In this work, we consider cooperation between

the transmitters at the beamforming level only, i.e., information

concerning the joint choice of beamforming vectors at the

transmitters is exchanged between the transmitters but not the

signals intended to the users.

The system we consider consists of a set of transmitter-

receiver pairs which operate in the same spectral band. The

transmitters use multiple antennas while the receivers have

single antennas. This setting corresponds to the multiple-input

single-output (MISO) interference channel (IFC) [3]. Next, we
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describe existing work on beamforming mechanisms in this

setting assuming perfect channel state information (CSI) at

the transmitters and single-user decoding at the receivers.

A. Beamforming in the MISO interference channel

Optimal beamforming in the MISO IFC corresponds to

rate tuples at which it is not possible to strictly improve

the performance of the users jointly. Such points are called

Pareto optimal. Finding special Pareto optimal operating points

in the MISO IFC such as the maximum weighted sum-rate,

geometric mean, and proportional-fair rate points are NP-hard

problems [4]. However, finding the max-min Pareto optimal

operating point is polynomial time solvable [4]. In [5], two

distributed algorithms are proposed to compute the max-min

operating point. After exchanging optimization parameters,

the computational load of the beamforming vectors is carried

out sequentially at the transmitters. In [6], a monotonic op-

timization framework is proposed to find points such as the

maximum sum-rate operating point in general MISO settings

with imperfect channel state information at the transmitters.

The interested reader is referred to [7] for characterizations of

optimal beamforming in MISO settings.

Since optimal beamforming requires high information ex-

change between the transmitters (or central controller), low

complexity and distributed transmission schemes are desirable

for practical implementation. When utilizing the reciprocity

of the uplink channel in time division duplex (TDD) systems,

each transmitter is able obtain perfect local CSI of the channels

between itself and all receivers [8]. Cooperative beamforming

schemes based on local CSI do not require CSI exchange

through the backhaul connections and are hence favorable [2].

One cooperative beamforming scheme which requires local

CSI is zero forcing (ZF) transmission. This transmission

scheme produces no interference at unintended receivers.

Heuristic ZF transmission schemes in multicell settings have

been proposed in [9], [10], where the objective is to efficiently

select a subset of receivers at which interference is to be

nulled. In [9], the transmitters perform ZF to receivers which

are mostly affected by interference. In [10], a successive

greedy user selection approach is applied with the objective

of maximizing the system sum-rate. Another beamforming

scheme which requires local CSI is Wiener filter (WF) precod-

ing1 [11]. Joint WF precoding in MISO IFC is proposed in [12]

as a non-iterative cooperation scheme. For the two-user case,

the obtained operating point is proven to be Pareto optimal.

Furthermore, in [13], the authors study the reciprocity of the

uplink and downlink channels in the MISO IFC to formulate

1Also called minimum mean square error (MMSE) transmit beamforming.
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a distributed beamforming scheme in the MISO IFC. In the

proposed beamforming schemes in [12], [13], all transmitters

cooperate with each other.

Joint cooperation between the links does not necessarily

lead to an improvement in the rates of the users compared

to a noncooperative and noncomplex beamforming method.

Accordingly, a user may not have the incentive to cooperate

with all other users. It is then of interest to devise stable

cooperative mechanisms that also determine which links would

cooperate voluntarily with each other.

Game theory provides appropriate models for designing

distributed resource allocation mechanisms. The conflict in

multiple antenna interference channels is studied using game

theory in [14]. The noncooperative operating point (Nash equi-

librium) in the MISO IFC corresponds to joint maximum ratio

transmission (MRT). This strategy is found to be generally not

efficient [15]. In order to improve the performance of the Nash

equilibrium, interference pricing is applied in [16].

Cooperative games in the MISO IFC have been applied

in [17], [18], [19]. The Kalai-Smorodinsky solution from

axiomatic bargaining theory is studied in the MISO IFC in [17]

and an algorithm is provided to reach the solution. In the two-

user case, all cooperative solutions, called exchange equilibria,

are characterized in [18] and a distributed mechanism is

proposed to reach the Walrasian equilibrium in the setting.

Using strategic bargaining, an operating point in the set of

exchange equilibria is reached requiring two-bit signaling

between the transmitters in [19]. The approaches in [18], [19]

are however limited to the two-user case.

B. Applications of Coalitional Games in Partition Form

Coalitional games provide structured methods to determine

possible cooperation between rational players. A tutorial on the

application of coalitional games in communication networks

can be found in [20]. In these games, a coalition is a set of

players which would cooperate to achieve a joint performance

improvement. In interference networks, the performance of a

coalition of players depends on the coalitions formed outside

the coalition. Appropriate in this context are coalitional games

in partition form [21] which take into account what the players

achieve given a coalition structure, a partition of the set of

users into disjoint cooperative sets.

There are different stability concepts for coalitional games

in partition form. In [22], Dhp-stability is proposed which is

based on deviation rules of coalition merging and splitting.

The stability concept is used for games with transferable

utility in [23] and also applied in [1] in the MISO IFC for

games with nontransferable utility and partition form. The

recursive core [24] solution concept for coalitional games in

partition form has been applied in [25], [26]. In [25], the set

of cooperating base stations (a coalition) performs interference

alignment. An algorithm is proposed in which the coalitions

can arbitrarily merge and split and proven to converge to

an element in the recursive core. In [26], MISO channels

are considered and the set of cooperating transmitters apply

network MIMO techniques. Coalition formation in [26] is

restricted to merging of pairs of coalitions only supporting

low complexity implementation.

While in Dhp-stability and the recursive core solution con-

cepts a set of players can deviate and form new coalitions,

individual based stability [27] restricts only a single player

to leave a coalition and join another. A deviation in which

a user leaves a coalition and joins another if this improves

his payoff leads to Nash stability [28] and has been used in

[29] in the context of channel sensing and access in cognitive

radio. In [30], individual stability which is a weaker stability

concept than Nash stability is used for coalitional games in the

multiple-input multiple-output (MIMO) interference channel.

A coalition of links cooperate by performing ZF to each other.

Individual stability requires additional to Nash stability the

constraint that the payoffs of the members of the coalition in

which the deviator wants to join do not decrease.

C. Contributions

We consider coalitional games without transferable utilities

[31] among the links. While noncooperative transmission

corresponds to MRT, we restrict cooperation between a set

of links to either ZF transmission or WF precoding. In [1],

the necessary and sufficient conditions for a nonempty core of

the coalitional game with ZF transmission are characterized. In

this work, we provide the necessary and sufficient conditions

for nonempty strong and weak ǫ-core [32] of the coalitional

game with ZF beamforming. The ǫ-core generalizes the core

solution concept and includes an overhead for the deviation

of a coalition. In contrast to the result in [1] which specifies

an SNR threshold above which the core is not empty, the ǫ-
core is not empty above an SNR threshold and also below

a specific SNR threshold. These thresholds depend on the

deviation overhead measure and the user channels.

While the strong and weak ǫ-core solution concepts consider

the formation of a grand coalition only, we study coalitional

games in partition form in which several distinct coalitions

can form. In [1], coalition formation based on merging and

splitting of coalitions has been applied. In this work, we

propose a distributed coalition formation algorithm based on

coalition merging only. We propose a coalition deviation rule,

q-Deviation, to incorporate a parameter q which regulates the

complexity for finding deviating coalitions. The outcome of

the coalition formation algorithm is proven to be inside the

coalition structure stable set [33] of our coalition formation

game. Accordingly, the stability of the obtained partition of the

links is ensured. We provide an implementation of the coalition

formation algorithm and show that only two-bit signaling

between the transmitters is needed. Moreover, we prove that

the proposed coalition formation algorithm terminates in poly-

nomial time. Simulation results reveal the tradeoff between

coalition formation complexity and the obtained performance

of the links. In addition, we compare our algorithm regarding

complexity and performance to the algorithms in [26] and [30].

To the best of our knowledge, the application of the ǫ-core of

coalitional games and the coalition structure stable set solution

concepts are new for resource allocation in wireless networks.

Note, that the coalition structure stable set solution concept

for coalitional games in partition form is different than the

recursive core [24] solution concept used in [25], [26].
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Outline: In Section II, we provide the system and channel

model and also describe the noncooperative state of the links.

In Section III, the game in coalitional form is formulated

and its solution is analyzed. In Section IV, we formulate the

game in partition form and specify our coalition formation

mechanism. We also study the complexity of the proposed

deviation model and provide an implementation of the coali-

tion formation algorithm in our considered system. In Section

V, we provide simulation results.

Notations: Column vectors and matrices are given in low-

ercase and uppercase boldface letters, respectively. ‖a‖ is the

Euclidean norm of a ∈ CN . |b| and |S| denote the absolute

value of b ∈ C, and the cardinality of a set S, respectively.

(·)H denotes the Hermitian transpose. The orthogonal projec-

tor onto the null space of Z is Π
⊥
Z := I − Z(ZHZ)−1ZH ,

where I is an identity matrix. (xi)i∈S denotes a profile

with the elements corresponding to the set S. The notation

f(x) ∈ O(g(x)) means that the asymptotic growth of f(x) in

x is upper bounded by g(x).

II. PRELIMINARIES

A. System and Channel Model

Consider a K-user MISO IFC and define the set of links as

N := {1, ...,K}. Each transmitter i is equipped with Ni ≥ 2
antennas, and each receiver with a single antenna. The quasi-

static block flat-fading channel vector from transmitter i to

receiver j is denoted by hij ∈ CNi×1. Each transmitter is

assumed to have perfect local CSI. The local CSI is gained

through uplink training pilot signals [8]. We assume time

division duplex (TDD) systems with sufficiently low delay

between the downlink and uplink time slots such that, using

channel reciprocity, the downlink channels are estimated to be

the same as the uplink channels.

The beamforming vector used by a transmitter i is denoted

by wi ∈ Ai, where the set Ai is the strategy space of

transmitter i defined as

Ai := {w ∈ C
Ni×1 : ‖w‖2 ≤ 1}, (1)

where we assumed a total power constraint of one (w.l.o.g.).

The basic model for the matched-filtered, symbol-sampled

complex baseband data received at receiver i is

yi = hH
iiwisi +

∑

j 6=i
hH
jiwjsj + ni, (2)

where sj ∼ CN (0, 1) is the symbol transmitted by transmitter

j and ni ∼ CN (0, σ2). We assume that all signal and noise

variables are statistically independent. Throughout, we define

the SNR as 1/σ2.

A strategy profile is a joint choice of strategies of all

transmitters defined as

(w1, ...,wK) ∈ X := A1 × · · · × AK . (3)

Given a strategy profile, the achievable rate of link i is

ui(w1, ...,wK) = log2

(

1 +
|hH

iiwi|2
∑

j 6=i |hH
jiwj |2 + σ2

)

, (4)

where we assume single-user decoding receivers.

B. Noncooperative Operation

In game theory, games in strategic form describe outcomes

of a conflict situation between noncooperative entities. A

strategic game is defined by the tuple 〈N ,X , (ui)i∈N 〉, where

N is the set of players (links), X is the strategy space of

the players given in (3), and uk is the utility function of

player k given in (4). In [34], it is shown that maximum ratio

transmission (MRT), written for a transmitter i as

wMRT

i = hii/‖hii‖, (5)

is a unique dominant strategy. A dominant strategy equilibrium

[31, Definition 181.1] of a strategic game is a strategy profile

(w∗
1, ...,w

∗
K) such that for every player i ∈ N

ui(w
∗
i ,w−i) ≥ ui(wi,w−i), ∀(wi,w−i) ∈ X , (6)

where w−i := (wj)j∈N\{i} is the collection of beam-

forming vectors of all users other than user i. Hence, each

transmitter chooses MRT irrespective of the strategy choice

of the other transmitters. Consequently, the strategy profile

(wMRT

1 , ...,wMRT

K ) is the unique Nash equilibrium of the strategic

game between the links. In [15], it is shown that joint MRT is

near to the Pareto boundary of the achievable rate region in the

low SNR regime. In the high SNR regime, joint MRT has poor

performance [34] while zero forcing (ZF) transmission is near

to the Pareto boundary [15]. However, ZF beamforming cannot

be implemented if the links are not cooperative. Therefore, we

will study cooperative games between the links.

III. COALITIONAL GAME

A. Game in Coalitional Form

In game theory, cooperative games are described by games

in coalitional form. A game in coalitional form [31, Definition

268.2] is defined by the tuple

〈N ,X , V, (ui)i∈N 〉, (7)

where N is the set of players, X is the set of possible joint

actions of the players in (3), V assigns to every coalition S (a

nonempty subset of N ) a set V (S) ⊆ X , and uk is the utility

of player k given in (4). A coalition S is a set of players that

are willing to cooperate, and V (S) defines their joint feasible

strategies. The game considered in (7) is in characteristic form

and the mapping V (S), called the characteristic function,

assumes a specific behaviour for the players outside S.

There exist several models that describe the behavior of the

players outside S [35]. For our model, we adopt the γ-model

from [36] and specify that all players outside a coalition S
do not cooperate, i.e., build single-player coalitions. Later in

Section IV, we consider a coalitional game in partition form in

which the formation of several coalitions is feasible. Through-

out, we assume that the payoff of a player in a coalition

cannot be transferred to other players in the same coalition.

Thus, we consider games with nontransferable utilities which

is appropriate for our model in which the achievable rate of

one link cannot be utilized at other links.

A solution of the coalitional game is the core which is a

set of joint strategies in X with which all players want to

cooperate in a grand coalition and any deviating coalition
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cannot guarantee higher utilities to all its members. With this

respect, the core strategies are stable. We adopt the following

variant of the core [32].2

Definition 1: The weak ǫ-core of a coalitional game is the

set of all strategy profiles (xi)i∈N ∈ V (N ) for which there is

no coalition S and (yi)i∈N ∈ V (S) such that ui(y1, ...,yK)−
ǫi > ui(x1, ...,xK) with ǫi ≥ 0 for all i ∈ S.

The weak ǫ-core is not empty if there exists no coalition

S ⊂ N whose members achieve higher payoff than in

the grand coalition N taking the additional overhead ǫi in

deviation of each player i ∈ S. Alternatively, ǫi can be

considered as a reward which is given to player i in order

to motivate him to stay in the grand coalition. However, since

in our model, no external entity is assumed which can give

such a reward to the users, the interpretation of ǫi as an

overhead is more appropriate. Incorporating the overhead in

the solution concept is appropriate in communication networks

since coalition deviation requires an additional complexity

for searching for possible coalitions to cooperate with. This

overhead is discussed later in Section IV-A in detail.

In Definition 1, the overhead ǫi for deviation of a player i in

a coalition S is fixed. A stronger notion for the weak ǫ-core

accounts for an overhead which depends on the size of the

coalition which deviates.

Definition 2: The strong ǫ-core of a coalitional game is the

set of all strategy profiles (xi)i∈N ∈ V (N ) for which there is

no coalition S and (yi)i∈N ∈ V (S) such that ui(y1, ...,yK)−
ǫi/|S| > ui(x1, ...,xK) with ǫi ≥ 0 for all i ∈ S.

The interpretation of the overhead in the definition of the

strong ǫ-core originates from the original definition in [32] for

games with transferable utility where the overhead ǫ required

for the deviating coalition S is shared by its members. Hence,

the overhead decreases for each member of S as the size of

S increases. This is in contrast to the weak ǫ-core where the

overhead is constant for each player. The strong and weak

ǫ-core definitions can be regarded as generalizations of the

traditional solution concept of the core for which the overhead

is set as ǫi = 0 for all i ∈ N . Interestingly, taking into account

the deviation overhead, the solution set of the coalitional game

is enlarged, i.e., the core is a subset of the strong ǫ-core [32].

Also, the strong ǫ-core is a subset of the weak ǫ-core. For

coalitional games in which the core is empty, including the

overhead in the deviation could lead to stability of the system.

Next, we will specify the characteristic function V (S).
While we adopt the γ-model to assume that the players outside

a coalition are noncooperative, in order to define V (S) we

need to specify the cooperation strategies in a coalition S. We

consider two simple non-iterative transmission schemes which

can be applied in a distributed manner. These are ZF and WF

beamforming defined in the next subsections.

B. Coalitional Game with Zero Forcing Beamforming

The transmitters choose MRT if they are not cooperative

according to Section II-B. If a transmitter cooperates with

2The definition of ǫ-core in [32] is for games with transferable utility. Here
we formulate the solution concept for games with nontransferable utility such
that the overhead ǫ is different for each player and not transferable to other
players in its coalition.

a set of links, then it performs ZF in the direction of the

corresponding receivers. Hence, we define the mapping

V ZF(S) = {(wi)i∈N ∈ X : wi = wZF

i→S for i ∈ S,
wj = wMRT

j for j ∈ N\S}, (8)

where wZF

i→S is transmitter i’s ZF beamforming vector to the

links in S written as

wZF

i→S =
Π⊥

Zi→S
hii

‖Π⊥
Zi→S

hii‖
, Zi→S = (hij)j∈S\{i}. (9)

Observe that if the number of antennas Ni < |S|, then ZF in

(9) is the zero vector, i.e. transmitter i switches its transmission

off. Similar to the definition of the strategy profile V ZF(S) in

(8), it is possible to consider different cooperative transmit

beamforming than ZF in a coalition.

According to Definition 1, the weak ǫ-core is not empty if

and only if

ui(V
ZF(S))−ǫi ≤ ui(V

ZF(N )), ∀i ∈ S and ∀S ⊂ N . (10)

The next result provides the conditions under which the weak

ǫ-core of our game is not empty.

Proposition 1: For ǫi > 0 for all i ∈ N , the weak ǫ-core

is not empty if and only if the noise power satisfies σ2 ≤ σ̄2

and σ2 ≥ σ2 where

σ̄2 := min
S⊂N

min
i∈S

{
σ̄2
i,S

}
, σ2 := max

S⊂N
max
i∈S

{
σ2
i,S

}
, (11)

with

σ̄2
i,S :=

{ ∞, ∆i,S < 0 or Ψi,S ≥ 0;
−Ψi,S−

√
∆i,S

2(2ǫi−1) , ∆i,S ≥ 0 and Ψi,S < 0;
(12)

and

σ2
i,S :=

{
0, ∆i,S < 0 or Ψi,S ≥ 0;
−Ψi,S+

√
∆i,S

2(2ǫi−1) , ∆i,S ≥ 0 and Ψi,S < 0;
(13)

and the used parameters are defined as

∆i,S := Ψ2
i,S − 4(2ǫi − 1)2ǫiCiBi,S , (14a)

Ψi,S := (2ǫi(Bi,S + Ci)− (Bi,S +Ai,S)), (14b)

Ai,S := |hH
iiw

ZF

i→S |2, (14c)

Bi,S :=
∑

j∈N\S
|hH

jiw
MRT

j |2, Ci := |hH
iiw

ZF

i→N |2. (14d)

Proof: The proof is provided in Appendix A.

Proposition 1 implies that for all SNR values 1/σ2 ≥ 1/σ̄2

and 1/σ2 ≤ 1/σ2 it is profitable for all players to jointly

perform ZF. In the case where the overhead ǫi = 0 for all

players, the conditions under which the core is not empty has

been given in [1, Proposition 1] and restated below as a special

case of Proposition 1.

Corollary 1: For ǫi = 0 for all i ∈ N , the weak ǫ-core is

not empty if and only if σ2 ≤ σ̂2 where

σ̂2 := min
S⊂N

min
i∈S
{Bi,SCi/(Ai,S − Ci)}. (15)

Interestingly, in comparison to the core without deviation

overhead, the weak ǫ-core is not empty above an SNR thresh-

old and also below an SNR threshold. The weak ǫ-core is

also not empty at low SNR is due to the fact that the noise
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Fig. 1. A setting with 8 links and each transmitter uses 8 antennas. In order
to include the effect of distances between the links on the received power
gains we use the following path loss model: Let dkℓ be the distance between
transmitter k and a receiver ℓ in meters and δ be the path loss exponent, we

write the channel vector hkℓ = d
−δ/2
kℓ h̃kℓ/‖h̃kℓ‖ with h̃kℓ ∼ CN (0, I).

We define the SNR as SNR= d−δ
kk /σ2 and we set δ = 3.

power at low SNR is much larger than the interference. Then,

the performance difference between joint ZF beamforming in

the grand coalition compared to the performance of another

beamforming strategy is not large enough to compensate for

the overhead leading to the formation of the grand coalition.

The derivation of the conditions for nonempty strong ǫ-core

in Definition 2 is analogous to that in Proposition 1 in which

for a player i ∈ S, the term ǫi is replaced with ǫi/|S|. It must

be noted that in order to calculate the conditions for nonempty

weak and strong ǫ-core in Proposition 1, an exhaustive search

over 2|N | − 1 nonempty subsets of N must be performed.

In Fig. 2, we plot the conditions for empty strong and

weak ǫ-core from Proposition 1 for the setting in Fig. 1. Only

for an overhead strictly larger than zero does a lower SNR

threshold exists for nonempty strong and weak ǫ-core. As the

overhead increases, the lower threshold 1/σ̄2 increases and the

upper threshold 1/σ2 decreases. Consequently, the SNR region

where all players have an incentive to jointly perform ZF

transmission becomes larger. It is shown that if the conditions

for the weak ǫ-core not to be empty are satisfied then they are

also satisfied for the strong ǫ-core. The operation of wireless

systems is usually in the range between 5 and 20 dB SNR. It

can be seen from Fig. 2 that the conditions for the stability of

the grand coalition with ZF beamforming requires relatively

higher overhead measure at the links.

There is a relation between the result in Proposition 1 and

the notion of cost of stability [37]. In [37], it is assumed that

all users have the same ǫi. The cost of stability specifies the

smallest overhead ǫi such that the weak ǫ-core is not empty.

Fig. 2 illustrates the cost of stability which corresponds to

the overhead ǫ on the boundary points of the region where

the weak ǫ-core is empty. That is, for a fixed SNR value, the

boundary point is the smallest overhead value with which the

weak ǫ-core is not empty.

In Fig. 2, it is shown that above a certain overhead level, the

ǫ-core is nonempty for any SNR value. This overhead level is

obtained during the proof of Proposition 1 and stated here.

Corollary 2: The weak ǫ-core is not empty for any σ2 > 0

-40 -20 0 20 40 51.7 60
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ǫ
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1
=

·
·
·
=

ǫ
8

conditions for 
empty weak ε-core

conditions for 
empty strong ε-core

Fig. 2. Conditions for empty strong and weak ǫ-cores are plotted in the
filled regions for the setting with 8 links in Fig. 1.

if and only if ∆i,S < 0 or Ψi,S ≥ 0, for all i ∈ S,S ⊂ N ,

where Ψi,S and ∆i,S are given, respectively, in (14a) and (14b)

in Proposition 1.

From Proposition 1, in the case where the overhead ǫi is

zero for all i ∈ N , the core is not empty only above an SNR

threshold. Next, we show that also in this case, a player does

not have an incentive to build a coalition with another player

at low SNR, i.e.,

ui(V
ZF({i})) > ui(V

ZF(S)), ∀i ∈ S, ∀S ⊆ N , |S| > 1. (16)

Notice that V ZF({i}) = (wMRT

1 , ...,wMRT

K ). The conditions for

(16) to hold are given in [1, Proposition 2] and restated here.

Proposition 2: Single-player coalitions exist if

σ2 > σ̌2 := max
S⊆N

max
i∈S

{
Ai,SBi,{i} − ‖hii‖2Bi,S

‖hii‖2 −Ai,S

}

, (17)

with Ai,S and Bi,S defined in (14c) and (14d), respectively.

C. Coalitional Game with Wiener Filter Precoding

In this section, we assume the players cooperate by perform-

ing WF precoding with the players in their own coalition. For

link i in coalition S, transmitter i’s WF precoding is

wWF

i→S =
(Iσ2 +

∑

j∈S\{i} hijh
H
ij )

−1hii

‖(Iσ2 +
∑

j∈S\{i} hijh
H
ij )

−1hii‖
. (18)

In comparison to ZF beamforming in (9), WF precoding is

interesting when the number of antennas at the transmitters

is smaller than the number of links in the coalition. WF

precoding in (18) has interesting behavior for asymptotic SNR

cases [11]. In the high SNR regime (σ2 → 0), wWF

i→S converges

to wZF

i→S in (9). In the low SNR regime (σ2 → ∞), wWF

i→S

converges to wMRT

i in (5).

The game in coalitional form with WF precoding is

〈N ,X , V WF, (Rk)k∈N 〉 where the mapping V WF which defines

the strategy profile according to WF cooperation scheme is

V WF(S) = {(wk)k∈N ∈ X : wk = wWF

k→S for k ∈ S,
wℓ = wMRT

ℓ for ℓ ∈ N\S}. (19)

Conditions for nonempty strong and weak ǫ-core of the coali-

tional game with WF precoding in terms of SNR thresholds
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are hard to characterize because the noise power in (18) is

inside the matrix inverse.

Next, we will study coalition formation games between

the links and use the WF and ZF beamforming schemes as

cooperative beamforming strategies.

IV. COALITION FORMATION

In the previous section, we have used the strong and weak

ǫ-core as solutions to our coalitional game which only consider

the feasibility of the formation of the grand coalition. In this

section, we enable the formation of several disjoint coalitions

to form a coalition structure. A coalition structure C is a parti-

tion of N , the grand coalition, into a set of disjoint coalitions

{S1, ...,SL} where
⋃L

j=1 Sj = N and
⋂L

j=1 Sj = ∅.
Let P denote the set of all partitions of N . We consider the

following game in partition form [21]:3

〈N ,X , F, (ui)i∈N 〉, (20)

where F : P → X is called the partition function. We

consider two scenarios for player cooperation in a coalition.

The scenarios correspond to ZF and WF transmissions. Given

a coalition structure C, the strategy profile of the players

according to ZF or WF is defined by

F bf(C) := {(wi)i∈N ∈ X : wi = wbf
i→Sj

for i ∈ Sj ,Sj ∈ C},
(21)

where bf = {ZF,WF} with wZF

i→Sj
and wWF

i→Sj
defined in (9)

and (18), respectively. Notice that if |Sj | = 1 and i ∈ Sj ,

then wZF

i→Sj
= wWF

i→Sj
= wMRT

i . For a coalition structure C,

F ZF(C) is a strategy profile in which each player chooses ZF

to the players in his coalition. Similarly, FWF(C) is the strategy

profile when WF is applied. In our case, the coalition structure

uniquely determines the associated strategy of each player.

Consequently, the payoff of each player is directly related to

the formed coalition structure.

The payoffs of the members of a coalition depend on which

coalitions form outside. The effects caused by other coalitions

on a specific coalition are called externalities [38]. In our

game, due to the interference coupling between the links,

externalities exist. These are categorized under negative and

positive externalities. In the case of negative externalities, the

merging of two coalitions reduces the utility of the other

coalitions. While positive externalities lead to an increase in

the payoff of other coalitions when two coalitions merge. In

our case, if two coalitions merge, both types of externalities

can occur.

The dynamics that lead to a specific coalition structure

are the study of coalition formation games [39], [35]. We

are interested in coalition structures which are stable. The

main steps to describe the dynamics of coalition formation to

reach a stable coalition structure are the following: First, we

must specify a deviation rule. This rule describes the feasible

transition from one coalition structure to the next. The second

step is to define a comparison relation between different

coalition structures. Accordingly, a feasible deviation from one

3In [21], the game in partition form is represented by 〈N , U〉 where U :
P → RK . We change the notation to be analogous to the coalitional game
formulation in (7).

Algorithm 1 Coalition formation algorithm.

1: Input: N , (ǫ1, . . . , ǫK), q
2: Initilize: k = 0, C0 = {{1}, . . . , {K}}
3: for T ⊂ Ck, |T | ≤ q do

4: Ck q,T−→ Ck+1;

5: if Ck ≺T Ck+1 then

6: k = k + 1;

7: Go to Step 2;

8: Output: Ck

coalition structure to the next is acceptable if this leads to a

preferable coalition structure. Afterwards, the stability of the

coalition formation process must be studied. For this purpose,

a stability concept for coalition structures must be specified.

A set T of at most q coalitions in some arbitrary coalition

structure C0 ∈ P can merge to form a single coalition. In

doing so, the coalition structure C0 changes to C1 ∈ P . We

formally define this mechanism as follows.

Definition 3 (q-Deviation): The notation C0 q,T−→ C1 indi-

cates that the coalitions in T , where T ⊂ C0 ∈ P and |T | ≤ q
merge to form the coalition S =

⋃ T . Then, the coalition

structure C0 changes to C1 = C0 \T ∪S in the set of coalition

structures P .

The motivation behind the merging deviation model in Defi-

nition 3 is that coalition formations starts from the noncoop-

erative state of single-player coalitions and hence cooperation

requires merging of coalitions. The deviation complexity in

Definition 3 is tunable through the parameter q. The larger q
is, the more complex it is to search for possible merging coali-

tions since the number of possible combinations increases with

q. We study the complexity for this search in Section IV-A.

Given a coalition structure, we assume that the coalitions

can communicate with each other in order to find possible

performance improvement through deviation. A deviating set

of coalitions T according to q-Deviation in Definition 3 can

compare the resulting coalition structure C1 with the previous

coalition structure C0 by the Pareto dominance relation ≺T

specified as follows:

C0 ≺T C1 ⇔
∀i ∈

⋃

T : ui(F
bf(C0))− ǫi ≤ ui(F

bf(C1)), and

∃j ∈
⋃

T : uj(F
bf(C0))− ǫi < uj(F

bf(C1)),
(22)

with bf = {ZF,WF}. As in the definition of the weak and

strong ǫ-core in the previous section, we include the overhead

ǫi ≥ 0 in (22) for a deviating player i. In (22), the overhead ǫi
is subtracted from the current utility in C0 when comparing it

to the utility in the new coalition structure C1. The motivation

for this model is as follows: the overhead required for the

utility comparison and communication with the members of

T should make coalition merging more attractive. Later in

(29) and (30) in Section V, we specify two different overhead

models for performance comparison.

According to (22), the notation C0 ≺T C1 means that each

player in T prefers the coalition structure C1 to C0. Note,

that C0 ≺T C1 indicates that the coalition structure C1 is
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preferred to C0 by the players in T and the preferences of

the players in N \ T are not considered in the comparison.

This choice enables the set of deviating coalitions T to

decide on their own if they want to merge without consulting

the remaining players. However, note that the strategies of

deviating coalitions do affect the utilities of all players.

Based on the deviation rule in Definition 3 and the coalition

preference in (22), we formulate a binary relation to compare

two coalition structures.

Definition 4 (q-Dominance): The coalition structure C1 q-

dominates C0, written as C1 ≫q C0, if there exists a set of

coalitions T ⊂ C0 such that C0 q,T−→ C1, and C1 ≺T C0.

According to the previous definitions, we define the coali-

tion formation game as (P ,≫q), where P is the set of all

coalition structures and ≫q is the dominance relation defined

in Definition 4. The solution of the coalition formation game

(P ,≫q) is a set of coalition structures with special stability

properties. We use the coalition structure stable set as a

solution concept for (P ,≫q) adopted from [33, p. 110].

Definition 5 (Coalition Structure Stable Set): The set of

coalition structures R ⊂ P is a coalition structure stable set

of (P ,≫q) if R is both internally and externally stable:

• R is internally stable if there do not exist C, C′ ∈ R such

that C ≫q C′,
• R is externally stable if for all C ∈ P \ R there exists

C′ ∈ R such that C′ ≫q C.

The coalition structure stable set for coalition formation

games is a modification of the stable set solution concept

of coalitional games in characteristic form which has been

originally proposed in [40]. Unlike the core, the stable set is

not necessarily unique.

The coalition structure stable set of (P ,≫q) has at least

one element which is the grand coalition N . As q-Deviation

(Definition 3) only allows merging of coalitions, the coalition

structure N is stable because no deviation is possible. We

assume however that the players start their operation in the

noncooperative state corresponding to the Nash equilibrium

(Section II-B). In order to reach a solution in the coalition

structure stable set, we provide Algorithm 1.4 Step 4 finds

a q-Deviation (Definition 3) by searching over all coalition

merging possibilities given coalition structure Ck and q, the

maximum number of coalitions that are allowed to merge.

For a possible deviating coalition T , the resulting coalition

structure Ck+1 is compared with the previous coalition ac-

cording to q-Dominance (Definition 4). If Step 5 is true, then

the new coalition structure Ck+1 is adopted and the index k
is incremented. If no deviating coalitions satisfy Step 5, then

the algorithm terminates.

Proposition 3: Algorithm 1 converges to a coalition struc-

ture in the coalition structure stable set of (P ,≫q).
Proof: First, the algorithm is guaranteed to converge

since only merging operations are allowed and the number

of merging steps is finite. We prove by contradiction that the

resulting coalition structure is in the coalition structure stable

set. Let the solution of the algorithm be Ck. If Ck is outside

4Other initializing coalition structures can also be supported by Algorithm
1 which may lead to different outcomes.
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Fig. 3. Illustration of the measures D(K, q), T (K, q), and W (K, q) defined
in (23), (27), and (28) respectively.

the coalition structure stable set of (P ,≫q), then according

to external stability, there exists a coalition structure C′ in the

coalition structure stable set such that C′ ≫q Ck. However, if

this is the case, Ck would not be a solution of Algorithm 1

since Algorithm 1 terminates when no coalition structure is

found that q-dominates the obtained coalition structure. If

Ck is inside the coalition structure stable set of (P ,≫q)
and there is a coalition structure C′′ in the stable set such

that C′′ ≫q Ck, then also Ck would not be a solution of

Algorithm 1. Accordingly, the coalition structure Ck resulting

from Algorithm 1 must be in the coalition structure stable set

of (P ,≫q).
Next, we discuss the complexity for finding a set of coali-

tions which merge according to q-Deviation in Definition 3 and

compare it to an analogous rule based on coalition splitting.

A. Complexity

Our coalition formation algorithm is influenced by the

following works on coalitional games in partition form [41],

[33]. In [41] a solution concept called equilibrium binding

agreements is proposed. The algorithm starts in the grand

coalition, and only splitting operations can occur. The sta-

bility of a coalition structure is based on finding a sequence

of splitting deviations which achieve higher utilities in the

final coalition structure. Moreover, the players are considered

farsighted, i.e., can anticipate the effects of their actions to the

actions of other players. This mechanism is however shown

to be inefficient and has motivated the extension in [33]. In

[33], a coalition formation algorithm is proposed where the

splitting operation proposed in [41] is adapted such that the

coalitions that split can also merge in an arbitrary manner.

Despite the increased complexity, Pareto efficiency is achieved

only in special cases.

The reason for choosing coalition deviation based only on

merging of coalitions in our work is twofold: First, since the

users start their operation in the noncooperative state of single-

player coalitions, coalition formation must be able to merge

coalitions. Second, the splitting operation is far more complex

than the merging operation, as discussed next.
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According to Definition 3, the number of possible ways to

merge a set of at least two and at most q coalitions from the

coalition structure C is

D(|C|, q) =
∑min{q,|C|}

j=2

(|C|
j

)

. (23)

The expression above has no closed form. For the special case

q = |C|, D(|C|, |C|) = 2|C| − |C| − 1 and for q = 2 we get

D(|C|, 2) = (|C|2 − |C|)/2. The worst case complexity corre-

sponds to single-player coalitions because then the number of

coalitions in C is largest and equal to K . This is the initial

coalition structure which starts Algorithm 1.

Lemma 1: The growth rate of D(|C|, q) in (23) is bounded

by O(Kq) for fixed q.

Proof: First, observe that D(|C|, q) ≤ D(K, q) for |C| ≤
K . According to the definitions in [42, 24.1.1], and for q ≤ K
we can calculate

D(K, q) =
∑q

j=2

(
K

j

)

=
∑q

j=2

(
K

K − j

)

(24)

=
K(K − 1)

2!
+

K(K − 1)(K − 2)

3!
+ · · ·

+

q factors
︷ ︸︸ ︷

K(K − 1) · · · (K − q + 1)

q!
. (25)

Accordingly, D(K, q) ∈ O(Kq).
In comparison to the merging rule, the number of combi-

nations for splitting a set S to k, k ≤ |S|, subsets is given by

the Stirling number of the second kind [43, Theorem 8.2.6]:

S(|S|, k) = 1

k!

∑k

t=0
(−1)t

(
k

t

)

(k − t)|S|. (26)

If we allow, as we did in the merging case, the splitting of S
into at least two and at most q subsets, we get the following

number of combinations:

T (|S|, q) =
∑q

k=2
S(|S|, k). (27)

For q = |S|, the number above corresponds to the |S|th Bell

number minus one.5 In Fig. 3, we compare the complexity of

the merging and splitting operations for increasing number of

users K and different values of q. It can be observed that the

splitting operation requires much more searching combinations

than the merging operation.

B. Implementation in the MISO interference channel

In Algorithm 2, we provide an implementation of Algorithm

1 in the MISO setting. The algorithm is initialized according

to the Nash equilibrium, i.e., all coalitions are singletons.

The term r = min{q, |C0|} is the number of coalitions that

are allowed to merge. The quantity Θ is initialized to zero

and will aggregate the total number of utility comparisons

during the algorithm. This measure will be used later in the

simulations in Section V to reveal numerically the complexity

of the algorithm.

We assume that when a coalition structure forms, such

as Ck = {S1, . . . ,SL}, each coalition is given a unique

5The |S|th Bell number is
∑q

k=0
S(|S|, k) and S(|S|, 0)+S(|S|, 1)) = 1.

Algorithm 2 Implementation of Algorithm 1.

1: Input: N , (ǫ1, . . . , ǫK), q, bf = {ZF, WF}
2: Initialize: k = 0, C0 = {{1}, . . . , {K}}, niter, r =

min{q, |C0|}, Θ = 0
3: while r ≥ 2 and |Ck| > 2 do

4: Each user generates lexicographically ordered r-

combinations of Ck: {T1, . . . , T(|Ck|
r )};

5: for ℓ = 1 :
(
|Ck|
r

)
do

6: niter = niter + 1;
7: Each user in Tℓ temporarily generates Ck+1 from Ck

by merging Tℓ;
8: Each user i ∈ Tℓ compares his utility ui(F

bf(Ck))−
ǫi to ui(F

bf(Ck+1));
9: Increment the number of utility comparisons: Θ =

Θ+
∑

S∈Tℓ
|S|;

10: Each user in Tℓ sends a message to the other users

in Tℓ from the set {M1, M2, M3};
11: if all messages are M1 or M2 and some M1 then

12: Users in Tℓ merge to form a single coalition;

13: Users in Tℓ send M4 to users outside Tℓ;
14: k = k + 1 and r = min{q, |Ck|};
15: Go to Step 4;

16: r = r − 1;

17: Output: Ck,Θ

index which is commonly known to all users. Moreover we

assume that each user knows the members of each coalition

Si, i = 1, . . . , L. In Step 4 in Algorithm 2, each user generates

a list of r-subsets of the indexes {1, . . . , L} of the coalition

structure Ck and these subsets are ordered in lexicographic

order. The generation of this list can be done using the

algorithm provided in [43, Section 4.4]. In this manner, each

user has the same ordered list of the subsets of {1, . . . , L} of

size r. We assume that all users are synchronized in the sense

that the users consider the same element Tℓ of the generated

list for a period of time in which negotiation takes place.

Then, in Step 7 in Algorithm 2, the new coalition structure

Ck+1 is temporarily formed by merging Tℓ. In Step 8, each

user in Tℓ evaluates his utility in the new coalition. In Step 9,

the number of utility comparisons is incremented according

to the number of users in Tℓ. Following Step 8 in which

the utility comparisons are made, in Step 10 each user in Tℓ
communicates one of the following messages to the other users

in Tℓ:

• (M1) ← utility improves

• (M2) ← utility is the same

• (M3) ← utility decreases

• (M4) ← coalition forms

Note that any of the above four messages can be exchanged

between two links requiring two bits of information. In Step

11, the Pareto dominance relation defined in (22) is examined.

If the condition in Step 11 is true then the coalitions in

Tℓ merge and all users outside Tℓ are informed of the new

coalition structure by exchanging the message M4. Algorithm

2 terminates if the grand coalition is formed or if r, the number
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Fig. 4. Average rate of the 8 users in the setting in Fig. 1 using Algorithm 2.
The number under (above) the curve is the number of coalitions with ZF (WF).

of coalitions to merge, is less than two.

Algorithm 2 provides a structured method to find a possible

mergings between coalitions by exploiting the algorithm in

[43, Section 4.4]. The complexity of Algorithm 2 is however

related to the complexity of an exhaustive search with the

restriction on the maximum number of coalitions that can

merge, q.

Theorem 1: The number of iterations of Algorithm 2 is

bounded as niter ∈ O(Kq).
Proof: In the worst case, only two coalitions merge at a

time, i.e. with r = 2, and the two coalitions which merge

are according to the last element in the r-combination list

generated in Step 4 in Algorithm 2. In addition, in worst case

this described behaviour occurs for every merging occasion

until the grand coalition forms. Accordingly, the worst case

number of iterations of Algorithm 2 is given as:

niter ≤W (K, q) :=
∑K−2

i=0

∑min{q,K−i}

j=2

(
K − i

j

)

︸ ︷︷ ︸

=D(K−i,q) in (23)

, (28)

where the first summation in (28) accounts for the maximum

of K − 1 merging of two coalitions before the grand coalition

forms and the second summation corresponds to the worst

case number of iterations within the while loop in Step 3 of

Algorithm 2 before exactly two coalitions merge. The binomial

coefficient
(
K−i
j

)
is the worst case number of iterations within

the for loop before the if condition in Step 11 is true

according to which coalition merging occurs. From Lemma

1 and observing that i = 0 in (28) admits the largest growth

for the upper bound, we obtain the complexity result.

Accordingly, Algorithm 2 has polynomial time complexity

for fixed q. The worst case number of iterations W (K, q) in

(28) is illustrated in Fig. 3.

V. NUMERICAL RESULTS

We first consider the setting with 8 links in Fig. 1. Using

the coalition formation algorithm in Algorithm 2, the average

user rate is plotted for increasing SNR in Fig. 4 where we

set q = 8 and ǫ = 0 as input to the algorithm. In the
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Fig. 5. User rates at 25 dB SNR.

low SNR regime, single-player coalitions exist supporting

Proposition 2. Note that in the low SNR regime, the outcome

with joint MRT is efficient [15]. In the mid SNR regime,

coalition formation improves the joint performance of the

links from the Nash equilibrium. Optimal average user rate

is obtained using the monotonic optimization algorithm from

the supplementary material of [7]. There, the beamforming

space is not restricted to ZF or WF scheme. The average user

rate in Nash equilibrium saturates in the high SNR regime.

This is contrary to ZF and WF coalition formation where the

average user rate increases linearly due to the formation of

the grand coalition. The formation of the grand coalition in

the high SNR regime supports Proposition 1.

Comparing the WF and ZF schemes, it is observed in

Fig. 4 that with WF precoding, larger coalitions form at

lower SNR values than with ZF beamforming. As a result,

higher average user rate gains are achieved with WF coalition

formation than with ZF coalition formation. For example, at

SNR = 25 dB, the coalition structure with WF precoding is

{{1, 3, 4, 5, 6, 7, 8}, {2}}while the coalition structure with ZF

beamforming is {{1, 3}, {2}, {4, 5, 6, 7, 8}}. Observe that the

coalition {4, 5, 6, 7, 8} is the cluster of links in the bottom

right side of Fig. 1. This set of links form a single coalition

to reduce the interference between one another. The achieved

user rates at 25 dB SNR are shown in Fig. 5. For user one,

it is observed that optimal beamforming reduces his utility

compared to the Nash equilibrium. Hence, the maximum sum

rate beamforming strategy is not acceptable for player one and

consequently the maximum sum rate strategy is not stable for

joint cooperation. For both WF and ZF schemes, player two is

in a single-player coalition. However, his rate in both schemes

is higher than in Nash equilibrium. This reveals that in this

case, the formed coalitions outside {2} have positive effects

on player two.

In the following figures, we consider 8 users with 8
antennas each and we average the performance over 103

random channel realizations. First, in Fig. 6 - Fig. 9 we

compare the performance of WF and ZF coalition formation

for different values of q. We also relate and compare our

results to the coalition formation algorithms in [26] and [30].

Then, in Fig. 11 - Fig. 13 we plot the performance of coalition



10

-20 -10 0 10 20 30 40
0

2

4

6

8

10

12

14

signal-to-noise ratio [dB]

av
er

ag
e 

us
er

 r
at

e 
[b

it/
s/

H
z]

 

 
q = 8, bf = ZF 

q = 8, bf = WF

q = 4, bf = ZF

q = 4, bf = WF

q = 3, bf = ZF

q = 3, bf = WF

q = 2, bf = ZF

q = 2, bf = WF

Nash equilibrium

Fig. 6. Comparison of average user rates achieved with Algorithm 2 for
different values of q. The overhead is set to ǫ = 0.

-20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

signal-to-noise ratio [dB]

av
er

ag
e 

us
er

 r
at

e 
[b

it/
s/

H
z]

 

 

q = 3, bf = ZF

q = 3, bf = WF

q = 2, bf = ZF, recursive core [26]

q = 2, bf = WF, recursive core [26]

bf = ZF, individual stability [30]

bf = WF, individual stability [30]

Nash equilibrium

Fig. 7. Comparison of average user rates achieved with Algorithm 2 and
coalition formation algorithms from [26] and [30]. The overhead is ǫ = 0.

formation for two overhead models defined in (29) and (30).

In Fig. 6, the average user rate is plotted for different values

of q. The parameters q influences the deviation rule as defined

in Definition 3 and specifies the largest number of coalitions

which are allowed to merge in one iteration of Algorithm 2. It

is shown that as q increases, higher performance is obtained.

Interestingly, although the number of iterations of Algorithm 2

is not restricted, performance loss still occurs for smaller q.

In Fig. 7, we compare our algorithm with the algorithms

in [26] and [30, Algorithm 1]. Note that the system models

and cooperation models in [26] and [30] are different than

ours. In [26] cooperation between a set of base stations is

based on network MIMO schemes which require exchange

of user data between the transmitter. In [30], a MIMO inter-

ference channel is considered and cooperation in a coalition

is according to ZF transmission. In the proposed coalition

formation algorithm in [26], the deviation rule is based on

merging of two coalitions, i.e., corresponds to 2-Deviation

in Definition 3, and the comparison relation is according to

2-Dominance in Definition 4. Hence, the algorithm in [26]

corresponds to our algorithm with q = 2, and the authors

prove that the resulting coalition structure lies in the recursive

core of their coalition formation game. In Fig. 7, the average
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Fig. 8. Comparison of the average number of coalitions obtained by
Algorithm 2 for different values of q.
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Fig. 9. Comparison of the average number of utility comparisons Θ required
by Algorithm 2 for different values of q.

performance of the links for q = 2 is less than for q = 3
and is higher than for [30, Algorithm 1] which is based on

individual stability. In Fig. 7, it is shown that the average

performance of individual stability is slightly higher than in

Nash equilibrium. Note however that the performance of [30,

Algorithm 1] can be significantly improved for sufficiently

large number of antennas at the transmitters.

Fig. 6 and Fig. 7 lead us to the conclusion that in

multi-antenna interference channels, performance improve-

ment through cooperation with ZF or WF beamforming de-

pends greatly on the number of users that are allowed to

deviate and cooperate at a time.

In Fig. 8, the average number of coalitions obtained from

Algorithm 2 are plotted and compared to [30, Algorithm 1].

The average number of coalitions with the ZF beamforming

scheme is larger than with the WF beamforming scheme,

i.e., with WF more coalitions merge than with ZF. At low

SNR, single player coalitions exist with ZF beamforming.

This illustrates the result in Proposition 2. Since, WF beam-

forming converges to MRT beamforming at low SNR, we

observe that in this SNR regime some coalitions form with

WF beamforming. As q increases, the average number of

coalitions decreases. This explains the performance loss in

Fig. 6. Both, WF and ZF coalition formation obtain the same
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Fig. 10. Comparison of the average number of utility comparisons Θ required
by Algorithm 2 for different values of q.

number of coalitions for the same q at high SNR. This is

because WF beamforming converges to ZF beamforming in

this SNR regime. Coalition formation with [30, Algorithm 1]

leads to high average number of coalitions which means that

the number of users that cooperate is small.

In Fig. 9, the average number of utility comparisons during

Algorithm 2 is plotted for different q. Note, that Algorithm 2

starts in single-player coalitions and the users initially search

for the largest number of coalitions to merge. The number

of utility comparisons Θ during the search is specified in

Step 8 in Algorithm 2 and corresponds to the total number of

utility comparisons the users need to do before the algorithm

converges. It is shown in Fig. 9 that the WF scheme requires

generally much lower number of utility comparisons than the

ZF scheme. The reason for this is with the WF scheme more

coalitions merge than with the ZF scheme according to Fig. 8

which leads to faster convergence rate of Algorithm 2 with

WF beamforming than with the ZF scheme. The number of

utility comparisons Θ generally decreases for smaller q since

the number of possible deviations decreases. For a specific q,

it is observed that Θ is not monotonic with SNR. With ZF

beamforming, the number of utility comparisons increases at

around −5 dB SNR and afterwards decreases. The reason for

this behavior is at very low SNR no coalitions merge and hence

Algorithm 2 terminates after searching over all merging pos-

sibilities of single-player coalitions. At around −5 dB SNR,

a small number of coalitions merge and hence Algorithm 2

requires additional iterations to search for possible merging in

the new coalition structure. Since the number of coalitions that

merge is small, the number of comparisons is large. At larger

SNR, the number of coalitions that merge increases and hence

the coalitions are found faster than at smaller SNR. At high

SNR, the grand coalition is then favorable for all the users

and for q = 8 it is possible to build the grand coalition in a

single iteration of Algorithm 2. This is contrary to the case

q < 8 which explains the performance advantage of q = 8.

In Fig. 10, we can see that [30, Algorithm 1] requires a low

number of utility comparisons and hence has low complexity.

For the subsequent plots, we define two overhead models
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Fig. 11. Comparison of average user rates of Algorithm 2 with q = 8 for
the overhead models specified in (29) and (30).
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Fig. 12. Comparison of average number of coalitions resulting from
Algorithm 2 with q = 8 for the overhead models specified in (29) and (30).

to specify ǫ for a given coalition structure C as follows:

ǫi =
|S|
|N |ui(w

bf
1 , . . . ,w

bf
K), i ∈ S,S ∈ C, (29)

ǫi =
1

|N |ui(w
bf
1 , . . . ,w

bf
K), for all i ∈ N , (30)

with bf = {ZF,WF}. According to (29) and following the

comparison relation in (22), the overhead for a user which

examines whether to join a coalition S increases with the

size of S. In (30), the overhead is assumed to be fixed. In

both overhead models in (29) and (30), we assume that the

overhead is proportional to the utility in the grand coalition

since it corresponds to the largest overhead needed to examine

whether the grand coalition forms.

In Fig. 11 - Fig. 13, we set q = 8 and plot the performance

of Algorithm 2. In Fig. 11, the average user rate in both ZF

and WF schemes is similar with both overhead models in (29)

and (30) and no overhead (ǫi = 0). With ZF beamforming, it is

shown that higher average user rate improvement is achieved

for larger overhead. The explanation of this effect is that

with larger overhead more coalitions merge as is shown in

Fig. 12. With WF coalition formation, it is shown that with the

proposed overhead models, the grand coalition always forms

in the simulation setup.

In Fig. 13, the average number of utility comparisons Θ
required during Algorithm 2 is plotted. With WF beamform-

ing, Θ is very low which reveals that the WF beamforming
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Fig. 13. Comparison of average number of utility comparisons Θ in
Algorithm 2 with q = 8 for the overhead models specified in (29) and (30).

scheme requires less complexity in coalition formation than

ZF beamforming. Generally, with ZF beamforming and higher

overhead, the number of utility comparisons decrease. This is

observed after approximately −2.5 dB SNR. At low SNR,

the number of utility comparisons are larger including the

overhead compared to no overhead because a small number

of users merge to form coalitions as is shown in Fig. 12.

Consequently, a larger number of searches during Algorithm 2

is required. In comparison to no overhead, it can be observed

that the maximum number of utility comparisons shifts to the

left on the SNR axis as the overhead increases.

VI. CONCLUSIONS

We study cooperation in the MISO IFC using coalitional

games. A transmitter’s noncooperative transmission strategy

is MRT. We consider ZF or WF precoding for cooperative

user transmission in a coalition. The necessary and sufficient

conditions under which all users profit from joint cooperation

with ZF are characterized. It is shown that incorporating

an overhead in deviation of a coalition enlarges the set of

conditions under which the users have the incentive to coop-

erate compared to the case without considering the overhead.

Afterwards, we consider coalitional formation games and

propose a distributed coalition formation algorithm based on

coalition merging. The complexity of the algorithm is tuneable

and its implementation requires two-bit signalling between

the transmitters. We prove that the algorithm terminates in

polynomial time and generates a coalition structure in the

coalition structure stable set. The performance improvement

of the links through cooperation with simple distributed trans-

mission schemes is achieved and depends on the complexity

for coalition deviation and user-specific overhead measures.

As future work, we will extend the current work to consider

multiple antennas at both the transmitters and receivers. More-

over, we will generalize to multi cell settings in which multiple

receivers are associated with each transmitter. Significant to

study for these settings is the appropriate design for the

cooperative precoding schemes used within the coalition. Nev-

ertheless, our interest is also to investigate different solution

concepts for coalitional games in partition form and also to

draw comparisons between them.

TABLE I
CASE STUDY FOR ANALYSING THE QUADRATIC EQUATION IN (33).

Case I ǫi = 0
Case II ǫi > 0 and ∆i,S < 0
Case III ǫi > 0 and ∆i,S ≥ 0 and σ2

1
+ σ2

2
≤ 0

Case IV ǫi > 0 and ∆i,S ≥ 0 and σ2

1
+ σ2

2
> 0

APPENDIX A

PROOF OF PROPOSITION 1

Considering an arbitrary player i in an arbitrary coalition

S, we write the condition in (10) as

log2

(

1 +
|hH

iiw
ZF

i→S |2
σ2 +

∑

j∈N\S |hH
jiw

MRT

j |2

)

− ǫi

≤ log2

(

1 +
|hH

iiw
ZF

i→N |2
σ2

)

, (31)

which is equivalent to

1 +
Ai,S

σ2 +Bi,S
≤ 2ǫi + 2ǫi

Ci

σ2
, (32)

where the introduced notations Ai,S , Bi,S , and Ci are given

in (14c) and (14d) in Proposition 1. Cross multiplying (32)

and solving for σ2 we get the following condition

f(σ2) ≥ 0, σ2 > 0, (33)

where f(σ2) := (2ǫi − 1)(σ2)2 + (2ǫi(Bi,S + Ci)− (Bi,S +
Ai,S))σ

2 + 2ǫiCiBi,S . In order to analyze (33), a case study

is summarized in Table I and illustrated in Fig. 14.

If ǫi = 0, then f(σ2) in (33) is a straight line as in Case I

in Fig. 14. The condition in (33) reduces to

(Ci −Ai,S)σ
2 + CiBi,S ≥ 0, (34)

σ2
0 :=

CiBi,S

Ai,S − Ci

≥ σ2 > 0, (35)

and corresponds to the shaded region in Fig. 14.

If ǫi > 0, and having (2ǫi −1) > 0 then the quadratic poly-

nomial f(σ2) in (33) describes a parabola with a minimum

and opens upwards as illustrated in Cases II-IV in Fig. 14. If

the minimum of the parabola is strictly larger than zero (Cases

II in Fig. 14), then the quadratic equation has no real roots

and the discriminant of f(σ2) is negative, i.e.,

∆i,S := (2ǫi(Bi,S + Ci)− (Bi,S +Ai,S))
2

− 4(2ǫi − 1)2ǫiCiBi,S < 0. (36)

If (36) is satisfied, so is the condition in (33) for any 0 < σ2 <
∞ because the entire parabola has strictly positive values.

For ∆i,S ≥ 0, f(σ2) in (33) has two real roots which

corresponds to Cases III and IV in Fig. 14. Then condition

(33) holds for

σ2 ≤ σ2
1 or σ2 ≥ σ2

2 and σ2 > 0, (37)

where σ2
1 and σ2

2 are the roots of f(σ2) in (33) given as

σ2
1 =
−Ψi,S −

√
∆i,S

2(2ǫi − 1)
, σ2

2 =
−Ψi,S +

√
∆i,S

2(2ǫi − 1)
. (38)
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Fig. 14. Illustrations for the case study of the quadratic inequality in (33).

with Ψi,S := (2ǫi(Bi,S + Ci)− (Bi,S +Ai,S)) ≥ 0.

The product of both roots is [42, 3.8.1]: σ2
1σ

2
2 =

(2ǫiCiBi,S)/(2
ǫi − 1) ≥ 0. Thus, both roots have the same

sign. In order to determine whether both roots are negative or

positive we study their sum. The sum of the roots is less than

or equal to zero if and only if

Ψi,S := (2ǫi(Bi,S + Ci)− (Bi,S +Ai,S)) ≥ 0. (39)

Under the above condition, (37) is satisfied for any 0 < σ2 <
∞ because the largest root is negative.

In Case IV, the sum of the roots in (38) is strictly positive.

This is satisfied if and only if

log2 (Bi,S +Ai,S)− log2 (Bi,S + Ci) > ǫi. (40)

In this case, the condition in (37) is illustrated in the shaded

areas in Case IV in Fig. 14.

Note that Cases I-IV are all possibilities to study (33)

associated with a user i in coalition S. Combining Cases I-IV,

we formulate the lower and upper bounds on σ2 for a specific

user i in a coalition S in (13) and (12), respectively. Since

the derived conditions in (37) must hold for all players and

all coalitions, we must take the maximum over all players and

all coalitions on the lower bound σ2
2 (largest root of f(σ2) in

(33)) and the minimum over all players and coalitions for the

upper bound σ2
1 (smallest root of f(σ2)).
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