Buller som stressor i skolmatsalar

En fördjupning av Barnmiljöhälsorapport 2013
i samarbete med Landstinget i Jönköpings län.

Författare: Sara Ekström
Handledare: Lektor Anna Asplund (intern),
Med. Dr. Noomi Carlsson &
epidemiolog Marit Eriksson (externt)
Examinator: Lektor Marie Ekstam Ljusegren
Termin: VT2014
Ämne: Biomedicinsk vetenskap
Nivå: Grund
Kurskod: 2BK01E
Abstract

Background: The child health report of 2013 was undertaken in the district of Jönköping, Sweden. The results of this survey indicated that the 12 year olds that participated in the study were bothered by the noise in the dining area of their school. An elevated level of noise can affect the human body in a negative way, and can lead to an increased level of stress. Exposure to elevated levels of noise gives enhanced excretion of corticotrophin releasing hormone (CRH). CRH is a hormone that can have a negative impact on the normal function of the gastrointestinal tract. Elevated noise will affect the health of people being exposed, and entails a health hazard.

Aim: The aim of this study was to evaluate the relationship between the noise in school dining areas and the self reflected health of 858 12 year old students from the district of Jönköping, Sweden.

Method: The analysis was based on a child health survey 2011; evaluating the student’s reflection of the exposure of noise in relation to their own estimated health status.

Results: The results from the child health survey 2011 did show that the students being most affected by noise also experienced a lower self reflected health compared to the students less affected by noise in the school dining area.

Conclusion: The findings of this study indicate that students experience an overall lower level of health if they feel negatively affected by noise. To be able to improve child health, further research needs to be undertaken regarding this issue. The effects of stress hormones need to be investigated further, as well as the relationship between excretions of stress hormones in the body and the level of surrounding noise.

Bakgrund: Barnmiljöhälsorapporten 2013 indikerade att 12-åringarna i Jönköpings län känt sig besvärade av ljud i skolmatsalen. Att besväras av ljud är samma sak som att utsättas för buller. Buller har förmåga att aktivera kroppens stresssystem och ljud kan bl.a. leda till ökad frisättning av kortikotropinfrisättande hormon, (CRH). Ett hormon som påverkar mag- och tarmkanalen på flera olika sätt som troligen är negativt. Ljudstörning har förmåga att påverka hälsan hos de som utsätts, buller utgör en hälsorisk.

Syfte: Syftet med detta arbete är att studera sambandet mellan bullerstörning i skolmatsalen och självskattad hälsa hos 858 12-åringar i Jönköpings län som deltagit i Barnmiljöhälsoenkäten 2011.

Metod: Analyser av data från Barnmiljöhälsoenkäten 2011 där upplevelse av ljudstörning i skolmatsalen satts i relation till självskattad hälsa.

Resultat: 12-åringarna i Barnmiljöhälsoenkäten 2011 i Jönköpings län som störts mest av ljud i skolmatsalen har en sämre självskattad hälsa än de som störts mindre eller inte alls av ljud i skolmatsalen.

Slutsats: För att skapa bättre förutsättningar för en god hälsa hos barn bör fler studier utföras där de stresshormoner ljud kan öka frisättningen av och dess hälsoeffekter utreds. Detta eftersom denna studie indikerar en sämre självskattad hälsa hos de deltagare som upplever ljudstörning i skolmatsalen.
Nyckelord

Buller, Barnmiljöhälsoenkäten 2011, ljudvolymmätning, kortikotropinfriättande hormon (CRH).

Tack

Stora och varma tack till:

- Anna Asplund som varit en riktig klippa i detta arbete.
- Marie Ekstam Ljusegren för hjälp att hitta rätt vägar för detta arbete.
- Miljösamverkan Östra Skaraborg för att ni gav mig kloka råd om ljudmätningar och låt mig kontrollera mitt mätverktyg emot er bullermätare.
- Skolan som lät mig utföra ljudmätningar i deras skolmatsal.
- Anna Johansson och Emma Enström för allt stöd genom studietiden som hjälpt mig ta mig hit idag.
Innehåll

1 INLEDNING ... 1

2 BAKGRUND .. 1
 2.1 Ljud ... 1
 2.1.1 Hörselorgan ... 1
 2.2 Böller .. 2
 2.2.1 Störande ljud ... 2
 2.2.2 Ljudvolym ... 4
 2.3 Ljud som stressor ... 5
 2.3.1 CRH .. 5
 2.3.2 CRH receptorer .. 5
 2.3.3 Effekter av CRH .. 6

3 SYFTE .. 8

4 METOD .. 8
 4.1 Barnmiljöhälsoenkätten 2011 .. 8
 4.1.1 Data från Barnmiljöhälsoenkätten 2011 ... 8
 4.1.2 Analys av data ... 9
 4.1.3 Etik .. 10

5 RESULTAT ... 10
 5.1 Barnmiljöhälsoenkätten 2011 ... 10
 5.1.1 Ljudstörning och allmäntillstånd .. 10
 5.1.2 Störda av andra barn ... 11

6 DISKUSION ... 12
 6.1 Störande ljud ... 13
 6.1.2 Talets påverkan ... 14
 6.1.3 Ljudvolym ... 14

7 SLUTSATS .. 15

REFERENSER ... 17

BILAGOR ... 1
 Bilaga A Skiss över skolmatsal i Jönköpings län där ljudvolymmätning ägde rum 20
 mars 2014 .. 1
 Bilaga B Ljudvolymmätning utförd 20 mars 2014 på grundskola i Jönköpings län II
 Bilaga C Anteckningar från ljudvolymmätning i skolmatsal i Jönköpings län 20 mars
 2014 .. III
 Bilaga D Frågor från Barnmiljöhälsoenkätten 2011 ... V
1 Inledning

2 Bakgrund
2.1 Ljud
Det människan uppfattar som ljud är tryckvågor i luft och annan materia (4). Hur olika ljud uppfattas beror bl.a. på ljudets fysiska egenskaper d.v.s. dess ljudstyrka och tonhöjd (5). Tonhöjd mäts i enheten Hertz (Hz) och beror av antalet svängningar ljudvågorna gör per sekund (5). Upplevd ljudstyrka beror av amplituden av ljudvågorna vilket uttrycks i enheten, decibel (dB) (5). dB-skalan är en logaritmisk skala vilket innebär att ljudstyrkan ökar 1000 gånger om den höjs från noll dB till 30 dB (5). Det mänskliga örat är örat hörtröskel, d.v.s. den lägsta ljudtrycksnivån vid vilken en höruppelevelse uppstår motsvarar noll dB vid en ljudfrekvens mellan 500 Hz och 5000 Hz, som är det frekvensområde hörselorganen bäst uppfattar (4). Den subjektiva upplevelsen av styrkan hos ljud kan skilja sig markant från ljudvågens fysiska egenskaper (4).

2.1.1 Hörselorgan
Att människan kan uppfatta tryckvågor och omvandla dessa till hörupplevelser av olika ljudstyrka och tonhöjd beror på hörselorganet, örat. Örat kan i sin tur delas upp i ytter-, mellan- och innerörat. Den synliga delen av örat utgör ytterörat tillsammans med hörselgången och dessa fångar upp ljudvågorna. Ljudvågorna fortfarande i när tryckförändringarna ljudet åstadkommer när hårcellerna på basilarmembranet i
innerörat böjs dessa, vilket påverkar mekaniskt känsliga jonkanaler som skapar transmitterfrisättning. Härcellerna, som är många till antalet, utgör en del av organets sinneceller. Transmittersubstanserna stimulerar nervcellkroppar placerade centralt i hörselsnäcken (spirale cochleae). Dessa afferenta nervfibrer löper via bl.a. hjärnstammen till hörselcortex i temporalloben som ger upphov till en hörupplevelse.

2.2 Buller

Arbetsmiljöverket i Sverige definierar ljud som skapar störning hos en individ, är oönskat eller kan leda till hörselskada som buller (6). Barn är extra känsliga för ljud och därmed extra känsliga för buller (7). Människan är biologiskt anpassad till en miljö som i stor utsträckning är fri från buller (8). Evolutionärt har människan levit i en ljudmässigt lugn miljö. I de fall ljud förekommit har det ibland indikerat anfallande fara.

Hörselorganet är utvecklat för att under dessa premisser utgöra varningssystem för kroppen (1). Som en följd är människan oförmögen att minska hörselorganets känslighet för ljudstimuli och oavsett vakenhet bearbetas ljud för att snabbt kunna bedöma om fara närmar sig eller ej (1). Bedöms ljudet kunna utgöra fara aktiveras det sympatiska nervsystemet som är kroppens fly- eller fäktasystem (1). Detta innebär att binjuremärgen utsöndrar adrenalin och noradrenalin samt att binjurebarken utsöndrar kortisol (1). Ökad utsöndring av stresshormonerna med bl.a. förändrad metabolism och förhöjt blodtryck som följd är exempel på fysiologiska reaktioner på buller (9). Buller ger också upphov till psykologiska effekter som bl.a. trötthet och irritation (9). För våra förfäder innebar hörseln som varningssystem möjlighet att fly från fiender alternativt fäka eller spela död och på så viss kunna rädda sitt liv. I det moderna samhället innebär istället denna förmåga hos ljudet att de hos människan kan framkalla stress och trötthet med ohälsa som följd (10). Buller ses idag som en hälsorisk (10).

2.2.1 Störande ljud

2.2.1.1 Ljudkänslighet

2.2.1.2 Talets förmåga att framkalla stress

2.2.2 Ljudvolymen
Ljudnivåer över 90 dB(A) har kapacitet att utgöra stressor oberoende av andra faktorer (1). Vid så höga ljudnivåer aktiveras det sympatiska nervsystemet och frisättning av stresshormon ökar (1). För alla ljud under 90 dB(A) är det flera faktorer som påverkar ljudupplevelsen, varav vissa redan diskuterats ovan. Vilken information ett ljudstimulus bär verkar vara viktigare än ljudnivån (1). Det är därför svårt att fastslå en ljudnivå vid vilken utsöndringen av stresshormoner ökar. Evolutionärt har hörseln agerat som ett viktigt varningssystem för fara, ju närmare en fara befinner sig desto högre ljudnivåer kan förväntas (1). Intensiteten av stressreaktionen kan därför förväntas vara högre vid högre ljudnivå. Det är den ögonblickliga ljudnivån som är direkt relaterad till stressreaktioner (1). Ett dos-respons förhållande mellan ljudnivå och stressreaktionen kan inte generaliseras och kan bara förväntas gälla vid en typ av ljud och under en typ av aktivitet (1). En trend mot en ökad kardiovaskulär risk om bullerförekomsten av trafikbuller dagtid överstiger ljudnivån 65 dB(A) kan ses i studier (12, 23). Om konversationer störs av omgivningsljud har ökad utsöndring av katekolaminer setts vid ljudnivåer redan från 60 dB(A) (1). Det finns inga undersökningar kring ljudvolymer som är kritiska vid exponering för irrelevant meningsfullt tal som är varaktigt (10). Det är svårt att fastställa dos-respons förhållanden mellan ljudnivå och stressreaktioner. Förändringar i utsöndringen av stresshormonerna adrenalin, noradrenalin och kortisol har dock setts vid experiment som både innefattar akut och kronisk bullerexponering (23). Förhöjda kortisolnivåer och förändringar i binjurebarken har setts på rättor som i experimentellt utsatts för buller liknande det i skolan (24).
2.3 Ljud som stressor

2.3.1 CRH

CRH är en peptid uppbyggd av 41 aminosyror som stimulerar syntes och frisättning av ACTH och β-endorfin från körtelhypofysen. CRH är det primära neurohormonet som vid stress aktiverar hypotalamus-hypofys-binjureaxeln (HPA-axeln), vilket bl.a. leder till ökad utsöndring av kortisol från binjurarna. CRH i sig själv kan agera signalsubstans/neuromodulator och vid stress koordinerar det de beteendemässiga, autonoma och viscera reaktionerna. Mag-tarmkanalen (GI-kanalen) är extra känslig för stress och ökad frisättning av CRH påverkar GI-kanaler på flera olika sätt. Även andra däggdjur har CRH-liknande peptider som karaktäriserats vilka kan spåras tillbaka till de ryggradslösa djuren. Det pekar på att CRH evolutionärt haft en betydande roll för överlevnad och anpassning. (26)

2.3.2 CRH receptorer

ett stort antal CRH1-receptorer och i magsäcken återfinns främst CRH2-receptorer (28).

2.3.3 Effekter av CRH

CRH verkar ha flera olika effekter på GI-kanalen. I en studie där det undersöktes hur födointag påverkas av ökade halter CRH åt deltagarna signifikant mer både mätt i gram och efter låg dos CRH jämfört med när de fått placebo (29). Ungefär 150 kalorier extra och 26 gram (29). Den ökade konsumtionen kunde ses som följd av den kortisoltopp som uppstod efter CRH injicering (29). Den signifikanta ökningen i mätten kalorier och gram kan anses lågt, på sikt kan även små ökningar i födointaget utan motsvarande höjning i energiförbrukningen leda till viktuppgång.

2.3.3.1 CRH:s effekter på kolon

CRH har förmåga att stimulera motilitet i kolon, ge snabbare tarmpassage av nedbruten föda och öka defekationshastigheten d.v.s. avföringshastigheten (30). Störst effekt på dessa faktorer har CRH jämfört med de andra CRH-liknande peptiderna (30).

Injektioner av CRH förändrar motilitet i proximala kolon som utgörs av uppfåtstigande- och transversala kolon och ger ansamlingar av rörelsevågor (motilitet), d.v.s. proximala kolon rör sig mer än normalt vid CRH injicering. (30). Motiliteten i distala kolon har visat sig öka kraftigt vid CRH injicering. CRH1-receptorer har en primär roll för motiliteten i kolon (30). CRH1-receptorer som stimulerar motoriska funktioner i kolon överensstämmer delvis i sin uppbyggnad med CRH1-receptorer i hypotalamus och de Pontina kärnorna i hjärnan som ger ökat ångestbeteende (31). Detta har fastställts genom användning av selektiva CRH1-receptor antagonister (31).

Andra stressorer som visat sig förändra de motoriska funktionerna i kolon är bl.a. starka ljud (26). Motiliteten i kolon är i normala fall relativt låg (5). När nedbruten föda når kolon har den största delen av absorptionen av näring redan ägt rum (5). Det som sker i kolon är främst att natriumjoner (Na⁺) absorberas vilket leder till en förändrad osmolitet vilket medför att även vatten absorberas och på så vis koncentreras faeces (5). Vid en allt för snabb passage genom tarmen uppstår diarré då Na⁺ och vatten ej hinner absorberas i tillräcklig utsträckning för att koncentrera faeces (5). En diarré som håller i sig kan leda till att vätskebalansen i kroppen påverkas då Na⁺ och vatten utgör centrala delar för att upprätthålla en god vätskebalans (5). Vattniga diarréer kan förekomma om CRH nivåerna höjs ofta som en följd av t.ex. ljudstörning (27).

2.3.3.2 CRHs effekter på magsäcken
Kolon är mer känslig för stress än den övre delen av GI-kanalen. Ökade CRH halter påverkar dock även övre mag- och tarmkanalen genom aktivering av CRH2-receptorer (31). Detta leder till en minskad kontraktilitet i magsäcken samt en hämning av tömnningen av magsäcken (31). Om magsäckstömnningen hämmas kan det ge symtom i form av illamående, kräkningar, uppbålsthet och buksmärta (32).

2.3.3.3 CRHs immunologiska effekter
CRH är proinflammatoriskt, vilket innebär att det är med och förstärker kroppens immunförsvar. Hur CRH verkar inflammatoriskt är ännu inte klarlagt. Känt är att CRH är närvarande i inflammatoriska celler som cirkulerar i kroppen och även återfinns på inflammerade ställen. Det har observerats att masteeller som har en viktig inflammatorisk roll har funktionella CRH1-receptorer. Mastcellerna har också visat sig ha förmåga att syntetisera CRH. Det CRH som mastceller syntetiserar påverkar andra celler och verkar också autokrint genom att stimulera mastcellen att syntetisera ännu mer CRH. Hyperplasi (vävnadsökning) av mastceller i tarmsslemhinan kan orsakas av stress och av CRH. Mellan epitcelcellerna i tarmväggen och tarmlumen finns en barriär av cellmembran som är delvis sammankopplade, tight junctions som påverkas av CRH och mastceller. Permeabiliteten i tight junctions i tarmen ökar, d.v.s. mer tillåts passera barriären genom specifika mastcellers sekretion. Antigener,gifter och bakteriella produkter som normalt inte passerar tight junctions kan när CRH orsakar ökad permeabilitet passera ut från tarmlumen. (28)
I Ileum, sista delen av tunntarmen och i kolon finns bägarceller som utsöndrar mukus, ett sekret som bl.a. skyddar tarmepitelet från penetrering av bakterier. Bägarceller har CRH1-receptorer. I studier på råttor har perifer injektion av CRH lett till hämmad mukusutsöndring samt i distala kolon har en minskad mängd bägarceller observerats. Samma effekter har setts vid stress. (27)
En ökad permeabilitet hos tight junctions i tarmen samt hämmade bägarceller kan understödja utveckling av inflammatoriska processer. Förhöjda CRH nivåer kan leda till ihållande mag- och tarmbesvär, särskilt känsliga för detta är individer med funktionella tarmbesvär (27).

2.3.3.4 Några effekter av kortisol
Då ökad frisättning av CRH även leder till ökad frisättning av kortisol bör även effekter av dessa tas i beaktande. Effekterna av en kronisk hög kortisollivnivå är många och leder till ett flertal negativa hälsoeffekter. Kortisol påverkar metabolismen genom att inhibera transport av aminosyror in i cellen och aktiverar istället nedbrytning av proteiner i bl.a.
muskler, aminosyror transformeras till glukos. Det leder till ökade glukosnivåer i blodet då kortisol inhiberar transport av och utnyttjande av glukos. Även nivåerna av fettsyror i blodet ökar då lipolys av triglycerider stimuleras. Det betyder att ökade halter av CRH kan resultera i stor påverkan på den grundläggande metabolismen. Detta är bara några av alla effekter som kortisol har. (25)

3 Syfte
Syftet med detta arbete är att studera sambandet mellan bullerstörning i skolmatsalen och självskattad hälsa hos de 858 12-åringar i Jönköpings län som deltagit i Barnmiljöhälsoenkäten 2011.

4 Metod
Data från Barnmiljöhälsoenkäten 2011 har analyserats, för att studera 12-åringarna i Jönköpings län självskattade hälsa i relation till upplevda ljudstörningar i skolmatsalen.

4.1 Barnmiljöhälsoenkäten 2011

4.1.1 Data från Barnmiljöhälsoenkäten 2011
4.1.2 Analys av data

Alla data från Barnmiljöhälsoenkäten 2011 av betydelse för denna studie har förts in i ett kalkylblad. Pivottabellverktyget har använts för analys. Utifrån en fråga från Barnmiljöhälsoenkäten 2011 där deltagarna ombets besvara hur mycket de under de senaste 12 månaderna störts av ljud i skolmatsalen har deltagarna delats upp i tre grupper. En grupp som störts mycket av ljud bestående av 151 deltagare, (73 pojkar och 78 flickor), där deltagarna svarat att de störts väldigt mycket och mycket av ljud i skolmatsalen. En grupp där deltagarna svarat att de störts mättligt av ljud i skolmatsalen bestående av 186 deltagare, (98 pojkar och 88 flickor). En annan grupp som ej störts av ljud bestående av 522 deltagare, (276 pojkar och 246 flickor), där deltagarna angett att de störts lite eller inte alls av ljud i skolmatsalen. Dessa analysgrupper har förtydligats i figur 2 samt tabell 1.

Utifrån de tre grupperna har analyserats hur variabler kring självskattad hälsa, frekvens av störning samt störning från andra barn besvarats och hur stor andel av respektive grupp som besvarat en fråga på samma sätt. I de fall där deltagarna ej besvarat frågan har dessa data plockats bort.

![Diagram](image)

Figur 2. Uppdelning av tre grupper för analys i denna studie efter ljudstörningsgrad i Barnmiljöhälsoenkäten 2011
4.1.3 Etik

5 Resultat
5.1 Barnmiljöhälsoenkäten 2011
12-åringarna ombads i Barnmiljöhälsoenkäten 2011 bl.a. besvara frågan hur mycket de störts eller besvärats av ljud i skolmatsalen de senaste 12 månaderna. I Jönköpings län uppgav fem procent att de störts väldigt mycket, 12 procent att de störts mycket, 22 procent att de störts måttligt, 28 procent att de störts lite samt 32 procent att de inte störts alls. Det innebär att 68 procent av 12-åringarna som besvarade enkäten känt sig besvärade av ljud i skolmatsalen i någon utsträckning. Av de som störts väldigt mycket och mycket har 87 procent störts flera gånger i veckan.

5.1.1 Ljudstörning och allmäntillstånd
Vid jämförelse mellan den grupp 12-åringar som upptgett att de störts mycket av ljud de senaste 12 månaderna, och övriga grupper som angett att de störts måttligt respektive ej störts har gruppen som störts mycket mer fysiska och psykiska besvär. Gruppen som störts måttligt har i sin tur mer fysiska och psykiska besvär än gruppen som ej störts av ljud. Gruppen som störts mycket av ljud anger i större utsträckning att de har bekymmer med småtort, besvär, oro, nedstämdhet, trötthet och huvudvärk. I gruppen som ej störts av ljud rankar 71 procent sitt allmänna hälsotillstånd som mycket gott i jämförelse med

<table>
<thead>
<tr>
<th></th>
<th>Störts mycket av ljud</th>
<th>Störts måttligt av ljud</th>
<th>Ej störts av ljud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal pojkar</td>
<td>73</td>
<td>98</td>
<td>276</td>
</tr>
<tr>
<td>Antal flickor</td>
<td>78</td>
<td>88</td>
<td>246</td>
</tr>
<tr>
<td>Totalt</td>
<td>151</td>
<td>186</td>
<td>522</td>
</tr>
</tbody>
</table>

Tabell 1: Analysgruppernas deltagarantal och könsfördelning.
65 procent i gruppen som störts mättligt och 55 procent i gruppen som störts mycket av ljud.

5.1.2 Störda av andra barn
I gruppen som störts mycket av ljud i skolmatsalen känner sig 68 procent störda av ljud från andra barn, i gruppen som ej störts anger fyra procent att ljud från andra barn besvärar dem och emellan dessa två hamnar gruppen som störts mättligt där 29 procent känt sig störda av ljud från andra barn. Av de deltagare som störts mycket av ljud i skolmatsalen störs 38 procent mycket av ljud från andra barn. De deltagare som uppger att de ej störts alls av ljud i skolmatsalen har en procent störts mycket av ljud från andra barn respektive nio procent av gruppen som störts mättligt.
6 Diskussion

Buller är en stressor och källa till ohälsa (10). Detta kan överensstämma med analysen av Barnmiljöhälsoenkäten 2011 då de deltagare som upplevde mest buller i samtliga hälsoparametrar angav att de mådde sämre än deltagare som ej stördes i samma utsträckning av ljud i skolmatsalen. Deltagarna som stördes mättligt uppgav en bättre hälsa än de deltagare som stördes mycket men en sämre än de som ej stördes vilket ytterligare överensstämmer med att buller är en källa till ohälsa. Även om 12-åringarna generellt upplever sitt hälsotillstånd som gott är det en större andel av dem som ej störts av buller som rankar sitt allmänna hälsotillstånd som mycket gott än de som störts av buller. Trötthet är en känd psykologisk effekt av buller (9), och nästan en femtedel av 12-åringarna som störts mycket av ljud i skolmatsalen har de senaste tre månaderna haft problem med trötthet. Inomhusmiljön i skolan anges som en stor källa till trötthet.

Inomhusmiljön i skolan innefattar fler miljöer än skolmatsalen och tröttheten deltagarna kopplar till skolmiljön behöver ej relatera till miljön i skolmatsalen. Det går att se en trend mot att trötthet är vanligare hos de som störts mycket av ljud än hos de som störts mättligt respektive de som ej störts av ljud. Oro, nedstämdhet, smärtor, besvär och huvudvärk är andra besvär som förekommer i större utsträckning hos de 12-åringar som störts mycket av ljud i skolmatsalen. Oro och nedstämdhet kan kopplas till ångest, ett beteende som CRH kan ge upphov till (31). I den mån vårdnadshavare eller 12-åringarna själva eller i samråd med vårdnadshavare besvarar enkäten kan leda till felkällor. Analysen av datan visar en trend emot att de elever som störts mycket av ljud i skolmatsalen har en sämre hälsa när de själva får skatta dessa variabler än de elever som ej störts av ljud i skolmatsalen. Den självskattade hälsan blir succesivt bättre ju mindre deltagarna störts av ljud i skolmatsalen. Vilken störningsgrad ljud ger upphov till påverkas av allmäntillståndet liksom allmäntillståndet påverkas av ljudstörning. Den
grupp som störts av ljud i skolmatsalen kan göra det till följd av ett sämre allmäntillstånd och deras allmänna hälsotillstånd kan skattats sämre som en följd av ljudstörning i skolmatsalen. Slutsatsen är att det kan vara av värde att vidare studera hur ljudmiljön i landets skolmatsalar påverkar hälsan hos de elever som intar sin lunch i en skolmatsal då resultatet av denna studie indikerar att de som störts mycket av ljud i skolmatsalen har en sämre hälsa. Detta oberoende av om ljudstörningen leder till sämre hälsa eller om sämre hälsa leder till ljudstörning.

6.1 Störande ljud

6.1.1.1 Ljudkänslighet
Bullerkänslheten varierar från individ till individ vilket medför att i en och samma ljudmiljö varierar störningsgraden hos individer (10). Även om det finns anledning att tro att eleverna är utsatta för störande, varierande ljud i skolmatsalen som de själva har dålig kontroll över flera gånger i veckan kan antas att störningsgraden av denna ljudmiljö är olika. Störningsgraden hos deltagarna i Barnmiljöhälsoenkät 2011 varierar och även om 68 procent anger att de i viss utsträckning störts av ljud i skolmatsalen är det enbart 151 av 859 deltagare, d.v.s. under en femtedel som anger att de störts mycket eller väldigt mycket av ljud i skolmatsalen. Ljudkänslighet tycks vara oberoende av kön (16). Detta står även att finna i denna studie då könsfördelningen i de olika störningsgrupperna är jämn. Högre grad av störning har i tidigare studier i

6.1.2 Talets påverkan
Tal är en känd faktor som både kan leda till bullerstörning och som vid maskering av taluppfattning kan utgöra en källastor till stress (9). Bland de 12-åringar som kände sig mycket störda av buller i skolmatsalen angav hela 68 procent att de känt sig störda av ljud från andra barn, att jämföra med fyra procent av de deltagare som ej stördes av buller. Andra barns tal tycks utgöra en stor källastor till bullerstörning i skolmatsalar. Det ligger i linje med andra studier där andra människors tal rankats som den mest störande faktorn (13, 14). För att ett barn under 15 år skall kunna uppfatta ett samtal på acceptabel nivå bör ljudvolymen ej överstiga 50 dB (21). Den genomsnittliga ljudvolymen i skolmatsalen i Jönköpings län där ljudvolymmätning utfördes låg på 73,4 dB(A), d.v.s. långt över 50 dB. Då tal står för en stor del av den ljudvolymen och tal lätt maskerar tal kan en minskad taluppfattning förväntas äga rum i skolmatsalen vilket i sin tur utgör en källastor till stress. Slutsatsen är att de som störts av ljud i skolmatsalen i stor utsträckning störts av ljud från andra barn och en förklaring kan vara att barnens tal maskerar taluppfattningen hos andra besökare i skolmatsalen som då upplever störning. Varierande ljudkänslighet hos barnen skulle kunna vara en förklaring till att inte alla elever störts på samma vis av ljud från andra barn.

6.1.3 Ljudvolym
Stressreaktionens intensitet förväntas vara högre vid högre ljudvolymer som ett spår av hörserns viktiga egenskap som varningssystem (1). När ljudstyrkan ökar, ökar ofta störningsgraden (11). I tidigare studier i skolmatsalar har eleverna upplevt ökad svårighet att uppfatta tal för varje decibel ljudvolymen steg (22). Det kan förklaras av att ljudvolymen i skolmatsalar kan förväntas ligga över de 50 dB som är den ljudvolym då en yngre människa har en acceptabel taluppfattning (21). Varje dB ökning av
ljudvolymen innebär på så vis en försvårad taluppfattning. Den subjektiva upplevelsen av buller påverkas starkt av maskering av samtal (9). Konversationer som störs av omgivningsljud har visat sig ge ökad utsöndring av katekolaminer vid ljudnivåer av minst 60dB(A) (1). Ljudvolymen i den skolmatsal i Jönköpings län där en indikerande ljudvolymmätning ägde rum låg genomsnittsvärdet för samtliga mätperioder på 73,4dB(A). Vidare mätningar i fler skolmatsalar i Jönköpings län bör utföras för att få en mer komplett bild av den ljudmiljö som råder i länets skolmatsalar. Ljudvolymen i hittills studerade skolmatsalar tenderar ej att ligga över 90 dB(A) som oberoende av andra faktorer kan utgöra en stressor (1). I samband med andra nämnda faktorer som bl.a. minskad taluppfattning och liten kontroll över bullret kan uppmätta ljudvolymer troligtvis utgöra en stressor. Det är mycket förvånande att det ej går att finna studier där dos-respons förhållande mellan ljudnivå och utsöndring av stresshormoner studerats där tal utgjort bullerkälla. Det går dock att se att ljudvolymen i skolmatsalar tenderar att ligga långt över både 60 dB(A) och 65dB(A) som varit kritiska nivåer vid studier kring ökad stresshormon-frisättning med andra bullerkällor (1, 12, 23). Då ett dos-respons förhållande mellan ljudnivå och utsöndring av stresshormon ej kan generaliseras kan ej slutsatsen dras att rådande ljudvolym i den studerade skolmatsalen leder till en ökad utsöndring av stresshormoner hos eleverna i skolmatsalen. Vidare studier bör utföras där nivå av stresshormoner studeras i relation till tal som bullerkälla. I de studierna bör något denna studie inte tagit hänsyn till.

7 Slutsats

Att buller utgör en källa till stress för barn som i sin tur kan leda till ohälsa var en utgångspunkt för denna studie (2). Det står klart att skolmatsalen som är en del av vardagsmiljö för många elever är en plats där en stor andel av 12-åringarna i Jönköpings län i någon utsträckning störts av ljud i skolmatsalen. De som störts mycket av ljud i skolmatsalen tenderar ha en sämre självskattad hälsa än de som ej störts, vid högre ljudstörning ses en sämre självskattad hälsa. Den indikerande ljudvolymmätning i skolmatsal som utförts i denna studie visar på en ljudvolym på ca 70 dB(A), en ljudvolym som är svår att sätta i relation till stresshormon-frisättning. Det är mycket svårt att finna studier som kontrollerat vilka ljudvolymer som leder till ökad stresshormon-frisättning och som ej fokuserar på trafikbuller. Ett av stresshormonerna som kan tänkas frisättas är CRH och det i sin tur kan ge en rad negativa effekter på hälsan. CRH påverkar bl.a. GI-kanalen negativt, vilket leder till förändrad
matspjälkning och på lite längre sikt till inflammationer i tarmen. Den viktigaste slutsatsen i denna studie är att buller är väldigt komplex. För att skapa bättre förutsättningar för en god hälsa hos barn bör fler studier utföras där de stresshormoner ljud kan öka frisättningen av och dess hälsoeffekter utreds. I väntan på vidare studier bör åtgärder vidtas för att skapa en så bullerfri ljudmiljö i skolmatsalarna som möjligt. Att vetenskapliga bevis för att fastslå alla effekter ljud har på människan i viss mån saknas är inte samma sak som att ljud inte har negativa effekter för hälsan och detta är av betydelse att hålla i åtanke.
Referenser

Bilagor

Bilaga A: Skiss över skolmatsal i Jönköpings län där ljudvolymmätning ägde rum den 20 mars 2014
Bilaga B Ljudvolymmätning utförd 20 mars 2014 på grundskola i Jönköpings län

<table>
<thead>
<tr>
<th>Moment</th>
<th>Ålder</th>
<th>Mätperiod i minuter</th>
<th>Tid för mätning</th>
<th>Genomsnittsvärde för mätpérioden, dB(A) Plus/minus tre dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom matsal</td>
<td>2</td>
<td>10.08-10.10</td>
<td></td>
<td>43,1</td>
</tr>
<tr>
<td>Förberedelser</td>
<td>5</td>
<td>10.00-10.05</td>
<td></td>
<td>53,3</td>
</tr>
<tr>
<td>Lunchperiod ett</td>
<td>Förskoleklass till årskurs tre</td>
<td>30</td>
<td>10.40-11.10</td>
<td>73,1</td>
</tr>
<tr>
<td>Lunchperiod två</td>
<td>Årskurs tre till fem</td>
<td>20</td>
<td>11.10-11.30</td>
<td>70</td>
</tr>
<tr>
<td>Lunchperiod tre</td>
<td>Årskurs tre till fem</td>
<td>20</td>
<td>11.30-11.50</td>
<td>77,1</td>
</tr>
</tbody>
</table>
Bilaga C Anteckningar från ljudvolymmätning i skolmatsal i
Jönköpings län 20 mars 2014

Förberedelser

5 minuter
10.00-10.05 53,3 dB(A)

Ventilation
Kantiner som förbereds
Diskmaskin
Mjölk fylls på
Plockas med bestick
Sköljer disk

Under tystnad i skolmatsalen

2 minuter
10.08-10.10 43,1 dB(A)

Ventilationen

F-3

30 minuter
10.40-11.10 73,1 dB(A)

Eleverna kommer in och tar sig mat.
Barnen skulle vara tysta fram till 10.50, under denna tid upplevde jag ljudvolymen som betydligt lägre
Efter 10.50 höjdes ljudvolymen då barnen fick börja prata
Vid 11 började barnen gå från borden
Jag pratade några ord i början av mätningen med så låg volym jag kunde
Personalen i skolmatsalen hade bytt plats på borden & därför blev några barn fundersamma på var de skulle sitta
Ca 13 vuxna i skolmatsalen

Nästan fullt i matsalen
Vuxna försöker få ordning i köen till att lämna disken
Metod med röda kort (får ej prata alls), gula kort (får viska) & gröna kort (fritt prat) används

Åk 3-5

20 minuter
11.10-11.30 70,0dB(A)

De yngre barnen har lämnat matsalen
Några fyror droppar in
Först lugnt i matsalen, ca 20 barn & en vuxen
Ingen sitter nära mig
11.20 ca 20 barn till kommer
11.25 Både fler barn & vuxna kommer & ljudvolymen ökar kraftigt

Åk 3-5

20 minuter
11.30-11.50 77, 1 dB(A)

Matsalen fylls snabbt & jag får barn som sitter bredvid mig
Nästan fullt i matsalen
Vuxna som kommer och går
Barnen får lämna när de är klara & i början både kommer & går det barn
Vid ca 11.45 börjar antalet barn minska för att i slutet av mättiden vara ca halvfullt i matsalen.

Sista mätning
3 minuter
11.50-11.53 72,6 dB(A)
Avslutar mätningen när matsalen snabbt töms på barn & matpersonalen kommer fram för att prata med mig.

Fakta matsal:
Rymmer 156 matgäster
Högt i tak, ljudabsorberande plattor i taket
En stor scen i främre ändan av matsalen med ett draperi för
Stora fönster
Plastgolv
Tre ljudabsorberande skärmar utplacerade i matsalen
Trästolar med tassar
Serveras soppa med bröd och frukt
Plastglas
Matsalspersonalen upplever ljudvolymen som representativ för hur det brukar vara
Matsalspersonalen känner sig mycket trötta i huvudet efter ett pass ute i skolmatsalen
Fårgor från Barnmiljöhälsoenkäten 2011

1. Hur bedömer du att ditt barns allmänna hälsotillstånd är?
 - Mycket gott
 - Gott
 - Någorlunda
 - Dåligt
 - Mycket dåligt

2. Markera, genom att kryssa i en ruta i varje nedanstående grupp, vilket påstående som bäst beskriver ditt barns hälsotillstånd idag.

 - **Rörlighet**
 - Går utan svårigheter
 - Kan gå men med viss svårighet
 - Är sängliggande

 - **Hygien**
 - Behöver ingen hjälp med sin dagliga hygien, mat eller påklädnad
 - Har vissa problem att tvätta eller klä sig själv
 - Kan inte tvätta eller klä sig själv

 - **Huvudsakliga aktiviteter**
 - (t.ex. gå i skolan, familje- och fritidsaktiviteter, hobbys, sportaktiviteter, lek)
 - Klara av sina huvudsakliga aktiviteter
 - Har vissa problem med att klara av sina huvudsakliga aktiviteter
 - Klara inte av sina huvudsakliga aktiviteter

 - **Smärtor/besvär**
 - Har varken smärtor eller besvär
 - Har måttliga smärtor eller besvär
 - Har svåra smärtor eller besvär

 - **Oro/nedstämdhet**
 - Är inte orolig eller nedstämd
 - Är orolig eller nedstämd i viss utsträckning
 - Är i högsta grad orolig eller nedstämd

13. Har ditt barn - de senaste 3 månaderna - haft något eller några av följande besvär?

 Trötthet
 - Ja, minst en gång per vecka
 - Ja, men mer självligt
 - Nej, aldrig

 Huvudvärk
 - Ja, minst en gång per vecka
 - Ja, men mer självligt
 - Nej, aldrig

Om ja:
Tror du att det beror på miljön som ditt barn vistas i?
Svara med alla alternativ som stämmer.

 - Ja, minst en gång per vecka
 - Ja, men mer självligt
 - Nej, aldrig

Vi ser gärna att barnet besvarar frågorna 46-49 själv, men barnet kan behöva hjälp från någon vuxen. Med "i eller i närheten av" menar vi inomhus samt utomhus alldeles i närheten, som till exempel på balkongen, vid uteplats eller vid entrén.

46. Om du tänker på de senaste 12 månaderna, hur mycket störs eller besväras du av buller eller andra ljud från...
 - Tänk på ljud både hemma, i skolan och/eller på fritidshem.

 I eller i närheten av bostaden
 - Markera ett svar på varje rad.
 - Väldigt mycket
 - Mycket
 - Måttligt
 - Lite
 - Inte alls

 I eller i närheten av skolan och/eller fritidshem
 - Markera ett svar på varje rad.
 - Väldigt mycket
 - Mycket
 - Måttligt
 - Lite
 - Inte alls

 Ljud från andra barn
 - Markera ett svar på varje rad.
 - Väldigt mycket
 - Mycket
 - Måttligt
 - Lite
 - Inte alls
45. Hur ofta använder ditt barn öronproppar eller något annat hörselskydd...? Alltid Ofta Sällan Aldrig Inte aktuellt
... för att sova bättre
... vid musiklektioner
... vid konserter, disko, etc.
... vid eget musikande
... vid andra fritidsaktiviteter där det förekommer höga ljud

Vi ser gärna att barnet besvarar frågorna 46-49 själv, men barnet kan behöva hjälp från någon vuxen. Med "i eller i närheten av" menar vi inomhus samt utomhus alldeles i närheten, som till exempel på balkongen, vid uteplats eller vid entrén.

46. Om du tänker på de senaste 12 månaderna, hur mycket störs eller besväras du av buller eller andra ljud från...?
Tänk på ljud både hemma, i skolan och/eller på fritidshem.

| Ljud i skolmatsalen | □ □ □ □ □ □ |

47. Om du tänker på de senaste 12 månaderna, hur ofta störs eller besväras du av buller eller andra ljud från...?
Tänk på ljud både hemma, i skolan och/eller på fritidshem.

<table>
<thead>
<tr>
<th>I eller i närheten av bostaden</th>
<th>Ljud från andra barn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markera ett svar på varje rad.</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>I eller i närheten av skolan och/eller fritidshem</td>
<td>Ljud i skolmatsalen</td>
</tr>
<tr>
<td>Markera ett svar på varje rad.</td>
<td>□ □ □ □</td>
</tr>
</tbody>
</table>