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1. ABSTRACT

In this report, the Fast Fourier Transform is described briefly. An implementation, in
the form of the Fortran code four1, is tested to verify the accuracy. A two-ray model
for wave propagation above a flat earth is discussed. The case with AM modulation is
implemented in a Mathematica script. Calculations of the surface current density, with
the program NERO, are made to test the accuracy. The transient scattering from a PEC
cylinder is studied by means of the code run_nero that runs NERO repeatedly. From a
spectrum calculated in this way, the impulse response is obtained by Fourier inversion.
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3. INTRODUCTION

A very large class of important problems falls under the heading of Fourier transform
methods or spectral methods. The Fourier transform and its discrete versions are effi-
cient computational tools.

The discrete Fourier transform is the estimation of a function based on a finite num-
ber of equidistant sample points. The fast Fourier transform (FFT) is an algorithm to
compute the discrete Fourier transform and its inverse.

In order to maintain reliable radio communication, it is of interest to be able to pre-
dict the performance of the radio channel based on geographical data such as topography
and the properties of the ground/water. One way of doing this is to calculate the impulse
response for a channel with multi-path propagation and a typical modulation. The sim-
plest case with a two-ray model and AM modulation is coded in a Mathematica script.

A test case is that of a plane wave pulse that impinges on a perfectly conducting
cylinder. The numerical solution of the integral equation, for the surface current, is
obtained with the code NERO. This approach is extended to transient scattering by
means of the FFT in order to compute the impulse response for the cylinder. This is a
test case and a preparation for the computation of the impulse response for a realistic
radio channel.
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4. A BRIEF REVIEW OF THE FFT

The FFT relates to two domains, the time domain and a function h(t), and the fre-
quency domain and a function H(f), that are linked by the relations,

(1) H( f ) =
∫

∞

−∞

h(t)e−2πi f tdt

(2) h(t) =
∫

∞

−∞

H( f )e2πi f td f

In applications one may prefer to use the angular frequency ω = 2π f :

(3) H(ω) =
∫

∞

−∞

h(t)e−iωtdt

(4) h(t) =
1

2π

∫
∞

−∞

H(ω)eiωtdω

The function h(t) is sampled with evenly spaced intervals ∆ in time [1]. The intervals
between the points define the sampling rate.
Suppose that we have N consecutive samples, with a sampling rate 1/∆, and want to
estimate the Fourier transform of h(t) based on these samples:

(5) hk = h(tk), tk = k∆, k = 0,1,2, ....,N−1

The discrete Fourier transform of hk for N points is denoted by Hn

(6) Hn =
N−1

∑
k=0

hke2πikn/N

With the complex number W = e2πi/N one obtains,

(7) Hn =
N−1

∑
k=0

W nkhk

The samples hk are multiplied by powers of W in order to produce the Hn. This matrix
multiplication requires N2 complex multiplications, plus a smaller number of operations
to generate the required powers of W.
The discrete Fourier transform can be computed in N log2 N operations with an algo-
rithm called The Fast Fourier Transform or the FFT [1].
The subroutine four1 is a Fortran code to compute the FFT which is written by N.M.
Brenner. The input is an array containing the samples hk or Hn and a parameter that
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specifies if it is the transform or the inverse that is to be computed. There are nn com-
plex data points stored in the real array data. The parameter isign is set to either +1 or
−1. When isign is set to -1, the routine calculates the inverse transform. The integer nn
is the number of complex data points [1]. The actual length of the real array (data) is 2
times nn, with real and imaginary parts occupying consecutive locations.

The real and imaginary parts of the zero frequency component F0 are in data(1) and
data(2); the smallest nonzero positive frequency has real and imaginary parts in data(3)
and data(4). In this manner the first nn positions in data are filled with the nonnegative
part of the spectrum. The negative part is then stored in the remaining nn positions of
data, in reverse order, so that the smallest negative frequency occupies data(nn+1) and
data(nn+2). The largest negative frequency then occupies data(2nn-1) and data(2nn).

I have used the routine four1 to compute the spectrum of a time function, and the
time function from its spectrum. I did some simple tests for the pulse, the sine function
and the Gaussian pulse that have known transforms.

The first example was a simple pulse function specified by the constant c:

(8) h(t) =
{

1 for | t |≤ c
0 elsewhere

From Eq. 3 one obtains,

(9) H(ω) =
1

2π

∫ c

−c
eiωtdt

(10) H(ω) =
c
π

sin(ωc)
ωc

So the Fourier transform of a pulse function is a sinc function. Now by using the sub-
routine four1 we should get the same result. With nn= 256 one obtains Fig. 1.
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(A) A pulse function in the time domain.
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(B) The coresponding Fourier
transform in the frequency do-
main.

FIGURE 1. A Fourier pair with the conventional arrangement of the spectrum.

The second example deals with the sine function and by repeating the same proce-
dure, one obtains a complex spectrum.
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(A) A sine function in the time domain.
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(B) The spectrum of the sine function.
FIGURE 2. A Fourier pair for the sine function.

Another example is the e−t2
functions shown in Fig. 3.
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(A) e−t2
in the time domain.
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(B) The Fourier transform of e−t2

in the frequency domain.

FIGURE 3. A Fourier pair for e−t2
.

In order to obtain the inverse of the result in Fig. 1 one calls the routine four1, with
isign = -1, and obtains Fig. 4:
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(A) The spectrum of the pulse function.
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(B) The inverse of H(ω).
FIGURE 4. The inverse transform, applied to the spectrum of the sinc
function, with 512 samples.

In order to reproduce the original function, a sufficient number of samples is needed,
as illustrated by Fig. 4. The effect of reducing the number of samples is shown in Fig.
5.
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(A) The spectrum of the pulse function.
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(B) The inverse of H(ω) .
FIGURE 5. The inverse transform for the sinc function computed with
256 samples .

It is clear that the pulse function is reproduced with 512 samples and also that 256
samples is insufficient.
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5. OVERVIEW OF THE PROGRAM RUN_NERO

One can describe a full wave electromagnetic simulator in terms of pre-processing,
processing and post-processing [2]. run_nero is a program which is written in fortran
and uses the subrourine four1. In the pre-processing part one specifies the geometry,
the excitation, the operational frequency and the output [2]. By using the graphics tool-
box wxGBTool which is matched to the program NERO one can specify the geometry
using predefined shapes such that circles or polygons. There is also a possibility to
define geometries by introducing a finite number of points in 2D Cartesian coordinates
in a counterclockwise fashion [2]. One can specify objects as PEC (perfect electrical
conductor) bodies or as permeable objects with complex permittivity and permeability.
In NERO one has three source types: plane waves, point sources or gaussian beams.
Plane waves can be either TM or TE in relation to the object. It is possible to specify
a number of sources (an array) for a given geometry. The operating frequency and the
complex permittivity and permeability of the surrounding medium are also given [2].
In wxGBTool one also specifies the output from the NERO solver; each output type
contains many parameters [3]:

1. Line output: has three parameters, point1 (x;y) as starting point of the line, point2
(x;y) as the end point of the line and the number of output points along the line.
2. Circle output: has also three parameters, the centre of the circle (x;y), the radius of
the circle (R) and the number of points on the circle.
3. Bitmap output: has three parameters, lower left point of the bitmap (x;y), upper right
point of the bitmap (x;y) and the resolution X which is the number of the equidistant
points along the x-direction [3].
After specifying the input geometry, the excitation method and the choice of the output
type, one creates two files with wxGBTool. The first one is the input geometry file (.igf)
which contains the geometrical layout of the scene or the tested objects, the illumination
and the required output. The bitmap file created by wxGBTool has the extension (.bdf)
[3]. The next step is to run the program run_nero by using a file (test.igf) to run nero2d
repeatedly for a set of frequencies in order to obtain a doublesided spectrum. This spec-
trum can then be inverted by means of four1. The results are plotted with Mathematica
scripts.
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6. TWO-RAY MODEL FOR PROPAGATION WITH AM MODULATION ABOVE A FLAT
EARTH

The two ray model has two antennas above ground and there is a reflected ray from
the ground. The two ray model assumes that the transmitted wave reaches the (non-
moving) receiver directly through a line-of-site path, and indirectly by perfect reflection
from a flat ground surface [4]. If the links are short we may neglect the earth’s curvature,
so the figure below portrays the geometry involved: the transmitting antenna, located
at the base station, is shown radiating from a height ht above a perfectly reflecting, flat
ground surface. The receiving antenna, a free-space distance d [m] away, is shown
situated at a height hr above the ground [4].

FIGURE 6. Two ray propagation model.

From the figure above, it is clear that:

(11) d1 +d2 =
√

r2 +(ht +hr)2

(12) d2 = r2 +(ht−hr)
2

Then we can rewrite these two equations as the following:

(13) d1 +d2 =
√

d2 +4hthr

(14) d1 +d2 = d

√
1+

4hthr

d2
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Then since hrht � d2 and by using approximations we obtain:

(15) d1 +d2 = d +
2hthr

d

(16) ∆d = d1 +d2−d =
2hthr

d
Where ∆d is the difference between the direct and indirect rays. The typical electric

field appearing at the transmitter is a far-field sinewave at frequency fc with amplitude
ET . In complex notation it is written in the usual form:

(17) Ẽ = ET e jωct

Now by considering the direct wave impinging on the receiving antenna with complex
form is given by:

(18) ẼR,D = ET e jωc(t− d
c )

Where c is the velocity of the light. The indirect wave, assuming perfect reflection at
the ground, appears in a similar form, except that its total distance traveled is d1 + d2,
while with perfect reflection, it undergoes an added π radians phase change[4]. It is thus
written in complex form as:

(19) ẼR,I =−ET e jωc

(
t− d1+d2

c

)
The total received field is the sum of direct and indirect field:

(20) ẼR = ET e jωc(t− d
c )

[
1− e− jωc

(
d1+d2−d

c

)]

(21) ẼR = ET e jωc(t− d
c )
[
1− e− jωc(∆d

c )
]

The received indirect wave is similar to the direct wave but with a phase shift and a
time shift ∆d

c .
These formulas are coded in a Mathematica script (Appendix B). Since one is inter-

ested in the impulse response, one uses the input signal in Figure 7 as an approximate
impulse:

(22) x(t) =
e−(

t
a)

2

a
√

π
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FIGURE 7. The input signal x(t).

To carry out the amplitude modulation for the input signal, one could multiply the
input signal with the carrier signal cos(ωct),

(23) xc(t) = x(t)cos(ωct),

as shown in Fig. 8.
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FIGURE 8. The amplitude modulated signal xc(t).

The reflected signal from the ground/water can be represented by the same input
signal but with a time lag ∆d

c ,
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(24) xd = x(t− ∆d
c
) =

e
−
(

t−∆d
c

a

)2

a
√

π

The Fourier transform of the sum of the direct signal x(t) and the reflected signal, mul-
tipied with a reflection factor Γ, is shown in Fig. 9. Two sidebands appear in Fig. 9. Xs
is given by Eq. 25.

(25) Xs = F [x(t)+Γ xd(t)]

A typical value of Γ is -0.2. The spectrum is shown without the reordering used in
Fig. 1.
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�1.�109
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1.�109

Ω
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FIGURE 9. Xs(ω) is the Fourier transform of the sum of the input signal
x(t) and the reflected signal xd(t).

The function h(t) = t e
−t
τ is the assumed impulse response for the channel and its

Fourier transform H(ω) is the transfer function of the channel.

The output signal in the frequency domain is Ys(ω) and the spectrum is shown in Fig.
10. The spectrum now has three main contributions.

(26) Ys(ω) = H(ω) Xs(ω)
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FIGURE 10. The output spectrum Ys(ω) at the receiver.

Coherent demodulation is obtained by means of multiplication with cos(ωct) in the
time domain. In order to extract the baseband, the signal is transformed and LP-filtered.
The spectrum is multiplied by a window function that extracts the LF-part. A very
narrow band appears in Fig. 11.
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FIGURE 11. The output spectrum after using a LP-filter.

Finally, the output signal can be obtained by taking the inverse Fourier transform of
the output spectrum after using a LP-filter. This signal represents the output signal at
the receiving antenna and differs from the input signal mainly because of the ground
reflection.
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FIGURE 12. The output signal detected at the receiving antenna.

The simple two-ray model for a radio channel is coded in a Mathematica script (see
appendix B).
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7. PLANE WAVE INCIDENT ON A CYLINDER

In order to verify the accuracy of NERO, the computed surface current could be
compared to that obtained with the series solutions for the TM and TE cases.

(27) Kz =
2

πxη

∞

∑
m=0

cosmθ

Hm(x)
2 eimπ/2

(28) Kθ =
2i
πx

∞

∑
m=0

cosmθ

H ′
m(x)

2 eimπ/2

Here, x=ka, with the radius a=1 and the wavenumber k. η is the free space impedance.
The series solution for the TM and TE case at 1 GHz for a PEC cylinder, produce the
surface currents in Fig. 13.
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1.0

1.5
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� Kz � , � KΘ �

FIGURE 13. |Kz| in solid line (TM) and |Kθ | in dashed line (TE), f=1 GHz.

As mentioned in Section 5, NERO is linked to a graphical tool and one can select a
cylinder with unit radius and plane wave incidence. In order to obtain the surface cur-
rent, the H-field close to the surface is computed. The distance to the surface and the
segment length (the number of basis function per wavelength) affects the accuracy.
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Starting with a frequency of 1 GHz, a radius of observation R = 1.01, and a segment
length of 0.05, one obtains the currents in Fig. 14.A and the errors in Fig. 14.B.
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(A) |Kz| in solid line (TM) and
|Kθ | in dashed line (TE).
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�K z , �KΘ

(B) The error |Kz − Kzs| in solid
line, and |Kθ −Kθs| in dashed line.

FIGURE 14. The NERO solution and the errors for f=1 GHz, R=1.01.

When the frequency is increased to 10 GHz the series solution produces the result
shown in Fig. 15.
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FIGURE 15. |Kz| in solid line (TM) and |Kθ | in dashed line (TE), f=10 GHz .
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The corresponding NERO result (R=1.01), in Fig. 16, has very poor accuracy.
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(A) |Kz| (solid) and |Kθ | (dashed).
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(B) The corresponding errors.

FIGURE 16. The NERO solution and the errors for f=10 GHz, R=1.01.

If the radius of observation is reduced to R = 1.001 one obtains Fig. 17.
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(A) |Kz| (solid) and |Kθ | (dashed).
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(B) The corresponding errors.

FIGURE 17. The NERO solution and the errors for f=10 GHz, R=1.001.
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If the radius is reduced further to R = 1.0005 one obtains Fig. 18.
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(A) |Kz| (solid) and |Kθ | (dashed).

0 1 2 3 4 5 6
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Θ

�K z , �KΘ

(B) The corresponding errors.

FIGURE 18. The NERO solution and the errors for f=10 GHz, R=1.0005.

Finally, the segment length is reduced to 0.01 and the result is shown in Fig.19.
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(A) |Kz| (solid) and |Kθ | (dashed),
segment length=0.01.
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(B) The corresponding errors,
with segment length=0.01.

FIGURE 19. The NERO solution and the errors for f=10 GHz,
R=1.0005, segment length=0.01.

In summary, Figure 13 shows a combination of parameters that leads to a mediocre
accuracy. When the frequency is increased (Fig. 14) the accuracy is lost completely.
Reducing the radius, as in Fig. 17, restores accuracy, since a higher frequency requires
that the H-field is calculated closer to the surface. Further reduction of the radius is
beneficial, as shown in Fig. 18. Figure 19 confirms that an increase in the number of
basis functions gives a small improvement.
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8. PULSE INCIDENT ON A CYLINDER

The electromagnetic scattering problem can be interpreted as a linear system with one
input (the incident field) and many outputs (the scattered field at all points in space) [5].
In this section we will study the far field of the scattered field at one point. An incident
plane wave with Gaussian dependence x(t) is assumed to produce an output y(t).

(29) x(t) = (n/π)e(−n2t2)

The frequency response H(ω) for this linear system is simply the ratio of the Fourier
transform of the output to the Fourier transform of the input, i.e.,

(30) H(ω) = e(ω/2n)2
F{y(t)}

where F{y(t)} represents the Fourier transform of the output [5]. The NERO code
was used for most of the spectrum in order to compute the output signal for a number
of equidistant frequency points, i.e. the spectrum Y(f). For low frequencies the series is
used to avoid the low frequency breakdown of the FMM method. The impulse response
y(t) was then obtained by means of the inverse Fourier transform. This result was com-
pared to that obtained with the series solution and the results in [5].
Fig. 20A shows the incident and the backscattered fields for the TM case and Fig.
20B shows the incident and the backscattered fields for the TE case. In Fig. (20) the
time t ′ = 0 corresponds to the time when the peak of the incident pulse would reach
an observer at a distance ρ0, if the incident pulse were reflected from the center of the
cylinder. For this calculation the diameter of the cylinder was taken to be the width of
the incident Gaussian pulse, i.e., n in Eq. 29 takes the value of 2/τ , where τ is the time
required for a wave to travel one cylinder radius. Since a pulse that is reflected back
from the cylinder travels a shorter distance than a hypothetical pulse reflected from the
center, it is expected to arrive at t =−2τ . In the TM case the expected impulse response
has no indication of a creeping wave contribution. In the TE case, the initial pulse due
to specular reflection is followed by a contribution that could indicate surface waves.
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(A) The incident pulse x(t) (gray)
and the backscattered pulse y(t)
(blue) for TM case.
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(B) The incident pulse x(t) (gray)
and the backscattered pulse y(t)
(blue) for TE case.

FIGURE 20. The incident and the backscattered fields.

The frequency response obtained in [5] used the Fourier transform of the approximate
impulse response which had computed numerically and then used Eq. (30) to calculate
the frequency response.
The TM case is formulated in terms of an E-field and the TE case in terms of an H-
field. For the TM case, the total electrical field obtained when a linearly polarized
electromagnetic wave is incident upon a perfectly conducting circular cylinder is the
sum of the incident and the scattered wave.

(31) Ez = eikρ cosθ −
∞

∑
m=−∞

im
Jm(ka)
Hm(ka)

Hm(kρ)eimθ

For the TE case one uses the Hz field.

(32) Hz = eikρ cosθ −
∞

∑
m=−∞

im
J
′
m(ka)

H ′
m(ka)

Hm(kρ)eimθ

Jm(ka) is a Bessel function of order m, and Hm(ka) is a Hankel function of the first
kind and order m.

To compute the scattered field one uses the series part in Eqs. 31 and 32 for each fre-
quency to compare with the results from the NERO code. Fig. (21) shows the frequency
response obtained from the series solution for backscattering for both TM and TE. The
formulation in [6] obtains the H-field all the time while we obtain the E-field for the TM
case and the H-field for the TE case.
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(A) |Es| is the frequency response
obtained from the series solution
for TM case.
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(B) |Hs| is the frequency response
obtained from the series solution
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FIGURE 21. The backscattered frequency response obtained from the
series solution.

Fig. (21) is compared with the results in [5] and gives good agreement for the
backscattered frequency response.
Fig. 22A shows the incident and scattered fields for TM case and Fig. 22B shows the
incident and scattered fields for TE case.
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(A) The incident pulse x(t) (gray)
and the forward scattered pulse
y(t) (blue) for TM case.
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(B) The incident pulse x(t) (gray)
and the forward scattered pulse
y(t) (blue) for TE case.

FIGURE 22. The incident and the forward scattered fields.

The conclusion from the tests with the NERO code is that the low frequencies must be
handled with the series solution because of the low frequency breakdown of the FMM
method. Below a certain frequency, Eqs. 31 and 32 are used instead of NERO to obtain
the scattered fields.
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9. FURTHER WORK

An obvious extension is to use a modulated carrier instead of just a pulse. This would
correspond to a realistic radio channel and one would also avoid the low frequency
breakdown of NERO. A next step would be to apply the method to the setting in section
6. Eventually one would apply NERO to a realistic radio channel based on a terrain
model.
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APPENDIX A. THE PROGRAM RUN_NERO

c------------------------------------------------------------------
program run_nero !2014-09-02
c make run_nero
c ./run_nero

integer i,j,i1,i2,i3,i4,nstep,igf_max
real*8 f_,f,Fi1,Fi2,Fs1,Fs2,neta
integer nn,isign,nnm,i_f,i_ff,nn0,i_dim
parameter(i_dim= 100000)
real*8 data_in(2*i_dim),data(2*i_dim),re,im,Pi,t,Dt,w,Dw
real*8 n,zp,th,ka,rho,c,tau,tp,theta_n,theta_s
real*8 t_min,t_max,f_lim
complex*16 Fc(6),c_data_0,c_data,H,HV(i_dim),Ci,Ezser,Hzser,Ez,Hz
complex*16 H0
parameter(Pi= 3.141592653589793D0, Ci= (0.d0,1.d0),c= 2.9979245d8)
character(80) string
logical TM,Source,Line,IEQ,BACK_SC
external Ezser,Hzser

neta= 376.7303 ! free space impedance
open(40,file=’spec_i.dat’)
open(41,file=’spec_s.dat’)
open(42,file=’spec_d.dat’)
open(51,file=’spectrum_i.dat’)
open(53,file=’spectrum_p.dat’)
open(55,file=’time.dat’)
open(56,file=’time_i.dat’)

zp= 2**4 ! zero padding > 2*4
nn0= 2**6 ! time samples used
nnm= nn0/2
nn= nn0*zp ! after zero padding
if(nn .GT. i_dim) stop ’nn < i_dim’
write(6,*)’nn=’,nn
tau= 1/c ! time to travel unit radius
n= 2/tau ! sharpness of pulse
Dt= 4.d-10 ! time step < limit
Dw= 2*Pi/(Dt*nn) ! frequency step
t_min= -4.; t_max= 8. ! plot window
f_lim= 1.d-1
IEQ=.True. ! integral equation or series
write(6,*)’IEQ=’,IEQ
do i= 1,nn

t= (i-nnm)*Dt
if(i .LE. nn0) then

data_in(2*i-1)= n/sqrt(Pi)*exp(-n**2*t**2)
! gaussian pulse at t=0
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else
data_in(2*i-1)= 0.d0 ! zero padding

endif
data_in(2*i )= 0.d0
re= data_in(2*i-1) ; im= data_in(2*i)
if(t/tau.GT.t_min .AND. t/tau.LE.t_max) then

write(55,*) sngl(t/tau),sngl(re/c)
endif

enddo
isign= 1
call four1(data_in,nn,isign)
call system("cp circle_TM.igf test.igf")

do i= 1,nn
if(i .LE. nn/2) then

i_f= i-1 ! index prop. to pos. freq.
! (0,fs/2)

else
i_f= i-1-nn ! index prop. to neg. freq.

! (-fs/2,-DF)
endif
w= i_f*Dw
if(IEQ .AND. i.LE.nn/2) then ! use integral equation

if(i .LE. nn/6) then ! null elements in spectrum?
open(1,file=’test.igf’)
open(2,file=’circle_TM.igf’)
igf_max= 1000
do j=1,igf_max ! lines in .igf file(16 assumed)

if(j .EQ. 2) then
read( 1,*)f_,i1,i2,i3,i4
f= max(abs(w/(2*Pi)),f_lim) ! avoid zero frequency
write(2,*)sngl(f),i1,i2,i3,i4 ! write modification

elseif(j .EQ. 12) then
read( 1,*)i1,i2,theta_n ! read theta_n
write(2,*)i1,i2,int(theta_n) ! write back
theta_n= theta_n*Pi/180.d0
if(theta_n .GT. 1.d0) then

BACK_SC=.True.
theta_s= Pi

else
BACK_SC=.False.
theta_s= 0.d0

endif
elseif(j .EQ. 15) then

read( 1,*)i1,i2,rho,i4 ! read rho
write(2,*)i1,i2,sngl(rho),i4 ! write back

else
read( 1,1,end= 3)string
write(2,*)string ! write back the same line
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endif
enddo

3 continue
close(1); close(2) ! input file edited
call system("nero2d circle_TM.igf") ! run nero
open(26, file=’freq.dat’) ! see program con.f
read(26,*)f_ ; read(26,*)TM ! extract polarization
read(26,*)Source; read(26,*) Line ! extract observation type
close(26)
if(TM) then ; write(6,*)’Polarization TM’
else ; write(6,*)’Polarization TE’
endif
if(Line) then ; write(6,*)’Line’
else ; write(6,*)’Circle’
endif

open(11,file=’line0_in.bdf’) ! incoming fields
open(12,file=’line0_sc.bdf’) ! scattered fields
open(13,file=’circle0_in.bdf’)
open(14,file=’circle0_sc.bdf’)
do j= 1,6 ! read field at first observation point

if(Line)then
read(11,*)Fi1,Fi2
read(12,*)Fs1,Fs2

else
read(13,*)Fi1,Fi2
read(14,*)Fs1,Fs2

endif
Fc(j)= 0*dcmplx(Fi1,Fi2)+ 1*dcmplx(Fs1,Fs2)

! scattered field
enddo
close(11); close(12); close(13); close(14)

! spectrum point extracted
if(TM) then ! store spectrum point

H= conjg(Fc(3)) ! Ez - physics convention
if(f .LE. 1.d8) then ! use series

ka= max(abs(w),2*Pi*f_lim)/c ! handle low frequency limit
th= theta_s
H0= Ezser(ka,ka*rho,th)
write(41,*)sngl(f),sngl(abs(H0))
write(42,*)sngl(f),sngl(abs(H-H0))
H= H0

endif
else

c H= 1/neta*Fc(2) ! Ey
H= conjg(Fc(6)) ! Hz - physics convention
if(f .LE. 1.d8) then

ka= max(abs(w),2*Pi*f_lim)/c
th= theta_s
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H0= Hzser(ka,ka*rho,th)
write(41,*)sngl(f),sngl(abs(H0))
write(42,*)sngl(f),sngl(abs(H-H0))
H= H0

endif
endif
else

H= (0.d0,0.d0) ! null in spectrum
endif

write(40,*)sngl(f),sngl(abs(H))
HV(i)= H

elseif(i .LE. nn/2) then ! non-negative frequencies
th= theta_s ! th=Pi backcattering, (TM,Ez),

! (TE,Hz)

if(i .EQ. 1) write(6,*)’th=’,sngl(th)
rho= 100.d0
ka= max(abs(w),2*Pi*f_lim)/c ! avoid zero argument
if(TM) then ! series solution for cylinder

H= Ezser(ka,ka*rho,th)
else

H= Hzser(ka,ka*rho,th)
endif
write(41,*)sngl(ka*c/(2*Pi)),sngl(abs(H))
HV(i)= H

endif

if(i .LE. nn/2) then
c_data= HV(i)*dcmplx(data_in(2*i-1), data_in(2*i))*Dt

else
i_f= nn- i+ 2
H= HV(i_f)
c_data= conjg(H)*dcmplx(data_in(2*i_f-1),-data_in(2*i_f))*Dt

endif
data(2*i-1)= real( c_data)
data(2*i )= aimag(c_data)
re= data(2*i-1) ; im= data(2*i)
write(51,*) i,sqrt(re**2 + im**2)
write(53,*) i,abs(H)*exp(-0.25*(w/n)**2) ! explicit Fourier transform

enddo
isign= -1
call four1(data,nn,isign)
do i= 1,nn

re= data(2*i-1)/(Dt*nn) ; im= data(2*i)/(Dt*nn)
t= (i-nnm)*Dt
tp= t-rho*tau ! shifted time
if(tp/tau.GT.t_min .AND. tp/tau.LE.t_max) then

! the output is normalized with
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! 1/c
write(56,*) sngl(tp/tau),sngl(re*sqrt(rho)/c)

endif
enddo
if(BACK_SC) then ; write(6,*)’Backscattered pulse’
else ; write(6,*)’Forwardscattered pulse’
endif
write(6,*)’pls,plu,plc,plx’

! plot files for spectrum, output
! spectrum, diff. spectrum

1format(A80)
stop
end

c-------------------------------------------------------------------

APPENDIX B. MATHEMATICA SCRIPT THAT CALCULATES THE IMPULSE RESPONSE
FOR THE TWO RAY CHANNEL AND SIMPLE AM MODULATION

fact= 2^38
nmax= 2^(-26)*fact
Print["nmax= ",nmax]
tf[t_]:= t/fact
fc= 2.*10^9
wc= 6*fc

(* time delay of reflected wave *)
h1= 10
h2= 20
d= 1*10^3
c= 3*10^8
td= N[2*h1*h2/(c*d)]
Print["td= ",td]

(* create input function x(t) (impulse) *)
a= 1.*10^-9
Print["a= ",a]
dirac[t_]:= Exp[-(t/(fact*a))^2]/(a*Sqrt[Pi])
m= Table[dirac[t],{t,-nmax,nmax-1}]
mp= ListPlot[m, PlotRange->All, PlotJoined->True]
Export["TIMEDOMAIN/m.pdf",mp,"PDF"]

(* For AM-DSBSC *)
co= Table[Cos[wc*t/fact],{t,-nmax,nmax-1}]
x= m*co
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xp= ListPlot[x, PlotRange->All, PlotJoined->True]
Export["TIMEDOMAIN/x.pdf",xp,"PDF"]
(* signal reflected from ground/water *)
xd= Table[dirac[t-td*fact],{t,-nmax,nmax-1}]*co

(* Fourier transform X(w) *)
Gam= -0.2+ I*0.00
Print["Gam= ",Gam]
X= Fourier[x+Gam*xd]
(* Plot with standard ordering Xso(w) *)
Xmp= Join[Take[X,-nmax],Take[X, nmax]]
Xso= ListPlot[Re[Xmp], PlotJoined->True,PlotRange->All]
Export["TIMEDOMAIN/Xso.pdf",Xso,"PDF"]

(* create impulse response h(t)*)
u[t_]:= (1+Sign[t])/2
tau= 1.*10^-9
Print["tau= ",tau]
h= Table[u[t]*tf[t]*Exp[-tf[t]/tau],{t,-nmax,nmax-1}]
hp= ListPlot[h, PlotRange->All, PlotJoined->True]
Export["TIMEDOMAIN/h.pdf",hp,"PDF"]
(* Fourier transform H(w) *)
H= Fourier[h]
Hmp= Join[Take[H,-nmax],Take[H, nmax]]
Hso= ListPlot[Re[Hmp], PlotJoined->True,PlotRange->All]
Export["TIMEDOMAIN/Hso.pdf",Hso,"PDF"]

(* output signal- demodulation *)
Y= Sqrt[2*nmax]/fact*H*X
(* Demodulate *)
y= InverseFourier[Y]*co
(* LP-filter for demodulation *)
null= Table[If[Abs[w]<nmax*0.99,0,1],{w,-nmax,nmax-1}]
Yt0= Fourier[y]
Ytmp= Join[Take[Yt0,-nmax], Take[Yt0,nmax]]
Ytso= ListPlot[Re[Ytmp], PlotJoined->True,PlotRange->All]
Export["TIMEDOMAIN/Ytso0.pdf",Ytso,"PDF"]
Yt= Fourier[y]*null

(* Output spectrum *)
CC= (1.+1.*I)*10^(-20)
Ytmp= Join[Take[Yt,-nmax], Take[Yt,nmax]]
Put[Ytmp[[1]]+CC,"TIMEDOMAIN/four.dat"]
Do[
PutAppend[Ytmp[[i]]+CC,"TIMEDOMAIN/four.dat"],
{i,2,2*nmax}]
Ytmp=ReadList["TIMEDOMAIN/four.dat"]
Ytso= ListPlot[Re[Ytmp], PlotJoined->True,PlotRange->All]
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Export["TIMEDOMAIN/Ytso.pdf",Ytso,"PDF"]

(* Output signal *)
yt= InverseFourier[Yt]
ytmp= Join[Take[yt,-nmax], Take[yt,nmax]]
yts= ListPlot[Re[ytmp], PlotJoined->True,PlotRange->All]
Export["TIMEDOMAIN/yts.pdf",yts,"PDF"]

ClearAll
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