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Abstract—The operation of Combined Heat and Power (CHP)
systems in liberalized electricity markets depends both on uncer-
tain electricity prices and uncertain heat demand. In the future,
uncertainty is going to increase due to the increased intermittent
power induced by renewable energy sources. Therefore, the need
for improved planning and bidding tools is highly important for
CHP producers. This paper applies an optimal bidding model
under the uncertainties of day-ahead market prices and the heat
demand. The problem is formulated in a stochastic programming
framework where future scenarios of the random variables are
considered in order to handle the uncertainties. A case study is
performed and conclusions are derived about the CHP operation
and the need for heat storage.

Index Terms—Combined Heat and Power, CHP, bidding
curves, stochastic programming, operation planning

I. INTRODUCTION

Combined Heat and Power (CHP) systems are widely used
in cases where there is a need for electric power and heat at
the same time. Traditionally such systems find application in
the industry and in district heating networks. More recently
small CHP systems, called micro CHP, are being installed in
commercial and residential buildings. Compared to conven-
tional power plants, CHP systems achieve a higher efficiency,
resulting in reduced fuel consumption and exhaust gas emis-
sions. This is the reason why they are actively promoted in
Europe [1] and other countries. As the use of CHP spreads,
the optimal operation of such systems becomes more important
in achieving lower production costs and better utilization of
the produced energy. The interdependence, however, between
heat and power generation increases the complexity of the
production planning.

Various models have been proposed for the CHP production
planning. Some of the initial related works are [2] and [3]. The
realistic modeling of the CHP operation, results in the most
cases in a non-linear mixed integer optimization problem with
constraints. Therefore, there isn’t a simple method used to
solve the problem. Instead many methods, from priority list
and Lagrange relaxation [4], to genetic algorithms and other
bio-inspired techniques [5] have been used so far.

The electricity market liberalization has introduced many
uncertain factors in the production scheduling of power sys-
tems. To minimize the operational risk uncertainties must
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be handled properly. For that reason tools like stochastic
programming are used to incorporate all these uncertainties. In
the stochastic programming framework uncertain parameters
are treated as stochastic variables and are usually represented
in scenarios. The solution provided is optimal for all the sce-
narios weighted by their probability of occurrence. Although
there is extensive literature utilizing stochastic programming
in conventional, hydro and res power systems, this is not the
case for the CHP systems. This is probably due to the fact,
that CHP plants till recently were operating with fixed heat
load and the power was considered as a byproduct sold at
a fixed price. However, the deregulation of power markets,
allows CHP systems to take advantage from their inherent
flexibility and schedule the power production in a way to
achieve higher profits. That makes stochastic programming
an important tool in CHP operation planning. Some relevant
works incorporating stochastic programming in CHP planning
can be found in [6] and [7]. In a recent work [8], authors use
dynamic programming to handle the uncertainties of trading
on multiple power markets. The reader is also referred to [9]
and [10] for further reading on short-term operation planning
of CHP systems.

The aim of this paper is to provide a model used by
CHP producers for constructing bidding curves in day-ahead
electricity markets. Stochastic programming is used to incor-
porate the uncertainties. The stochastic parameters include the
day-ahead electricity prices and the heat demand which are
modeled through a number of scenarios. The proposed model
is formulated as a two stage mixed integer linear programming
problem.

The following sections are organized as follows: Section II
describes how uncertain parameters are modeled in a stochastic
programming framework. This is specifically done for a) day-
ahead electricity prices and b) heat demand in a district heating
network. Section III provides the mathematical formulation of
the model. In section IV a case study is presented based on
realistic data and finally a concluding discussion is provided
in section V. For reference, the nomenclature used throughout
this paper is provided in the appendix.

II. MODELING CHP UNCERTAINTIES

Within a stochastic programming modeling framework
stochastic processes are represented by scenario trees [11].


mailto:iliasd@kth.se
mailto:amelin@kth.se
www.swegrids.se

A scenario tree can be seen as a set of nodes and arcs
(Fig. 1). Nodes constitute the time points where decisions
are taken and the arcs represent the possible realizations of
the random variables. The first node on the left is called
root node and represents the point at the beginning of the
planning horizon where a decision is made without any of the
uncertain parameters having been realized. This is the first-
stage decision. The nodes on the right are called leaves and
represent the points where second stage decisions are made
with full information about the value of the uncertain param-
eters. If the decision framework consists of more stages then
the decision tree is formulated in a suitable way (multistage
stochastic programming problem). Each path that connects the
root node with a leaf is named scenario. The construction of
the scenarios and the formulation of the decision tree is an
important and difficult task within the stochastic programming
framework. There are many techniques used to construct
scenarios of random variables. In this paper a model of each
uncertain parameter is formulated based on time series analysis
of historical data. Then a Monte Carlo simulation is used to

produce the scenarios.
First stage Second stage
decision decision

Realization of stochastic process

Figure 1. Scenario tree for two-stage decision making problems

A. Electricity prices

Electricity prices in day-ahead electricity markets (or spot
markets) are characterized by volatility and periodicity. Fig.
2 depicts on the left side the time series of electricity prices
in Elspot day-ahead electricity market [12] for a week’s (168
hours) period. Prices range from approx. 20 to 40 € /MW h and
the changes are very frequent showing their volatile nature.
A diurnal pattern can also be seen meaning that there is a
periodicity of 24 hours. This is clearer in the autocorrelation
function (ACF) on the right side of fig. 2. This function shows
a strong correlation between the current price value and the
values of the prices 1-3 hours ago and 24 hours ago (lags
1-3 and 24 respectively). Apart from the diurnal pattern, day-
ahead electricity prices usually present weekly and seasonal
patterns.

To make electricity price scenarios a forecasting model
needs to be built. Many techniques have been used to forecast
electricity prices. Among them we can find artificial neural
networks [13], time series models [13][14], and hybrid models
[15][16]. In this paper we build a SARIMA time series model
based on historical data of the Elspot day-ahead electricity
market. SARIMA models are suitable for fitting non stationary
data with some degree of seasonality. A SARIMA model can
be formulated in the following form:

¢p(B)®(B)(1 - B)P(1 - B%)y = 04(B)O(B)ey (1)
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Figure 2. Spot market prices (left) and autocorrelation function (right)

where y; is the electricity price at time ¢, ¢,(B) and 0,(B)
are the autoregressive (order p) and moving average (order
q) functions of the backshift operator B : Bly, =
respectively, ®(B) and ©(B) the seasonal autoregressive and
moving average functions respectively, D the nonseasonal
integration degree, s the order of seasonality and ¢; the error
term.

Box-Jenkins methodology is used for building a qualitative
forecasting model [17]. This is a trial and error process
consisting of four steps:

1) Model identification: After applying the logarithmic
transformation and integrating the time series as many
times needed to become stationary, the autocorrelation
(ACF) and partial autocorrelation functions (PACF) are
used to select the orders of p, ¢ and s.

2) Model estimation: Given the orders of the model from
the previous step, a least squares or maximum likelihood
method is used to estimate the parameters of the model.

3) Diagnostic checking: In this step the residuals error is
checked whether it is a white noise process. There are
also some tests that can be used in order to check the
fitness of the model. These are the Bayesian information
criterion (BIC) and the Akaike information criterion
(AIC). If the tests fail then the modeler goes back to
the first step and modifies the initial model.

4) Forecasting: After the model has been fitted to the
historical data, it can be used to forecast future values
of the time series.

We apply the previous steps on historical data from Elspot
day-ahead electricity market. The SARIMA forecasting model
which is derived has the following form:

(1 — 1B — p2B?) (1 — 923 B% — 94 B*') (1 — BY)
x(1— B*)log (y:) = (1 — 6:B* — 0,B% — 03B — 6, B*
—95B5> X (1 — 923323 — 024324 — 925325 — 91683168) Et

)

The prediction performance of the model can be measured
in different ways. One is to compare the model with other
competing models that are known to work in a reliable manner.
The other way is the use of some measures of performance.
The most common of them are the mean square error (MSE)



and the mean absolute percentage error (MAPE) which are
calculated by:

1 N\ 2
MSE =~ ; (Xt _ Xt) 3)

N A~
X - X,
MAPE = — ?:1 X, “)

where X; is the actual value and Xt the forecasted value.
The proposed model achieves an average daily MAPE score
of 4.04%.

After having built the price model, the next step is to make
the price scenarios. Monte Carlo simulation is applied for that
purpose. The Monte Carlo method simulates sample paths by
taking random error terms €; from a Gaussian distribution with
zero mean. This procedure, applied for 24 sequential steps,
gives a scenario of 24 day-ahead hourly prices. The simulation
is applied many times until the desired number of scenarios
is reached [11]. In fig. 3 five day-ahead price scenarios are
shown. The actual price series is also plotted.
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Figure 3. Five spot market price scenarios produced using a Monte Carlo
simulation method. Actual prices are plotted with a dashed line

Functions from Matlab Econometrics Toolbox [18] are used
to apply the previous steps for price modeling and scenario
making.

B. Heat demand

The heat demand in a district heating network constitutes
an uncertain parameter that the CHP operator has to take into
account in order to make optimal operational decisions. It is
characterized by lower volatility compared to electricity prices.
This is apparent in fig. 5 where the hourly heat demand for a
specific day is plotted with a dashed line. It is also apparent
in the ACF in fig. 4 where the current heat demand is strongly
correlated to the heat demand of previous hours which means
that there aren’t any steep changes. In the ACF a 24 hour
periodicity can also be seen. This diurnal pattern is caused
by people’s social behavior. However, the most characteristic
property of heat demand is its correlation with the outdoor
temperature. In fig. 4 we plot the average heat demand for
the Stockholm area during a month’s period and the average

daily outdoor temperature during the same period. It is clear
that there is a strong negative cross correlation between these
two parameters. That means the prediction of the outdoor
temperature can be used as an external variable to the heat
demand prediction, practice that is usually applied in various
forecasting techniques. Among them, we can find from simple
forecasting models like in [19], to artificial neural networks
[20] and time series models [21].
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Figure 4. Average daily heat demand (upper left), ACF (upper right),
average daily outdoor temperature (lower left) and cross correlation function
(lower right)

In this paper we build a SARIMAX model to forecast next
day’s hourly heat demand. The procedure followed is the same
as in the electricity price modeling with the difference that the
outdoor temperature is included in the model as an external
variable. The general form of the SARIMAX model is:

Pp(B)®(B)(1 = B)P (1 — B*)y = B, + 0,(B)O(B)e;
5)

where y; here is the heat demand and z; is the outdoor
temperature. Because of their strong cross correlation at lag
0 (fig. 4) only the temperature at current hour is taken into
account and not at previous hours. The rest terms are exactly
the same as in (1). Because of the unavailability of hourly
outdoor temperatures, daily average values are used instead,
which are considered fixed throughout the whole day. That
means the accuracy of the model is not as high as if hourly
temperatures were used. Furthermore, unlike in reality, actual
and not predicted values of outdoor temperatures are used.
However, the purpose of the model is to make some heat
demand scenarios for the formulation of the problem and the
accuracy is not the most important factor in this paper.

The proposed heat demand forecasting model is given by:

(1—@1B' — p2B?) (1 — puB?*) (1 - B') (1- B*)y,
= ﬁ.]?t + (1 — 9131 — 9232 — 9333)
X (]. — 921321 — 924324 — 045345 — 948348 — 969B69) Et

(6)

The average daily MAPE score of the model is 3.12%. To
produce the heat demand scenarios a Monte Carlo simulation



is applied, too. Five heat demand scenarios for the next day
are depicted in fig. 5. The actual heat demand is also depicted
with a dashed line.
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Figure 5. Five heat demand scenarios for the next day produced using a
Monte Carlo simulation method. Actual prices are plotted with a dashed line

III. PROBLEM FORMULATION

As stated in the introduction, the bidding decision frame-
work of a CHP producer in day-ahead electricity markets
is formulated as a two stage stochastic mixed integer linear
programming problem. The stochastic parameters are the day-
ahead electricity prices and the hourly heat demand during the
next day. The first stage decision variable is the power volume
which is going to be offered at a specific price to the day-ahead
market. This decision is taken by the producer before noon the
day before the power delivery. The second stage decisions are
the unit commitment and heat dispatch decisions which are
taken before the actual production. The scenario tree of the
model is depicted in fig. 6. Two things have to be commented
here. The first is that the model would be more realistic if
it was formulated as a three stage problem where the second
stage decision would be the unit commitment and the third
stage decision would be the heat dispatch. This model would
follow the exact decision framework where unit commitment
is decided some hours before the power dispatch because of
the start-up process and the actual heat demand is not known
to the operator. But this formulation applied here, apart from
providing a simpler model to solve, it is also not too far from
reality because the second stage decision is taken very close
to power dispatch and the heat demand can be considered
fixed in that moment. The second comment is related with the
structure of the scenario tree. First stage decisions are taken
before any stochastic parameters have been realized and are
not related to them. That’s why there is usually one root node
in the scenario tree as in fig. 1. Here a methodology described
in [11] is followed in order to obtain the bidding curves in day-
ahead electricity markets. According to this, the uniqueness of
the root node is relaxed as seen in fig. 6. That means the power
volume that is offered to the spot market is not unique but it
depends on the electricity price scenarios. This is done because
it is not adequate for a producer to determine a single quantity
of power to be traded in the market, but instead a different
quantity is offered for every possible price realization. This

technique seems to split the initial scenario tree (fig. 6, dashed
lines) into many different sub-trees resulting in many sub-
problems which can be solved independently. This is not true
because the requirement for ascending bidding curves imposes
a constraint that doesn’t allow the independent solution of the
sub-problems.
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Figure 6. Scenario tree of the proposed model

The objective function of the problem is to maximize the
net profit of the CHP producer for all possible scenarios (7).
Every scenario’s profit is equal to the revenue obtained from
trading in the day-ahead market minus the production cost for
the scenario. The production cost consists of the operation cost
and the cost of starting-up the units. The revenue from selling
the heat produced is not included in the objective function as
it is fixed and doesn’t change the optimal solution. The net
profit is the summation of these scenario dependent profits
multiplied with their own probability of occurrence.

Maximize :

No Nt Ng

Z Tw Z Z ()\elﬁtwpgtw -

w=1 t=1g=1

()‘f,nguel,gtw + Cstart,gygtw))
@)

The constraints of the problem are related to the structure
of the scenario tree as explained previously, the operational
limits of the units, the heat balance and the on/off status
and minimum up/down times of the units. The non-decreasing
constraint (8) ensures the ascending order of power bids and
the non-anticipativity constraint (9) ensures common power
offers for the same price scenario.

Pgtw < Pgtw’ v.gthavwa W' ’Lf )‘el,tw < A.el,tu.z’

®)

Pgtw: gtw+1 Vgthaw:]-7“'7NQ_]- :

€))

Zf >\el,tw = )\el,thrl

Regarding the operational limits of the units, these are
depended on the type of the units operating in the CHP system.
Back-pressure steam turbines are used when there is a need
for simultaneous power and heat production, since these two



quantities can only be produced in a constant power-to-heat
ratio (11a). The operation cost is proportional to the fuel
consumption. Since power and heat are strongly connected, the
fuel consumption depends only on the produced power (10).
The fixed term [y, expresses an additional cost at minimum
power production and is the result of the linearization of the
function. The upper and lower limits are described by (12).
The same equations are also valid for gas furbines which are
usually used in smaller CHP systems. Heat produced by gas
turbines is extracted from the exhaust gases by means of a heat
exchanger. Alternatively heat in exhaust gases can be directly
released to the environment through some auxiliary cooling
system. If such an auxiliary cooling system is present then
the relation between power and heat production is given by
(11b).

Proel,gtw = Bet,gPytw + Bo,gUgiw Vg,V Yw  (10)
Pyt =714Qgts Vg, Vt,Vw (11a)
Py > 1¢Qgtes Vg,V Vw (11b)
Priin,gUgtw < Pgiw € Pras,gUgtw Vg, Vt, Vw (12)

Extraction condensing steam turbines are characterized for
their flexibility. They offer the possibility to extract steam
from different stages of the turbine. That means heat and
power production are not strongly connected by a constant
power-to-heat ratio as in the case of back-pressure steam
turbines. Instead, the turbine can operate inside a feasible
operation zone which is described by (14-17) and depicted
in fig. 7 (Lines 1-4 respectively). This is the reason why
this kind of turbines is frequently used in CHP systems. The
fuel consumption (13) depends both on the power and heat
produced.

Pfuel,gtw = ﬁel,gpgtw + Bth,gQgtw + ﬁO,gugtw

(13)
Vg, Vt,Vw
6el,gpgtw + Bth,gQgtw < 6el,gpmax,gugtw Vgthvvw
(14)

ﬂel,gpgtw + ﬁth,gQgtw = (ﬂel,g + B‘hrg/nnm,g) Pmin,gugtw

Vg, Vt,Yw
(15)
Qgtw < Qmax,g V.%Vta Yw (16)
Pgtw > Tmin,gQgtw v97Vt7vw (17)

Heat producing boilers are often included in CHP systems
to cover peak heat demand. Boiler’s efficiency n relates the
fuel consumption with the produced heat (18). The unit limits
are also applied (19).

Pfuel,gtw = Q;;;w Vg,Vt,Vw (18)

Feasible operation zone

Power (MW)

80

2
23

2
8

»
8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
Heat (MW)

Figure 7. Feasible operation zone of an extraction condensing turbine:
1. Line of maximum injection of fuel, 2. Line of minimum injection of fuel,
3. Line of maximum heat flow and 4. Line of minimum power-to-heat ratio

sz’n,gugtw < Qgtw < Qmaac,gugtw Vg, Vt,Vw (19)

There is also the possibility for the heat to be stored in heat
storage tanks. This unit increases the flexibility of the CHP
system as heat can be stored for later use. The only limitation
here is the tank’s capacity (20).

Viw < Vinaz  Vt,Vw (20)

The heat balance constraint is necessary to determine how
much heat is going to be produced during every time period.
This is described by (21a) where in every time period and
scenario the heat content in the storage tank plus the heat
produced by every heating production unit minus the heat
demand equals the tank’s heat content in the beginning of
next time period. If there is no heat storage tank, then the
heat production is restricted to be equal to the heat demand. In
some cases there might be special equipment that enables heat
cooling. Although it makes power production more flexible,
heat cooling is not always allowed because it decreases the
overall efficiency of the plant. When heat cooling exists,
equation (21b) is applied. To determine the heat production
during the last time period, the heat content of the storage
tank at the end of the last period (i.e. the beginning of the
following planning horizon) is defined to be equal to the heat
content in the first period (22). In case the heat is retained for
the following planning horizon, the equality is then replaced
by a lower inequality.

Ng
Vitiw = Vi + ZQgtw - QD,tw t=1,..

g=1

. NT — 1,Vw
(21a)

Ng
‘/t+1w S V;tw"" ZQgtw_QD,tw t:]-v'“vNT_lavw
g=1
21b)



Ng
Vlw = VNTw + Z QgNTw - QD,NTUJ
g=1

.,NT - 1,Vw

(22)
t=1,

The following binary constraints are necessary to model
the start-up and shut-down status of the units (23 and 24).
That means the simultaneous commitment and decommitment
of the units is avoided. In the way these constraints are
formulated, only the on/off status variable u needs to be binary.
The variables y and z referred to start-up and shutdown status
respectively are automatically assigned to binary values.

y < 1-— ugtflwa

ytwgutun ytw>utw_ut71w
g g g g9 g

Vg, Vt,Yw
(23)
Zgtw < Ugt—1w, Zgtw < 1- Ugtw, Zgtw 2 Ugt—1w — Ugtw
Vg, Vt,Vw
(24)

Thermal power plants cannot switch from on to off status
and vice versa very frequently because the risk of component
failures is increased [6]. Therefore minimum operation and
down times are defined to avoid these transitions. The follow-
ing constraints (25-27) are modeling the minimum operation
time:

Lg
(1—ug,) =0 Vg,Vw (25)
t=1
t+UTy—1
TW 2 UT w
Z M atat (26)

Vgt =Ly+1,...,Np —UT, + 1,Vw

2

T

(ugﬂu - ygtw) >0 Vg,t=Np— UT, + 2, oo, Np, YV
27

3
Il
LY

where Ly, = min {Np, (UT, — T, ) ud} is the time in
the beginning of planning horizon that the unit is restricted to
operate.

The same equations also apply for the minimum down time
by changing ugt., 1 — Ugiw, Ygtws UTy, Tgpy with 1 — ugy,,
Ugtw, Zgtw> DTy, Tc?own 9 respectively.

IV. CASE STUDY

In this section a case study is performed in order to verify
the performance of the model. The system consists of an
extraction condensing turbine and a heat boiler that covers the
peak heat load. There is also a heat storage tank. The system
parameters are taken from [6] and are shown in table I.

Data from Stockholm’s district heating network and Elspot
market are used to produce the heat demand and electricity
price scenarios respectively. The scenario tree is constructed
in the way it was explained in the previous section. The heat

Table 1
CHP PARAMETERS FOR THE CASE STUDY

Extraction condensing steam turbine

Fuel Gas

Fuel price, (E/MWh) 11

Min. power output, (MW) 35
Max. power output, (MW) 140
Max. heat output, (MWy,) 200
Marginal fuel consumption for power production 2.4
Marginal fuel consumption for heat production 0.36
Fuel consumption at minimum output, (MW) 40
Minimum power-to-heat ratio 0.5

Start-up cost, (€) 15000
Minimum up time, (h) 6
Minimum down time, (h) 3
Heat boiler

Fuel Gas

Min. heat output, (MWy,) 0

Max. heat output, (MWy,) 80
Efficiency 0.9

Start-up cost, (€) 0

Heat storage tank
Capacity, (MWh/h) 0 - 200

storage capacity for the base case is considered 50 MWh/h
and the average heat demand is 195 MW thermal, close to the
maximum heat output of the steam turbine. The solution of
the problem provides the optimal power volume which will
be produced at a specific hour and for every price scenario.
Putting these volumes in ascending order, we take the bidding
curves for every hour in day-ahead electricity market. In fig.
8 the bidding curves for four different hours are shown.
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Figure 8. Bidding curves for four different hours

In fig. 9 the power/heat production of the steam turbine
and the heat production of the boiler are shown for every
scenario. The four plots correspond to the previous bidding
curves. The conclusion here is that the steam turbine, as it
was expected due to the high heat demand, operates in the
area close to the maximum heat production. Especially for
the bottom left case the heat demand is so high that the
steam turbine provides the maximum heat flow for almost
every scenario. That’s why the corresponding bidding curve



is a straight line. For the rest hours some scenarios allow the
steam turbine to operate in partial heat load which gives the
chance to provide more power. In general these plots show the
interdependence between the power and heat production.
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Figure 9.  Scenario dependent production scheduling of the steam turbine

(black squares) and the heat boiler (blue squares) for four different hours

For further evaluation of the model, three more cases are
examined. In the first case the electricity prices are much
higher compared to the base case, in the second case a storage
tank with higher capacity is added and in the last case a partial
heat load is considered. The energy production of the units for
every scenario and at a specific hour is shown in fig. 10. When
the prices are high the heat production of the boiler is generally
bigger, allowing the steam turbine to provide more power. This
is more obvious in the third case where the heat boiler in
combination with the big storage tank allow the steam turbine
to provide almost the maximum power for specific scenarios.
For the case of partial heat load it might be profitable for few
specific scenarios the operation of the heat boiler.
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Figure 10. Scenario dependent production scheduling of the steam turbine

(black squares) and the heat boiler (blue squares) for four different cases at
a specific hour

The advantage of using a stochastic approach over a deter-
ministic one can be measured with the value of the stochastic
solution (VSS). To obtain the VSS the initial stochastic pro-
gramming problem is solved with the stochastic parameters
replaced by their expected values. The solution to this deter-
ministic problem provides optimal values for the first-stage
variables. Then, the initial stochastic programming problem is
solved again with the first-stage variables fixed to the values
provided by the solution of the deterministic problem. For
a maximization problem the VSS is the difference between
the optimal value of the objective function of the stochastic
programming problem and the optimal value of the objective
function of the modified one. For a minimization problem the
VSS is the opposite. For the base case the optimal value of
the stochastic programming problem is 7353 and the optimal
value of the modified problem is 6918. Therefore, VSS is 435.

Finally, to estimate the value of heat storage capacity, the
problem is solved with various capacities ranging from O to
200 MWh/h. Fig. 11 depicts the change of the net profit
in accordance with the installed capacity. The conclusion is
that a heat storage tank makes the CHP system more flexible
resulting in bigger profits. There is however a limit that above
that there is no much gain to justify the investment of a bigger
heat storage tank. To estimate this exact limit, an economic
analysis needs to be done which will take into account the
installation cost of the heat storage tank and the net present
value of the future profits.
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Figure 11. Profit change in accordance with the heat storage capacity

V. CONCLUSIONS

This work provides a tool for constructing the bidding
curves in day-ahead electricity markets for a CHP producer.
The problem is formulated using the stochastic programming
framework to incorporate the uncertain parameters of the elec-
tricity prices and the heat demand. The resulting optimization
problem is a two stage stochastic mixed integer programming
problem. The first stage variable is the hourly power volume
that will be offered to day-ahead market at a specific electricity
price. The second stage comprises the unit commitment and
power/heat dispatch variables. The model includes a heat
storage tank to estimate the value of the increased flexibility
offered by the use of the tank. The heat storage level at the
end of the planning horizon is assumed to be set by a long-
term planning. Further improvement of the model would be



to use a multi-period approximation in order to deal with this
assumption. The interdependence between the power and heat
production for a CHP system is exemplified with some case
studies. The value of the stochastic solution is also calculated
and the value of the heat storage capacity is estimated.

APPENDIX: NOMENCLATURE

Indices and Numbers:
Index of units, running from 1 to Ng

t Index of time periods in hourly resolution,
running from 1 to Nt
w Index of scenarios, running from 1 to Nq
Parameters
Ael, tw Day-ahead market price in period ¢ and
scenario w, (€/MWh)
Qb tw Heat demand in period ¢ and scenario w,
(MW)
T Probability of occurrence of scenario w
Af,g Fuel price of unit g, (€/MWh)
Cstart,g Start-up cost of unit g, (€)
Bet,g Marginal fuel consumption for power
production of unit g
Bin.g Marginal fuel consumption for heat
production of unit g
Bo,g Fuel consumption at minimum output of
unit g, (MW)
rg Power-to-heat ratio of unit g
Tmin,g Minimum power-to-heat ratio of unit g
Ng Efficiency of boiler unit g

Prin,g, Pmaz,g  Power production limits of unit g, (MW)
Qmin,g, @maz,g Heat production limits of unit g, (MWy,)

Vinaz Heat storage capacity, (MWh/h)
UT, Minimum up time of unit g, (h)
DT, Minimum down time of unit g, (h)
ug, yS, zg Initial state of binary variables wgtw, Ygtw
and zge
Tops Time periods of unitg has been on in the
beginning of the planning horizon, (h)
Té)own’g Time periods of unitg has been off in the
beginning of the planning horizon, (h)
Variables
Pyt Power produced by unit g in period ¢ and
scenario w, (MW)
Qgtw Heat produced by unit g in period ¢ and
scenario w, (MWy,)
Pryei,gtw Fuel consumption of unit ¢ in period ¢ and
scenario w, (MWh/h)
Viw Heat storage content in period ¢ and
scenario w, (MW)
Ugtw Binary variable for the on/off status of unit

g in period ¢ and scenario w

Ygtw Binary variable for the start-up of unit g in
period ¢ and scenario w

Zgtw Binary variable for the shut down of unit g
in period t and scenario w
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