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Abstract

This thesis tries to answer how to design a framework for image pro-

cessing on the GPU, supporting the common environments OpenGL

GLSL, OpenCL and CUDA. An generalized view of GPU image pro-

cessing is presented. The framework is called gpuip and is imple-

mented in C++ but also wrapped with Python-bindings. The frame-

work is cross-platform and works for Windows, Mac OSX and Unix

operating systems.

The thesis also involves the work of creating two executable programs

that uses the gpuip-framework. One of the programs has a graphical

user interface and the other program is command-line only. Both pro-

grams are developed in Python.

Performance tests are created to compare the GPU environments

against a single core CPU implementation. All the GPU implemen-

tations in the gpuip-framework are significantly faster than the CPU

when executing the presented test-cases. On average, the framework

is two magnitudes faster than the single core CPU.
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1 Introduction

1.1 Background

1.1.1 Image processing

An image can be seen as a mathematical function i(x, y) where x and y are
the spatial coordinates and the output is a color at position (x, y). If the
color has discrete quantities and the total image has a finite amount of sam-
ples, it is called a Digital Image[1]. The samples each has a unique spatial
coordinate and are referred to as pixels. The field of Digital Image Process-

ing refers to processing a digital image and its pixels. Every time Image
Processing is mentioned in this thesis, it is assumed that it refers to Digital
Image Processing.

The most typical application in image processing is when an algorithm is
used on an input image to create a modified output image. Operations such
as blur, sharpen and noise removal are all examples of this and are commonly
used in standard image editing software. Figure 1 shows an example of a blur
operation.

Figure 1: A blur algorithm is applied on an input image and produces a
blurred output image.

Another possible application is when a function is used to extract information
and features in an image. Figure 2 shows an example of a feature detection
algorithm performed on an image of a face. The algorithm manages to locate
features such as the nose, the mouth and the eyes. Although the image is
processed, not everyone agrees that this is the typical application of image
processing. Some people think these kind of problems belong to the computer
vision field.
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Face Analysis

Figure 2: The input is analyzed to find features such as the nose, the mouth
and the eyes.

1.1.2 The evolution of computing hardware

In the early 1960s, computers finally had enough computing power to per-
form meaningful image processing. The Jet Propulsion Laboratory processed
images of the moon where they corrected image distortion caused by the
on-board camera on the space probe Ranger 7 [1]. Later on, fields such as
medical imaging and astronomy started to explore the field of image process-
ing.

As the years passed by, the capacity of the computing hardware found in
computers would keep improving. The term Moore’s Law [2] was introduced
based on a statement from the co-founder of Intel Corporation saying that
the transistor count in integrated circuits would be increasing by a factor
of two every year. In the early 1980s, a Central Processing Unit, CPU, ran
with internal clocks operating around 1 MHz. Today, around 30 years later,
most CPUs have clock speeds around 2-4 GHz, which are three magnitudes
faster. The faster a processor’s clock is operated, the faster a floating point
computation can be performed. Figure 3 gives an overview of the transistor
count and clock speeds of Intel CPUS[3].

Due to power and heat restrictions and the physical size of the current tran-
sistors, it is hard to keep improving the clock speeds. The focus has recently
shifted towards parallel computing and multicore processing units.

1.1.3 GPU computing

Computer games started became more popular in the 1990s. Computing was
the big bottleneck in 3D graphics and it was hard to produce good real-time
solutions. Therefore, companies started to experiment with a new computing
device, the Graphical Processor Unit, GPU. Instead of doing everything on
the CPU, lighting computations and transformation of 3D coordinates could
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Figure 3: The CPU transistor count has been growing exponentionally.

now be done entirely on the GPU. Since the computations of each pixels could
be calculated independently of the others, it motivated the use of parallelism.

Figure 4: A comparison of theoretical floating point operations per second
between CPUs and GPUs. This graph is from the CUDA Programming
Guide[7].
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When a GPU uses its full power and all computing units are used to maxi-
mum efficiency, a GPU is a lot faster than a CPU in terms of floating point
operations per second. Figure 4 shows a comparison between the most recent
CPUs and GPUs. The reason why the GPU has lot higher theoretical max-
imum is because it is specalized for compute-intensive and highly parallel
computations. It is therefore designed in a way where more transistors are
devoted for data processing rather than data caching and flow control (which
a CPU handles a lot better)[4].

1.2 Purpose

Most image processing tasks are well-suited for parallel computing. The av-
erage image consists of millions of individual pixels. This is a good case for
GPU computing where a lot of the compute units can be utilized at the same
time. To get started with GPU computing, one has to choose a parallel GPU
environment to write the code in. There are different environments available,
each with its own pros and cons. Which one to choose can sometimes be dif-
ficult to decide since it requires testing. In some cases, it might not be clear
which environment is the best overall since they all have unique subfeatures.

GPU computing can be split into two steps. The first step is the configura-
tion phase where the GPU environment is instantiated, memory is allocated
on the GPU, data is copied to the GPU and the image processing code is
compiled to GPU machine code. The configurations vary from environment
to enviroment and it can be tedious to do this setup in every program with
GPU computing. This motivates the use of a framework for efficient image
processing on the GPU. This thesis will focus on implementing this frame-
work, supporting the common GPU environments. It will try explore and
hopefully answer the following questions:

• What do the common GPU architectures have in common?

• How do you generalize GPU computing for image processing?

• Is it possible to write one functional framework although the environ-
ments and their architectures are different?

• What restrictions have to be made?

• Is it worth doing image processing on the GPU instead of the CPU?
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The second part of GPU computing is implementing the actual algorithms
that run on the GPU. This part is hard to generalize since every GPU envi-
ronment has its own coding language and special features.

The work of this thesis will result in three different software components.
They are the following:

1. General backend framework

• C++ library

• Cross-platform

• Easy to disable components from compilation

• Possible to dynamically rebuild GPU code at runtime

• Support python bindings

• Unit tests for all implementations and cases

2. Graphical User Interface application

• Python

• Graphical display of the image outputs

• Quickly change parameter values

• Support for live coding

• Save an algorithm setup for later use, including code and param-
eters

3. Command-line application

• Python

• Run the algorithm setup saved from the GUI-version

• Change parameter values through command-line arguments.

1.3 Limitations

As discussed in the previous chapter, there are different categories in image
processing. This thesis will focus on the case where an input image is used to
produce an output image, mainly because it is hard to generalize things like
feature extraction across all GPU environments. The framework is instead
going to support algorithms where an arbitrary number of input images are
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going to produce an arbitrary number of output images. The number of in-
put images and output images do not have to match. The framework needs
to support multipass algorithms where multiple GPU programs are being
called sequentially and where the output of one program can be the input of
the following one. The framework is going support images with one to four
channels of colors and where the data has either floating point precision or
is of the unsigned byte type (often referred to as unsigned char).

The framework is going to support the following common GPU computing
environments:

• CUDA - NVIDIA

• OpenCL - Khronos Group

• GLSL - OpenGL Shading Language

CUDA and OpenCL are the two most common choices today in the world of
general-purpose GPU computing. Before OpenCL and CUDA, people used
programmable shaders in 3D graphics libraries such as OpenGL and DirectX
to perform image processing on the GPU. Since DirectX and their HLSL
shading language and Direct Compute environment only are supported on
Microsoft Windows systems, they are not included in the framework of this
thesis. The framework is meant to be flexible and cross-platform, supporting
Unix, Mac OSX and Windows operating systems.

1.4 Method

The first phase of the thesis work will involved individual work with CUDA,
OpenCL and GLSL to gain more knowledge about the different GPU envi-
ronments. The middle phase of the project was the implementation of all the
software components. This was an iterative process. First a prototype was
created and after feedback from a supervisor and other people involved in
the project, a second improved version was implemented. For every feature
added in the backend library, a unit test was added to test the different cases.
The last part of the thesis work involved testing and more specifically, test-
ing with practical image processing problems. The testing part served the
purpose of benchmarking performance, testing how practical the framework
is and examined if any GPU environment is better than the others in terms
of functionality.
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2 GPU environments

2.1 GLSL

2.1.1 OpenGL

OpenGL is a cross-platform API that has been an industry-standard ever
since it was introduced in 1992[5]. Major decisions are made by the OpenGL
Architecture Review Board, ARB. ARB was created by Silicon Graphics in
1992 and had representatives from SGI, Intel, Microsoft, Compaq, Digital
Equipment Corporation, Evans & Sutherland and IBM. Later on, companies
such as 3Dlabs, Apple, ATI, Dell, IBM, Intel, nVIDIA and Sun Microsystems
were added. OpenGL shares many characteristics of a previous API called
Iris GL. It is designed in a way where it tries to be the lowest level interface
for accessing graphics hardware but still provide hardware independence.
OpenGL is supported in PC, Mac and Unix-systems.

Geometry Per-Vertex Operations Primitive Assembly
Clip

Project

Cull

Rasterize Fragment Processing Framebu�er

Figure 5: OpenGL orginially had a fixed pipeline where non of these steps
could be modified.

Figure 5 shows the overview of the complete OpenGL pipeline in version 1.5
and earlier. It was said to have fixed functionality because every OpenGL
implementation was required to have the same functionality. The set of
operations and how they were applied were defined by the fixed OpenGL
specification. The Fragment Processing step in Figure 5 is where each frag-
ment gets its final value. A fragment can be thought of as the data needed to
both shade the pixel and decide if the fragment is to be displayed as a pixel
(need information about depth, alpha). The fixed fragment stage could only
handle tasks such as interpolating color values, texture mapping and fog.

2.1.2 The shading language

In version 2.0, OpenGL introduced GLSL, the OpenGL shading language.
With the OpenGL shading language, the fixed functionality stages for vertex
and fragment processing (green steps in Figure 5) could now be customized

11



and programmed[6]. It was still possible to do everything that the previous
fixed pipeline supported but it also gave the software developer the opportu-
nity to alone control the output. The programs written in GLSL are called
OpenGL shaders, vertex shaders or fragment shaders. The OpenGL Shading
Language is a high-level procedural language based on C and C++ syntax
and flow control. Vector and matrix types/operations is natively supported
together with a set of math functions commonly used in graphics shading.

2.1.3 Shaders

Fragment Shader

Built-in 

varying

variables

User-de�ned

varying

variables

Special

Input 

variables

Textures

User-de�ned uniform variables

Built-in uniform variables

gl_FragData[n] output

Provided directly by application

Provided indirectly by application

Produced by rasterization

Figure 6: The inputs and outputs of a GLSL fragment shader.

Shaders are compiled from an input source of text at runtime. They are later
linked to an OpenGL program and become executable. In image processing,
only the fragment shader is of importance. In a fragment shader, any image
processing algorithm can be applied on an input image. A fragment shader
operates on one fragment at a time. Fragment shaders must be written in
such a way that they can operate simulationeusly. When a fragment shader
is being executed, it has no knowledge about other fragments and their data.

Figure 6 shows the inputs and outputs of a fragment processor. Some vari-
ables are built-in, specified by the OpenGL implementation. There is a
notion of varying and uniform variables. Uniform variables are, as the name
suggests, uniform across all shaders. Varying variables are defined per ver-
tex in the vertex shader. Before processing each fragment, the hardware
interpolates the geometry and gives the fragment shader the correct vary-
ing attributes. An example of a varying attribute is texture coordinates.
The texture coordinates are defined at each vertex. Before the processing
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of the fragment shader, the texture coordinates are interpolated across the
geometry and can be used later in the fragment shader to do texture lookups.

1 uniform sampler2D texture0;

2 uniform sampler2D texture1;

3

4 uniform float scale;

5 varying vec2 texcoord;

6

7 void main()

8 {

9 gl_FragData [0] = scale * (

10 texture2D(texture0 , texcoord) +

11 texture2D(texture1 , texcoord));

12

13 }

Code 1: Example of adding two images in GLSL

Code 1 shows an example of fragment shader in GLSL that adds two images
together. The images have been converted to OpenGL textures, texture0
and texture1. The function texture2D together with the varying variable
texcoord is used to fetch the data from a texture. The value is multiplied
with the uniform value scale (same for all fragments) and finally written to
the framebuffer through the built-in gl FragData. Syntax is similar to a C
program and every fragment shader needs a main function.
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2.2 CUDA

The CUDA architecture was released for the first time in 2006 to make it
easier to perform general purpose GPU-computing[7]. Unlike previous GLSL
methods that had to get around the shaders pipeline, CUDA allowed every
aritmethic logic unit on the chip to be controlled by a CUDA-program. An-
other important feature was the possibility to read and write to arbitrary
memory address on the GPU in comparison to previous methods that re-
quired textures as storage. The hardware was still in charge of memory
caching but CUDA also exposed a software managed cache called shared
memory. CUDA programs are written in the CUDA C language, a language
very close to the C language with the exception of a small number of keywords
added for special features in the CUDA architecture.

2.2.1 Blocks and threads

In the CUDA architecture, threads are single execution units that run ker-
nels on the GPU. They are similar to CPU threads but the typically there
are a lot more of them on the GPU. The threads are divided into thread
blocks. Threads within a thread block can communicate with each others.
The number of blocks and threads per block is decided by the developer when
the kernel is called. The grid of thread blocks can be one, two or three di-
mensional. The maximum number of blocks and threads per block is decided
by the GPU and its hardware. A CUDA kernel is executed simultaneously
by warps. A warp consists of threads within a block. Typically each warp
has the size of 32 threads, where actions like memory read and writes are
performed in half-warps.

1 __global__ void VectorAddition(float * A,

2 float * B,

3 float * C)

4 {

5 int i = blockIdx.x * blockDim.x + threadIdx.x;

6 int j = blockIdx.y * blockDim.y + threadIdx.y;

7 int idx = i + j * gridDim.x * blockDim.x;

8 C[idx] = A[idx] + B[idx];

9 }

Code 2: Example of vector addition in CUDA

When a thread is executing a kernel, there are built-in variables to access
information about which block the thread belongs to and the local thread
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Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Block(1,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Block(2,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Block(2,0)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Block(1,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Block(1,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Block(0,1)

Grid

Figure 7: CUDA threads divided into blocks of threads.

index in the actual block. This information is often used to decide indices in
global arrays for read and write operations. Code 2 shows an example of a
simple CUDA kernel performing a vector addition. The keyword global

is used to tell the compiler that the function is a CUDA kernel. The variables
blockIdx, threadIdx, gridDim and blockDim are automatically built-in in a
CUDA kernel and can be accessed at any time. blockIdx and threadIdx are
of the type uint3, where each value represent an index in the corresponding
dimension. blockIdx is the index of the block in the total grid of launched
blocks and threadIdx is the thread index within the block. Both gridDim

and blockDim are of the type dim3 and are constant in all threads. It is not
possible to launch a kernel with different block sizes.

2.2.2 Memory hierarchy

There are different memory spaces in the CUDA architecture as can be seen
in Figure 8. Each thread has a local and private memory space. All the
threads in a block share a memory space called shared memory. Shared
memory is on-chip and is divided into different banks. Reading from shared
memory in a warp of threads is as fast as reading from a register as long as
there are no bank conflicts. Each bank conflict results in a serialized read
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Per-thread local 

memory
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Figure 8: Different CUDA memory spaces

from the shared memory. A worst case scenario is when all threads in a
warp only read from one bank in the shared memory. The shared memory
read then becomes a lot slower then the regular global memory. Global,
constant and texture memory can be accessed by all threads. Constant and
texture memory are only used in certain cases while the global memory is
the common choice for storing data. The texture memory space is cached
in a way where a texture fetch only cost a GPU device memory read on a
cache miss, otherwise it only costs a read from the texture cache. Texture
cache is optimized for 2D spatial locality. If desired, a read from the the
texture memory gets automatic linear interpolation. Constant memory is a
read-only memory space. All the threads of a half-warp read from constant
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memory just as fast as from a register as long as all the threads read from the
same address. The cost scales linearly with the number of different addressed
read by the threads. For example, the worst case would be if an array would
be stored in the constant memory space and each thread in an executing
half-warp needs a unique value in this array. The global memory space is
capable of reading 4, 8 and 16 bytes of memory into registers in one single
instruction. The most efficient global memory reads are when all threads in
a half-warp reads from continous memory in a coalesced read of 64, 128 or
256 bytes. Within in a kernel, it is not possible to read and write to the same
array. CUDA supports atomic operations but they are usually slow and the
more common choice is to allocate multiple buffers, one to read from and one
to write to.

2.3 OpenCL

2.3.1 Standardized framework for heterogeneous systems

OpenCL is a parallel programming framework designed to fit heterogeneous
systems where one can expect a range of different computing architectures[8].
An example of a program on a heterogeneous system would be a program
where some parts of the computations and setups are done on the CPU and
the rest on the GPU. OpenCL also supports parallel programming for homo-
geneous systems. In a case where one has a multi-core CPU, OpenCL can
be used to have one thread control the state of the program while the rest of
the threads performs computations and later sync with the main thread.

OpenCL is standardized by the Khronos Group, the same group in charge
of the well known OpenGL standardization. The group consits of people
from many different companies in the industry such as AMD, NVIDIA, intel,
Apple, Samsung. They decide the direction the group is taking and make
sure the framework is compatible for different system and platforms. One of
the goals of OpenCL is to be as flexible as possible.

2.3.2 The OpenCL C language

OpenCL can be used in any parallel environment as long as the OpenCL
compiler and runtime library is implemented. When writing the parallel
code, a software developer do not have have care about operating system,
processors and memory types. The OpenCL C language is very similar to
the regular C language. It is focused around computations and some fea-
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tures are added on top of the C language to simplfy things, like SIMD vector
operations and multiple memory hierarchies. Other features, such as print-
ing, have been removed as they are not as useful in computing and hard
to implement on all platforms. The program calling the OpenCL code can
be written in either C or C++ and will be using the OpenCL runtime library.

The word host is often used in standard and official OpenCL literature. The
host refers to the environment where the OpenCL code is called from (not
executed). This is the CPU in almost all of the cases. An OpenCL device
is the environment where the OpenCL is executed. GPU, DSP, CELL/B.E,
CPU are some examples of OpenCL devices that contain a lot of small com-
pute units. The memory associated with these processors is also included in
the definition of an OpenCL device. The OpenCL code executed on a device
is called kernel.

2.3.3 Memory Hierarchy

Similar to the CUDA architecture, OpenCL also has a memory hierarchy.
The OpenCL standard only specifies the access levels of the different memory
spaces and there may be important performance details that are different on
different hardware implementations. It possible to optimize the code for a
certain hardware or vendor, but it is harder to generalize and write programs
with high performance across different devices.

Private

Memory

WorkItem 1

Private

Memory

WorkItem M

Compute Unit 1

Private

Memory

WorkItem 1

Private

Memory

WorkItem M

Compute Unit N

Local Memory Local Memory

Global/Constant Memory Data Cache

Compute Device

Global Memory

Compute Device Memory

Figure 9: OpenCL memory hierarchy.

• Global Memory - The global memory has the largest capacity and can
be used by all work items. It is considered being the slowest memory
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subsystem. The best performance is achieved when streaming contigu-
ous memory addresses or patterns that can explore the full bandwidth
(similar to the coalesced memory reads in CUDA).

• Private Memory - The memory used in a single work item. Can not
be shared between work items. Similar to registers in GPU multipro-
cessors or CPU cores. The private memory is allocated and partioned
at compile time. There is no maximum private memory size defined in
the OpenCL specification. Using too much private memory can lead
to a slowdown since OpenCL will user slower memory spaces once the
private memory is full.

• Local Memory - Local memory can be shared between work items in
a work group, similar to the shared memory in the CUDA architecture.
Local memory is used when data from global memory is needed and
one wants to reduce the global memory reads within a work group.

• Constant Memory - The constant memory implemention differs ac-
cross hardware. For example, on NVIDIA GPU cards, the constant
memory is located at region good for broadcasting. On ATI GPU
cards, the constant memory is part of the global memory but with
optimized broadcasting.

2.3.4 Work Groups

Kernels are being executed over a 1D, 2D, 3D grid or NDRange. The kernel
is then executed in parallel where each kernel instance is called work item.
Work items are divided in work groups of the global grid. The developer can
explicitly set the size of the work group or let it be decided at runtime.

1 __kernel void VectorAddition( __global float * A,

2 __global float * B,

3 __global float * C,

4 int width)

5 {

6 const int x = get_global_id (0);

7 const int y = get_global_id (1);

8 const int idx = x + y * width;

9 C[idx] = A[idx] + B[idx];

10 }

Code 3: Example of vector addition in OpenCL
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Code 3 shows an example of a simple vector addition. The keyword kernel

tells the compiler it is a OpenCL kernel and global specifies a pointer to
the global memory space. Inside the kernel, the function get global id is
used to find the horizontal and vertical id of the work item (this only works
if the kernel is executed with a two dimensional work size).
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3 Implementation

3.1 Designing the core library

On an abstract level, the workflows in the differnet GPU environments are
more or less the same. This motivates the use of a library where a developer
can target a common abstract interface and not have to worry about spe-
cific GPU environment implementations. The library created in this thesis
is named gpuip and stands for GPU Image Processing. The core super-
class in gpuip is called ImageProcessor and it is through this class that
all the GPU communication is going to happen. An implementation of an
ImageProcessor needs to support the following common steps:

1. Compile kernel text code and build into GPU machine code.

2. Allocate memory on the GPU.

3. Copy data from CPU to GPU and vice versa.

4. Run kernels on the GPU.

These steps are all virtual functions in the ImageProcessor class that needs
to be implemented in the subclasses. The class Buffer provides memory
allocation information to the ImageProcessor class. An algorithm can have
an arbitrary amount of buffers. The input and outputs are stored in buffers.
Each buffer has a unique name, information about data type and how many
channels there are per pixel. The supported data formats are unsigned

byte, half and float. half is a 16-bit floating point scalar (compared
to the standard 32-bit float). Each buffer can have between one to four
channels per pixel. Two or three channels per pixels is supported but not
recommended as it leads to uncoalesced reads and writes[9].

1 struct Buffer{

2 typedef shared_ptr <Buffer > Ptr;

3 enum Type { UNSIGNED_BYTE , HALF , FLOAT };

4 const string name;

5 Type type;

6 unsigned int channels;

7 };

Code 4: Buffer struct
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The Kernel struct provides the following:

1. GPU kernel code. Syntax and program structure depends on GPU
environment.

2. Which buffers are going to be used as input? What are they called in
the kernels?

3. Which buffers are going to have data written to them?

4. Parameters used in the kernel code.

1 struct Kernel {

2 struct BufferLink {

3 Buffer ::Ptr buffer;

4 string name;

5 };

6 typedef shared_ptr <Kernel > Ptr;

7 const string name;

8 string code;

9 vector <BufferLink > inBuffers;

10 vector <BufferLink > outBuffers;

11 vector <Parameter > params;

12 };

Code 5: Kernel struct

As can been seen in Code 4 and Code 5, both structs have a Ptr typedef. A
Buffer::Ptr is a shared pointer[10] to a Buffer object. To register a Buffer
or a Kernel to an ImageProcessor object, the factory method pattern[11]
is used. An example of this can be seen in Code 6.

1 class ImageProcessor {

2 ... rest of ImageProccessor definitions ...

3

4 Buffer ::Ptr CreateBuffer(const string & name ,

5 Buffer ::Type type ,

6 unsigned int channels);

7

8 Kernel ::Ptr CreateKernel(const string & name);

9 };

Code 6: Factory functions to create Buffer and Kernel objects
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In this case, the factory method pattern guarantees that the ImageProcessor
is the owner of the buffers and kernel objects since it is going to store a copy
of the shared pointer internally. As long as the ImageProcessor exists,
the Buffer and Kernel objects are also guaranteed to exist. This makes it
impossible to reach cases where the ImageProcessor is using pointers that
are pointing to deleted objects. Anyone using the library can still create and
delete Buffer and Kernel objects on their own, but they will never be able
to register these objects themselves.
To make things simple, all GPU operations are synchronous which means that
once a function that communicates with the GPU has been called, it is not
going to return until the GPU is done proceeding the task. There are asyn-
chronous ways of calling the GPU in all environment but they require syncing
stages. As discussed in [9], it might be worth supporting asynchronous calls
in the future since they could potentially give better performance.

1 class ImageProcessor {

2 ... rest of ImageProccessor definitions ...

3

4 virtual double Allocate(string * error);

5 virtual double Build(string * error);

6 virtual double Run(string * error);

7 virtual double Copy(Buffer ::Ptr buffer ,

8 CopyOperationEnum operation ,

9 void * data ,

10 string * error);

11 };

Code 7: ImageProcessor API for GPU operations

As can be seen in Code 7, all functions that perform GPU operations returns
the execution time as a double and takes a pointer to an error string. If an
error occurs inside one of these functions, a negative value is returned and
the error message can be found in the error string.

3.2 Implementing the subclasses

3.2.1 GLSL

The user-provided kernel code is a fragment shader. To build a GLSL pro-
gram, one also needs to provide a vertex shader. The built-in vertex shader
in gpuip is simple and draws a 2D quad across the viewport, covering all
pixels, and defines texture coordinates in each corner. These texture coordi-
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nates, as mentioned in Chapter 2.1, will be interpolated across all fragments.
Since all fragment shaders use the same vertex shader code, it is compiled
once and shared between all fragment shaders.

For each buffer, an OpenGL texture is generated and memory is allocated
on the GPU. For each kernel, a framebuffer object is created. Depending on
the kernel setup, every output buffer of a kernel is mapped the correspond-
ing framebuffer object. This means that later on when the simple quad is
drawn, the data is rendered to the textures directly. To copy data from and
to the GPU, the synchronous functions glGetTexImage and glTexImage2D

are used.

The input textures (buffers) and parameters has to be set before the GPU
kernel code can be executed. Each uniform attribute has a location in the
GLSL program. To get the location, glGetUniformLocation is used. It
is important that the input textures and parameters in the kernel code are
named the same as the Kernel::BufferLink::name and Kernel::params,
otherwise the GPU code will not run. Before calling the draw functions,
the viewport has to be resized to the same resolution as the output buffers.
The GPU calls are synchronized with glFinish and timings are queried with
glGetInteger64v and GL TIMESTAMP.

3.2.2 OpenCL

OpenCL needs a context for saving states and an event queue to register
GPU operations in. Allocating memory is done through OpenCL buffers
and kernel code is compiled at runtime with the standard OpenCL API calls
clCreateProgramWithSource, clBuildProgram and clCreateKernel.

When executing the kernel code, the kernel arguments have to be passed in
the same order as they are presented in the kernel function. Kernel arguments
include pointers to input and output buffers, user-defined parameters and
gpuip parameters. Since the C++ code is bound to compile time and the
kernel code is written at runetime, there have to be rules that decides which
order arguments appear in. The current ordering rules are:

1. const pointers to input buffers

2. Pointers to output buffers

3. User-defined arguments
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4. Gpuip-arguments (like image width and image height)

Launching the kernels can only be done asynchronously. To guarantee that
all GPU computation is done when the function returns, the OpenCL state is
synced with clFinish. Timings are captured with the clGetEventProfilingInfo.

3.2.3 CUDA

Unfortunately, CUDA does not support compilation of GPU code at run-
time which was one of the goals of gpuip. However, it does support load-
ing of ptx, parallel thread execution, at runtime. Ptx is a pseudo-assembly
language used by NVIDIA on the GPU. To get ptx files, we must use the
NVIDIA-provided CUDA compiler nvcc. Nvcc is called by popen ( popen

on windows) which creates a pipe and invokes a shell command. When clos-
ing the pipe with pclose, the exit status of nvcc can be queried. If the exit
status is anything other than zero, the compilation failed and the error string
can be read from the pipe.

CUDA comes with a driver API and a runtime API. The runtime API is
user-friendly and the driver API gives more control. They can both be used
at the same time. Loading compiled ptx files and execution of kernel calls
are done through the driver API and the runtime API is used for context
creation, memory allocation and data transfer. Allocating memory on the
GPU is straightforward with the cudaMalloc function, which is very similar
to the C version malloc. Copying data is also simple with cudaMemcpy.

CUDA kernels are executed in blocks with a fixed amount of threads per
block. In gpuip, every block consists of 256 threads distributed in a 16x16
thread-block. To make sure every thread corresponds to one pixel, we use
the following equations to determine the number of blocks Nx and Ny:

Nx = floor(W/16) + 1, Ny = floor(H/16) + 1 (1)

where W is the image width in pixels and H is the image height. Some
threads will have xy-coordinates outside of the image domain. To avoid
writing to non-allocated memory, all threads need to check if they are inside
the image domain.

3.3 Python bindings

Boost Python[14] is used to make the C++ code accessible in a python en-
vironment. When copying data from and to the GPU, one has to pass a
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void pointer in the gpuip C++ API. The concept of pointers does not exist
in python. Instead, in the python bindings, the CPU data is attached to
the buffer itself using a numpy [array]. All the data transfers between GPU
buffers have to go through the numpy array.

A common task in image processing is to read image data from disk and
later on write to disk once the processing is done. To simpify this step, read
and write functions are included in the python bindings. Depending on the
per element data in the numpy array, different file formats are available. For
half and float precision, the target format is OpenEXR[16]. When the
data consists of unsigned bytes, the more common image formats png, jpeg,
tiff and tga are available through the header-only library CImg[15].

3.4 Graphical user interface

The graphical user interface application is written in python since it often
means faster development iterations. To fit the cross-platform requirements,
the UI framework Qt[12] is used. The core of Qt is written in C++ but
there are python bindings available. Gpuip uses PySide[13] since they are
well documented and supported on the official Qt homepage.

The application will be a QMainWindow. Main windows in Qt support menus
and toolbars. All the different components will be dock widgets. A dock
widget is resizeable and can be detached to a solo window. The following
components will be added as dock widgets:

1. Toolbar. Add menu items and toolbar items as QAction. It is possible
to bind an action to a hotkey.

2. Preview. Display the content of a buffer using QGLWidget. Supports
zoom and pan. If the image has floating point precision, a slider control-
ling the exposure is added. This is based on the same display algorithm
as exrdisplay[17].

3. Code. This is a QTextEdit containing the kernel code. When building
a kernel, gpuip reads the text from this widget.

4. Params. Per kernel setup with QComboBox dropdown menus for buffer
selection and editing parameter value with QSlider and QLineEdit.

5. Log. Output log for all commands using QTextBrowser.
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3.5 Cross-platform build

3.5.1 Generate build setup

Every platform has their own way of compiling source code into binaries.
On Unix systems, gcc and makefiles is the common option while on Win-
dows systems most code is compiled with Microsoft Visual Studio. CMake is
a cross-platform build system by Kitware[18]. CMake controls the software
compilation step using platform independent configuration files. Option vari-
ables and cached string values can be defined in the configuration files and
later on be modified at either the command line version of CMake or the
gui version. This makes CMake a very powerful tool to setup customizable
builds. For example, in gpuip, one can easily disable the build of the python
bindings if it is not needed. Another case could be if the compiling system
does not have a NVIDIA GPU and want to build gpuip without CUDA sup-
port. Once all options are set, CMake generates either Unix Makefiles, a
Microsoft Visual Studio solution or other build setups that are already con-
figured. This means all the include paths for header files have been set and
linking to other libraries is taken care of.

3.5.2 Library dependencies

Gpuip and especially its python bindings part depends on other open source
libraries. When the compiler is invoked, information about where these li-
braries are located has to be passed. The locations can be vary a lot in
different setups and it is hard to come up with a solution that is going
to work nicely across all platforms. Luckily, CMake has a nice feature
called FindPackage where it is possible to register scripts to find exter-
nal libraries. The most common libraries and their FindPackage script are
shipped with CMake. Some of the libraries used by gpuip were not recog-
nized by FindPackage in CMake and scripts for finding them were added.

It can be annoying to prepare all the prerequisites when building a library
that depends on a lot of other libraries. To simplify this step, gpuip tries to
make the build process as out of the box as possible. If a third party library
is missing and it is an open source library, CMake will try to download the
missing library at compile time and build it. This can be done through the
ExternalProject Add feature where one specify the path to a git or svn
repository where the open source code exists. It is also possible to specify
specific configure, build and install command if the open source library does
not use CMake as build system.
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3.5.3 Regression testing

CMake comes with ctest, which is a tool that can be used for testing the
code after building it. Gpuip has three differnet tests: One for testing the
standard API calls in C++, one for testing the standard API calls in the
python bindings and one that compares performance of gpuip vs cpu imple-
mentations (both single and multi-threaded).

3.5.4 Documentation

An API documentation is generated at build time (if the option is enabled)
with the help of Doxygen[19]. Doxygen reads the comments of the header
files and generates reader-friendly html version to publish online.
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4 Results

4.1 Performance

The main reason to do image processing on the GPU and not on the tradi-
tional CPU was to gain better performance. Therefore, four tests are added
to compare the different GPU environments against a non multithreaded
CPU implementation. The four tests are Linear Interpolation, Box Blur,
Gaussian Blur and Separable Gaussian Blur. All blur algorithms use the
same size to decide neighboring pixels. The algorithms can be found in Ap-
pendix A. The CPU code was executed on a machine with a Intel Xeon
Processor(12M Cache, 2.80 GHz, 1600 MHz FSB) and the GPU kernels were
executed on a NVIDIA GTX 760 card. The timings can be seen in Table 1.
In the GPU timings, the time it takes to copy input data to the GPU and
output data to the CPU is included in the timings.

Table 1: Performance timings

Algorithm OpenCL CUDA GLSL CPU

Linear Interpolation 9.6 ms 11.7 ms 46.2 ms 38.0 ms
Box Blur 21.0 ms 24.3 ms 34.4 ms 3024.0 ms
Gaussian Blur 21.1 ms 25.1 ms 34.6 ms 7650.0 ms
Separable Gaussian Blur 7.9 ms 11.3 ms 31.15 ms 1802.0 ms

Table 1 shows that in all cases except the linear interpolation, the GPU is
a lot faster. The linear interpolation is fast on the CPU since the memory
fetches are linear and can be predicted ahead of time (something most CPU
caches do). It is interesting to see that the Box blur and Gaussian blur
are about as fast on the GPU, while the Gaussian is twice as slow on the
CPU. This is because the hardware of the GPU is designed to be faster at
computations and have special components to perform operations such as
exponentials, logarithms, sin and cosine.

Table 2: Average speedup factor

OpenCL CUDA GLSL

Speedup factor 184.7 148.0 91.9
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Table 2 shows the average speedup factor for each GPU environment. The
speedup factor is computed by timeCPU/timeGPU . The speedup factor is
not a reliable metric as it is very case dependent but at least it shows that
OpenCL seems to be faster than CUDA and GLSL in these test cases and
that image processing on the GPU can be about two magnitudes faster than
the CPU.

4.2 Graphical User Interface application

The GUI application can create new, open old and save .ip files. A .ip

file is a XML-based textfile. Figure 10 shows a screenshot of the gpuip GUI
application where the file lerp opencl.ip has been opened. A toolbar with
icons can be seen at the top for quick interactions. To the left is the preview
of one of the buffers, buffer2. The exposure slider is available in the Display
tab since the data type of buffer2 is half. The syntax highlighted kernel code
can be found in the middle of the GUI with corresponding kernel settings to
the right. At the bottom is the log output. Figure 12-15 show different GUI
components.

Figure 10: The gpuip GUI application.
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Figure 11: Debug info pops up
by right-clicking on the image
in the Display view.

Figure 12: All widgets can be
detached.

Figure 13: Example of error feedback when compiling.

Figure 14: Example of the configuration step when creating a new .ip file.
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4.3 Command-line application

Gpuip can be called from the command line by adding --nogui somewhere
in the gpuip command. An .ip file generated by the GUI version is required
as input (-f FILE option). It is possible to change values of buffers and
parameters at the command line. Code 8 shows the output of the help
command. Appendix B shows an example of running gpuip from command
line with the verbose option enabled.

1 \$> gpuip --help

2 usage: gpuip [-h] [-f FILE] [-p kernel param value]

3 [-i buffer path] [-o buffer path] [-v]

4 [--timestamp] [--nogui]

5

6 Framework for Image Processing on the GPU

7

8 optional arguments:

9 -h, --help show this help message

10 -f FILE , --file FILE Image Processing file *.ip

11 -p kernel param value , --param kernel param value

12 Change value of a parameter.

13 -i buffer path , --inbuffer buffer path

14 Set input image to a buffer

15 -o buffer path , --outbuffer buffer path

16 Set output image to a buffer

17 -v, --verbose Outputs information

18 --timestamp Add timestamp in log output

19 --nogui Command line version

Code 8: gpuip command-line application
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5 Discussion

5.1 Comparison between the GPU environments

All GPU environments have both their pros and cons. After working on
the implementation of each GPU environment, these are the my summarized
conclusions:

• OpenCL

+ Supports runtime compilation.

+ Works on any GPU and any CPU.

− Poor 16-bit floating point support.

− Does not support templating.

• CUDA

+ Easy to use with runtime API.

+ Debugging tools.

+ Supports templating and operator overloading.

− Does not support runtime compilation.

− Only works on NVIDIA GPUs.

− Poor 16-bit floating point support.

• GLSL

+ Works on any GPU. OpenGL is include in a lot of systems by default.

+ Supports runtime compilation.

+ Abstract way of dealing with data.

+ Display functionality for free.

− Setup is not clean. Need to fake render a quad.

− Can only write to one pixel at a time.

− No local shared memory between work items.

If I had to pick only one GPU environment to use in a new application, I
would choose OpenCL because it is very flexible and runs both on CPU and
the GPU. GLSL would be an okay choice as long as the application is about
image processing. GLSL should work out of the box on most systems and that
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makes it very easy to deploy the application to other parties. However, for
more general purpose computing, GLSL quickly becomes bulky and requires
a lot of tricks. Writing OpenCL and CUDA kernels is about the same and the
setup in CUDA is actually easier than OpenCL. The limitation of NVIDIA-
only GPUs is too big of a factor to me and if NVIDIA would make CUDA run
on all GPUs, I think CUDA would increase a lot in popularity. All the tests
in this thesis were very basic and there might be a possibility that CUDA
is the best environment to use once you want to optimize further and really
get the most out of the GPU.

5.2 OpenGL interoperability

Currently, if an image has been created/modified with gpuip and needs to be
displayed, it first has to be copied back to the CPU and then uploaded back
to the GPU for viewing. Both OpenCL and CUDA support OpenGL inter-
operability by mapping a GPU buffer to an OpenGL buffer. This means that
data produced by OpenCL and CUDA can be used as an OpenGL texture
without unnecessary transferring between the CPU and the GPU. Although
more internal work, the public API for Buffer would not change much:

1 struct Buffer{

2 // ... rest of Buffer declarations

3 bool glInteroperability;

4 GLint glTexture;

5 };

Code 9: gpuip OpenGL interoperability

I think this option would make the library more lucrative to use in appli-
cations that are using OpenGL for viewing graphics. One particular case I
could see it being useful is in deferred rendering for realtime 3D graphics.
Once geometry has been rendered to different textures, it might be faster
to apply operations in OpenCL or CUDA than it is in GLSL (there is no
support for sharing memory between execution threads in GLSL).

5.3 Template kernels

Consider a case where you only want to write one kernel file but support
multiple fileformats. For GLSL, this is already true and quite practical.
However, it is not possible in OpenCL and CUDA. CUDA supports templated
functions. CUDA only supports half storage and not computation and it is
therefore not possible to template a function and have it work the same with
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half, unsigned byte and float. In OpenCL, half computation is supported
if the graphics drivers come with the cl khr fp16 extension. OpenCL does
not support templates but since we parse the kernel code ourselves in gpuip,
we could implement our own templating rules and generate one OpenCL
kernel for every data type that gpuip supports.

5.4 Computations as input

It is only possible to write data per pixel in gpuip. If an algorithm would
require a global property of a buffer, like the maximum or average value,
it would not be possible. For example, if someone wants to write a tone
mapping algorithm, they might compute a tone mapping value per pixel and
then use the average value of all pixels as input to a second step in the tone
mapping. A kernel can have user-defined parameters but not parameters
that depend on the output of a kernel. It might be nice to add an option to
make it possible to use the computation of a buffer as input. To make things
still fairly simple, it could be restricted to only allow computations of one-
dimensional buffers. Then a computation could support operators such as
min, max, median, avg and sum. Internally, gpuip would perform the GPU
algorithms. For example, to get the minimum value of a one-dimensional
buffer, it would have to run a reduce algorithm. It might be worth explor-
ing the common libraries for the GPU computing. Using libraries like Boost
Compute[20] and Thrust[21] would save time and probably have better per-
formance.

5.5 Work item distribution

Some algorithms might be optimized further by allowing a work item/thread
to write to more than one pixel. For example, in separable blur algorithms, it
might be worth splitting the algorithm in two steps and have each work item
operate on a row/column alone. Memory lookups tend to be the expensive
part of an algorithm and if a work item can work alone on a row, data could
be stored in the local registers as the work item iterates over the pixels. A
different work item distribution is not possible in GLSL where every kernel
has to be executed on a per pixel level.
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6 Conclusion

The GPU environments available today are implemented differently but the
main idea is the same in all of them:

1. Write GPU code and compile

2. Allocate GPU memory and transfer from/to CPU

3. Run GPU program

To create a GPU framework for image processing, the public interface has
to support these steps. Memory allocation and transferring is simplified if
inputs and outputs to the algorithms are restricted to images. Supporting
other kinds of inputs and outputs is possible but makes it harder to general-
ize. Some functionality only exists in some GPU environments and it is up
to the framework to decide if features that do not exists in all environments
should be added or not. All three environments tested in this thesis had their
pros and cons and which one to choose is case-dependent.

Using a GPU framework is beneficial if an image processing algorithm re-
quires a lot of per pixel computation and performance is important. The
more computation required, the faster the GPU is compared to the CPU.
The CPU only performs well in cases where there is little computation and
the memory fetch pattern is linear.
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Appendix A: Test algorithms

Algorithm 1 Linear interpolation

for all pixels p do

out[p.idx] = (1− α) inA[p.idx] + α inB[p.idx]
end for

Algorithm 2 Box blur

for all pixels p do

value = 0
sum = 0
for neighboring pixels pi do
value += pi
sum += 1

end for

out[p.idx] = value / sum;
end for

Algorithm 3 Gaussian blur

for all pixels p do

value = 0
totalWeight = 0
for neighboring pixels pi do

weight = exp(− (p.x−pi.x)
2+(p.y−pi.y)

2

∆2 )
value += weight * pi
totalWeight += weight

end for

out[p.idx] = value / totalWeight;
end for
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Algorithm 4 Separable blur

for all pixels p do

value = 0
totalWeight = 0
for neighboring horizontal pixels pi do

weight = exp(− (p.x−pi.x)
2

∆2 )
value += weight * pi
totalWeight += weight

end for

tmp[p.idx] = value / totalWeight;
end for

for all pixels p in tmp do

value = 0
totalWeight = 0
for neighboring vertical pixels pi do

weight = exp(− (p.y−pi.y)
2

∆2 )
value += weight * pi
totalWeight += weight

end for

out[p.idx] = value / totalWeight;
end for
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Appendix B: Output of verbose command-line

1 \$> gpuip -f gaussblur_opencl.ip --nogui --verbose

2 Created elements from settings. 68.32 ms

3 Building kernels [[’gaussian_blur ’]]. 0.80 ms

4 Importing data from /home/per/dev/gpuip/examples/

images/bridge.exr to buffer1

5 Importing data done. 18.22 ms

6 Allocating done. 2.65 ms

7 Transfering data to GPU done. 2.37 ms

8 Processing done. 1.44 ms

9 Exporting data from buffer2 to /home/per/dev/gpuip/

examples/output_images/gaussblur_opencl.exr

10 Exporting data done. 20.18 ms

11

12 All steps done. Total runtime: 114.25 ms

Code 10: Example command-line application with verbose option enabled
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