
Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

GPGPU-Sim
by

Filip Andersson

LIU-IDA/LITH-EX-G--14/085--SE

 2014-11-20

1

Linköpings universitet
SE-581 83 Linköping, Sweden

Linköpings universitet
581 83 Linköping

2

Final Thesis

GPGPU-Sim
by

Filip Andersson

LIU-IDA/LITH-EX-G--14/085--SE

2014-11-20

Supervisor: Arian Maghazeh

Examiner: Unmesh Bordoloi

3

Abstract
This thesis studies the impact of hardware features of graphics cards on performance of GPU
computing using GPGPU-Sim simulation software tool. GPU computing is a growing topic in the
world of computing, and could be an important milestone for computers. Therefore, such a study
that seeks to identify the performance bottlenecks of the program with respect to hardware
parameters of the device can be considered an important step towards tuning devices for higher
efficiency.

In this work, we selected convolution algorithm – a typical GPGPU application – and conducted
several tests to study different performance parameters. These tests were performed on two
simulated graphics cards (NVIDIA GTX480, NVIDIA Tesla C2050), which are supported by
GPGPU-Sim. By changing the hardware parameters of a graphics card such as memory cache sizes,
frequency and the number of cores, we can make a fine-grained analysis on the effect of these
parameters on the performance of the program.

A graphics card working on a picture convolution task relies on the L1 cache but has the worst
performance with a small shared memory. Using this simulator to run performance tests on a
theoretical GPU architecture could lead to better GPU design for embedded systems.

4

Acknowledgements
I would like to use this opportunity to thank Unmesh Bordoloi and Arian Maghazeh for giving me
this thesis, supporting me and giving me empathy during this work, due to my current health
situation, namely my back and leg injury. Secondly, I want to express my gratitude to the Adam
Larsson, without our close cooperation in our university years together, I might never have reached
this point, this early in time. Thank you for your patience with me.

Lastly, I would like to dedicate this work to Karvin “Marco” Tarantino and Goldblossoms “Andy”
“Pandy ” Shalimar, both family members who sadly passed away during my work. Marco's age had
started catch up to him since he could no longer walk any long distances. It struck me with great
grief when Marco died, despite a complicated relationship between us. In the end, I still viewed and
loved him like family and miss him dearly.

Andy soon passed away as well, shortly after Marco was gone. He had been struck with liver cancer
and we did not notice until it was too late. We though he, like us, was in sorrow because of the
disappearance of Marco. Soon, he was also gone and I felt devastated, partly because I still had not
finished mourning Marco, but also since we were closer. I have never experienced our home being
so empty and it will never be quite the same again.

Linköping, November 2014

Filip Andersson

5

Table of contents

Chapter 1 Introduction..7

Chapter 2 GPGPU-Sim..8

Chapter 3 GPU Architecture...9

Chapter 4 Card Specifications...11

Chapter 5 GPGPU-Sim Installation...12
Dependencies and Preparations..12
Compiling the Tests..13
GPGPU-Sim...14

Chapter 6 Configuration File..16

Chapter 7 Tests..17

Chapter 8 Results..19
GTX480 vs TeslaC2050..19
ConvolutionSeparable-V1..20
ConvolutionSeparable-V2..23

Chapter 9 Conclusion...25

Chapter 10 References...26

Chapter 11 Appendix..27

6

Chapter 1

Introduction
Normally the GPU (graphics processing unit) is used for graphics. However, this project delves into
GPU computing, which is a new topic that has been getting more attention in the last decade. A
GPU has more cores than a CPU (central processing unit) and is superior in handling parallelism
and heavy workloads with a lot of data such as compute intensive algorithms. GPU computing
utilizes the GPU, instead of the CPU, to process the compute intensive part of a program and sends
the result back to the CPU. This has allowed some programs to reach up to 200 times the speed,
compared to when only the CPU is used [1].

GPU computing is done through a programming language. Among the most well known languages
is CUDA (Compute Unified Device Architecture), from NVIDIA which is a proprietary framework.
An alternative is OpenCL which was influenced by CUDA and is the dominant general-purpose
language [2]. Both are extensions of C and C++ and use similar syntax’s [3][4].

The main focus of this thesis is to help others set up, understand the basics and do their own
continuation experimentation on GPGPU-Sim. The goal is to identify the performance bottlenecks
in an architecture and help design better devices such as embedded systems.

In Chapter 2, we will introduce the software, GPGPU-Sim. Chapter 3 focuses on the GPU
architecture. Chapter 4 lists the cards and their statistics. Chapter 5 explains the steps to install
GPGPU-Sim. Chapter 6 lists the parameters used in the configuration file for changing the
components of a card. Chapter 7 explains the tests and what purpose they have and Chapter 8
contains the results. Chapter 9 concludes this paper.

7

Chapter 2

GPGPU-Sim
GPGPU-Sim was created by Tor M. Aamodt and his graduate students from The University of
British Columbia. GPGPU-Sim is a simulation software tool of a contemporary GPU, as stated by
the developers [8]. It is an accurate simulation, it was tested for its instructions per clock cycles
(IPC) correlation versus the GT200 and Fermi architectures. This software is a per cycle simulator
which means it reports results for every cycle of a program. A program, for example, has three
cycles. If this program was run on GPGPU-Sim, it would have three different sections, one for each
cycle. Among the sections are several parameters such as the amount of instructions executed,
memory accesses, memory hits, memory misses and much more. According to the developers it
resulted in 98.37% and 97.35% correlation, respectively [5]. This thesis used the latest version,
GPGPU-Sim 3.2.2 as of now, for testing. This simulator has the potential to explore different kinds
of architectures that might be limited by hardware or size limitations. To illustrate, a computer using
this tool does not need the hardware in order to test it. Another advantage is that it is possible to
monitor all events for each cycle.

GPGPU-Sim is used by changing parameters in a configuration file, which holds all statistics and
settings for a graphics card. By changing the parameters, it is possible to add a L2 cache to a card
that by default it does not exist in the device, change the size of the memories, change the
frequencies of the processors and many more options. By changing the configuration file, it is
possible to build your own architecture. It is also possible to run various tests to measure the
efficiency of the cards. The CUDA SDK provides many different programs to run on GPGPU-Sim
[6]. Tests can also be manually created to suit different needs. That makes it possible to see which
card component has the most impact on performance during various tasks. With this knowledge,
designers would know which component is the most crucial to a compute intensive task and make
better decisions in order to maximize the cost efficiency. This is important for embedded systems,
which are limited by space and have expensive components. In theory, this would allow developers
to design and produce more efficient cards for each kind of workloads.

8

Chapter 3

GPU Architecture
GPGPU-Sim can currently model few actual GPU architectures. With time, more architectures will
be available for experimentation. A GPU being modelled consists of Single Instruction Multiple
Thread (SIMT) cores, connected via an on-chip connection network, and memory partitions that
connect graphics GDDR DRAM [5]. A SIMT core is a multi-threaded pipelined Single Instruction
Multiple Data (SIMD) processor. NVIDIA calls this a Streaming Multiprocessor (SM).

Figure 1-1. Overview of the architecture. Taken from GPGPU-Sim Manual [5]

As illustrated in figure 1-1, A single SIMT cores are grouped together in a SIMT Core Cluster.
Every SIMT core Cluster has its own FIFO pipeline, which takes packets from the Interconnection
Network.

In this architecture, several kinds of memories exist [5].

• Constant cache is used to store constants but it is also used to store parameters. It is a read
only cache.

• Texture memory is used to cache textures but it is also possible to use the L2 cache (if
available and enabled) to store textures. This is also a read only cache.

• In the data cache, private local memory and global memory is stored and accessed. For local
memory, the L1 data cache acts as a write-back cache with write no-allocate. For global
memory, write hits cause eviction of the block.

• Shared memory is handled by the programmer, and its size is changeable. It is used by its
own set of threads. All of what are only accessible to its SIMT Core.

9

In addition to the constant cache, texture cache, data cache and shared memory, each SIMT Core
also has an instruction cache and a LDST Unit which is shown in Figure 1-2. The LDST Unit serves
as a memory pipeline. Each SIMT core clusters LDST unit is connected to an Injection Port Buffer
which handles the Interconnection Network communication.

Figure 1-2. SIMT Core Cluster pipelines. Taken from GPGPU-Sim Manual [5]

10

Chapter 4

Card Specifications
This version of GPGPU-Sim has four different GPU architectures pre-packaged in the installation
[7]. The following architectures are included GTX480, TeslaC2050, QuadroFX5600 and
QuadroFX5800. In this study, only the GTX480 and TeslaC2050 are experimented on. In the
following are the default components and statistics for each used architecture. Many of the numbers
and components are changeable, for example, it is possible to change the L1 cache size or the clock
frequency.

Tesla-C2050
• 14 Streaming Multiprocessors (SM)
• GPU clock: 575 MHz
• Shader clock: 1150 MHz
• Memory size: 3072 MB
• Shader units / CUDA cores: 448
• 64 KB L1 cache / Shared memory per 32 cores. 32 cores is one SM.
• 768 KB L2 cache
• Memory type: GDDR5

GTX480 Specifications
• 15 Streaming Multiprocessors (SM)
• GPU clock: 700 MHz
• Shader clock: 1401 MHz
• Memory size: 1536 MB
• Shader units / CUDA cores: 480
• 64 KB L1 cache / Shared memory per 32 cores.
• 768 KB L2 cache
• Memory type: GDDR5

11

Chapter 5

GPGPU-Sim Installation
The platform setting used in this case were:

• OS: Ubuntu 12.04 LTS 64-bit
• RAM: 3.8 GB
• CPU: Intel Core 2 CPU Q9550 2.83 GHz x 4 (Quad core)

Note that the hardware used will have an impact on the execution time of the simulation. Weaker
hardware will result in the tests taking longer time to finish, which can be a problem.

Dependencies and Preparations
In this section, terminal commands will differ depending on the user and therefore, replace the
obvious changeable parts with a suitable counterpart of your own. Installation should be possible on
all Linux platforms if all dependencies are fulfilled [9]. In this case, it was done on the Ubuntu
Long Term Support version 12.04. In that case, the following commands should be typed in the
terminal.

GPGPU-Sim dependencies:

sudo apt-get install build-essential xutils-dev bison zlib1g-dev
flex libglu1-mesa-dev

GPGPU-Sim documents:

sudo apt-get install doxygen graphviz

AerialVision dependencies:

sudo apt-get install python-pmw python-ply python-numpy libpng12-
dev python-matplotlib

Cuda SDK dependencies:

sudo apt-get install libxi-dev libxmu-dev libglut3-dev

There is a problem with Ubuntu. Additional dependencies needs to be installed as libglut3-dev is
outdated from Ubuntu 9.10 [10]. Add these dependencies:

sudo apt-get install mesa-common-dev freeglut3-dev freeglut3

The SDK needs to be installed manually, from NVIDIAs website [10]. This thesis used version 3.1
and is also recommended by the developers of GPGPU-Sim [9]. The SDK contains the most
important tests, namely the convolutions. You need to separately get the SDK samples which
contains the tests. To install the SDK, download a SDK corresponding to the operative system you
are using. Then make the .run file executable, by using the following command:

sudo chmod -x filename_of_SDK.run

12

Then run it with:

sudo ./filename_of_SDK.run

It is necessary to use the sudo command, or create the folder ahead of the installation otherwise it
will fail. The program will ask you where you want to install the SDK, the default location is
“/user/local/cuda”. Change it to something else or leave it to default, and press enter. The
SDK is installed, but set the install path of it to the correct place. To do that, run these commands.
Change the “/usr/local/cuda” part to if you did not use the default path. The developers
also suggest copying the following commands into your “.bashchr” file so it is not necessary to do
this every time you wish to use the simulator. To find the “.bashchr” file, press CTRL+h in the file
manager and scroll down to it.

export CUDA_INSTALL_PATH=/usr/local/cuda
export PATH=$PATH:$CUDA_INSTALL_PATH/bin

After that, the SDK samples needs to be installed in a similar way. Use the ”chmod” and ”./file.run”
command previously used, and change its name to the corresponding file. It is important you install
the SDK core before installing the samples as the samples depends on it. Finally, make sure the
LD_LIBRARY_PATH is set correctly with this command:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64

Compiling the Tests
Now, navigate to the following folder in the terminal,

/home/yourusername/NVIDIA_GPU_Computing_SDK/C/src /foldername

There should be a lot of folders containing different tests, as stated before, this thesis used the
convolutionSeparable and convolutionTexture tests. Enter a folder and type

make

That should compile the test and can be found in an other folder:

/home/yourusername/NVIDIA_GPU_Computing_SDK/C/bin/linux/release

For now, ignore this file and continue to install GPGPU-Sim.

13

GPGPU-Sim
To install the simulator, it must first be fetched from the developers site using a tool called git [8].
Make sure the program git is installed before installing GPGPU-Sim. Run the following command
in the terminal to install git followed by the second command for installing the simulator:

sudo apt-get install git
git clone git://dev.ece.ubc.ca/gpgpu-sim

However, as of the 30th of September, the developers has changed the way of installing the
program. It is now manually fetched in a zip file from github [7]. Fetch the file and extract it
anywhere you want it. Then go into the terminal and navigate to the installation folder. Once inside,
run these commands:

source setup_environment <current build>

I and the developers recommend using the ”release” build. After that, it should say it was
successfully setup. Then run a simple command:

make

This will finally install the simulator and it is ready to be used. Optionally, you can install the
doxygen documentation with:

make docs

Now should everything be installed and ready for use. In case of further studying the source code of
the simulator, the files should be located in the folder “/installation_path/src/gpgpu-
sim/”.

Navigate to the folder where you installed it, further into the “configs” folder. There are some
folders with different graphics cards names and copy the folder that you desire to use for testing.
Place the copy preferably in a place where it is easy to access, for example in your “HOME” folder.
For simplicities sake, we call it the working directory. In this folder, there are some configuration
files for the graphics card you want to simulate on. The most important file is “gpgpusim.config”
which is the core file for the graphics card you simulate. Everything from frequency to memory
controllers are configurable from that file. Enter the working directory with the terminal and type
the following:

source /home/your-username/GPGPU-Sim-installation-
path/setup_environment name-of-the-folder-you-copied

An example of this would be:

source /home/filan750/gpgpu-sim/v3.x/setup_environment GTX480

This will setup the simulator to run tests on a GTX480 card. Note that this command has to be typed
every time you open a new terminal, before you continue with the tests. Now, copy the .run file
from the folder:

/home/your-username/NVIDIA_GPU_Computing_SDK/C/bin/linux/release

14

Past it in your working directory, containing the configuration files. GPGPU-Sim is now finally
ready to run a simulation test, on a graphics card of your choice. Type this command in the
terminal:

./name-of-the-program

To get a .txt file with all the output from the program and see the output in real time, use the
following command instead:

script -c ./nameofprogram yourfile.txt

15

Chapter 6

Configuration File
As stated before, the most important file is the “gpgpusim.config” file, which contains all
parameters for the graphics card. Many, but not all, parameters in the configuration file have an
explanation on the projects Wikipedia manual [5]. The most important parameters that are used in
our will be listed along with a brief explanation.

Table 6-1. Parameters for the configuration file

-gpgpu_ptx_sim_mode It runs the simulator but does not print any statistics. It
is useful for quick testing if a CUDA program gets a
deadlock or errors.

-gpgpu_clock_domains <Core Clock>:<Interconnect
Clock>:<L2 Clock>:<DRAM Clock>

In Fermi, each pipeline has 16 execution units, so the
Core clock needs to be divided by 2. (GPGPU-Sim
simulates a warp (32 threads) in a single cycle). 1400/2
= 700

-gpgpu_num_sched_per_core Number of warp schedulers per core

-gpgpu_n_clusters Number of processing clusters

-gpgpu_n_cores_per_cluster Number of SIMD cores per cluster

-gpgpu_perfect_mem <0=off (default), 1=on> This makes the memory always have a hit on a memory
access.

-gpgpu_tex_cache:l1
<nsets>:<bsize>:<assoc>:<rep>:<wr>:<alloc>,<mshr>:
<N>:<merge>,<mq>

Texture cache (Read-Only) configuration. Evict policy:
L = LRU, F = FIFO, R = Random. The nset x bsize x
assoc = memory size.

-gpgpu_const_cache:l1
<nsets>:<bsize>:<assoc>:<rep>:<wr>:<alloc>,<mshr>:
<N>:<merge>,<mq>

Constant cache (Read-Only) configuration. Evict
policy: L = LRU, F = FIFO, R = Random

-gpgpu_cache:il1
<nsets>:<bsize>:<assoc>:<rep>:<wr>:<alloc>,<mshr>:
<N>:<merge>,<mq>

Shader L1 instruction cache (for global and local
memory) configuration. Evict policy: L = LRU, F =
FIFO, R = Random

-gpgpu_cache:dl1
<nsets>:<bsize>:<assoc>:<rep>:<wr>:<alloc>,<mshr>:
<N>:<merge>,<mq> -- set to "none" for no DL1 --

L1 data cache (for global and local memory)
configuration. Evict policy: L = LRU, F = FIFO, R =
Random

-gpgpu_cache:dl2
<nsets>:<bsize>:<assoc>:<rep>:<wr>:<alloc>,<mshr>:
<N>:<merge>,<mq>

Unified banked L2 data cache configuration. This
specifies the configuration for the L2 cache bank in one
of the memory partitions. The total L2 cache capacity =
<nsets> x <bsize> x <assoc> x <# memory controller>.

-gpgpu_shmem_size Size of shared memory per SIMT core (aka shader
core) (default=16kB)

-gpgpu_cache:dl2_texture_only L2 cache is used texture only (default=0)

16

Chapter 7

Tests
The tests simulated on GPGPU-Sim were four in total:

• “Hello World”
• ConvolutionTexture
• ConvolutionSeparable-V1
• ConvolutionSeparable-V2

The “Hello World!” was a simple program that only printed the phrase and was mostly used for
initial testing. “Hello World” was run on both GTX480 and TeslaC2050, outputs were then
compared against each other. Due to the small scale of the “Hello World” program, its comparison
will neither be shown, nor evaluated.

The two convolution tests, ConvolutionTexture and ConvolutionSeparable, were provided by the
CUDA SDK 3.1 [6]. ConvolutionTexture was also used on both TeslaC2050 and GTX480 then
evaluated. The first point investigated was how accurately the simulator could simulate two
different cards. This is important, to make sure the theory matches with the reality. The card with
more resources should perform better than the other. ConvolutionTexture simulates a picture 1536
pixels high and 3072 pixels wide, iterated 10 times which explains the high amount of cycles and
instructions.

ConvolutionSeparable was used on the GTX480 for viewing the impact of the L1 cache and shared
memory. ConvolutionTexture would have been used but it does not need to use the shared memory,
and therefore would not yield any results, and for that reason ConvolutionSeparable was used
instead. The ConvolutionSeparable test that came with the CUDA SDK 3.1 was slightly modified.
The reason for this, it simulated a picture convolution and iterated 16 times on a 4096 pixel picture
which resulted in a long simulation time, over 24 hours. Due to this time consuming task, the scale
of the test was limited to a more reasonable scale for running the test many times. The
ConvolutionSeparable-V1 is configured with just two iterations, not counting the warm up iteration,
and a 1024*1024 pixel picture.

Another variation, ConvolutionSeparable-V2, was configured with three iterations, not counting
the warm up round again, and 2048*2048 pixel picture. This was to make sure the patterns are
correct with a second, larger scale test.

• Table 8-1 lists the results from ConvolutionTexture
• Table 8-2 lists the results from ConvolutionSeparable-V1
• Table 8-3 lists the remaining results from ConvolutionSeparable-V1
• Table 8-4 lists the results from ConvolutionSeparable-V2
• Table 8-5 lists the remaining results from ConvolutionSeparable-V2

17

ConvolutionSeparable were only run on the GTX480 architecture. To change the
ConvolutionSeparable test, the main-file for it needs editing. The file can be found in:
/home/*username*/NVIDIA_GPU_Computing_SDK/C/src/convolutionSeparable

Find and change the parameters:
const int imageW
const int imageH
const int iterations

Then, build the tests and move them to your workplace.

18

Chapter 8

Results
This section will list the most important result parameters with an explanation. A comparison
between the GTX480 and TeslaC2050, as well the convolution tests that were run on the GTX480.
Unfortunately, there is currently a parameter that is glitched,
“gpgpu_stall_shd_mem[gl_mem][coal_stall]” [11][12]. It does not report what it is
supposed to report and therefore, renders some results worthless and at best, doubtable. The
developers know this and will hopefully fix this in time.

GTX480 vs TeslaC2050
Table 8-1. ConvolutionTexture results.

Parameter Explanation TeslaC2050 result GTX480 result

gpu_sim_cycle Current iteration's cycles 1077403 1006505

gpu_sim_insn Current iteration's
instructions

877658112 877658112

gpu_ipc Avg. instructions per cycle 814.6052 871.9858

gpu_tot_sim_cycle Total number of cycles (in
Core clock) simulated for all
the kernels launched so far

21107073 19714489

gpu_tot_sim_insn Total number of instructions
executed for all the kernels
launched so far

17553162240 17553162240

gpu_tot_ipc Total avg. instructions per
cycles

831.6247 890.3687

The gpu_sim_cycle parameter is the amount of cycles for one iteration. In the test there is usually a
loop with the main workload, the algorithm, and each loop finished is called an iteration. The
gpu_sim_insn, is similar but is counting the amount of instruction in the loop for the iteration. The
result of gpu_sim_cycle for Tesla C2050 shows that it took 1077403 cycles to finish, for one
iteraton. The gpu_ipc parameter is the gpu_sim_insn divided by the gpu_sim_cycle which translates
into a ratio called instructions per cycle. This ratio is used to measure performance. The last
parameters with a “tot” in the name, such as the gpu_tot_sim_insn, shows the amount of
instructions needed to execute for all iterations in the program.

The parameter gpu_ipc results, 814.6052 and 871.9858, show that the GTX480 card has more
instructions per cycles, due to superior hardware. This means a higher output which is positive for
performance results. It is also important to measure other statistics such as the hit and miss rates for
the different caches. The test was run on the default GTX480 settings, therefore, it would have other
results with its other shared memory and L1 cache settings. Also, since the stalled parameters are
not entirely reliable other parameters could be affected as well, which might be an explanation for
results in the other test.

19

GTX480 ConvolutionSeparable-V1
As previously stated, the caches and shared memory has an impact on the performance. In the next
test, the sizes of both are changed to measure the effects on the card. The experiment used fixed
scaling for simplicities sake. With that condition, we are able to see which component has the most
impact on the graphics card. The GTX480 has a default 16 kB shared memory and a L1 cache with
a size of 48 kB. A built in alternative is to switch the two, to 48 kB shared memory and 16 kB L1
cache. The ConvolutionSeparable test takes further study how the restrictions and availability
influence the results, both theoretical architecture mixes along with the default ones. In the
following evaluation, the notations are like this, 32:32, which means 32 kB L1 cache:32 kB shared
memory.

Table 8-2. Data table for ConvolutionSeparable-V1

Iteration L1 size
(KB)

Shd mem. size
(KB)

Nr. Cycles Nr. Instructions Frequency
(MHz)

Cycles / Frequency (us)

1 16 16 212043 62914560 700 302.92

2 16 16 205212 62914560 700 293.16

Total: 417255 125829120 700 596.08

1 32 16 215775 62914560 700 308.25

2 32 16 208286 62914560 700 297.55

Total 424061 125829120 700 605.80

1 48 16 225685 62914560 700 322.41

2 48 16 212326 62914560 700 303.32

Total 438011 125829120 700 625.73

1 16 32 171701 62914560 700 245.29

2 16 32 164412 62914560 700 234.87

Total 336113 125829120 700 480.16

1 32 32 166791 62914560 700 238.27

2 32 32 160917 62914560 700 229.88

Total 327708 125829120 700 468.15

1 48 32 166751 62914560 700 238.22

2 48 32 160572 62914560 700 229.39

Total 327323 125829120 700 467.60

1 16 48 171701 62914560 700 245.29

2 16 48 164412 62914560 700 234.87

Total 336113 125829120 700 480.16

1 32 48 166791 62914560 700 238.27

2 32 48 160917 62914560 700 229.39

Total 327708 125829120 700 468.15

1 48 48 166751 62914560 700 238.22

2 48 48 160572 62914560 700 229.39

Total 327323 125829120 700 467.60

20

In Table 8-2, all the configurations have the same amount of instructions and frequency to make
sure the workload is equal across them. From the results in the cycles per frequency column, the
worst performance is the 48:16 with the lowest time of 322.41 µs, 303.32 µs and 625.73 µs in the
cycles per frequency column. The best performance is a tie with both the 48:32 and 48:48 setting
having the same time of 238.27 and 229.39. The last result is different with 468.15 µs and 467.60
µs meaning that the 48:48 setting is technically faster but is not efficient. For a 0.55 µs difference,
16 extra kB memory did not add much benefit. The 48:48 has almost the same results as the 48:32,
however, the purpose of running the ConvolutionSeparable test was to find out which configuration
has the better performance based on the hardware. Since the 48:48 has more resources but cannot
utilize it efficiently which is could be an economical waste, if this set-up has workloads consisting
of convolution or similar tasks. However, speed could be a requirement for a system, and is
common, so the 48:48 should not be completely overlooked in that case.

Table 8-3. Data table for ConvolutionSeparable-V1's L1 cache hits and misses

Iteration L1 size
(KB)

Shd mem.
size (KB)

Inst. Hits Inst. Misses Data hits Data Misses Const. Hits Const.
Misses

1 16 16 1113153 118337 145408 106586 573440 466

2 16 16 1114331 119515 145048 104731 573440 -

Total: 2227484 237852 290816 211317 1146880 466

1 32 16 1115246 120430 145408 107503 573440 480

2 32 16 1114674 119858 145048 107352 573440 -

Total 2229920 240288 290816 214855 1146880 480

1 48 16 1115414 120598 145408 109009 573440 480

2 48 16 1114817 100001 145048 107358 573440 -

Total 2230231 220599 290816 216367 1146880 480

1 16 32 1097879 100063 145408 107259 573440 612

2 16 32 1093117 98301 145048 106857 573440 -

Total 2190966 198364 290816 214116 1146880 612

1 32 32 1095456 100640 145408 106125 573440 607

2 32 32 1094048 99232 145048 105446 573440 -

Total 2189504 199872 290816 211571 1146880 607

1 48 32 1095202 100386 145408 106192 573440 607

2 48 32 1092914 98098 145048 105256 573440 -

Total 2188116 198484 290816 211448 1146880 607

1 16 48 1094879 100063 145408 107259 573440 612

2 16 48 1093117 98301 145048 106857 573440 -

Total 2187996 198364 290816 214116 1146880 612

1 32 48 1095456 100640 145408 106125 573440 607

2 32 48 1094048 99232 145048 105446 573440 -

Total 2189504 199872 290816 211571 1146880 607

1 48 48 1095202 100386 145408 106192 573440 607

2 48 48 1092914 98098 145048 105256 573440 -

Total 2188116 198484 290816 211448 1146880 607

21

In Table 8-3, there is no column for the data texture cache hits and misses, as the test did not use the
texture cache. The columns “Inst. Hits” and “Inst. Misses” shows the amount of instruction misses
decreases with the instruction hits. A very likely possibility is that since a smaller L1 cache has to
clear and fetch instructions more often, resulting in a higher number. This could also explain the
data misses, and why the 16:16 set-up has the least amount of misses. Data hits and Constant hits
should be the same for all the set-ups, otherwise it is most likely not the same convolution
simulation.

The constant cache misses columns does miss some data in the second iterations. This is due to how
the C++ data fetching program works, which was used for quickly gathering results from the
simulation output file. The C++ program subtracts the first run results from the total result and
presents that as the second iteration result. It is unknown why it does not appear to change on the
second iteration. One theory is that the parameter is glitched. Another theory could be that the
constant cache only need to store the parameters the simulator need in the beginning of the
simulation, which would be a more understandable reason for the results in the “Const. Miss”
column.

The column for data cache misses, shown in the “Data Misses” column, shows the 48:16 once again
has the worst performance with a total of 216367 misses. The ones with the least amount of misses
are 16:48 and 16:32 with a total of 214116 misses. The conclusion from the data cache results and
the previous results instruction cache results, a pattern exists. The less amount of shared memory,
the worse performance. Although the L1 cache also has an impact, it is not as important as the
shared memory. The conclusion is to prioritize the shared memory over L1 if no other options are
available when designing a system that works with convolution or a similar task.

Lastly, a second version of ConvolutionSeparable was created and tested. As previously stated, the
test was only to confirm consistency for the results. The test gave similar results, with the 32:32
setting being the fastest at 899.87 µs, 892.03 µs. 892.67 µs and 2684.57 µs in the cycles per
frequency column from the Table 8-4.

22

GTX480 ConvolutionSeparable-V2
Table 8-4. Data table for ConvolutionSeparable-V2

Iteration L1 size (KB) Shd mem
(KB)

Nr. Cycles Nr.
Instructions

Frequency
(MHz)

Cycles/Frequenzy (us)

1 16 16 805009 251658240 700 1150.01

2 16 16 795841 251658240 700 1136.92

3 16 16 795841 251658240 700 1136.92

Total 2396691 754974720 700 3423.84

1 32 16 802624 251658240 700 1146.61

2 32 16 790225 251658240 700 1128.89

3 32 16 788142 251658240 700 1125.92

Total 2380991 754974720 700 3401.42

1 48 16 810275 251658240 700 1157.54

2 48 16 794337 251658240 700 1134.77

3 48 16 831380 251658240 700 1187.69

Total 2435992 754974720 700 3479.99

1 16 32 634326 251658240 700 906.18

2 16 32 628465 251658240 700 897.81

3 16 32 629495 251658240 700 899.28

Total 1892286 754974720 700 2703.27

1 32 32 629906 251658240 700 899.87

2 32 32 624420 251658240 700 892.03

3 32 32 624872 251658240 700 892.67

Total 1879198 754974720 700 2684.57

1 48 32 639374 251658240 700 913.39

2 48 32 630117 251658240 700 900.17

3 48 32 623674 251658240 700 890.96

Total 1893165 754974720 700 2704.52

1 16 48 634326 251658240 700 906.18

2 16 48 628465 251658240 700 897.81

3 16 48 629495 251658240 700 899.28

Total 1892286 754974720 700 2703.27

1 32 48 629906 251658240 700 899.86

2 32 48 624420 251658240 700 892.03

3 32 48 624872 251658240 700 892.67

Total 1879198 754974720 700 2684.57

1 48 48 639374 251658240 700 913.39

2 48 48 630117 251658240 700 900.17

3 48 48 623674 251658240 700 890.96

Total 1893165 754974720 700 2704.52

23

Table 8-5. Data table for ConvolutionSeparable-V2's L1 cache hits and misses

Iteration L1 size
(KB)

Shd mem.
Size (KB)

Inst. Hits Inst. Misses Data Hits Data
Misses

Const. Hits Const
Misses

1 16 16 4459363 479075 585728 416900 2293760 441

2 16 16 4459619 331479 585728 414150 2293760 -

3 16 16 4460804 480516 585728 412458 2293760 -

Total 13379786 1438922 1757184 1243508 6881280 441

1 32 16 4461745 481457 585728 416447 2293760 441

2 32 16 4463129 482841 585728 412051 2293760 -

3 32 16 4463785 483497 585728 410763 2293760 -

Total 13388659 1447795 1757184 1239261 6881280 441

1 48 16 4461685 481397 585728 421946 2293760 496

2 48 16 4462058 481770 585728 416229 2293760 -

3 48 16 4460752 480464 585728 430576 2293760 -

Total 13384495 1443631 1757184 1268751 6881280 496

1 16 32 4378087 397799 585728 422484 2293760 538

2 16 32 4371965 391677 585728 422002 2293760 -

3 16 32 4376128 395840 585728 423045 2293760 -

Total 13126180 1185316 1757184 1267531 6881280 538

1 32 32 4378295 398007 585728 420703 2293760 538

2 32 32 4379711 399423 585728 420491 2293760 -

3 32 32 4376854 396566 585728 420481 2293760 -

Total 13134860 1193996 1757184 1261675 6881280 538

1 48 32 4385140 404852 585728 425251 2293760 615

2 48 32 4381151 400863 585728 423078 2293760 -

3 48 32 4378922 398634 585728 421743 2293760 -

Total 13145213 1204349 1757184 1270072 6881280 615

1 16 48 4378087 397799 585728 422484 2293760 538

2 16 48 4371965 391677 585728 422002 2293760 -

3 16 48 4376128 395840 585728 423045 2293760 -

Total 13126180 1185316 1757184 1267531 6881280 538

1 32 48 4378295 398007 585728 420703 2293760 538

2 32 48 4379711 399423 585728 420491 2293760 -

3 32 48 4376854 396566 585728 420481 2293760 -

Total 13134860 1193996 1757184 1261675 6881280 538

1 48 48 4385140 404852 585728 425251 2293760 615

2 48 48 4381151 400863 585728 423078 2293760 -

3 48 48 4378922 398634 585728 421743 2293760 -

Total 13145213 1204349 1757184 1270072 6881280 615

24

Chapter 9

Conclusion
This thesis has presented GPGPU-Sim, a simulator to exercise GPU computing on a simulated card.
It shows how to install, use GPGPU-Sim for future projects. Finally, we presented a portion of the
results from an example. In the experiments two different cards has been simulated and compared
against each other for an accuracy test of the simulator. Two other tests have compared the
importance of having a L1 cache and shared memory available for convolution tasks. In the second
convolution test similar patterns, like the ones in the first one, are present.

Future works on GPGPU-Sim could be a similar study but with a focus on power usage. Green IT
and power conservation are important issues nowadays. This study could also be beneficial for
embedded systems. There is a program called GPUWattch integrated in GPGPU-Sim in version
3.20 and later that could be further studied [13].

Another possibility would be to use the results to help develop better compilers that take advantage
of the hardware characteristics of the GPU into consideration and produce more efficient
executables.

It is also possible to use the experience and knowledge gained in this work to build a similar tool for
embedded GPUs based on GPGPU-Sim. GPGPU-Sim is still use-able, but not optimal for smaller
architectures.

25

Chapter 10

Sources
1. Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M. Aamodt,
Analyzing CUDA Workloads Using a Detailed GPU Simulator, in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Boston, MA,
April 19-21, 2009.

2."General-purpose Computing on Graphics Processing Units." Wikipedia. Wikimedia Foundation. [www]
<http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units>. Accessed 29 Sept.
2014.

3. "CUDA." Wikipedia. Wikimedia Foundation. [www]
 <http://en.wikipedia.org/wiki/CUDA>. Accessed 10 Oct. 2014.

4. "OpenCL." Wikipedia. Wikimedia Foundation. [www]
<http://en.wikipedia.org/wiki/OpenCL>. Accessed 10 Oct. 2014.

5. Aadmodt, Tor M., and Wilson W.L. Fung. "GPGPU-Sim 3.x Manual." GPGPU-Sim. The University of British
Columbia. [www]
<http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual>. Accessed 25 Oct. 2014.

6. "CUDA Toolkit 3.1 Downloads." CUDA Toolkit 3.1 Downloads. NVIDIA. [www]
<https://developer.nvidia.com/cuda-toolkit-31-downloads>. Accessed 21 May 2014.

7. "Gpgpu-sim/gpgpu-sim_distribution." GitHub. [www]
<https://github.com/gpgpu-sim/gpgpu-sim_distribution>. Accessed 30 Sept. 2014.

8. "GPGPU-Sim." GPGPU-Sim. The University of British Columbia. [www]
<http://www.gpgpu-sim.org/>. Accessed 25 Oct. 2014.

9. "Root/v3.x/README." /v3.x/README – GPGPU-Sim. N.p. [www]
<https://dev.ece.ubc.ca/projects/gpgpu-sim/browser/v3.x/README>. Accessed 23 Sept. 2014.

10. "GPU Computing SDK." NVIDIA. [www]
 <http://developer.download.nvidia.com/compute/cuda/3_1/sdk/gpucomputingsdk_3.1_linux.run>. Accessed 21
May 2014.

11. Minseok, Lee, and Wilson W.L. Fung. "GPGPU-Sim Google Group." Google Groups. Google. [www]
<https://groups.google.com/forum/#!searchin/gpgpu-sim/gpgpu_stall_shd_mem/gpgpu-
sim/8L1tuwudnYw/HRVh17mQf18J>. Accessed 18 Sept. 2014.

12. Fung, Wilson W.L. "GPGPU-Sim Bug Tracking System." Bugzilla. N.p. [www]
<http://www.gpgpu-sim.org/bugs/show_bug.cgi?id=25>. Accessed 18 Sept. 2014.

13. "GPU Wattch Manual." [www]
<http://www.gpgpu-sim.org/gpuwattch/>. Accessed 18 Nov. 2014.

26

http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://www.gpgpu-sim.org/gpuwattch/
http://www.gpgpu-sim.org/bugs/show_bug.cgi?id=25
https://groups.google.com/forum/#!searchin/gpgpu-sim/gpgpu_stall_shd_mem/gpgpu-sim/8L1tuwudnYw/HRVh17mQf18J
https://groups.google.com/forum/#!searchin/gpgpu-sim/gpgpu_stall_shd_mem/gpgpu-sim/8L1tuwudnYw/HRVh17mQf18J
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/gpucomputingsdk_3.1_linux.run
https://dev.ece.ubc.ca/projects/gpgpu-sim/browser/v3.x/README
http://www.gpgpu-sim.org/
https://github.com/gpgpu-sim/gpgpu-sim_distribution
https://developer.nvidia.com/cuda-toolkit-31-downloads
http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual
http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/CUDA

Appendix
C++ program used to fetch the parameters and present them, for a three iteration run in a
simulation.

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <iterator>

using namespace std;

void fetcher(string& data,vector<string>& res);
void get_value_and_store(vector<string>& res, vector<int>& summary);
void print(const vector<int> & summary);
void print_hit(const vector<int>& v, int n);
void print_miss(const vector<int>& v, int n);

int main()
{
 vector<string> res;
 vector<int> summary;
 string data;

 // fetches and stores all parameters we are interested in
 fetcher(data,res);

 // optional extra print
 //copy(res.begin(),res.end(),ostream_iterator<int>(cout, "\n"));

 /*
 * Since the results are stored like following example:
 * L2_total_cache_accesses = 117233
 * we must find the position of '=' and then we can extract
 * the number behind it, by subtracting a part of the string from
 * the position to the end of the string. There we got the number
 * and push it into the vector for storage and later use
 * both misses and hits are handled.
 */
 get_value_and_store(res,summary);

 // even more debug outprint
 //copy(summary.begin(),summary.end(),ostream_iterator<int>(cout, "\n"));

 print(summary); // giant print function

 return 0;
}

void fetcher(string& data,vector<string>& res)
{
 while(getline(cin,data))
 {
 if(data.find("L1I_total_cache_accesses") != std::string::npos)

res.push_back(data);

 if(data.find("L1I_total_cache_misses") != std::string::npos)
res.push_back(data);

27

 if(data.find("L1D_total_cache_accesses") != std::string::npos)
res.push_back(data);

 if(data.find("L1D_total_cache_misses") != std::string::npos)

res.push_back(data);

 if(data.find("L1C_total_cache_accesses") != std::string::npos)
res.push_back(data);

 if(data.find("L1C_total_cache_misses") != std::string::npos)

res.push_back(data);

 if(data.find("L1T_total_cache_accesses") != std::string::npos)
res.push_back(data);

 if(data.find("L1T_total_cache_misses") != std::string::npos)

res.push_back(data);

 if(data.find("L2_total_cache_accesses") != std::string::npos)
res.push_back(data);

 if(data.find("L2_total_cache_misses") != std::string::npos)

res.push_back(data);
 }
}

void get_value_and_store(vector<string>& res, vector<int>& summary)
{
 int iter1, iter2, iter3, eq;

 for(int i = 0; i < 10; i++)
 {
 eq = res.at(i).find("="); //first iteration results (both hits & misses)
 string d;
 d = res.at(i).substr(eq+2, res.at(i).length());
 iter1 = atoi(d.c_str());
 summary.push_back(iter1);

 eq = res.at(i+10).find("="); //second iteration results
 string d2;
 d2 = res.at(i+10).substr(eq+2, res.at(i+10).length());
 iter2 = atoi(d2.c_str());
 summary.push_back(iter2);

 eq = res.at(i+20).find("="); //third iteration results
 string d3;

 d3 = res.at(i+20).substr(eq+2, res.at(i+20).length());
 iter3 = atoi(d3.c_str());
 summary.push_back(iter3);
 }
}

void print(const vector<int>& summary)
{
 cout << "Now printing the results, in order, Inst, Data, Const, Text, L2:\n";
 cout << "L1 Instruction cache results: " << endl;
 print_hit(summary, 0);
 print_miss(summary, 3);

 cout << "L1 Data cache results:" << endl;

28

 print_hit(summary, 6);
 print_miss(summary, 9);

 cout << "L1 Constant cache results:" << endl;
 print_hit(summary, 12);
 print_miss(summary, 15);

 cout << "L1 texture cache results: " << endl << endl;
 print_hit(summary, 18);
 print_miss(summary, 21);

 cout << "L2cache results:" << endl;
 print_hit(summary, 24);
 print_miss(summary, 27);
}

void print_hit(const vector<int>& v, int n)
{
 cout << "iteration 1 hits: " << v.at(n) << endl;
 cout << "iteration 2 hits: " << v.at(n+1)-v.at(n) << endl;
 cout << "iteration 3 hits: " << v.at(n+2)-v.at(n+1) << endl;
 cout << "iteration total hits: " << v.at(n+2) << endl;
}

void print_miss(const vector<int>& v, int n)
{
 cout << "iteration 1 misses: " << v.at(n) << endl;
 cout << "iteration 2 misses: " << v.at(n+1)-v.at(n) << endl;
 cout << "iteration 3 misses: " << v.at(n+2)-v.at(n+1) << endl;
 cout << "iteration total misses: " << v.at(n+2) << endl;
}

29

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en
längre tid från publiceringsdatum under förutsättning att inga extra-ordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva
ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell
forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt
kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver
upphovsmannens medgivande. För att garantera äktheten, säkerheten och
tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt
samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant
sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga
anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring exceptional
circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to use it
unchanged for any non-commercial research and educational purpose. Subsequent
transfers of copyright cannot revoke this permission. All other uses of the document
are conditional on the consent of the copyright owner. The publisher has taken
technical and administrative measures to assure authenticity, security and
accessibility.

According to intellectual property law the author has the right to be mentioned
when his/her work is accessed as described above and to be protected against
infringement.

For additional information about the Linköping University Electronic Press and
its procedures for publication and for assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

© [Filip Andersson]

30

http://www.ep.liu.se/

	Abstract
	Acknowledgements
	Table of contents
	Chapter 1
	Introduction
	Chapter 2
	GPGPU-Sim
	Chapter 3
	GPU Architecture
	Chapter 4
	Card Specifications
	Chapter 5
	GPGPU-Sim Installation
	Compiling the Tests

	Chapter 6
	Configuration File
	Chapter 7
	Tests
	Chapter 8
	Results
	Chapter 9
	Conclusion
	Chapter 10
	Sources
	Appendix

