
Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköping University Linköpings universitet

gnipökrroN 47 106 nedewS ,gnipökrroN 47 106-ES

LiU-ITN-TEK-A-14/040-SE

Optimal Coherent
Reconstruction of

Unstructured Mesh Sequences
with Evolving Topology

Christopher Birger

2014-09-22

LiU-ITN-TEK-A-14/040-SE

Optimal Coherent
Reconstruction of

Unstructured Mesh Sequences
with Evolving Topology

Examensarbete utfört i Medieteknik
vid Tekniska högskolan vid

Linköpings universitet

Christopher Birger

Handledare Gunnar Läthén
Examinator Jonas Unger

Norrköping 2014-09-22

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Christopher Birger

Linkoping University

Master Thesis

Optimal Coherent Reconstruction of

Unstructured Mesh Sequences with

Evolving Topology

Christopher Birger∗

September 28, 2014

∗e-mail: chrbi049@student.liu.se

Abstract

This thesis work will investigate and implement a method for reconstructing an
unstructured mesh sequence with evolving topology. The goal of the method is
to increase frame-to-frame coherency of the triangulation. The motivation of the
method is that many of current state-of-the-art mesh compression and decimation
algorithms for mesh sequences are based on static connectivity. The method inves-
tigated in this thesis is mainly based on the work by presented in Tracking surfaces
with evolving topology by Wojtan, Li and Bojsen-Hansen [1]. They use non-rigid
alignment to deform a dynamic mesh to track a target mesh sequence. Topological
changes such as splitting and merging are handled in two steps. First the mesh
is converted into a signed distance field, discretized on a regular grid. Complex
cell tests are used to detect any topological events. Finally, all the complex cells
are cut out of the meshed and re-meshed using the distance field information. To
handle robustness issues with cutting algorithm, we present a novel approach for
grid based mesh cutting which does not use numerics to decide how to cut the
mesh. We conclude that even though the method is appealing in theory and works
well for simple cases. The method is, in the current state, not a valid approach
for a production grade system where the input data can be arbitrarily complex.

Acknowledgements

I would like to thank my supervisors Jan Schmid, and Torbjörn Söderman for
many great discussion and valuable input. I also would like to thank my examiner
Jonas Unger and my supervisor Gunnar Läthen at Linköping University. Finally
and most importantly, I would like to thank my wife Anna for the support, en-
couragement and patience during all the late nights and weekends.

Contents

1. Introduction 2

1.1. Problem Description . 3
1.2. Objectives . 3
1.3. Structure of the thesis . 3

2. Background 4

2.1. 3D Meshes . 4
2.2. Surface Tracking . 5

3. Method and Implementation 9

3.1. Overview . 9
3.2. Mesh Improvement . 10

3.2.1. Edge Flip . 10
3.2.2. Edge Collapse . 11
3.2.3. Edge Split . 11
3.2.4. Summary . 11

3.3. Surface Registration . 12
3.3.1. Deformation graph . 13
3.3.2. Correspondence Vectors . 14
3.3.3. Coarse Registration . 15
3.3.4. Detail Registration . 16
3.3.5. Summary . 17

3.4. Grid Based Topology Changes . 17
3.4.1. Implicit Surface representation 17
3.4.2. Mesh Rasterization . 18
3.4.3. Inside Outside Classification 20
3.4.4. Cell Classification . 22
3.4.5. Mesh Cutting . 23
3.4.6. Grid based cutting . 26

Grid Based Face-Split . 26
Grid Based Edge Split . 28
Summary . 30

3.4.7. Re-meshing . 30

iii

Contents

4. Results 34

4.1. Mesh Improvement . 34
4.2. Surface Registration . 35
4.3. Grid Based Topology Changes . 37

5. Conclusion 39

5.1. Future Work . 39

A. Rasterization Data Structure 41

iv

List of Figures

2.1. Comparison of shapes with same positions but different topology. . 4
2.2. Geometrically equal topology with different topological connectivity. 5
2.3. Surface reconstructed using particle to levelset conversion. 7

3.1. Edge flip generating flipped normal. 10
3.2. Butterfly subdivision. 11
3.3. Edge Collapse leading to non-manifold mesh. 12
3.4. Examples of Non-Manifold Surface (Left), Manifold Surface (Right). 12
3.5. Surface registration. 13
3.6. Correspondence vectors by closest point. Black line is source with

red correspondence vectors. Blue line is target with blue correspon-
dence vectors. 14

3.7. Correspondence vectors by projection in normal direction. Black
line is source with red correspondence vectors. Blue line is target
with blue correspondence vectors. 14

3.8. Pruning Correspondence vectors by comparing surface normal of
the source and target. Top) Correspondence is faulty since normals
disagree. Bottom) Correspondence is chosen since surface normals
agree. 15

3.9. Implicit surface representation. Blue line is original surface. Dashed
red line represents the accuracy of the implicit surface. The circles
and arrows are intersection points and normals respectively. 18

3.10. Triangle edge rasterization. 20
3.11. Triangle face rasterization. 21
3.12. Counting celledge intersections. 21
3.13. Cutting out a complex region. top left : Complex region is colored

with orange borders. top right : Find cell edge intersections on
the border of the comlex region and perform face split. lower left :
Find the intersecting between the mesh edges and the cell faces and
perform edge splits. lower right : Remove the triangles inside the
complex region. 23

3.14. Result after collapsing all boundary edges with at least one type 2
vertex. 24

v

List of Figures

3.15. Illustration of numerical issues in the intersection tests. 25
3.16. Triangle and its two possible rasterized representations. 26
3.17. Grid based face split before rasterizing new triangles. 27
3.18. Illustrating the cells that are chosen for the new edges. 28
3.19. Original set of edge cells before grid based edge split. 29
3.20. Edge cells distributed to the two new edges created from splitting

the edge. 29
3.21. Original set of cells that can be distributed to the two new triangles

created from the edge split. 30
3.22. Difficult case solved with grid based cutting. 31
3.23. Ambiguous cell face causing hole in marching cubes triangulation.

Red lines are triangles in the left cell. Black lines are triangles in
the right cell. 31

3.24. Determining inner edge loops and handling ambiguous cell faces. . . 32
3.25. Triangulation of inner edge loop. 32

4.1. Result of mesh improvement scheme. a: Original mesh b: Improved
mesh after performing edge flip, edge collapse and edge split 34

4.2. Surface registration results. Green points are deformation graph
nodes. Magenta lines are correspondence vectors. a) 0 iterations.
b) 15 iterations. c) Non-rigid registration convergence. d) After
detail alignment. 36

4.3. Result after complex region has been cut out. 37
4.4. Triangulation of complex region. a) Shaded rendering. b) Wire-

frame rendering . 38

1

1. Introduction

Animated three dimensional geometry has become a natural part in many areas
over the last decade. Industries such as games and special effects have pushed the
creative tools and ways processing such content. Animations are typically defined
by a series of static meshes where each mesh, or frame, represents a certain time in
the animation. The connectivity is most often static and the geometry is deformed
over time by ”key-framing” the vertices i.e., each frame lists the position of each
vertex. With the increasing amount of complexity and detail it has become a
great challenge to effectively store, and transmit such data. Therefore, some kind
of compression has to be applied. A great deal of research has been made in this
area which stems from static mesh compression and mesh simplification, where
each frame is treated separately. There are also delta compression methods, called
dynamic mesh compression. However, these methods assumes static connectivity
and topology i.e., animations where connectivity is coherent between all frames and
that the animation does not split or merge. One kind of animated meshes that
does not meet these requirements are unstructured mesh sequences which does
not have any correspondence information. The connectivity, or triangulation, can
be completely different between consecutive frames. They also allow for topology
changes such as splitting and merging. There are several examples of processes
that generate such sequences e.g., fluid simulation and morphing. A mesh sequence
from a fluid simulation is rarely coherent, it can fold over itself, small droplets can
quickly appear and disappear and different regions can merge together or split
apart. Fluids are often simulated using a grid structure, with particles or both.
The fluid interface is then converted into a signed distance field where there are
many methods of extracting a triangulated surface. However, small numerical
differences in the simulation or distance field calculation can completely change
the triangulation between frames. Fully coherent connectivity means that it is
possible to track any vertex, v in all frames, Fn ∈ [n..1] and that the neighbouring
vertices also stay coherent. The importance of this property is highly favourable
since most compression research is dependent on it or at least benefit from it [2].
Mesh simplification of animated meshes needs some information about how parts
of the mesh deforms in order to construct heuristics that take deformation into
account to avoid flickering and popping [3, 4, 5, 6, 7].

2

1. Introduction

1.1. Problem Description

To be able to optimize mesh compression and use some of today’s state-of-the-art
dynamic mesh simplification schemes on non-coherent animations, it is of high im-
portance to calculate at least an optimal coherent mesh sequence. Unfortunately,
this is a not a trivial problem to solve. To the best of my knowledge, only the
work of Wojtan, Li and Bojsen-Hansen [1] addresses the problem of optimizing
coherency in unstructured mesh sequences. Their proposed method combines re-
search in the fields of dynamic shape registration and explicit surface deformation
with topology changes. Their approach is to track a triangulated surface by evolv-
ing a mesh via registration. To handle sequences with topology changes, they
incorporate a step where the evolving mesh is matched against the current tar-
get frame. If needed their framework will cut out parts of the mesh which is not
matching and then generate and stitch the non-matching parts.

1.2. Objectives

The objectives of this thesis is to research ways of optimizing temporal coherency
of connectivity in unstructured animation data with evolving topology. With this
research, implement a robust tool that can handle any closed triangulated unstruc-
tured mesh sequence. The focus is not performance and for reasons of limited time,
we use approximation and simpler algorithms for some parts.

1.3. Structure of the thesis

The structure of this thesis is outlined below,

• Chapter 2 introduces the subject of surface tracking.

• Chapter 3 describes in detail the implementation together with theory on
the work that is presented.

• Chapter 4 Shows result from the implementation with some discussion.

• Chapter 5 concludes the report and a further discussion of the result is
presented. We also discuss improvement and future work.

3

2. Background

This chapter introduces the concepts and methods for surface tracking which is
used in this thesis. Some of the previous work in this field is also presented and
we touch on some of the challenges.

2.1. 3D Meshes

A polygonal model or a mesh is defined by a set of vertices, edges and polygons
(or faces). Each edge connects two points and each polygon is bounded by a set
of edges. The most common type of meshes are triangle meshes. A triangle is the
lowest order of a polygon which is composed of three vertices and three edges. The
shape of the mesh is defined by the placement of the vertices and the topology.
The topology of the mesh describes the connectivity of the elements i.e., which
faces are adjacent to each other and how edges connect the vertices. Even though
two meshes have vertices with exactly the same positions, different topology will
completely change the shape of the surface which is illustrated in figure 2.1

Figure 2.1.: Comparison of shapes with same positions but different topology.

The topology of a mesh can refer to either the triangulation i.e, the connectivity
or the actual surface that the mesh represents. The field of topology is vast
and we will not go into any long discussion in this thesis. However, there are
some notions that are used throughout the thesis. A mesh is a manifold, more
specifically it is a 2-manifold. A 2-manifold is a surface in three dimensions which
at every point on the surface defines a 2-dimensional euclidean space [8]. Basically,
at every point on the surface there is a well defined euclidean coordinate system.

4

2. Background

A non-manifold mesh is a mesh that has edges that connect to multiple faces or
faces that only connect through a single vertex. We want to avoid this because
most mesh operations can not handle non-manifolds. For instance, queries such as
”find the opposite face of this edge” are not well defined. A manifold can also be
defined as being open or closed. A closed manifold does not have a boundary. In
the case of meshes this means that all edges on the mesh connects two faces. This
is important because an open mesh does not have a well defined inside and outside.

The topology of a mesh can also refer to the connectivity of the mesh ele-
ments. For instance figure 2.2 illustrates a mesh where one of the edges has been
flipped. The two meshes are topologically equal, or homeomorphic, in terms of
the surface the mesh describes. However the topology in terms of connectivity is
not equal.

Figure 2.2.: Geometrically equal topology with different topological connectivity.

In this thesis the input data is an unstructured mesh sequence with evolving topol-
ogy. A mesh sequence is a set of meshes where each mesh represents the sequence
at some point in time, each mesh can be considered to be one frame in an anima-
tion. An unstructured mesh is a mesh where the connectivity those not follow a
set pattern. For example, every vertex can have different valence i.e., the number
of connecting edges is not constant. Evolving topology means that the topology
can change from one frame to another. A simple example is a sphere deforming
into a donut. There exist no continuous mapping from a sphere into a donut thus
they are not homeomorphic and can’t be represented by the same connectivity.

2.2. Surface Tracking

Tracking surfaces with evolving topology is a fairly new research area introduced
by Wojtan, Li and Bojsen-Hansen [1]. It was developed to alleviate the problems
of surfaces that alters topology over time, especially how points on the surface
correspond to each other between frames. Their mesh tracking framework is based

5

2. Background

on research in the field of dynamic geometry processing and the problem of finding
coherency between frames in mesh sequences [9]. This field of geometry processing
has been used for tracking and reconstructing scanned 3d data. Scanned 3d data
has no correspondence information, it often contains holes and it is usually noisy.
In [10] and later [11], Li et.al., applies registration techniques to reconstruct and
complete partial 3d scans with and without the use of templates. There method
is based upon a non-rigid registration model which is able to optimally deform a
source mesh into a target mesh. Surface tracking is also used within the field of
physical simulations, especially for liquids. Liquid simulations requires full knowl-
edge of its liquid-air interface in order to correctly discretize the Navier-Stokes
equations. A widely used method is the Fluid Implicit Particle Method (FLIP)
[12, 13]. The FLIP scheme uses particles for advecting the fluid interface but solves
the pressure equations on a grid by interpolating velocities from the particles. By
solving pressure on a grid the detail of the interface is bound to the resolution of
the grid which leads to a greater errors in areas with thin features. There is also
the problem of reconstructing a surface from the particles. As discussed in chapter
1, the common approach is to convert the grid or particles into a levelset and then
use methods such as Marching Cubes [14]. Even if the particle representation of
the interface can be highly detailed, the levelset must be discretized with some set
resolution. The resolution of the surface reconstruction will always be bound by
the resolution of the grid.

6

2. Background

Figure 2.3.: Surface reconstructed using particle to levelset conversion.

Particle mesh reconstruction also suffers from noise due to the particle to levelset
conversion which is the standard approach, see Figure 2.3. To improve the de-
tail in both the simulation and surface reconstruction there has been research on
how to use an explicit triangle mesh directly [15]. However, deforming meshes
that undergoes extreme deformations and topological changes pose a great deal of
challenges. As the mesh is advected, triangles can start to have poor geometrical
quality. Triangles can become very large which leads to visual artefacts and poor
detail preservation. Triangles can also become infinitesimally small which leads
to greater memory needs and computational time, see [16] for more information
about mesh quality. Jiao et.al., describes three mesh improvement operations that
deals with poor quality triangles [17]. These are Edge flip, Edge Collapse and
Edge Split, see section 3.2 for details. Mesh improvement is quite straightforward
and fairly well researched. However, dynamically dealing with changing topol-
ogy and is quite tricky. Cases which must be handled are splitting and merging.
Wojtan et.al converts the mesh into a fixed resolution signed distance field and
uses specifically designed tests to determine topological events [18]. Each cell is
essentially checked if it can locally represent the surface with a marching cubes
template, it is otherwise marked as complex. For instance, if a cell edge intersects
multiple surface each surrounding cell is complex. The complex regions are then
cut out and replaced by the marching cubes template of the cell. Their approach
automatically handles self-intersection due to the levelset based re-meshing stage.
However, the cutting stage can sometimes fail and the scheme is limited to closed
non-manifold meshes. Brochu et.al., handles open surfaces and robust topological
changes [19]. Merging is handled by checking for edges that are close to each other.
When a separated edge pair is ”near”, the two edges and their adjacent faces are
removed. This creates two edge loops with four vertices each. The two holes are
then stitched together using eight new triangles. To allow the mesh to split the
mesh is allowed to be temporarily non-manifold. In their mesh improvement stage,
the edge flip and edge collapse passes are allowed to create triangles that shares all
three vertices and triangles with repeated vertices. All such triangles are removed.
Then they sweep the mesh for triangles that are only connected by a single vertex.
These vertices are removed and for each triangle connected to the removed vertex,

7

2. Background

a new vertex is created per triangle. Compared to Wojtan et.al., Brochu’s approach
does not handle self-intersection. Instead they use a continuous collision detection
scheme while they advect the vertices thus enforcing self-intersection throughout
the deformation [19]. Note that Brochu’s approach requires knowledge about how
the surface evolves between each frame. Therefore, it is suited for simulation based
surface tracking where the surface is advected through a velocity- or forcefield.

8

3. Method and Implementation

This chapter describes the details of the chosen method and implementation. It
will cover the different data structures, schemes and algorithms that were used.

3.1. Overview

The input of the system is an arbitrary unstructured sequence of manifold and
closed triangular meshes. The goal of the system is to output a sequence of op-
timally structured manifold and closed triangular meshes. Optimal in the sense
that, if the input is a sequence of randomly triangulated non deforming meshes the
output should be perfectly structured. However, if the sequence undergoes extreme
deformation there are some limitations. If the topology changes, it is impossible to
keep the same connectivity. Nevertheless, it should only be necessary to alter the
areas of the mesh where the topology change occurred. Since the mesh tracking
deforms the mesh, some triangles might become small or stretched. To preserve
”good” triangles, mesh improvement have to be performed. Note that, mesh im-
provement changes the connectivity. Therefore, we want to keep that operation
ta a minimum. The only published method that has all of these properties is the
work by Wojtan et.al., [1]. Though, the numerical issues in the their cutting stage
can sometimes fail which is not acceptable in a production system. Therefore,
a new approach to cutting and re-meshing is proposed which only uses numerics
as a guide, see section 3.4.5. Our approach closely follows the method proposed
by Wojtan et.al., except from the topology change step. It is comprised of three
operations which is mesh improvement 3.2, surface registration 3.3 and topology
change 3.4. The input sequence of meshes is defined as Ti, i ∈ [0, 1, ..., n], where n
is the number of frames in the sequence. We denote the input with T since this is
the target of the output. The output sequence is denoted with Mi, i ∈ [0, 1, ..., n].
The different steps of the method which will be described in this chapter is outlined
below.

1. Perform mesh improvement on the current output frame Mi which yields a
temporary output M̂i+1.

2. Deform M̂i+1 to fit the next target frame Ti+1 using surface registration.

3. Detect topological and mismatching parts of M̂i+1 compared to Ti+1.

9

3. Method and Implementation

4. Cut out the faulty geometry from M̂i+1.

5. Re-triangulate the cut out holes from M̂i+1 using surface information from
Ti+1. This gives the final result, Mi+1.

3.2. Mesh Improvement

As mentioned in 2.2, the geometrical quality of the triangles can become poor
during deformation and stitching. Optimally we would like to have equilateral
triangles which are also regular i.e, all sides are of same length and all angles
measure 60 ◦C. Regular triangles are beneficial in e.g., parallelogram prediction
since the error vector becomes smaller [20]. The mesh improvement is comprised
of three different operations which are edge flip, edge collapse and edge split.

3.2.1. Edge Flip

Edge flipping is useful to get rid of thin stretched triangles. The Edge Flip flips
an edge so that the edge connects over the two opposing vertices. This operation
can’t produce non-manifolds. However, it can change the geometry and create
faces with flipped normals as seen in figure 3.1.

Figure 3.1.: Edge flip generating flipped normal.

To check if the Edge Flip will flip any triangle faces, the sign of the dot product
between the two old face normals must be the same as the dot product of the new
normals of the new faces. An Edge Flip can change the geometry quite drastically
if the angle between the two edge-adjacent faces is small. This can be prevented
by comparing the volume of the tetrahedron defined by the four points making
up the two faces, before and after the edge split [19]. If the change in volume is
greater than some set threshold the Edge Flip is not valid.

10

3. Method and Implementation

3.2.2. Edge Collapse

The Edge Collapse removes an edge in the mesh and merges the connecting vertices
resulting in that the two faces adjacent to the edge is removed. To choose the
position of the resulting single vertex many different schemes can be used. Brochu
et.al., propose a butterfly subdivision scheme to choose the location of the vertex
P [19]. The equation is given below with accompanying figure 3.2.

Figure 3.2.: Butterfly subdivision.

Pnew =
1

16
(8(P1 + P2) + 2(Q1 +Q2)− (R1 +R2 +R3 +R4)) (3.1)

The edge collapse can however introduce some problems in certain cases. When
collapsing edges that lie on the ring around a valence 3 vertex, the opposite triangle
faces will ”fold” over themselves. This produces a non-manifold connectivity which
is often a property that many algorithms and data structures can’t handle, such
a case is depicted in figure 3.3. When the red edge is collapsed, triangle A and B
will share all its vertices and edges.

3.2.3. Edge Split

The Edge Split takes as input a given edge and its two adjacent faces. A vertex
is inserted somewhere along the edge producing two new edges splitting the faces,
thus creating a total of four new faces, see figure 3.4. As long as the new point is
inserted on the original edge, the Edge Split does not change the geometry.

3.2.4. Summary

Mesh improvement is a separate step in our mesh reconstruction pipeline. It is
driven by a set of parameters that states the longest and shortest allowed edge,
face area and triangles angles. We apply edge- flip, collapse and split on the whole

11

3. Method and Implementation

A

B

Figure 3.3.: Edge Collapse leading to non-manifold mesh.

Figure 3.4.: Examples of Non-Manifold Surface (Left), Manifold Surface (Right).

mesh in three separate passes. Each of the operations are also allowed to run a
set number of passes on the elements of the mesh. For each pass, each element is
tested. If it does not meet the requirements the operation is carried out.

3.3. Surface Registration

Surface registration tries to solve the problem of finding a deformation, f → R
3

such that Mi+1 ≈ f(Mi, Ti+1) ≈ Ti+1. The problem is depicted in figure 3.5.

12

3. Method and Implementation

Figure 3.5.: Surface registration.

We use the methods proposed by Li et.al in Robust single-view geometry and
motion reconstruction [10]. Their method uses a deformation graph which was
first used by Sumner et.al in Embedded deformation for shape manipulation [21].
Each node in the graph corresponds to a vertex on the mesh. Correspondence
vectors are calculated for each graph node which is the vector given by connecting
each graph vertex with the best estimated corresponding point on the target mesh.
A coarse non-rigid alignment is applied using the deformation graph. The final
step is a detail registration step where all vertices of Mi are used to align it with
Ti+1.

3.3.1. Deformation graph

The deformation graph, Dg, is a coarse representation of the mesh where the nodes
of the graph are chosen from the vertices of the underlying mesh. To build the
graph, the mesh is regularly sampled with approximately four times the average
edge length between graph nodes. This is done by starting at a random vertex
and growing a region that is approximately four times the average edge length
by walking through mesh edges. At the boundry of the region we choose a new
vertex and repeat the process until all vertices has been visited. Each node of
the graph is then assigned an affine transformation R and a translation vector t.
The deformation graph affects a vertex on the mesh, v, to ṽ with the following
equation [21].

ṽj =
∑

i∈N(vj)

ω̂i(vj)(Ri(vj − gi) + gi + ti) (3.2)

Where j denotes the index of a vertex in Mi and i denotes the i:th deformation
graph node. gi is the position of the i:th node. The set, N(vj) is all nodes with
ωi(vj) > 0. The weight ωi(vj) is a blending factor which sums to 1 for the set,
N(vj), of nearest graph nodes, 4 was used in the tests. The weights are calculated

13

3. Method and Implementation

per vertex and is given by equation 3.3 and are normalized as in equation 3.4 [21].

ωi(vj) = (1− ‖vj − gj|/dmax)
2 (3.3)

ω̂i(vj) =
ωi(vj)
kmax∑
k

ωk

(3.4)

Where dmax is the distance to the k + 1:th nearest neighbouring node.

3.3.2. Correspondence Vectors

Correspondence vectors are what drives both the coarse and detail registration.
They are simply specifying the vector connecting each node or vertex to a point
on the target mesh. There are several methods of finding correspondences between
two input meshes. Sumner et.al., [21] uses a KD-tree to find the k nearest nodes.
Wojtan et.al., [1] proposes to instead project points onto to target mesh in the
direction of normal. We use the latter of the two. The two different approaches
are illustrated in figures 3.7 and 3.6.

Figure 3.6.: Correspondence vectors by closest point. Black line is source with red
correspondence vectors. Blue line is target with blue correspondence
vectors.

Figure 3.7.: Correspondence vectors by projection in normal direction. Black line
is source with red correspondence vectors. Blue line is target with
blue correspondence vectors.

14

3. Method and Implementation

Finding ”good” correspondences is extremely difficult and both these methods are
quite naive. If we were to just move the points to their respective point on the
target surface we would get self-intersections. However, with the normal direction
approach we also compare the direction of the source and target normal for each
correspondence. By doing this we can prune away correspondences where the
normals do not agree, as illustrated in figure 3.8.

Figure 3.8.: Pruning Correspondence vectors by comparing surface normal of the
source and target. Top) Correspondence is faulty since normals dis-
agree. Bottom) Correspondence is chosen since surface normals agree.

3.3.3. Coarse Registration

The coarse registration is a non-rigid registration, which means that the surface
is allowed to deform. Compared to rigid registration which only uses rotation and
translation to deform the surface globally. Given the correspondence points, the
optimal affine transformation for each node, is found via minimizing set of energy
functions. These are defined in equations 3.5, 3.6 and 3.7 which are defined below
[21]. The following energy function measures how far M is from T and forces the
mesh to move towards the target surface.

Efit =
∑

i∈ν

αpoint‖gi + ti − ci‖
2+αplane〈ni,gi + ti − ci〉

2 (3.5)

αpoint and αplane are set to 0.1 and 1.0 respectively which lets the source slide along
the target surface. The second term, Erigid, minimizes distortion and scaling of the
matrix Ri such that is a close to a rotation matrix. This maximizes the rigidity

15

3. Method and Implementation

of the transformation [21].

Erigid =
∑

i∈ν

〈ri1, ri2〉
2+〈ri1, ri3〉

2+〈ri2, ri3〉
2+(1−‖ri1‖)

2+(1−‖ri2‖)
2+(1−‖ri3‖)

2

(3.6)
Where rij is the j:th column vector of the i:th graph node matrix Ri. The last
term, Esmooth. ensures that connected graph nodes are transformed smoothly in
relative to each other.

Esmooth =
∑

i∈ν

∑

j∈N(i)

‖Ri(gj − gi) + gi + ti − (gj + tj)‖
2 (3.7)

Li et.al [10], propose weighting the influence of Esmooth between each pair of graph
nodes to handle non-uniformly sampled deformation graphs. However, as we sam-
ple the mesh approximately uniformly we set this weight to one for all pairs. This
is suggested by Sumner et.al [21] and is reported to not cause any noticeable arte-
facts. The complete energy function is minimized using a standard Gauss-Newton
solver based on Cholesky decomposition. That is, we want to minimize the follow-
ing.

min
R0,t0,...,Ri,ti

αfitEfit + αreg(Erigid + 0.1Esmooth)

subject to Ri = I, ti = 0, i ∈ ν (3.8)

Li et.al [10], proposes a relaxation scheme to prevent the solver getting stuck in
local minima. αreg and αfit are initialized to 100 and 0.1 respectively. When the
relative change (En+1

tot − En
tot)/E

n
tot falls below a certain threshold σ = 0.005, αreg

is divided by 10. The relaxation is carried out until αreg > 0.1, we then calculate
new correspondence points and restart the solver with the original weights. The
total minimization scheme is said to converge when (En+1

tot − En
tot)/E

n
tot < 1e − 5

or abs((En+1
tot − En

tot) < 1e− 7.

3.3.4. Detail Registration

The coarse registration only registers the basic shape. To obtain a greater level of
detail we use a detail registration step as describe by Li et.al in [10]. We try to
find a displacement, d, along the normal from each vertex while maximizing the
smoothness of d between connected vertices.

Edetail =
∑

i∈Mν

‖vi + dini − ci‖
2+

∑

(i,j)∈Mξ

|di − dj|
2 (3.9)

Mν is the set of vertex indices in the mesh and Mξ is referring to the mesh edges.

16

3. Method and Implementation

3.3.5. Summary

The surface registration can be summarized with the following steps,

1. Build a Deformation Graph by sampling the mesh vertices uniformly.

2. For each vertex in M find the four geodesically closest graph nodes and
calculate the weight of influence, ω(v).

3. Use coarse registration to fit the basic shape of M onto the target mesh.

4. Improve detail of the coarse registration by solving the detail registration.

The next section will describe how it is possible to fix cases when the registration
fails to find a good solution.

3.4. Grid Based Topology Changes

It is impossible to find a deformation that deforms Mi into Ti+1 if the two meshes
has different topology. Therefore, we need a way to identify and fix these errors at
parts of the mesh that could not be matched in the registration stage. There can
also be cases where the registration simply fails even though the topology is the
same. The method used was first proposed by Wojtan et.al., [18] which we covered
a high level in section 2.2. We use the same approach in this thesis. However, we
propose a new method of cutting and stitching the mesh that is based on mesh
rasterization. The details of this method and the motivation is covered in section
3.4.5. The outline of the topology change step is

1. Rasterize Mi and Ti+1 into a cell grid, see section 3.4.2

2. Classify inside and outside, see section 3.4.3.

3. Classify complex cells, see section 3.4.4.

4. Cut out geometry from Mi that is inside complex cells, see section 3.4.5.

5. Re-mesh the cut-out parts of Mi using the implicit representation of Ti+1,
see section 3.4.7.

Note that this algorithm relies highly on the implicit representation of the input
and output mesh. Therefore we begin by explaining the surface representation
that is used.

3.4.1. Implicit Surface representation

The goal is to replace the parts of the registered mesh Mi with geometry from
Ti+1. To accomplish this the mesh is converted into an implicit representation. A
regular grid is used which is at least the size of the bounding box of the mesh.

17

3. Method and Implementation

For each cell edge that intersects the surface, the point of intersection is stored
together with the normal. Figure 3.9 illustrate a simple surface represented in this
way.

Figure 3.9.: Implicit surface representation. Blue line is original surface. Dashed
red line represents the accuracy of the implicit surface. The circles
and arrows are intersection points and normals respectively.

We will see how this representation also simplifies several of the test during complex
cell classification.

3.4.2. Mesh Rasterization

The mesh cutting step requires all intersection information between the grid and
the mesh. A cell contains a reference to each of the 8 corners, 12 edges and 6
faces. Each cell face has a list of mesh edges that intersects it. Each cell edge
contains a list of the mesh faces it intersects and finally a cell corner has a flag
weather it is inside or not. Triangles also store information about the cells. Each
triangle stores a set of cells that overlaps the triangle. Each edge has a list of cells
that it goes through. A vertex can be located inside a cell, on a cell face or on a
cell edge. Therefore, it has a reference to all three cell elements. For a detailed
description of this data structure see appendix A. Since only the surface of the
mesh is of interest, only cells that are intersecting the mesh are stored. A hash
map is used to store the cells. The hash key of each cell is generated by the three

18

3. Method and Implementation

grid coordinates using equation 3.10 which was proposed by Teschner et.al [22].

hash(i, j, k) = (i 73856093 xor y 19349663 xor z 83492791) mod n (3.10)

Where the three constants are large prime numbers and n is the size of the hash
map. The grid size is given by the bounding box of the mesh and is calculated
using equation 3.11.

(Ni, Nj, Nk) =
1

∆
(bbMax − bbMin) (3.11)

Where the two bb defines the min and max bounding box points. The resolution
or edge length of the grid is defined by ∆ which is chosen to be half the average
edge length of the mesh. The rasterizer is split into two stages. First all vertices
are raserized and stored in the data structure. The cell is given by equation 3.12.

ijk = ⌊
1

∆
(v −Grid0̄)⌋ (3.12)

Where ijk is the integer grid coordinates, Grid0̄ is the world space origin of the
grid and ⌊·⌋ is a floor operation. Each triangle is then rasterized separately. The
goal is to find the set of cells that the edges goes through together with the cell
faces the edges intersects and finally any cells that only intersects the inside of
the triangle. For each face we choose an edge which is defined by the two vertices
vstart and vend which has direction d = vend−vstart. From the vertex rasterization
we know the start and end cell Cstart, Cend. The idea is to walk from, Cstart to
Cend, only travelling through cell faces. The problem is then simply how to choose
which cell face to walk through. This is done by comparing which centerpoint of
the 6 faces is closest to the point intersected by d. We can limit the number of
intersection tests needed to be done using the fact that the grid is axis aligned. For
example, if the x component of d is greater than zero, the direction vector can’t
intersect the cell face left of the current cell. In total it is only required to do at
most three intersection tests. These steps are repeated until reaching a cell that is
a neighbour to Cend. Note that an edge is only rasterized once. When a triangle is
adjacent to an already rasterized triangle we can simply query the stored data for
the cells containing the shared edge. Figure 3.11 illustrate the final result where
the view is projected in one of three axes. The yellow circles are the points where
the direction vector d intersects each faces and filled cells are the rasterized cells.
The final step for each triangle is finding the inner cells which are the cells that
intersects the triangle yet does not contain any of the triangles edges. Because
a triangle is a plane it is safe to assume that if there are at least two cor-
ners of the cell on opposite sides of the triangle. The cell must be intersected
by the plane defined by the triangle. However, the inner cells must also be

19

3. Method and Implementation

Figure 3.10.: Triangle edge rasterization.

within the boundary of the cells containing the edges. All cells with coordinates
ijk ∈ [max(Cv1 ,Cv2 ,Cv3),min(Cv1 ,Cv2 ,Cv3)] are considered as possible candi-
dates, where Cvn is the grid coordinate of vertex n. We begin by marking each
corner in the grid bounding box as either above or below. This is done by simply
checking the sign of the dot product between the normal of the plane and a vector
defined by a point on the plane and the cell corner. If a cell has at least one corner
above and one below, the cell is checked if it is inside bounds of the rasterized edge
cells. This is done by, for each axes, projecting the cell onto the axis and checking
if it lies within the max and min coordinates of the edge cells on the other two
axes. Figure 3.11 illustrates the end result where the red circles are the points on
the cell edges that intersects the triangle. Note that a cell edge that intersects the
triangle must have four adjacent cells that also contains the triangle. This is a
good validation that is run after the rasterization is complete.

3.4.3. Inside Outside Classification

To find all geometrical and topological differences between the source and target
mesh we need to define which point on the grid is outside and inside. We use
the simple yet robust method proposed in [15]. During the rasterization we store
alongside the point of intersection, the normal of the intersected triangle. By
comparing the surface normal and the direction of the cell edge it is possible to
decide weather the intersection is entering or exiting the surface. The grid is
sweeped in all directions, both positive and negative. By counting the number of
times the surface is entered and exited it is possible to determine the sign of each
grid corner. For each line of cell edges in the sweeping direction we initialize a
counter to zero, see the orange line in figure 3.12. For each intersection on each

20

3. Method and Implementation

Figure 3.11.: Triangle face rasterization.

edge, the counter is incremented if the surface is entered otherwise decremented.
The first cell corner is always set to be outside. After the intersections has been
counted for each edge, the furthest away corner in the sweeping direction is set be
inside if the counter is positive and outside if the counter is negative.

0 1 1 2 1 1 0

Figure 3.12.: Counting celledge intersections.

There is a degree of uncertainty in this approach due to numerical errors in the
intersection tests. If a cell edge goes through an edge or a vertex it might be
counted multiple times. Wojtan et.al proposes to clump together intersection
points that lie within some threshold [15]. However, there is the possibility that
sharp features are missed. This can be prevented by comparing all the triangles

21

3. Method and Implementation

each cell edge intersects. If there are any adjacent triangles that are facing in
the same direction only one intersection is counted. Self-intersection are also of
interest. If the counter is greater than one or less than zero the corner is marked
as self-intersecting.

3.4.4. Cell Classification

The cell classification step identifies topological differences between the input and
the target mesh. We use complex cell tests introduced by Varadhan et.al [23] and
later modified by Wojtan et.el to minimize surface re-sampling [18]. Cell tests
and re-meshing are interconnected. As mentioned, re-meshing is solely based on
the implicit representation of the input and output mesh. This means that new
triangles are created per cell. The configuration of inside and outside cell corners
determines the surface that is meshed in each cell. The same tests that Wojtan
et.al proposes are used and we include them here for clarity,

• A complex edge is a cell edge in the grid that intersects the mesh more than
once.

• A complex face is a cell face that intersects the mesh in the form of a closed
loop or touches a complex edge.

• A complex cell is a cell that contains triangles and with corners of the same
sign. It is also complex if any of the above is true.

These three tests are quite simple to check with the data structure explained in
section 3.4.2. Therefore, with our data structure the rules are,

• A complex edge references more than one triangle.

• A complex face references more than three triangles edges.

• A complex cell only contains triangle faces and vertices i.e, no cell face ref-
erences a triangle edge.

The target surface can in theory be any surface. Therefore, there might be bound-
ary cells in the grid representation of the target mesh which does not exist in the
source mesh. Therefore, cells that does not have the same inside/outside config-
uration as the target cell, are also marked as complex. Cells are also marked as
complex if any of the corners of the cell has been marked as self-intersting in the
inside-outside classification. One problem with these tests are that subtle varia-
tions in the surface can produce many complex cells which increases re-sampling.
As mentioned, Wojtan et.al proposed a solution for this [1]. Their approach is

22

3. Method and Implementation

that only variations greater than a cell causes re-sampling. They define a deep
cell, which is a complex cell at least one cell away from the boundary of the sur-
face. The final step in the classification is making sure that the regions of complex
cells define a simple interface which is possible to stitch together with geometry
generated from the target implicit surface. We do not directly use marching cubes
templates as Wojtan et.al describes [18]. However, we must ensure the same con-
dition. Therefore, the complex regions defined by the deep cells are grown until
the boundary of the regions are non-complex.

3.4.5. Mesh Cutting

After the complex regions of cells has been classified, the triangles inside of the
region has to be removed. To remove the triangles, the mesh is cut where the
complex region intersects the mesh. In section 3.4.7 we desribe how to re-mesh
the region which is cut. The used method is based on the work proposed by Wojtan
et.al in Deforming meshes that split and merge [18]. For comparative reason we
include a brief description of their method before describing our approach. The
algorithm is illustrated in the four images below.

Figure 3.13.: Cutting out a complex region. top left : Complex region is colored
with orange borders. top right : Find cell edge intersections on the
border of the comlex region and perform face split. lower left : Find
the intersecting between the mesh edges and the cell faces and per-
form edge splits. lower right : Remove the triangles inside the com-
plex region.

23

3. Method and Implementation

The cells are processed one after another since the operation on one cell could
affect other complex cells. The only cells that are processed are the cells on the
boundary of the complex regions. First each intersection is found between the cell
edges and the mesh. This is done by line to triangle intersection. A point that lies
on a cell edge boundary is called a type 1 vertex. The triangle is then split into
three new triangles which can be seen in the upper right image in figure 3.13. The
red circles shows all the type 1 vertices. The second step is to split each mesh edge
that crosses the complex cell region. These points are calculated by simply finding
the intersection between the mesh edge and the cell face, see the green circles in
the lower right image in figure 3.13. These vertices always lie on cell faces and are
called type 2 vertices. This scheme creates a loop of edges on the boundary of the
complex region. Because Wojtan et.al uses marching cubes templates to generate
the triangles inside the complex region there can not be any type 2 vertices on the
boundary. Therefore, they collapse all edges that has at least one type 2 vertex.
The resulting cut out region is shown in figure 3.14.

Figure 3.14.: Result after collapsing all boundary edges with at least one type 2
vertex.

This approach is quite easy to implement. However, there are a lot of edge cases
where the algorithm fails. The obvious reason is that the edge collapse operation
can produce non-manifold geometry as we discussed in section 3.2.2. Wojtan
et.al., states this case and their solution is to add the surrounding cells to the list
of complex cells and repeat the flood fill [18]. Unfortunately this can, in theory,
cause all cells to become complex. The second problem is that the algorithm
assumes that the opposite mesh edges of a type 1 vertex, must intersect the four
surrounding cell faces. However, if a cell edge intersects a triangle edge this can’t
be guaranteed due to numerical instability. Figure 3.15 tries to show this but
for illustrative purposes the dotted triangle edge has been moved. Imagine that
the dotted edge is in fact going through the cell edge. Lets assume that the
intersections between the triangle edges and the grid, that we can observe in the
figure, is what the intersection tests would generate. Except for the dotted edge
which we will discuss further.

24

3. Method and Implementation

?

?

Figure 3.15.: Illustration of numerical issues in the intersection tests.

The first cell edge intersection test yields the blue tinted triangle. To connect
the first two type 1 vertices in the direction of the red dotted line, two mesh
edges have to be split. That is, two type 2 vertices must be created which is
shown in the figure. However, since the dotted line is in fact going through
the cell edge, in the top left corner of the complex cell, its not certain the
intersection test agrees. If it does not, it is not possible to connect the first
two type 1 vertices walking through type 2 vertices. Therefore, the end result
will have an incomplete edge loop around the complex region. Lets assume
that the intersection test say that the dotted edge intersects the cell face. If
we follow the steps of the algorithm there are no problems until reaching the
last type 2 vertex shown in the figure. The question is which edges should
be split to create a full edge loop around the complex cell? In fact, there is
only one valid choice, which is splitting the dotted line. Choosing otherwise
would result in an edge loop that intersects itself which can not be triangulated.
But again, it is not possible to ensure that intersection test yields the correct result.

25

3. Method and Implementation

3.4.6. Grid based cutting

Several methods were attempted to alleviate issues discussed in section 3.4.5. How-
ever, we concluded that any approach that uses numerics to decide which faces and
edges to split in each step can never be robust since one choice implies constraints
on subsequent decisions. This is where our quite complicated rasterization data
structure becomes useful. Remember that we stated that if a cell edge intersects
the surface the four surrounding cells must contain the triangle.

Figure 3.16.: Triangle and its two possible rasterized representations.

Figure 3.16 shows a triangle in blue shade, where the dotted line goes directly
through a cell edge. The rasterization scheme describes in section 3.4.2 can have
two possible outcomes shown in the two left images. The outcome is affected by
the same inaccuracy as the intersection tests. However, the difference is that this
decision is only made once. After the rasterization we know exactly which faces
and edges to split, since these are stored. The grid based scheme is conceptually
the same. The only difference is that the face and edge split are performed using
the rasterization data. Because edge and face split can affect later operation the
new triangles must also be rasterized. One important observation is used. Since
the face and edge split operation does not change the surface neither will the voxel
representation. Therefore, rasterizing new mesh elements is a matter of distribut-
ing the original voxels and figuring out which cell faces the edges intersects.

Grid Based Face-Split

For a complex boundary cell edge we already know which face to cut and where
the new vertex should be positioned. Note that a cell edge on the boundary of the
region can only intersect one triangle, otherwise it would be complex. The triangle,
△, defined by three vertices, v1v2v3 is contained by a set of cells ζ(△v1v2v3

). The
three triangle edges are contained by the set of cells ξv1v2

, ξv1v3
and ξv2v3

. Figure
3.17 illustrates a triangle where the orange bordered cell is to be cut out. As
before, the face is split into three new triangles where the new edges connect to
the type 1 vertex on the cell edge. The difference here is that the type 1 vertex is
stored in the cell edge.

26

3. Method and Implementation

v1

v2

v3

T1

Figure 3.17.: Grid based face split before rasterizing new triangles.

As said, the face split does not change the voxel representation. Therefore the
following rule applies,

ζ(△v1v2v3
) = ζ(△v1v3T1

) ∪ ζ(△v1v2T1
) ∪ ζ(△v3v2v1

) (3.13)

where ∪ defines a set union. The first step is to rasterize the edges. Because
equation 3.13 must hold, the set of candidates the edges can go through is defined
by ζ(△v1v2v3

). For each cell edge we begin by finding the start and end cell. For
each vertex on the edge, a list is stored with possible candidates. If the vertex is
a type 1 vertex all the four adjacent cells are inserted in the list. If the vertex is
of type 2 the two adjacent cells are inserted. If the vertex lies inside a cell, only
one cell is inserted. The start and end cell is then determined by the pair of cells
in the candidates lists that are closest using grid coordinates. Similar to the edge
rasterization described in section 3.4.2, we walk from the start to end cell. The
only difference is that the next cell must be one of the cells in ζ(△v1v2v3

). Figure
3.18 illustrates the set of new edge cells in blue shade.
Inner cells are found using the same method described in section 3.4.2. However,
instead of considering the bounding cells, only the set of cells describes in equation

27

3. Method and Implementation

v1

v2

v3

T1

v1

v2

v3

T1

Figure 3.18.: Illustrating the cells that are chosen for the new edges.

3.14 are checked. For example,

ζinner(△v1v2T1
) = ζ(△v1v2v3

)\(ξv1v2
∪ ξv1T1

∪ ξv2T1
) (3.14)

where \ is the set-theoretic difference.

Grid Based Edge Split

An edge split involves creating four new triangles and four new edges. As for the
face split, the edges are treated first. The dotted edge that is split is contained by
ξv1v2

, refer to figure 3.19 where these cells are shaded blue.
The type 2 vertex that splits the edge always lie on the cell face. Therefore,
splitting the cell representation of the edge is basically a matter of finding each
subset of cells that are on opposite sides of the cell face. A starting cell is chosen
from one of the two original vertices v1 and v2 e.g, v1. Assuming that the set of
cells in ξv1v2

are sorted in the direction v1 → v2, the starting cell must be the
first cell in the set. Therefore, there is no need to consider candidates which was
done for the face split. After the starting cell has been determined we simply walk

28

3. Method and Implementation

v3

v2

v4

v1 T2

Figure 3.19.: Original set of edge cells before grid based edge split.

through cell faces until reaching the cell face where the split was made. All cells
that were walked through are inserted in ξv1T2

. The cells for the second edge is
then given by remaining cell in the list which is shown in figure 3.20.

v3

v2

v4

v1 T2

Figure 3.20.: Edge cells distributed to the two new edges created from splitting
the edge.

The edge split can also be considered as dividing each of the two original tri-
angles into to new triangles. Therefore, we exploit the fact that ζ(△v1v2v4

) =
ζ(△v1T2v4

)∪ζ(△T2v2v4
) and treat each original triangle separately, see figure 3.21.

The same method as for the face split is then used for both the edge and the two
new faces.

29

3. Method and Implementation

v3

v2

v4

v1 T2

Figure 3.21.: Original set of cells that can be distributed to the two new triangles
created from the edge split.

Summary

The problem of using intersection tests during the cutting is that each choice of
triangle to split creates rules for which mesh edges that has to be split to be able
to close the edge loop around the complex region. This can not be guaranteed in
cases where e.g, an edge is close to parallel to a cell face, a vertex is close to a cell
face or edge or a cell edge intersects a triangle edge. A grid based approach does
not suffers from these problems because we only make the decisions once. In the
case illustrated in 3.15, if the rasterization data states that the cell edge intersects
the blue shaded triangle, it is guaranteed that the dotted edge will intersect the
cell face to the right of the type 1 vertex. With the cell based approach the
example in 3.15 will instead look like illustrated in figure 3.22

When the complex region has been cut out of the mesh we end up with a set of
edge loops and a set of holes in the source mesh. The edge loops connect each type
1 vertex through a number of type 2 on the boundary of the complex region. The
next section describes how the holes are triangulated to fit the target mesh.

3.4.7. Re-meshing

In Deforming meshes that split and merge Wojtan et.al., uses marching cubes tem-
plates to re-mesh holes [18]. However, there is one major problem with marching
cubes, in that it might produce holes in the output. Such a case is illustrated in
figure 3.23. The problem is that the shared cell face has been treated differently
when choosing the template for the two cells.

30

3. Method and Implementation

Figure 3.22.: Difficult case solved with grid based cutting.

Figure 3.23.: Ambiguous cell face causing hole in marching cubes triangulation.
Red lines are triangles in the left cell. Black lines are triangles in the
right cell.

Instead of relying on marching cubes templates we exploit that we have stored the
edge loops on the boundary of the complex region. Using that information we find
the inner edge loops of each cell. After the cutting, a possible outcome could be as
illustrated in figure 3.24, where the red dots are type 1:s and green dots are type
2:s.
What is left in the figure is to decide weather to create on or two edge loops. In
fact it does not really matter in the sense of leaving holes so we just pick one,
two in this case. The important step is to store which choice was made such the
adjacent cell is triangulated correctly. When the next cell is reached all the red
lines, in figure 3.24, are already known from the cutting and the red dotted lines
are known from the previous cell. Once all inner edge loops have been found the

31

3. Method and Implementation

(a) (b)

Figure 3.24.: Determining inner edge loops and handling ambiguous cell faces.

triangles are created. For each edge loop in each cell the vertices are sorted in
some direction of the loop, see figure 3.25.

1

2

3

4
5

6

7

8

Figure 3.25.: Triangulation of inner edge loop.

A simple zigzag scheme is then used to triangulate the loop which is described
below,

1. Initialize two counters start=0 and end=N-1, where N is the number of
vertices in the sorted list, l, of vertices.

2. Create triangle from vertices l [start++], l [start] and l [end]

3. If start >= end - 1 → break.

4. Create triangle from vertices l [end−−], l [start] and l [end]

5. If start < end - 1 → break. Otherwise repeat from (2).

where [·] + +, [·] − − are post- increment and decrement. Following the scheme
produces the triangulation illustrated in 3.25. Note that this simple triangulation

32

3. Method and Implementation

scheme can produce overlapping triangles if a point lies inside of the convex hull
points. To get the correct windings for the triangles we always start to stitch
new triangles at the boundary of the complex region. We can then use the wind-
ing information from the original triangles and propagate that into to the new
triangles.

33

4. Results

In this chapter we show and discuss the results of using the method proposes in
the previous chapter.

4.1. Mesh Improvement

Figure 4.1 illustrates a single frame of a sequence where mesh improvement has
been applied. Image a shows the original mesh. Remember that the goal was to
regularize the mesh. Image b shows the mesh after we have applied one edge flip,
edge collapse and one edge split pass. We can see that most of the large triangles
have been subdivided. However, there is still a band of quite small triangles in the
upper middle part of the mesh.

(a) (b)

Figure 4.1.: Result of mesh improvement scheme. a: Original mesh b: Improved
mesh after performing edge flip, edge collapse and edge split

34

4. Results

4.2. Surface Registration

The set of images in figure 4.2 shows the result of the surface registration. Images a,
b and c shows the coarse surface registration after 0, 15 iterations and convergence
after 30 iterations in the case. The green dots are deformation graph nodes and the
magenta lines depicts the correspondence vectors. The final image, d, shows the
result after the detail registration step has been applied where the red dots signals
that the distance between the deformation graph node and the target surface is
zero. In this simple case the registration is as good as it gets. However there are
still areas where we haven’t been able to match the input. The cause is often that
large triangles in the input has been matched to an area in th target that is more
detailed. Therefore the density of correspondence vectors are limited and there is
no possible way of finding a good match. Another cause could be the solver got
stuck in a local minima. With a more complex target as was used in figure 4.3 the
registration clearly struggles.

35

4. Results

(a) (b)

(c) (d)

Figure 4.2.: Surface registration results. Green points are deformation graph
nodes. Magenta lines are correspondence vectors. a) 0 iterations.
b) 15 iterations. c) Non-rigid registration convergence. d) After detail
alignment.

36

4. Results

4.3. Grid Based Topology Changes

Figure 4.3 illustrates grid based topology changes. Image (a) the source mesh
where the unmatched region have been cut out. The kept regions are marked
blue and the boundary triangles are white. The transparent surface is the target
surface. In this image we can clearly see the grid structure of the cutting border.

Figure 4.3.: Result after complex region has been cut out.

Figure 4.4 shows the result of triangulating the complex region that was cut out
in 4.3. We show both a wireframe and a shaded rendering. Note that we have
had to add many triangles on the boundary of complex region. These are quite
difficult to get rid of with the mesh improvement scheme. We can also see that
the resolution of the grid has a big impact on the final result in terms of the error
between the triangulated surface and the target surface. We have even missed one
of the blobs in the right part if the image.

37

4. Results

(a)

(b)

Figure 4.4.: Triangulation of complex region. a) Shaded rendering. b) Wireframe
rendering

38

5. Conclusion

Assessing the implementation and results throughout the thesis we can not see
this method as a valid approach. There are several problems. One major reason
is the use of a grid. The resolution of the grid has a great impact on the accuracy.
Even if the grid resolution is increased there is always some loss of information
compared to the explicit surface representation. The surface registration is also
not accurate enough. Take fluid simulation as an example. High resolution
fluid simulations are turbulent meaning that there are can be a high number of
small deformations. The change between frames can be severe. The registration
struggles a lot with this kind of input. Because adjacent correspondences are so
different it is difficult to find good match. Also, since we compared rasterized
version of the input and target even small fluctuation in the surface can cause a
mismatch. The result of this is that in some parts of the mesh, every other cell
does not between the input and the target, causing a great deal of re-meshing.
Every time the mesh is cut we create poor quality triangles that are difficult to get
rid of, at least with the mesh improvement scheme describes in this thesis. The
final issue is cutting the mesh. Even though the grid based approach explained
in this thesis is more robust compared to only using intersection tests it can not
handle overlapping triangles.

The general idea of the method that has been described is very appealing. However,
in practice as a robust production grade system there is much work to be done.

5.1. Future Work

Improving the surface registration would improve the result greatly. There are
several improvements that could be made. We used approximated geodesic
distances which causes the radius of influence for each graph node to be jagged
instead of smooth. The deformation graph generation is supposed to be uniform.
However, we sample the mesh by walking through mesh edges as described in
section 3.3. This can in some cases cause the sampling to be sparse in some areas.
This also touches on another improvement that could be made. If the input mesh
is far away from being regularly triangulated some areas will have larger triangles
even after the mesh improvement scheme is applied. If the corresponding target

39

5. Conclusion

surface for that region is highly detailed it is difficult to get a good registration.
One approach would be to completely re-triangulate the first frame such that at
least the first frame is close to being regular.

As mentioned above, if the corresponding area of the mesh is more detailed then
the source it is difficult to find a good registration since there will be to few
points to deform. One idea is to detect such regions and add nodes to the coarse
deformation graph. A similar idea would be to subdivide triangles in such region
to gain more control in the detailed alignment. This would cause re-triangulation.
However, it would be interesting to research the trade-off between doing local
subdivision and gaining accurate registration compared to cutting and stitching
new geometry. We believe that subdividing triangles could be preferred since
it would be easier to keep high quality triangles. Another approach would be
analyse to whole sequence to find how much resolution we need to represent the
most detailed frame. Using this information we could subdivide the first frame
with enough triangles that we would need.

A completely different approach that we would like to research is moving away
from cutting and stitching and instead re-triangulate the target mesh using the
triangulation of the previous frame. Imagine that the source an the target frame
is a sphere, yet the triangulation is different. In this simple case we could choose
a random position on the target surface and place a starting triangle from the
list of triangles in the source mesh. Then insert the adjacent triangles using the
connectivity information of the source mesh. The new vertices is placed using
information from the target surface. If the source and target meshes have the
same genus and are closed we should be able to produce a closed triangulation.
However, if the source mesh is a sphere and the target is a donut the problem
becomes tricky. The idea would be to use surface registration to get an approximate
correspondences and potentially use a grid to detect topological changes. The
areas with ”good enough” correspondences would become candidates for starting
points. If reaching a state were the triangulation can not be closed we would have
to triangulate the holes. This would happen in cases such as merging and splitting.
This idea is completely untested but would be interesting to research. The meshing
would always use explicit information thus gaining accuracy compared to grid
based meshing. There would not be a need for complicated cutting algorithms
that creates poor triangles.

40

A. Rasterization Data Structure

Detailed description of the data structure used to store information that is needed
for classifying complex cells, cutting and stitching new triangles.

s t r u c t Cel lCorner
{

bool i n s i d e
}

s t r u c t Cel lEdge
{

L i s t meshFaces
i n t type1Vertex

}

s t r u c t Cel lFace
{

L i s t meshEdges
L i s t type2Ver t i c e s

}

s t r u c t Ce l l
{

Vec3 i j k
Cel lCorner ∗ co rne r s [8]
Cel lEdge∗ edges [1 2]
Cel lFace ∗ f a c e s [6]

}

41

Bibliography

[1] M. Bojsen-Hansen, H. Li, and C. Wojtan, “Tracking surfaces with evolving
topology,” ACM Trans. Graph., vol. 31, pp. 53:1–53:10, July 2012.

[2] K. Mamou, T. Zaharia, F. Preteux, N. Stefanoski, and J. Ostermann, “Frame-
based compression of animated meshes in mpeg-4,” in Multimedia and Expo,
2008 IEEE International Conference on, pp. 1121 –1124, 23 2008-april 26
2008.

[3] Mohr and Gleicher, “Deformation sensitive decimation,” in University of Wis-
consin Graphics Group Technical Report, May 2003.

[4] C. Huang, Chen and Ouhyoung, “Animation model simplifications,” in Na-
tional Taiwan University, May 2005.

[5] E. Landreneau and S. Schaefer, “Simplification of articulated meshes.,” Com-
put. Graph. Forum, vol. 28, no. 2, pp. 347–353, 2009.

[6] S. Zhang, J. Zhao, and B. Wang, “A local feature based simplification method
for animated mesh sequence,” in Computer Engineering and Technology (IC-
CET), 2010 2nd International Conference on, vol. 1, pp. V1–681 –V1–685,
april 2010.

[7] M. Corsini, M.-C. Larabi, G. Lavou, O. Petk, L. Va, and K. Wang, “Percep-
tual metrics for static and dynamic triangle meshes,” in Eurographics, State
of The Art Report, May 2012.

[8] L. W. Tu, An Introduction to Manifolds (Universitext). Springer, second
edition ed.

[9] M. Chang, Li and Pauly, “Geometric registration for deformable shapes,”
Eurographics 2010 Tutorial.

[10] H. Li, B. Adams, L. J. Guibas, and M. Pauly, “Robust single-view geometry
and motion reconstruction,” ACM Trans. Graph., vol. 28, pp. 175:1–175:10,
Dec. 2009.

42

Bibliography

[11] H. Li, L. Luo, D. Vlasic, P. Peers, J. Popović, M. Pauly, and S. Rusinkiewicz,
“Temporally coherent completion of dynamic shapes,” ACM Trans. Graph.,
vol. 31, pp. 2:1–2:11, Feb. 2012.

[12] J. U. Brackbill and H. M. Ruppel, “FLIP - A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions,” Journal of Com-
putational Physics, vol. 65, pp. 314–343, Aug. 1986.

[13] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans. Graph.,
vol. 24, pp. 965–972, July 2005.

[14] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” COMPUTER GRAPHICS, vol. 21, no. 4,
pp. 163–169, 1987.

[15] C. Wojtan, M. Müller-Fischer, and T. Brochu, “Liquid simulation with mesh-
based surface tracking,” in ACM SIGGRAPH 2011 Courses, SIGGRAPH ’11,
(New York, NY, USA), pp. 8:1–8:84, ACM, 2011.

[16] J. R. Shewchuk, “What is a good linear element? - interpolation, conditioning,
and quality measures,” in In 11th International Meshing Roundtable, pp. 115–
126, 2002.

[17] X. Jiao, A. Colombi, X. Ni, and J. Hart, “Anisotropic mesh adaptation for
evolving triangulated surfaces,” Eng. with Comput., vol. 26, pp. 363–376, Aug.
2010.

[18] C. Wojtan, N. Thürey, M. Gross, and G. Turk, “Deforming meshes that split
and merge,” ACM Trans. Graph., vol. 28, pp. 76:1–76:10, July 2009.

[19] T. Brochu and R. Bridson, “Robust topological operations for dynamic ex-
plicit surfaces,” SIAM J. Sci. Comput., vol. 31, pp. 2472–2493, June 2009.

[20] M. Isenburg and P. Alliez, “Compressing polygon mesh geometry with paral-
lelogram prediction.,” in IEEE Visualization, pp. 141–146, 2002.

[21] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for shape
manipulation,” ACM Trans. Graph., vol. 26, July 2007.

[22] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross,
“Optimized spatial hashing for collision detection of deformable objects,”
pp. 47–54, 2003.

43

Bibliography

[23] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha, “Topology preserving
surface extraction using adaptive subdivision,” in Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP
’04, (New York, NY, USA), pp. 235–244, ACM, 2004.

44

