
Periodi Signal Modeling Based on Li�enard's Equation�E. Abd-Elrady, T. S�oderstr�om, T. WigrenSystems and Control, Dept. of Information Tehnology, Uppsala University,P.O. Box 337, SE-751 05 Uppsala, Sweden.August 11, 2003AbstratThe problem of modeling periodi signals is onsidered. The approah takenhere is motivated by the well known theoretial results on the existene of peri-odi orbits for Li�enard systems and previous results on modeling periodi signalsby means of seond order nonlinear ordinary di�erential equations (ODEs). Theapproah makes use of the appropriate onditions imposed on the polynomials of aLi�enard system to guarantee the existene of a unique and stable limit yle. Theseonditions redue the number of parameters required to generate aurate modelsfor periodi signals.Keywords : Identi�ation, Li�enard's equation, Limit yle, Nonlinear systems, Peri-odi orbit.1 IntrodutionThere is a quite substantial literature on modeling of periodi signals, whih is onsideredto be a fundamental problem in many appliations. Examples inlude vibration analysis,speeh synthesis, overtone analysis in power networks and measurement of linearity ineletroni power ampli�ers, see [1-4℄.Many systems that generate periodi signals are best desribed by seond order non-linear ordinary di�erential equations (ODEs) with polynomial right hand sides. Exam-ples inlude tunnel diodes, pendulums, negative-resistane osillators and biohemialreators, see [5-8℄.In [9-11℄ periodi signals were modeled by introduing a polynomial parameterizationof the right hand side of a general seond order ODE, and by de�ning the periodi signalto be modeled as a funtion of the states of this ODE. Estimators based on a Kalman�lter (KF) and an extended Kalman �lter (EKF) were developed in [9℄. A least squares(LS) estimation algorithm was derived in [10℄. Also, an estimation algorithm based onthe Markov estimate was introdued in [11℄.�This work was supported in part by Swedish Researh Counil for Engineering Sienes underontrat 98-654. 1



In the early days of nonlinear dynamis, it was found that many osillating iruitsan be modeled by the following seond order di�erential equation known as Li�enard'sequation, see [6, 7, 12℄, �y + f(y) _y + g(y) = 0: (1)Li�enard's equation an be interpreted mehanially as the equation of motion for a unitmass subjet to a nonlinear damping fore �f(y) _y and a nonlinear restoring fore �g(y).This equation is a generalization of the Van der Pol osillator given by�y + �(y2 � 1) _y + y = 0: (2)for whih f(y) = �(y2 � 1) and g(y) = y.Choosing the state variables as� x1x2 � = � y(t)_y(t) � (3)Li�enard's equation is equivalent to the system_x1 = x2 (4)_x2 = �g(x1)� f(x1)x2 (5)whih is known as the Li�enard's system.Appliations of Li�enard's equation an be found in many important examples. Ex-amples inlude hemial reations, growth of a single speies, predator-prey systems andvibration analysis, see [13℄.In this paper Li�enard's equation is used to model periodi signals following theapproah introdued in [9-11℄. The onditions that guarantee the existene of periodiorbits for Li�enard systems, see [6, 7, 12℄, are used to redue the number of parametersrequired to model periodi signals. This is expeted to give signi�antly better parameterauray as ompared to the approah used in [9-11℄ in ase the modeled signal ful�llsLi�enard's equation.The paper is organized as follows. Setion 2 introdues the details on the model.Setion 3 analyzes the onditions imposed on the model to ahieve the redution in theparameters to be estimated. Setion 4 presents a omparative simulation study betweenthe approah taken in this paper and the approah of [9-11℄. Conlusions appear inSetion 5.2 The model2.1 MeasurementsThe starting point is the disrete time measured signal z(kTS), wherez(kTS) = y(kTS) + e(kTS) (6)Here y(t) is the ontinuous time signal to be modeled, y(kTS) its sampled value, e(kTS)is the disrete time measurement noise and TS the sampling interval. It is assumed herethat y(t) is periodi, i.e. 2



C1: y(t+ T ) = y(t); 8t 2 R; 0 < T <1.Furthermore, e(kTS) is assumed to be zero mean Gaussian white noise, i.e.C2: e(kTS) 2 N(0; �2); E[e(kTS)e(kTS + jTS)℄ = Æj;0�2.where E is the expetation operator.2.2 Model StruturesThe work done in [9-11℄ is based on modeling the signal y(t) by means of an unknownparameter vetor ~� and an ODE of order two, i.e.� _x1_x2 � = � x2(t)F (x1(t); x2(t); ~�) � (7)y(t) = � 1 0 �� x1(t)x2(t) � : (8)It is proved rigorously in [14℄ that an ODE of order 2 is suÆient to model a largelass of periodi signals. The right hand side of the seond state equation of (7) isexpanded in terms of known basis funtions. Hene F (x1(t); x2(t); ~�) is taken as atrunated superposition of these funtions. In ase of a polynomial model, a suitableparameterization is F (x1(t); x2(t); ~�) = LXl=0 MXm=0 ~�l;mxl1(t)xm2 (t); (9)~� = � ~�0;0 � � � ~�0;M ~�1;0 � � � ~�1;M � � � ~�L;0 � � � ~�L;M �T : (10)In this paper a Li�enard model (4)-(5) is used for modeling periodi signals. Thenthe state spae model (7)-(8) beomes� _x1_x2 � = � x2(t)�g(x1;�1)� f(x1;�2)x2 � (11)y(t) = � 1 0 �� x1(t)x2(t) � (12)� = � �1T �2T �T : (13)Also here g(x1;�1) and f(x1;�2) are parameterized using (salar) polynomial modelsg(x1;�1) = L1Xl1=1 �1;l1xl11 (t) (14)f(x1;�2) = L2Xl2=0 �2;l2xl21 (t) (15)3



Needless to say, the model (11) an be seen as a speial ase of the general ase (7).Remark 1. In nonlinear systems theory, it is usually assumed that the system has anequilibrium at the origin without any loss of generality beause any equilibrium pointan be shifted to the origin via a hange of variables. This is the reason why the onstantterm is dropped in g(x1;�1). i.e., �1;0 = 0 in (14), see [5℄.The suggested model in (11) has been widely studied, see [6, 7, 12℄, to investigate theexistene of limit yles and study their stability. The elebrated Li�enard's theorem [12℄imposes appropriate assumptions on g(x1;�1) and f(x1;�2) to guarantee the existeneof a unique, stable periodi orbit. These assumptions are studied in Setion 3 to reduethe number of parameters required to model periodi signals ompared to the approahof [9-11℄, whih is based on the more general model (7).2.3 DisretizationIn order to formulate omplete disrete time models, the ontinuous time ODE model(11) needs to be disretized. This is done by exploiting an Euler forward numerialintegration sheme. For simpliity, the disretization interval is seleted to be equal tothe sampling period TS , resulting inx1(kTS + TS) = x1(kTS) + TSx2(kTS) (16)x2(kTS+TS) = x2(kTS)�TS L1Xl1=1 �1;l1xl11 (kTS)�TS0� L2Xl2=0 �2;l2xl21 (kTS)1A x2(kTS): (17)Remark 2. In the following, for notational onveniene the dependene on TS is omittedassuming TS equal to one time unit. This means that an integer k an be used as thetime variable.The model (16)-(17) an then be ompatly written asx1(k + 1)� x1(k) = x2(k) (18)x2(k + 1)� x2(k) = � �T (x1(k); x2(k)) � (19)where�T (x1(k); x2(k)) = � x1(k) � � � xL11 (k) x2(k) � � � xL21 (k)x2(k) � (20)� = � �1;1 � � � �1;L1 �2;0 � � � �2;L2 �T : (21)For omparison, disretizing the seond state equation of (7) results inx2(k + 1)� x2(k) = ~�T (x1(k); x2(k)) ~� (22)where~�T (x1(k); x2(k)) =� 1 x2(k) � � � xM2 (k) x1(k) � � � x1(k) xM2 (k) � � � xL1 (k) � � � xL1 (k) xM2 (k) � (23)and the parameter vetor ~� is given by (10). Note the sign di�erene in the right handside of (19) and (22) and that both (19) and (22) an be seen as linear regression models.4



2.4 AlgorithmsIn order to derive di�erent estimation shemes based on the model (18)-(19) there areat least two hoies. The �rst hoie is to formulate the model in a linear regressionform using the measured data and to use the following two approximations, f. (3).1. As y = x1 is not known, use the estimatebx1(k) = z(k): (24)2. As _y = x2 is not known, use the estimatebx2(k) = z(k + 1)� z(k): (25)Reall that, due to the notational onvention, (25) in fat meansbx2(kTS) = z(kTS + TS)� z(kTS)TS : (26)Remark 3. More general di�erentiating �lters than (25) an be used. Reasonabledi�erentiating �lters are of the form~H(q) = (q � 1) H(q) (27)with H(q) a low pass �lter (qz(k) = z(k + 1)) of unity stati gain. See [15℄ for moredetails about di�erentiating �lters.One the model is formulated in the linear regression form, a number of di�erentestimation algorithms based on the Kalman �lter [9℄, the least squares estimate [10℄ andthe Markov estimate [11℄ an be developed from the model (18)-(19).Another hoie is to estimate the states x1(k) and x2(k) in addition to the parametervetor � using the EKF as done in [9℄. In this ase the regression vetor �T (x1(k); x2(k))is built up from the estimated states bx1(k) and bx2(k) rather than diretly from measureddata as in (24) and (25).3 Model parameterization using Li�enard's theoremIn this setion the model assumptions introdued in Li�enard's theorem [12℄ are onsid-ered and exploited. The theorem reads as follows.Theorem 1. (Li�enard's theorem) Suppose that f(y) and g(y) satisfy the followingonditions:C3 : f(y) and g(y) are ontinuously di�erentiable for all y;C4 : g(�y) = �g(y) 8 y (i.e., g(y) is an odd funtion);C5 : g(y) > 0 for y > 0;C6 : f(�y) = f(y) 8 y (i.e., f(y) is an even funtion);5



C7 : The odd funtion F (y) = R y0 f(u)du has exatly one positive zero at y = a, isnegative for 0 < y < a, is positive and nondereasing for y > a, and F (y)!1 asy !1.Then the system (4)-(5) has a unique, stable limit yle surrounding the origin in thephase plane.Proof. See [6, 7℄.Remark 4. The assumptions on g(y) mean that the restoring fore ats like an ordinaryspring and tends to redue any displaement. On the other hand, the assumptions onf(y) imply that the damping is negative at small jyj and positive at large jyj. Sinesmall osillations are ampli�ed and large osillations are damped, the system tends tosettle into a self-sustained osillation of some intermediate amplitude.Applying onditions C4 and C6, the models (14) and (15) take the formg(x1; ��1) = �L1Xl1=0 ��1;l1x2l1+11 (t) (28)f(x1; ��2) = �L2Xl2=0 ��2;l2x2l21 (t) (29)where �� = � ��T1 ��T2 �T= � ��1;0 � � � ��1;�L1 ��2;0 � � � ��2;�L2 �T (30)and �L1 = L1 � 12 (31)�L2 = L22 : (32)Hene (19) beomes x2(k + 1)� x2(k) = � ��T (x1(k); x2(k)) �� (33)where��T (x1(k); x2(k)) =� x1(k) x31(k) � � � x2�L1+11 (k) x2(k) x21(k) x2(k) � � � x2�L21 (k) x2(k) � (34)and the parameter vetor �� is given by (30).Using C4 and C6 in Theorem 1 thus redues the number of parameters required formodeling periodi signals. This is expeted to inrease the auray of the estimatedmodel espeially if the modeled signal ful�lls Li�enard's equation.6



Remark 5. The redution in the number of parameters has a great importane in twoases. First when the modeled signal is highly orrupted with noise, i.e. the signalto noise ratio (SNR) is small, more inaurate models are expeted as the number ofparameters inreases. This is shown later in the numerial examples. A seond ase iswhen the modeled signal full�ls Li�enard's equation with a high polynomial order. Hene,the dimension of the parameter vetor using general approahes will be of high orderand this is expeted to redue the auray of the estimated model signi�antly. It mayalso leads to onvergene problem for the EKF estimation algorithm.Example 1. Consider the following model with �L1 = 0 and �L2 = 1, i.e.g(x1; ��1) = ��1;0x1(t) (35)f(x1; ��2) = ��2;0 + ��2;1 x21(t) (36)It is lear that onditions C3, C4 and C6 are satis�ed. Condition C5 gives��1;0 > 0:Also C7 gives F (x1) = x1(t)���2;0 + 13 ��2;1 x21(t)� : (37)Thus a =s�3��2;0��2;1 :It is lear from (37) that F (x1) is nondereasing for x1 > a provided ��2;0 < 0. This isbeause for x1 = a+4x1; 4x1 > 0,F (x1) =  s�3��2;0��2;1 +4x1!24��2;0 � ��2;0 1 +s ��2;1�3��2;04x1!235 :Also from C7 F (x1) < 0 8 0 < x1 <s�3��2;0��2;1F (x1) > 0 8 x1 >s�3��2;0��2;1whenever ��2;0 < 0 and ��2;1 > 0:Finally F (x1)!1 as x1 !1sine for high values of x1(t) F (x1) � 13 ��2;1 x31(t):7



Thus to guarantee the existene of a unique, stable limit yle for the model (35)-(36),the parameters must satisfy��1;0 > 0; ��2;0 < 0 and ��2;1 > 0. �Next the more general ase for the parameterization (28), (29) is onsidered. Thefollowing lemma gives neessary onditions on g(x1; ��1) and f(x1; ��2) to guarantee theexistene of a unique, stable limit yle for general orders.Lemma 1. Assume that the Li�enard's system is given by� _x1_x2 � = � x2(t)�g(x1; ��1)� f(x1; ��2)x2 � (38)y(t) = � 1 0 �� x1(t)x2(t) � (39)where the odd funtion g(x1; ��1) and the even funtion f(x1; ��2) are ontinuously dif-ferentiable polynomials given byg(x1; ��1) = ��1;0x1 + ��1;1x31 + � � �+ ��1;�L1x2�L1+11 (40)f(x1; ��2) = ��2;0 + ��2;1x21 + � � �+ ��2;�L2x2�L21 : (41)Then this system has a unique, stable limit yle enirling the origin in the phase planeifC8 : All zeros of the polynomialA(s) = ��1;0 + ��1;1 s+ ��1;2 s2 + � � �+ ��1;�L1 s�L1 (42)are in the LHP.C9 : The polynomialB(s) = ��2;0 + ��2;13 s+ ��2;25 s2 + � � �+ ��2;�L22�L2 + 1 s�L2 (43)has exatly one positive real zero (say at a2) and ��2;0 < 0.C10 : f(x1; ��2) � 0 8 x1 > a:Proof. First note that C3, C4 and C6 are true by onstrution. It then remains to verifyC5 and C7. Beginning with C5, the odd funtion g(x1; ��1) an be written asg(x1; ��1) = x1 A(x21) (44)Choosing s = x21 gives (42). Further g(x1) > 0 8 x1 > 0 if A(x21) > 0. The latter is thease if all zeros of A(s) are in the LHP, sine for negative zeros A(s) takes the formA(s) = �L1Yi=1(s+ zi) for zi > 0 (45)8



where �zi; i = 1; � � � ; �L1 are the zeros of A(s). Thus C8 implies C5.Proeeding with C7, sine f(x1; ��2) is an even funtionF (x1) = x1 B(x21): (46)To satisfy ondition C7, B(x21) should have exatly one positive zero at x1 = a, benegative for 0 < x1 < a, be positive and nondereasing for x1 > a, and F (x1) ! 1 asx1 !1. This means ��2;0 should be negative and B(s) given by (43) should have exatlyone positive real zero. The nondereasing ondition on F (x1) for x1 > a means dFdx1 � 0for x1 > a. Sine F (x1) = R x10 f(u)du, di�erentiating both sides gives dFdx1 = f(x1; ��2).Thus F (x1) is a nondereasing funtion if C10 satis�ed. Hene C9 and C10 together implyC7. �Remark 6. From Routh's stability riterion for ontinuous systems, all zeros of A(s)are in the LHP if there are no sign hanges in the left-most olumn of the Routh array,see [16℄. A neessary but not suÆient ondition for this to happen is ��1;i > 0 fori = 0; � � � ; �L1. Also from Desarte's rule of sign, see [17℄, the number of positive realroots of B(s) is either equal to the number of variations of sign between suessive termsin B(s) when arranged in desending powers of s or less than that number by an eveninteger. Thus B(s) should have an odd number of sign variations.In addition to the redution ahieved in the number of parameters to model periodisignals, another advantage of the approah used in this paper an be onluded fromLemma 1. Sine Lemma 1 gives more spei� onditions on the parameters, these on-ditions an be used as a detetion method for the existene of a unique, stable periodiorbit that models the periodi signal under investigation. One the parameter vetor ��is estimated, the polynomials A(s) and B(s) given by (42) and (43) an be onstrutedand the onditions of Lemma 1 an be examined. These �ndings are further explainedin the examples of Setion 4.Remark 7. Imposing the onstraints of Lemma 1 on the parameters during the esti-mation proess is ompliated and not so useful. This is so beause the optimizationproblem will have degrees of freedom equals to the number of parameters whih is mostprobably higher than 2. In this ase one an not expet to get more aurate parameterestimates by imposing the onstraints during the estimation phase. On the other handto examine the onditions of Lemma 1 as a validation phase is easy as shown later inthe numerial examples.Remark 8. Note that there may be unique periodi solutions even in ases where theparameter onstraints are not ful�lled. This is beause the onditions of Theorem 1 areonly suÆient for general periodi signals, and neessary for signals that ful�lls Li�enard'ssystem desription.4 Numerial examplesIn this setion a omparative simulation study for the two modeling approahes (7)and (11) is presented. First the two approahes were used to model a periodi signal9



generated by Li�enard's equation. Then the two approahes were tested for modeling aperiodi signal that does not ful�ll Li�enard's equation desription. Finally, Monte Carloexperiments were performed on the two modeling approahes to study the statistialproperties of the parameter estimates with respet to SNR and data length.Example 2. In this example the data were generated using the following Li�enard'ssystem � _x1_x2 � = � x2�x1 + (1� 2 x41) x2 � (47)whih satis�es the onditions of Theorem 1. The Matlab routine ode45 was used tosolve (47). The initial states of (47) were seleted as (x1(0) x2(0))T = (1 0)T . Allresults below are based on data runs of length N = 3 � 104 samples with a samplinginterval TS = 0:01 s. The period of the solution of (47) is approximately 7 seonds.Hene, about 40 periods of the signal are measured with approximately 700 samples perperiod. The measured signal was seleted as the �rst state with white Gaussian noiseadded to obtain data with a signal to noise ratio of 30 dB.The model (7) is ompared with the model (11) by modeling the periodi signalgenerated by (47) using the EKF estimation algorithm introdued in [9℄. The two EKFalgorithms were initialized with(bx1(0) bx2(0) b~�T (0))T = (�0:5 0:5 0)T(bx1(0) bx2(0) b��T (0))T = (�0:5 0:5 0)T .The remaining parameters were seleted as P (0) = 10I , R1 = 0:001I and R2 = 1. Theorders of the models were hosen as L = 4, M = 1, �L1 = 0 and �L2 = 2. The number ofestimated parameters was (L+ 1)(M + 1) = 10 for the model (7) and �L1 + �L2 + 2 = 4for the model (11).After 3� 104 samples the parameter estimates were as follows:b~�T = (0:005; 1:021;�1:149;�0:009; 0:008;�0:235; 0:086; 0:020;�0:011;�1:908)b��T = (1:036;�0:990; 0:040; 2:102)Note the negative sign di�erene between b~� and b��, .f. (22) and (33). Comparingthe estimated parameter vetor b�� with the results of Lemma 1 gives ��1;0 = 1:036 > 0,��2;0 = �0:99 < 0 and ��2;2 = 2:102. Thus A(s) = 1:036 and B(s) = �0:99+ 2:1025 s2. It islear that A(s) does not have zeros in the RHP and B(s) has one positive zero at 1.535.Also f(x1; ��2) = 2:102x41�0:99 > 0 8x1 > p1:535. This shows that the estimated modelrepresents a unique, stable periodi orbit surrounding the origin in the phase plane.The parameter estimates and phase plots for the system (47) and the estimatedmodels are shown in Figures 1-3. The results indiate that the redution in the numberof estimated parameters ahieved using models based on Li�enard's systems signi�antlyinreases the auray of the estimated models.10
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Figure 1: Parameter onvergene for the model (11).
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Figure 2: Parameter onvergene for the model (7).11
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Figure 3: True (dashed) and estimated (solid) phase plane plots for system (47). Model(11) left, model (7) right. The models are initialized as x1(0) = �0:5, x2(0) = 0:5 andthe �nal parameter estimate b�� or b~�, respetively, is applied.Example 3. Consider the following system� _x1_x2 � = � x2�x1 + (1� 3 x21 � 2 x22) x2 � (48)whih does not math Li�enard's system desription. Similarly as done in Example 2,3� 104 samples were generated from (48) with TS = 0:01 s. The period of the solutionof (48) is approximately 6 seonds. Hene, about 50 periods of the signal are measuredwith approximately 600 samples per period.The model (7) is ompared with the model (11) by modeling the periodi signalgenerated by (48) using the EKF estimation algorithm. The two EKF algorithms wereinitialized as done in Example 2 exept that P (0) = 10000I . The orders of the modelswere hosen as L = 2, M = 3, �L1 = 0 and �L2 = 1. The number of estimated parameterswas 12 for the model (7) and 3 for the model (11).The phase plots for the system (48) and the estimated models are shown in Figure 4.The results show that even if the modeled signal does not ful�ll Li�enard's equation, theunderparameterized model (11) still represents a unique and stable periodi orbit thatslightly deviates from the true periodi orbit and the estimated periodi orbit using themodel (7) with the orret polynomial orders.Example 4. In this example 100 Monte Carlo simulations were performed on thesystem (47) to study the performane of the two modeling approahes (7) and (11)ompared to the Cram�er-Rao bound (CRB) derived in [18℄ with di�erent noise realiza-12
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Figure 8: V1 (dashed) and V2 (solid) with SNR [N = 3� 104 samples℄.
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N [samples]Figure 10: The MSE for ~�0;1 (dashed) and ��2;0 (solid) ompared to the CRB of ~� (dot-o)and �� (dot-x) [SNR=10 dB℄.
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N [samples]Figure 12: V1 (dashed) and V2 (solid) with N [SNR=10 dB℄.
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N [samples]Figure 13: The MSE for ~�1;0 (dashed) and ��1;0 (solid) ompared to the CRB of ~� (dot-o)and �� (dot-x) [SNR=30 dB℄. 18
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