
Mälardalen University Press Dissertations
No. 166

PLANNING AND SEQUENCING THROUGH MULTIMODAL
INTERACTION FOR ROBOT PROGRAMMING

Batu Akan

2014

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 166

PLANNING AND SEQUENCING THROUGH MULTIMODAL
INTERACTION FOR ROBOT PROGRAMMING

Batu Akan

2014

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 166

PLANNING AND SEQUENCING THROUGH MULTIMODAL
INTERACTION FOR ROBOT PROGRAMMING

Batu Akan

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras måndagen

den 8 december 2014, 09.15 i Gamma, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Bengt Lennartson, Chalmers University of Technology

Akademin för innovation, design och teknik

Copyright © Batu Akan, 2014
ISBN 978-91-7485-175-5
ISSN 1651-4238
Printed by Arkitektkopia, Västerås, Sweden

Mälardalen University Press Dissertations
No. 166

PLANNING AND SEQUENCING THROUGH MULTIMODAL
INTERACTION FOR ROBOT PROGRAMMING

Batu Akan

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras måndagen

den 8 december 2014, 09.15 i Gamma, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Bengt Lennartson, Chalmers University of Technology

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 166

PLANNING AND SEQUENCING THROUGH MULTIMODAL
INTERACTION FOR ROBOT PROGRAMMING

Batu Akan

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras måndagen

den 8 december 2014, 09.15 i Gamma, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Bengt Lennartson, Chalmers University of Technology

Akademin för innovation, design och teknik

Abstract
Over the past few decades the use of industrial robots has increased the efficiency as well as the
competitiveness of several sectors. Despite this fact, in many cases robot automation investments are
considered to be technically challenging. In addition, for most small and medium-sized enterprises
(SMEs) this process is associated with high costs. Due to their continuously changing product lines,
reprogramming costs are likely to exceed installation costs by a large margin. Furthermore, traditional
programming methods of industrial robots are too complex for most technicians or manufacturing
engineers, and thus assistance from a robot programming expert is often needed. The hypothesis is
that in order to make the use of industrial robots more common within the SME sector, the robots
should be reprogrammable by technicians or manufacturing engineers rather than robot programming
experts. In this thesis, a novel system for task-level programming is proposed. The user interacts with
an industrial robot by giving instructions in a structured natural language and by selecting objects
through an augmented reality interface. The proposed system consists of two parts: (i) a multimodal
framework that provides a natural language interface for the user to interact in which the framework
performs modality fusion and semantic analysis, (ii) a symbolic planner, POPStar, to create a time-
efficient plan based on the user's instructions. The ultimate goal of this work in this thesis is to bring
robot programming to a stage where it is as easy as working together with a colleague.This thesis
mainly addresses two issues. The first issue is a general framework for designing and developing
multimodal interfaces. The general framework proposed in this thesis is designed to perform natural
language understanding, multimodal integration and semantic analysis with an incremental pipeline.
The framework also includes a novel multimodal grammar language, which is used for multimodal
presentation and semantic meaning generation. Such a framework helps us to make interaction with a
robot easier and more natural. The proposed language architecture makes it possible to manipulate, pick
or place objects in a scene through high-level commands. Interaction with simple voice commands and
gestures enables the manufacturing engineer to focus on the task itself, rather than the programming
issues of the robot. The second issue addressed is due to inherent characteristics of communication with
the use of natural language; instructions given by a user are often vague and may require other actions
to be taken before the conditions for applying the user's instructions are met. In order to solve this
problem a symbolic planner, POPStar, based on a partial order planner (POP) is proposed. The system
takes landmarks extracted from user instructions as input, and creates a sequence of actions to operate
the robotic cell with minimal makespan. The proposed planner takes advantage of the partial order
capabilities of POP to execute actions in parallel and employs a best-first search algorithm to seek the
series of actions that lead to a minimal makespan. The proposed planner can also handle robots with
multiple grippers, parallel machines as well as scheduling for multiple product types.

ISBN 978-91-7485-175-5
ISSN 1651-4238

Abstract

Over the past few decades the use of industrial robots has increased the
efficiency as well as the competitiveness of several sectors. Despite this fact,
in many cases robot automation investments are considered to be technically
challenging. In addition, for most small and medium-sized enterprises (SMEs)
this process is associated with high costs. Due to their continuously changing
product lines, reprogramming costs are likely to exceed installation costs by
a large margin. Furthermore, traditional programming methods of industrial
robots are too complex for most technicians or manufacturing engineers,
and thus assistance from a robot programming expert is often needed. The
hypothesis is that in order to make the use of industrial robots more common
within the SME sector, the robots should be reprogrammable by technicians or
manufacturing engineers rather than robot programming experts.

In this thesis, a novel system for task-level programming is proposed. The
user interacts with an industrial robot by giving instructions in a structured
natural language and by selecting objects through an augmented reality
interface. The proposed system consists of two parts: (i) a multimodal
framework that provides a natural language interface for the user to interact
in which the framework performs modality fusion and semantic analysis, (ii)
a symbolic planner, POPStar, to create a time-efficient plan based on the
user’s instructions. The ultimate goal of this work in this thesis is to bring
robot programming to a stage where it is as easy as working together with a
colleague.

This thesis mainly addresses two issues. The first issue is a general
framework for designing and developing multimodal interfaces. The general
framework proposed in this thesis is designed to perform natural language un-
derstanding, multimodal integration and semantic analysis with an incremental
pipeline. The framework also includes a novel multimodal grammar language,
which is used for multimodal presentation and semantic meaning generation.

i

Abstract

Over the past few decades the use of industrial robots has increased the
efficiency as well as the competitiveness of several sectors. Despite this fact,
in many cases robot automation investments are considered to be technically
challenging. In addition, for most small and medium-sized enterprises (SMEs)
this process is associated with high costs. Due to their continuously changing
product lines, reprogramming costs are likely to exceed installation costs by
a large margin. Furthermore, traditional programming methods of industrial
robots are too complex for most technicians or manufacturing engineers,
and thus assistance from a robot programming expert is often needed. The
hypothesis is that in order to make the use of industrial robots more common
within the SME sector, the robots should be reprogrammable by technicians or
manufacturing engineers rather than robot programming experts.

In this thesis, a novel system for task-level programming is proposed. The
user interacts with an industrial robot by giving instructions in a structured
natural language and by selecting objects through an augmented reality
interface. The proposed system consists of two parts: (i) a multimodal
framework that provides a natural language interface for the user to interact
in which the framework performs modality fusion and semantic analysis, (ii)
a symbolic planner, POPStar, to create a time-efficient plan based on the
user’s instructions. The ultimate goal of this work in this thesis is to bring
robot programming to a stage where it is as easy as working together with a
colleague.

This thesis mainly addresses two issues. The first issue is a general
framework for designing and developing multimodal interfaces. The general
framework proposed in this thesis is designed to perform natural language un-
derstanding, multimodal integration and semantic analysis with an incremental
pipeline. The framework also includes a novel multimodal grammar language,
which is used for multimodal presentation and semantic meaning generation.

i

ii

Such a framework helps us to make interaction with a robot easier and more
natural. The proposed language architecture makes it possible to manipulate,
pick or place objects in a scene through high-level commands. Interaction with
simple voice commands and gestures enables the manufacturing engineer to
focus on the task itself, rather than the programming issues of the robot.

The second issue addressed is due to inherent characteristics of commu-
nication with the use of natural language; instructions given by a user are
often vague and may require other actions to be taken before the conditions
for applying the user’s instructions are met. In order to solve this problem
a symbolic planner, POPStar, based on a partial order planner (POP) is
proposed. The system takes landmarks extracted from user instructions as
input, and creates a sequence of actions to operate the robotic cell with
minimal makespan. The proposed planner takes advantage of the partial order
capabilities of POP to execute actions in parallel and employs a best-first
search algorithm to seek the series of actions that lead to a minimal makespan.
The proposed planner can also handle robots with multiple grippers, parallel
machines as well as scheduling for multiple product types.

Sammanfattning

De senaste decenniernas användning av industrirobotar har ökat effektiviteten
och konkurrenskraften i flera sektorer. Trots detta faktum, anses i många
fall investeringar i robotautomation vara tekniskt utmanande. Dessutom är
denna process, för de flesta små och medelstora företag (SMF), förknippad
med höga kostnader. På grund av företagens ständigt föränderliga pro-
duktlinjer kommer kostnaderna för omprogrammering sannolikt att överstiga
installationskostnaderna med stor marginal. Det är också känt att traditionella
programmeringsmetoder anses vara för komplexa för användare av dessa
system, m.a.o. tekniker eller tillverkningsingenjörer. Hypotesen är den
att för att göra industrirobotar vanligare inom SMF-sektorn, bör robotarna
kunna omprogrammeras av tekniker eller tillverkningsingenjörer snarare än
robotprogrammeringsexperter.

I denna avhandling föreslås ett nytt system som bygger på task-nivå
programmering. Användaren interagerar med en industrirobot genom att ge
instruktioner med ett strukturerat naturligt språk samt välja objekt genom ett
augmented reality gränssnitt. Det föreslagna systemet består av två delar:
(i) ett multimodalt ramverk som även innehåller ett naturligt språk gränssnitt
för användaren att interagera i samt utföra fusion av olika modaliteter och
semantisk analys, (ii) en symbolisk planeringsalgoritm, POPStar, för att skapa
en tidseffektiv plan utifrån användarens instruktioner. Det främsta målet med
denna avhandling är att föra robotprogrammering till ett stadium där det är lika
enkelt att arbeta tillsammans med roboten som med en kollega.

Denna avhandling adresserar två frågor. Den första handlar om utveckling
av ett ramverk för att designa och utveckla multimodala gränssnitt. Det
generella ramverket som föreslås i denna avhandling är utformad för att utföra
förståelse av naturligt språk, multimodal integration och semantisk analys med
en inkrementell pipeline. Den inkluderar även ett nytt multimodalt språk
som används för multimodal representation av information och generering

iii

ii

Such a framework helps us to make interaction with a robot easier and more
natural. The proposed language architecture makes it possible to manipulate,
pick or place objects in a scene through high-level commands. Interaction with
simple voice commands and gestures enables the manufacturing engineer to
focus on the task itself, rather than the programming issues of the robot.

The second issue addressed is due to inherent characteristics of commu-
nication with the use of natural language; instructions given by a user are
often vague and may require other actions to be taken before the conditions
for applying the user’s instructions are met. In order to solve this problem
a symbolic planner, POPStar, based on a partial order planner (POP) is
proposed. The system takes landmarks extracted from user instructions as
input, and creates a sequence of actions to operate the robotic cell with
minimal makespan. The proposed planner takes advantage of the partial order
capabilities of POP to execute actions in parallel and employs a best-first
search algorithm to seek the series of actions that lead to a minimal makespan.
The proposed planner can also handle robots with multiple grippers, parallel
machines as well as scheduling for multiple product types.

Sammanfattning

De senaste decenniernas användning av industrirobotar har ökat effektiviteten
och konkurrenskraften i flera sektorer. Trots detta faktum, anses i många
fall investeringar i robotautomation vara tekniskt utmanande. Dessutom är
denna process, för de flesta små och medelstora företag (SMF), förknippad
med höga kostnader. På grund av företagens ständigt föränderliga pro-
duktlinjer kommer kostnaderna för omprogrammering sannolikt att överstiga
installationskostnaderna med stor marginal. Det är också känt att traditionella
programmeringsmetoder anses vara för komplexa för användare av dessa
system, m.a.o. tekniker eller tillverkningsingenjörer. Hypotesen är den
att för att göra industrirobotar vanligare inom SMF-sektorn, bör robotarna
kunna omprogrammeras av tekniker eller tillverkningsingenjörer snarare än
robotprogrammeringsexperter.

I denna avhandling föreslås ett nytt system som bygger på task-nivå
programmering. Användaren interagerar med en industrirobot genom att ge
instruktioner med ett strukturerat naturligt språk samt välja objekt genom ett
augmented reality gränssnitt. Det föreslagna systemet består av två delar:
(i) ett multimodalt ramverk som även innehåller ett naturligt språk gränssnitt
för användaren att interagera i samt utföra fusion av olika modaliteter och
semantisk analys, (ii) en symbolisk planeringsalgoritm, POPStar, för att skapa
en tidseffektiv plan utifrån användarens instruktioner. Det främsta målet med
denna avhandling är att föra robotprogrammering till ett stadium där det är lika
enkelt att arbeta tillsammans med roboten som med en kollega.

Denna avhandling adresserar två frågor. Den första handlar om utveckling
av ett ramverk för att designa och utveckla multimodala gränssnitt. Det
generella ramverket som föreslås i denna avhandling är utformad för att utföra
förståelse av naturligt språk, multimodal integration och semantisk analys med
en inkrementell pipeline. Den inkluderar även ett nytt multimodalt språk
som används för multimodal representation av information och generering

iii

iv

av semantiskt korrekta meningar. Det multimodala ramverket hjälper till
att göra interaktionen med industriroboten enklare och mer naturlig. Den
föreslagna språkarkitekturen gör det möjligt att manipulera, plocka upp eller
placera föremål i en scen genom högnivåkommandon. Interaktion med enkla
röstkommandon och gester gör att tekniker eller tillverkningsingenjörer kan
fokusera på själva uppgiften, snarare än frågor kring programmering av
industriroboten.

Den andra frågan som adresseras bygger på de inneboende egenskaperna
hos kommunikation som sker genom naturligt språk; instruktionerna från
användare är ofta vaga och kan kräva andra åtgärder som bör vidtas innan
villkoren för tillämpning av användarens instruktioner uppfylls. För att lösa
detta problem föreslås en symbolisk planerare, POPStar, som baseras på partial
order planner (POP). Systemet tar landmärken som extraheras från det som
användares säger, eller gestikulerar, som indata. Därefter skapas en sekvens
av en plan för att styra robotcellen med minimal makespan. Den föreslagna
planeringsalgoritmen utnyttjar POP:s förmåga att hantera partiella planer för
att jobba parallellt och agerar som ett bäst-första sökalgoritm för att söka
bland sekvenser som leder till en minimal makespan. Planeringsalgoritmen
kan också hantera robotar med flera gripdon, celler son innehåller parallella
maskiner samt schemaläggning för flera produkttyper.

Annem için

iv

av semantiskt korrekta meningar. Det multimodala ramverket hjälper till
att göra interaktionen med industriroboten enklare och mer naturlig. Den
föreslagna språkarkitekturen gör det möjligt att manipulera, plocka upp eller
placera föremål i en scen genom högnivåkommandon. Interaktion med enkla
röstkommandon och gester gör att tekniker eller tillverkningsingenjörer kan
fokusera på själva uppgiften, snarare än frågor kring programmering av
industriroboten.

Den andra frågan som adresseras bygger på de inneboende egenskaperna
hos kommunikation som sker genom naturligt språk; instruktionerna från
användare är ofta vaga och kan kräva andra åtgärder som bör vidtas innan
villkoren för tillämpning av användarens instruktioner uppfylls. För att lösa
detta problem föreslås en symbolisk planerare, POPStar, som baseras på partial
order planner (POP). Systemet tar landmärken som extraheras från det som
användares säger, eller gestikulerar, som indata. Därefter skapas en sekvens
av en plan för att styra robotcellen med minimal makespan. Den föreslagna
planeringsalgoritmen utnyttjar POP:s förmåga att hantera partiella planer för
att jobba parallellt och agerar som ett bäst-första sökalgoritm för att söka
bland sekvenser som leder till en minimal makespan. Planeringsalgoritmen
kan också hantera robotar med flera gripdon, celler son innehåller parallella
maskiner samt schemaläggning för flera produkttyper.

Annem için

Acknowledgments

My journey in Sweden has been a long one, but I have known my co-supervisor
Baran Çürüklü for even longer. We have discussed about many things, from
cameras, guitars, whiskey, Japanese kitchen knives, to why the pipes of the
buildings in Sweden are inside rather than outside, but most importantly lots
and lots of research. Lots of questions and ideas going around the room in
heated discussions, which I enjoyed very much (most of the time). I could
not have written this thesis in fact I wouldn’t even be here writing these lines
without his support.

Many thanks go to my supervisors Lars Asplund and Baran Çürüklü for
teaching me a lot of new stuff, for guidance and support, for all the fruitful
discussions, and for the company during the conference trips. Last but not least
i would like to thank Mikael Ekström for his feedback on this thesis as well as
Stefan Cedergren and Daniel Sundmark for reviewing the PhD proposal.

Many thanks go to, Fredrik Ekstrand, Carl Ahlberg, Jörgen Lidholm, Leo
Hatvani, Nikola Petrovič and Stefan (Bob) Bygde for all the funny stuff, the
humor, the support and for sharing the office space with me where working
is both fruitful and fun. I owe many thanks to Afshin Ameri for helping
me as co-author, co-developer and as friend, so thank you Afshin. I wish to
thank the people at IDT; Carola Ryttersson, Malin Åshuvud, Jenny Hägglund,
Ingrid Andersson, Susanne Fronnå and Sofia Jäderń for making life at the
department easier for all of us. I would like to thank many more people
at this department, Adnan and Aida Čaušević, Aneta Vulgarakis, Antonio
Ciccheti, Cristina Seceleanu, Dag Nyström (Now I know why the birds sing),
Farhang Nemati, Giacomo Spampinato, Hüseyin Aysan, Jagadish Suryadeva,
Josip Maraš, Juraj Feljan, Kathrin Dannmann, Luka Lednički, Mikael Åsberg,
Daniel Kade, Saad Mubeen, Moris Benham, Radu Dobrin, Séverine Sentilles,
Svetlana Girs, Thomas Nolte, Tiberiu Seceleanu, and Yue Lu for all the fun
coffee breaks, lunches, parties, whispering sessions and the crazy ideas such as

vii

Acknowledgments

My journey in Sweden has been a long one, but I have known my co-supervisor
Baran Çürüklü for even longer. We have discussed about many things, from
cameras, guitars, whiskey, Japanese kitchen knives, to why the pipes of the
buildings in Sweden are inside rather than outside, but most importantly lots
and lots of research. Lots of questions and ideas going around the room in
heated discussions, which I enjoyed very much (most of the time). I could
not have written this thesis in fact I wouldn’t even be here writing these lines
without his support.

Many thanks go to my supervisors Lars Asplund and Baran Çürüklü for
teaching me a lot of new stuff, for guidance and support, for all the fruitful
discussions, and for the company during the conference trips. Last but not least
i would like to thank Mikael Ekström for his feedback on this thesis as well as
Stefan Cedergren and Daniel Sundmark for reviewing the PhD proposal.

Many thanks go to, Fredrik Ekstrand, Carl Ahlberg, Jörgen Lidholm, Leo
Hatvani, Nikola Petrovič and Stefan (Bob) Bygde for all the funny stuff, the
humor, the support and for sharing the office space with me where working
is both fruitful and fun. I owe many thanks to Afshin Ameri for helping
me as co-author, co-developer and as friend, so thank you Afshin. I wish to
thank the people at IDT; Carola Ryttersson, Malin Åshuvud, Jenny Hägglund,
Ingrid Andersson, Susanne Fronnå and Sofia Jäderń for making life at the
department easier for all of us. I would like to thank many more people
at this department, Adnan and Aida Čaušević, Aneta Vulgarakis, Antonio
Ciccheti, Cristina Seceleanu, Dag Nyström (Now I know why the birds sing),
Farhang Nemati, Giacomo Spampinato, Hüseyin Aysan, Jagadish Suryadeva,
Josip Maraš, Juraj Feljan, Kathrin Dannmann, Luka Lednički, Mikael Åsberg,
Daniel Kade, Saad Mubeen, Moris Benham, Radu Dobrin, Séverine Sentilles,
Svetlana Girs, Thomas Nolte, Tiberiu Seceleanu, and Yue Lu for all the fun
coffee breaks, lunches, parties, whispering sessions and the crazy ideas such as

vii

viii

having meta printers that could print printers for printing anything.
I dont know where I would be if it was not for Ingemar Reyier, Johan

Ernlund and Anders Thunell. Thank you for helping me with many technical
and theoretical challenges that I have had.

Along the way I picked up lots of new and precious friends both in and
outside the university environment and without whom I believe I could not
have continued further. Thank you Burak Tunca, Cihan Kökler and Cem Hizli.
Thank you to Fanny Ängvall and Anton Janhager for keep me from going
insane in Västerås.

Finally, I would like to express my gratitude to my parents Nimet Ersoy
and Mehmet Akan as well as to my sister Banu Akan for their unconditional
love and support through out my life.

This project is funded by Robotdalen, VINNOVA, Sparbanksstiftelsen
Nya, EU European Regional Development Fund.

Thank you all!!

Batu Akan
Västerås, December, 2014

List of Publications

Papers included in the thesis 1

Paper A Object Selection Using a Spatial Language for Flexible Assembly,
Batu Akan, Baran Çürüklü, Giacomo Spampinato, Lars Asplund, In
Proceedings of the 14th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’09), p 1-6, Mallorca,
Spain, September, 2009.

Paper B A General Framework for Incremental Processing of Multimodal
Inputs, Afshin Ameri E., Batu Akan, Baran Çürüklü, Lars Asplund,
In Proceedings of the 13th International Conference on Multimodal
Interaction (ICMI’11), p 225-228, Alicante, Spain, November, 2011.

Paper C Intuitive Industrial Robot Programming Through Incremental Multi-
modal Language and Augmented Reality, Batu Akan, Afshin Ameri E.,
Baran Çürüklü, Lars Asplund, In proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’11), p 3934-3939,
Shanghai, China, May, 2011.

Paper D Scheduling for Multiple Type Objects Using POPStar Planner, Batu
Akan, Afshin Ameri E., Baran Çürüklü, In Proceedings of the 19th

IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’14), p 1-7, Barcelona, Spain, September, 2014

Paper E Towards Creation of Robot Programs Through User Interaction,
Batu Akan, Afshin Ameri E., Baran Çürüklü, To be submitted as a
journal paper

1The included articles are reformatted to comply with the PhD thesis layout

ix

viii

having meta printers that could print printers for printing anything.
I dont know where I would be if it was not for Ingemar Reyier, Johan

Ernlund and Anders Thunell. Thank you for helping me with many technical
and theoretical challenges that I have had.

Along the way I picked up lots of new and precious friends both in and
outside the university environment and without whom I believe I could not
have continued further. Thank you Burak Tunca, Cihan Kökler and Cem Hizli.
Thank you to Fanny Ängvall and Anton Janhager for keep me from going
insane in Västerås.

Finally, I would like to express my gratitude to my parents Nimet Ersoy
and Mehmet Akan as well as to my sister Banu Akan for their unconditional
love and support through out my life.

This project is funded by Robotdalen, VINNOVA, Sparbanksstiftelsen
Nya, EU European Regional Development Fund.

Thank you all!!

Batu Akan
Västerås, December, 2014

List of Publications

Papers included in the thesis 1

Paper A Object Selection Using a Spatial Language for Flexible Assembly,
Batu Akan, Baran Çürüklü, Giacomo Spampinato, Lars Asplund, In
Proceedings of the 14th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’09), p 1-6, Mallorca,
Spain, September, 2009.

Paper B A General Framework for Incremental Processing of Multimodal
Inputs, Afshin Ameri E., Batu Akan, Baran Çürüklü, Lars Asplund,
In Proceedings of the 13th International Conference on Multimodal
Interaction (ICMI’11), p 225-228, Alicante, Spain, November, 2011.

Paper C Intuitive Industrial Robot Programming Through Incremental Multi-
modal Language and Augmented Reality, Batu Akan, Afshin Ameri E.,
Baran Çürüklü, Lars Asplund, In proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’11), p 3934-3939,
Shanghai, China, May, 2011.

Paper D Scheduling for Multiple Type Objects Using POPStar Planner, Batu
Akan, Afshin Ameri E., Baran Çürüklü, In Proceedings of the 19th

IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’14), p 1-7, Barcelona, Spain, September, 2014

Paper E Towards Creation of Robot Programs Through User Interaction,
Batu Akan, Afshin Ameri E., Baran Çürüklü, To be submitted as a
journal paper

1The included articles are reformatted to comply with the PhD thesis layout

ix

x

Other relevant publications

Licentiate Thesis
• Human Robot Interaction Solutions for Intuitive Industrial Robot Pro-

gramming, Batu Akan, Licentiate Thesis, ISBN 978-91-7485-060-4,
Mälardalen University Press, March, 2012.

Conferences and Workshops
• Scheduling POP-Star for Automatic Creation of Robot Cell Programs,

Batu Akan, Afshin Ameri E., Baran Çürüklü, Lars Asplund, 18th
IEEE International Conference on Emerging Technologies and Factory
Automation - ETFA 2013, IEEE, Cagliari, Italy, September, 2013

• Augmented Reality Meets Industry: Interactive Robot Programming, Af-
shin Ameri E., Batu Akan, Baran Çürüklü, SIGRAD, Svenska Lokalavdel-
ningen av Eurographics, p 55-58 Västerås, Sweden, 2010

• Incremental Multimodal Interface for Human-Robot Interaction, Afshin
Ameri E., Batu Akan, Baran Çürüklü, 15th IEEE International Confer-
ence on Emerging Technologies and Factory Automation, p 1-4, Bilbao,
Spain, September, 2010

• Towards Industrial Robots with Human Like Moral Responsibilities,
Baran Çürüklü, Gordana Dodig-Crnkovic, Batu Akan, 5th ACM/IEEE
International Conference on Human-Robot Interaction, p 85-86, Osaka,
Japan, March, 2010

• Towards Robust Human Robot Collaboration in Industrial Environ-
ments, Batu Akan, Baran Çürüklü, Giacomo Spampinato, Lars Asplund,
5th ACM/IEEE International Conference on Human-Robot Interaction,
p 71-72 , Osaka, Japan, March, 2010

• Object Selection Using a Spatial Language for Flexible Assembly, Batu
Akan, Baran Çürüklü, Giacomo Spampinato, Lars Asplund, SWAR, p
1-2, Västerås, September, 2009

• Interacting with Industrial Robots Through a Multimodal Language
and Sensory Systems, Batu Akan, Baran Çürüklü, Lars Asplund, 39th
International Symposium on Robotics, p 66-69, Seoul, Korea, October,
2008

xi

• Gesture Recognition Using Evolution Strategy Neural Network, Johan
Hägg, Batu Akan, Baran Çürüklü, Lars Asplund, ETFA 2008, p 245-
248, IEEE, Hamburg, Germany, September, 2008

x

Other relevant publications

Licentiate Thesis
• Human Robot Interaction Solutions for Intuitive Industrial Robot Pro-

gramming, Batu Akan, Licentiate Thesis, ISBN 978-91-7485-060-4,
Mälardalen University Press, March, 2012.

Conferences and Workshops
• Scheduling POP-Star for Automatic Creation of Robot Cell Programs,

Batu Akan, Afshin Ameri E., Baran Çürüklü, Lars Asplund, 18th
IEEE International Conference on Emerging Technologies and Factory
Automation - ETFA 2013, IEEE, Cagliari, Italy, September, 2013

• Augmented Reality Meets Industry: Interactive Robot Programming, Af-
shin Ameri E., Batu Akan, Baran Çürüklü, SIGRAD, Svenska Lokalavdel-
ningen av Eurographics, p 55-58 Västerås, Sweden, 2010

• Incremental Multimodal Interface for Human-Robot Interaction, Afshin
Ameri E., Batu Akan, Baran Çürüklü, 15th IEEE International Confer-
ence on Emerging Technologies and Factory Automation, p 1-4, Bilbao,
Spain, September, 2010

• Towards Industrial Robots with Human Like Moral Responsibilities,
Baran Çürüklü, Gordana Dodig-Crnkovic, Batu Akan, 5th ACM/IEEE
International Conference on Human-Robot Interaction, p 85-86, Osaka,
Japan, March, 2010

• Towards Robust Human Robot Collaboration in Industrial Environ-
ments, Batu Akan, Baran Çürüklü, Giacomo Spampinato, Lars Asplund,
5th ACM/IEEE International Conference on Human-Robot Interaction,
p 71-72 , Osaka, Japan, March, 2010

• Object Selection Using a Spatial Language for Flexible Assembly, Batu
Akan, Baran Çürüklü, Giacomo Spampinato, Lars Asplund, SWAR, p
1-2, Västerås, September, 2009

• Interacting with Industrial Robots Through a Multimodal Language
and Sensory Systems, Batu Akan, Baran Çürüklü, Lars Asplund, 39th
International Symposium on Robotics, p 66-69, Seoul, Korea, October,
2008

xi

• Gesture Recognition Using Evolution Strategy Neural Network, Johan
Hägg, Batu Akan, Baran Çürüklü, Lars Asplund, ETFA 2008, p 245-
248, IEEE, Hamburg, Germany, September, 2008

Contents

I Thesis 1

1 Introduction 3
1.1 Outline of thesis . 5

2 Background 7
2.1 Human-Robot Interaction (HRI) 7

2.1.1 Levels of Autonomy 8
2.1.2 Nature of Information Exchange 10
2.1.3 Structure of the Team 11
2.1.4 Adaptation, Learning and Training 11
2.1.5 Task Shaping . 12

2.2 Robot Programming Systems 13
2.2.1 Manual Programming Systems 14
2.2.2 Automatic Programming Systems 16

2.3 Multimodal Interaction . 19
2.4 Symbolic Planning . 20

2.4.1 Planning with State-space Search 20
2.4.2 Partially Ordered Planners 21

2.5 Summary of Verification for Growth Process 22

3 Research Goals and Methodology 25
3.1 Research Goal . 25
3.2 Research Subgoals . 26

3.2.1 Research subgoal 1. 26
3.2.2 Research subgoal 2. 27
3.2.3 Research subgoal 3. 28

3.3 Research Methodology . 29

xiii

Contents

I Thesis 1

1 Introduction 3
1.1 Outline of thesis . 5

2 Background 7
2.1 Human-Robot Interaction (HRI) 7

2.1.1 Levels of Autonomy 8
2.1.2 Nature of Information Exchange 10
2.1.3 Structure of the Team 11
2.1.4 Adaptation, Learning and Training 11
2.1.5 Task Shaping . 12

2.2 Robot Programming Systems 13
2.2.1 Manual Programming Systems 14
2.2.2 Automatic Programming Systems 16

2.3 Multimodal Interaction . 19
2.4 Symbolic Planning . 20

2.4.1 Planning with State-space Search 20
2.4.2 Partially Ordered Planners 21

2.5 Summary of Verification for Growth Process 22

3 Research Goals and Methodology 25
3.1 Research Goal . 25
3.2 Research Subgoals . 26

3.2.1 Research subgoal 1. 26
3.2.2 Research subgoal 2. 27
3.2.3 Research subgoal 3. 28

3.3 Research Methodology . 29

xiii

xiv Contents

4 Related Work 31
4.1 Programming Industrial Robots 31
4.2 Multimodal Approach . 32
4.3 Augmented Reality . 34
4.4 Scheduling . 34
4.5 Planning . 35

5 Results 37
5.1 Contributions . 37

5.1.1 Object-Based Programming Scheme 37
5.1.2 General Multimodal Framework 39
5.1.3 POPStar Planner . 39
5.1.4 Simulation Environment 40

5.2 Overview of Papers . 40
5.2.1 Paper A . 40
5.2.2 Paper B . 41
5.2.3 Paper C . 41
5.2.4 Paper D . 42
5.2.5 Paper E . 43

6 Conclusions and Future Work 45
6.1 Conclusions . 45
6.2 Future Work . 47

6.2.1 Multimodal Framework 47
6.2.2 POPStar . 48

Bibliography 49

II Included Papers 59

7 Paper A:
Object Selection using a Spatial Language for Flexible Assembly 61
7.1 Introduction . 63
7.2 Architecture . 65

7.2.1 Speech Recognition 65
7.2.2 Visual Simulation Environment and High Level Move-

ment Functions . 66
7.2.3 Spatial Terms . 67
7.2.4 Knowledge Base and Reasoning System 68

Contents xv

7.3 Experimental Results . 71
7.4 Discussion . 74
Bibliography . 77

8 Paper B:
A General Framework for Incremental Processing of Multimodal
Inputs 79
8.1 Introduction . 81
8.2 Background . 81
8.3 Architecture . 82

8.3.1 COLD Language . 82
8.3.2 Incremental Multimodal Parsing 83
8.3.3 Modality Fusion . 85
8.3.4 Semantic Analysis 86

8.4 Results . 88
8.5 Conclusion . 89
Bibliography . 91

9 Paper C:
Intuitive Industrial Robot Programming Through Incremental
Multimodal Language and Augmented Reality 93
9.1 Introduction . 95
9.2 Architecture . 97

9.2.1 Augmented and Virtual Reality environments 97
9.2.2 Reasoning System 99
9.2.3 Multimodal language 101

9.3 Experimental Results . 104
9.3.1 Experiment 1 . 105
9.3.2 Experiment 2 . 105

9.4 Conclusion . 107
Bibliography . 111

10 Paper D:
Scheduling for Multiple Type Objects Using POPStar Planner 115
10.1 Introduction . 117
10.2 Background . 118
10.3 POPStar . 120

10.3.1 Partial Order Planner (POP) 120
10.3.2 POPStar . 121

xiv Contents

4 Related Work 31
4.1 Programming Industrial Robots 31
4.2 Multimodal Approach . 32
4.3 Augmented Reality . 34
4.4 Scheduling . 34
4.5 Planning . 35

5 Results 37
5.1 Contributions . 37

5.1.1 Object-Based Programming Scheme 37
5.1.2 General Multimodal Framework 39
5.1.3 POPStar Planner . 39
5.1.4 Simulation Environment 40

5.2 Overview of Papers . 40
5.2.1 Paper A . 40
5.2.2 Paper B . 41
5.2.3 Paper C . 41
5.2.4 Paper D . 42
5.2.5 Paper E . 43

6 Conclusions and Future Work 45
6.1 Conclusions . 45
6.2 Future Work . 47

6.2.1 Multimodal Framework 47
6.2.2 POPStar . 48

Bibliography 49

II Included Papers 59

7 Paper A:
Object Selection using a Spatial Language for Flexible Assembly 61
7.1 Introduction . 63
7.2 Architecture . 65

7.2.1 Speech Recognition 65
7.2.2 Visual Simulation Environment and High Level Move-

ment Functions . 66
7.2.3 Spatial Terms . 67
7.2.4 Knowledge Base and Reasoning System 68

Contents xv

7.3 Experimental Results . 71
7.4 Discussion . 74
Bibliography . 77

8 Paper B:
A General Framework for Incremental Processing of Multimodal
Inputs 79
8.1 Introduction . 81
8.2 Background . 81
8.3 Architecture . 82

8.3.1 COLD Language . 82
8.3.2 Incremental Multimodal Parsing 83
8.3.3 Modality Fusion . 85
8.3.4 Semantic Analysis 86

8.4 Results . 88
8.5 Conclusion . 89
Bibliography . 91

9 Paper C:
Intuitive Industrial Robot Programming Through Incremental
Multimodal Language and Augmented Reality 93
9.1 Introduction . 95
9.2 Architecture . 97

9.2.1 Augmented and Virtual Reality environments 97
9.2.2 Reasoning System 99
9.2.3 Multimodal language 101

9.3 Experimental Results . 104
9.3.1 Experiment 1 . 105
9.3.2 Experiment 2 . 105

9.4 Conclusion . 107
Bibliography . 111

10 Paper D:
Scheduling for Multiple Type Objects Using POPStar Planner 115
10.1 Introduction . 117
10.2 Background . 118
10.3 POPStar . 120

10.3.1 Partial Order Planner (POP) 120
10.3.2 POPStar . 121

xvi Contents

10.4 Results . 126
10.4.1 Single Object Case 128
10.4.2 Multiple Part Types 130
10.4.3 Changing Part Types 130

10.5 Conclusion . 130
Bibliography . 133

11 Paper E:
Towards Creation of Robot Programs Through User Interaction 137
11.1 Introduction . 139
11.2 Related Work . 141
11.3 Architecture . 143

11.3.1 Multimodal Framework 143
11.3.2 POPStar . 146

11.4 Results . 153
11.4.1 The Single Object Scenario 158
11.4.2 Multiple Object Types 158
11.4.3 Changing Object Types 159

11.5 Discussions . 159
Bibliography . 165

List of Figures

2.1 Levels of autonomy with emphasis on human interaction. 10
2.2 Categories of robot programming systems 13
2.3 A screenshot of the ABB Robot Studio [1] 15
2.4 Lego Midstorm programming environment 17

7.1 Block diagram of the proposed system. 65
7.2 Example showing weak spatial relations. 68
7.3 A view from the top of the table, overlaid with gaussian kernels

representing left, right, behind and infront regions for the red object. . 69
7.4 Screenshot of the simulator where the robot is asked to pick and place

all the blue objects over the conveyor band. 72
7.5 Layout of the objects . 72

8.1 Some Sample code of COLD 84
8.2 Different components involved in parsing. 85
8.3 output of the system while parsing the sentence “put it here”

and a click. 87
8.4 AR UI. (a) Blue objects are highlighted after user says “pickup a blue

object”. (b) While the robot is holding an object, the user says “put”,
and all empty locations are highlighted. 89

9.1 Hardware ad software components of the system. 98
9.2 Screenshot of the system. Yellow lines represents the path the to

be taken by the robot and the red cubes represent a gripper action,
whether grip or release. 99

9.3 Screenshots from Augmented and Virtual reality operating modes of
the system. 100

xvii

xvi Contents

10.4 Results . 126
10.4.1 Single Object Case 128
10.4.2 Multiple Part Types 130
10.4.3 Changing Part Types 130

10.5 Conclusion . 130
Bibliography . 133

11 Paper E:
Towards Creation of Robot Programs Through User Interaction 137
11.1 Introduction . 139
11.2 Related Work . 141
11.3 Architecture . 143

11.3.1 Multimodal Framework 143
11.3.2 POPStar . 146

11.4 Results . 153
11.4.1 The Single Object Scenario 158
11.4.2 Multiple Object Types 158
11.4.3 Changing Object Types 159

11.5 Discussions . 159
Bibliography . 165

List of Figures

2.1 Levels of autonomy with emphasis on human interaction. 10
2.2 Categories of robot programming systems 13
2.3 A screenshot of the ABB Robot Studio [1] 15
2.4 Lego Midstorm programming environment 17

7.1 Block diagram of the proposed system. 65
7.2 Example showing weak spatial relations. 68
7.3 A view from the top of the table, overlaid with gaussian kernels

representing left, right, behind and infront regions for the red object. . 69
7.4 Screenshot of the simulator where the robot is asked to pick and place

all the blue objects over the conveyor band. 72
7.5 Layout of the objects . 72

8.1 Some Sample code of COLD 84
8.2 Different components involved in parsing. 85
8.3 output of the system while parsing the sentence “put it here”

and a click. 87
8.4 AR UI. (a) Blue objects are highlighted after user says “pickup a blue

object”. (b) While the robot is holding an object, the user says “put”,
and all empty locations are highlighted. 89

9.1 Hardware ad software components of the system. 98
9.2 Screenshot of the system. Yellow lines represents the path the to

be taken by the robot and the red cubes represent a gripper action,
whether grip or release. 99

9.3 Screenshots from Augmented and Virtual reality operating modes of
the system. 100

xvii

xviii List of Figures

9.4 A sample of the 3MG language. 102

9.5 Multimodal parser and its subsystems in our speech/mouse setup. . . 103

9.6 Experimental setup consisting of. 106

9.7 Setup for experiment 2, where the users were asked to build stacks of
wooden blocks. 107

9.8 Setup for experiment 2, where the users were asked to sort the
numbered wooden blocks in an ascending order. 108

10.1 Landmarks graph together with ordering constraints. 121

10.2 Two consecutive stages of the plan, including a state change. 122

10.3 A sample plan demostrating the idle machine times tm and idle object
times to, as well as the last action done by the robot tr 125

10.4 Different landmark topologies. 126

10.5 Gantt charts for the cases for (a) a robot cell that produces single
type object , (b) a robot cell which produces 2 types of parts, and
(c) a cell where production changes between different part types.
Rows represent machines m1 to mM and the actions of the robot
and grippers r1G1 and r1G2. Bars represent, particular object being
processed in a machine. 129

11.1 Overview of the system components, including the interaction com-
ponents, the multimodal framework and the POPStar planner. The
arrows show the direction the of information flow. The information
received from the user is processed by the multimodal framework.
Based on specific recognition events, the landmarks are passed on to
the POPStar planner. 143

11.2 Landmarks graph together with ordering constraints. Vertical process-
ing steps represent handling an object through different landmarks.
Horizontal processing steps represent handling of different objects
through the same landmark. 146

11.3 Two consecutive stages of the plan are shown. (a) Before the change
has occurred, and (b) after the change has occurred. 148

11.4 A Gantt chart for a sample plan. G1 and G2 depict the grippers of the
robot. m1 through m3 are the machines in the cell. The idle machine
times are shown by tm and idle object times are shown by to. The
time for the last action performed by the robot is represented by tr . . 152

List of Figures xix

11.5 Different landmark topologies. (a) Two different products are pro-
duced simultaneously. (b) Two different products are produced in the
cell one after the other. (c) This case illustrates the introduction of a
second product type while there is an ongoing activity. When Type 2
is produced the cell goes back to Type 1. 153

11.6 A COLD code snippet that presents the pickup command. 154
11.7 Screenshot showing the augmented reality interface seen by the user.

The input palette holds nine objects, all numbered individually, in the
range of 1-9. Further up the figure the black and white AR tag is
shown. The yellow line overlays the path of the robot. This helps to
assist the user in understanding the movements of the robot. In this
specific case the robot will approach the input palette from the left in
order to pick up object 1. 155

11.8 Actions defined in the planning domain, consists jog, pickup, load,
process action schemas. Pickup and load actions are overloaded to
have a different number of parameters. 156

11.9 Landmarks generated for a simple machine tending example. The
robot picks up the object Obj1 from the input palette I and loads it
into a machine which processes stage one. Later the Obj1 is placed
on the output palette O. 157

11.10Gantt charts for the cases for (a) a robot cell that produces a single
type object , (b) a robot cell which produces 2 types of object, and
(c) a cell where production changes between different object types.
Rows represent machines m1 to mM and the actions of the robot
and grippers r1G1 and r1G2. Bars represent particular objects being
processed in a machine. 162

11.11User’s commands for the multiple object types case. The left column
shows the instructions given by the user. The right column shows the
generated landmarks from the corresponding instructions. 163

xviii List of Figures

9.4 A sample of the 3MG language. 102

9.5 Multimodal parser and its subsystems in our speech/mouse setup. . . 103

9.6 Experimental setup consisting of. 106

9.7 Setup for experiment 2, where the users were asked to build stacks of
wooden blocks. 107

9.8 Setup for experiment 2, where the users were asked to sort the
numbered wooden blocks in an ascending order. 108

10.1 Landmarks graph together with ordering constraints. 121

10.2 Two consecutive stages of the plan, including a state change. 122

10.3 A sample plan demostrating the idle machine times tm and idle object
times to, as well as the last action done by the robot tr 125

10.4 Different landmark topologies. 126

10.5 Gantt charts for the cases for (a) a robot cell that produces single
type object , (b) a robot cell which produces 2 types of parts, and
(c) a cell where production changes between different part types.
Rows represent machines m1 to mM and the actions of the robot
and grippers r1G1 and r1G2. Bars represent, particular object being
processed in a machine. 129

11.1 Overview of the system components, including the interaction com-
ponents, the multimodal framework and the POPStar planner. The
arrows show the direction the of information flow. The information
received from the user is processed by the multimodal framework.
Based on specific recognition events, the landmarks are passed on to
the POPStar planner. 143

11.2 Landmarks graph together with ordering constraints. Vertical process-
ing steps represent handling an object through different landmarks.
Horizontal processing steps represent handling of different objects
through the same landmark. 146

11.3 Two consecutive stages of the plan are shown. (a) Before the change
has occurred, and (b) after the change has occurred. 148

11.4 A Gantt chart for a sample plan. G1 and G2 depict the grippers of the
robot. m1 through m3 are the machines in the cell. The idle machine
times are shown by tm and idle object times are shown by to. The
time for the last action performed by the robot is represented by tr . . 152

List of Figures xix

11.5 Different landmark topologies. (a) Two different products are pro-
duced simultaneously. (b) Two different products are produced in the
cell one after the other. (c) This case illustrates the introduction of a
second product type while there is an ongoing activity. When Type 2
is produced the cell goes back to Type 1. 153

11.6 A COLD code snippet that presents the pickup command. 154
11.7 Screenshot showing the augmented reality interface seen by the user.

The input palette holds nine objects, all numbered individually, in the
range of 1-9. Further up the figure the black and white AR tag is
shown. The yellow line overlays the path of the robot. This helps to
assist the user in understanding the movements of the robot. In this
specific case the robot will approach the input palette from the left in
order to pick up object 1. 155

11.8 Actions defined in the planning domain, consists jog, pickup, load,
process action schemas. Pickup and load actions are overloaded to
have a different number of parameters. 156

11.9 Landmarks generated for a simple machine tending example. The
robot picks up the object Obj1 from the input palette I and loads it
into a machine which processes stage one. Later the Obj1 is placed
on the output palette O. 157

11.10Gantt charts for the cases for (a) a robot cell that produces a single
type object , (b) a robot cell which produces 2 types of object, and
(c) a cell where production changes between different object types.
Rows represent machines m1 to mM and the actions of the robot
and grippers r1G1 and r1G2. Bars represent particular objects being
processed in a machine. 162

11.11User’s commands for the multiple object types case. The left column
shows the instructions given by the user. The right column shows the
generated landmarks from the corresponding instructions. 163

List of Tables

7.1 List of commands to control the robot. 71

xxi

List of Tables

7.1 List of commands to control the robot. 71

xxi

I

Thesis

1

I

Thesis

1

Chapter 1

Introduction

Robots have become more powerful and intelligent over the last decades.
Companies concentrated on large scale production such as car industries have
been using industrial robots for machine tending, joining and welding metal
sheets for several decades now. Thus, in many cases an investment in industrial
robots is seen as a vital step that will strengthen a company’s position in
the market through increased productivity. However, in small and medium
enterprises (SMEs) robots are not commonly found due to a number of key
factor, e.g. low volume production, necessity of continuous reprogramming,
and layout of SME shop floors.

Even though the hardware costs of industrial robots have decreased,
integration as well as programming costs make them unfavorable among many
SMEs. Unlike large scale production industries, many SMEs deal with small
volume production, with continuously changing product types. From the
programming point of the view, no matter how simple the production process
is, one has to rely on a professional programmer to integrate and reprogram
the robot cell for a new product. Either the company will have to setup a
dedicated software department responsible for programming the robots or out-
source this need. Maintaining a software department or hiring a consultant
from an integrator company is costly for SMEs as well as larger companies.
Furthermore, reconfiguring a robot cell is a time consuming process even for
skilled engineers. Also it may be difficult to find experts when needed. More
specifically, an SME may be forced to rely on a limited number of experts or
integrators that are located in the close proximity of the company. This is a real
challenge since in Sweden many integrators try to serve a limited geographic

3

Chapter 1

Introduction

Robots have become more powerful and intelligent over the last decades.
Companies concentrated on large scale production such as car industries have
been using industrial robots for machine tending, joining and welding metal
sheets for several decades now. Thus, in many cases an investment in industrial
robots is seen as a vital step that will strengthen a company’s position in
the market through increased productivity. However, in small and medium
enterprises (SMEs) robots are not commonly found due to a number of key
factor, e.g. low volume production, necessity of continuous reprogramming,
and layout of SME shop floors.

Even though the hardware costs of industrial robots have decreased,
integration as well as programming costs make them unfavorable among many
SMEs. Unlike large scale production industries, many SMEs deal with small
volume production, with continuously changing product types. From the
programming point of the view, no matter how simple the production process
is, one has to rely on a professional programmer to integrate and reprogram
the robot cell for a new product. Either the company will have to setup a
dedicated software department responsible for programming the robots or out-
source this need. Maintaining a software department or hiring a consultant
from an integrator company is costly for SMEs as well as larger companies.
Furthermore, reconfiguring a robot cell is a time consuming process even for
skilled engineers. Also it may be difficult to find experts when needed. More
specifically, an SME may be forced to rely on a limited number of experts or
integrators that are located in the close proximity of the company. This is a real
challenge since in Sweden many integrators try to serve a limited geographic

3

4 Chapter 1. Introduction

region in their close proximity, e.g. they try to avoid project which may force
them to have experts staying over night. It is plausible to assume that similar
problems exist in other countries that have high labor costs.

There are additional challenges as well. An industrial robot must be placed
in a cell that will occupy valuable workspace and maybe operate only a couple
of hours a day. In comparison to large industries, SME shop floors are more
often less structured, therefore it is even more challenging to deploy robots
to various SMEs. Under these circumstances, it is hard to motivate a SME,
which is constantly under pressure, to carry out a risky investment in robot
automation. Obviously, these issues result in challenges with regard to high
costs, limited flexibility, and reduced productivity.

In order to make industrial robots more favorable in the SME sector, the
issues described have to be resolved. Typically for those SMEs, that have
frequently changing applications, it is quite expensive to afford a professional
programmer or technician, therefore, in our view a human-robot interaction
solution is demanded. Using a high-level language, which hides the low-level
programming details from the user, will enable a technician or a manufacturing
engineer who has knowledge about the manufacturing process to easily
program the robot at task-level and to let the robot switch between previously
programmed tasks.

The goal of this thesis is to provide tools and methods to make task level
robot programming easier and more available to a wider range of users. The
primary goal can be divided into several subgoals:

1. Understanding the user’s intentions by the system

2. Giving proper feedback to the user confirming that the user’s intentions
are understood properly

3. Generating a complete robot program based on user’s instructions that
would utilize the resources in a robot cell optimally.

The driving idea behind this thesis is to bring robot programming to a higher
level. Rather than mapping instruction to individual commands, the goal is
to provide a complete framework where most of the planning and scheduling
tasks are taken care of by the proposed robot programming system. Ideally, the
users’ part in programming is to give out a brief summary of order of machines
to be used in natural language, and all the low-level details to be determined by
the system. The whole process of programming would be as easy as teaching
the task to a new member of the work team.

1.1 Outline of thesis 5

This doctoral thesis presents a novel system to support for easy high-level
programming of industrial robots. The proposed system includes:

• A multi-modal, incremental framework for rapid development of multi
modal interfaces;

• A simulator which checks and verifies robot code, and also acts as visual
feedback to the user;

• POPStar planner which is based on partial order planner, to plan and
schedule the operations of machines and robots in the cell, based on
users instructions

1.1 Outline of thesis
The remainder of this thesis consists of two main parts. The first part contains
six chapters: Chapter 2 introduces human-robot interaction (HRI) and methods
used for programming robots. It also introduces technical concepts which
are used throughout the thesis. Chapter 3 formulates the main research goal,
derives research subgoals, and describes the research method that is used.
Chapter 4 surveys related work. Chapter 5 presents the research results in
line with the research goals and finally Chapter 6 concludes and summarizes
the thesis, and gives directions for possible future work. The second part of the
thesis is a collection of four peer-reviewed conference and workshop papers.

4 Chapter 1. Introduction

region in their close proximity, e.g. they try to avoid project which may force
them to have experts staying over night. It is plausible to assume that similar
problems exist in other countries that have high labor costs.

There are additional challenges as well. An industrial robot must be placed
in a cell that will occupy valuable workspace and maybe operate only a couple
of hours a day. In comparison to large industries, SME shop floors are more
often less structured, therefore it is even more challenging to deploy robots
to various SMEs. Under these circumstances, it is hard to motivate a SME,
which is constantly under pressure, to carry out a risky investment in robot
automation. Obviously, these issues result in challenges with regard to high
costs, limited flexibility, and reduced productivity.

In order to make industrial robots more favorable in the SME sector, the
issues described have to be resolved. Typically for those SMEs, that have
frequently changing applications, it is quite expensive to afford a professional
programmer or technician, therefore, in our view a human-robot interaction
solution is demanded. Using a high-level language, which hides the low-level
programming details from the user, will enable a technician or a manufacturing
engineer who has knowledge about the manufacturing process to easily
program the robot at task-level and to let the robot switch between previously
programmed tasks.

The goal of this thesis is to provide tools and methods to make task level
robot programming easier and more available to a wider range of users. The
primary goal can be divided into several subgoals:

1. Understanding the user’s intentions by the system

2. Giving proper feedback to the user confirming that the user’s intentions
are understood properly

3. Generating a complete robot program based on user’s instructions that
would utilize the resources in a robot cell optimally.

The driving idea behind this thesis is to bring robot programming to a higher
level. Rather than mapping instruction to individual commands, the goal is
to provide a complete framework where most of the planning and scheduling
tasks are taken care of by the proposed robot programming system. Ideally, the
users’ part in programming is to give out a brief summary of order of machines
to be used in natural language, and all the low-level details to be determined by
the system. The whole process of programming would be as easy as teaching
the task to a new member of the work team.

1.1 Outline of thesis 5

This doctoral thesis presents a novel system to support for easy high-level
programming of industrial robots. The proposed system includes:

• A multi-modal, incremental framework for rapid development of multi
modal interfaces;

• A simulator which checks and verifies robot code, and also acts as visual
feedback to the user;

• POPStar planner which is based on partial order planner, to plan and
schedule the operations of machines and robots in the cell, based on
users instructions

1.1 Outline of thesis
The remainder of this thesis consists of two main parts. The first part contains
six chapters: Chapter 2 introduces human-robot interaction (HRI) and methods
used for programming robots. It also introduces technical concepts which
are used throughout the thesis. Chapter 3 formulates the main research goal,
derives research subgoals, and describes the research method that is used.
Chapter 4 surveys related work. Chapter 5 presents the research results in
line with the research goals and finally Chapter 6 concludes and summarizes
the thesis, and gives directions for possible future work. The second part of the
thesis is a collection of four peer-reviewed conference and workshop papers.

Chapter 2

Background

This chapter introduces important technical concepts that are used thoughout
the thesis. It provides a general introduction to human-robot interaction, a
general overview of methods for programming robots. Followed by multi
modal interaction and symbolic planning.

2.1 Human-Robot Interaction (HRI)

Robots are artificial agents with capacities of perception and action in the
physical world. As robot technology develops and the robots start moving
out of the research laboratories in to the real world, the interaction between
robots and humans becomes more important. Human-robot interaction (HRI)
is the field of study that tries to understand, design and evaluate robot systems
for use by or with humans [2].

Communication of any sort between humans and robots can be regarded
as interaction. Communication can be of many different forms. However, the
distance between the human and the robot alters the nature of communication.
Communication, and thus interaction, can be divided into the following two
categories: proximate interaction and remote interaction [2]. In proximate
interaction, the user and the robot share the same environment, e.g., the user
may be located in the robot cell during the programming phase. In remote
interaction, the user and the robot can be spatially and temporally separated
from each other, e.g., controlling Mars rovers implies that the user and the
rovers are both temporally and spatially separated from each other. In most

7

Chapter 2

Background

This chapter introduces important technical concepts that are used thoughout
the thesis. It provides a general introduction to human-robot interaction, a
general overview of methods for programming robots. Followed by multi
modal interaction and symbolic planning.

2.1 Human-Robot Interaction (HRI)

Robots are artificial agents with capacities of perception and action in the
physical world. As robot technology develops and the robots start moving
out of the research laboratories in to the real world, the interaction between
robots and humans becomes more important. Human-robot interaction (HRI)
is the field of study that tries to understand, design and evaluate robot systems
for use by or with humans [2].

Communication of any sort between humans and robots can be regarded
as interaction. Communication can be of many different forms. However, the
distance between the human and the robot alters the nature of communication.
Communication, and thus interaction, can be divided into the following two
categories: proximate interaction and remote interaction [2]. In proximate
interaction, the user and the robot share the same environment, e.g., the user
may be located in the robot cell during the programming phase. In remote
interaction, the user and the robot can be spatially and temporally separated
from each other, e.g., controlling Mars rovers implies that the user and the
rovers are both temporally and spatially separated from each other. In most

7

8 Chapter 2. Background

cases remote interaction is solely limited to spatial separation, e.g. in the case
with teleoperated surgery robots. This division helps to distinguish between
applications that require mobility, physical manipulation or social interaction.
As an example teleoperation and telemanipulations use remote interaction
to control mobile remote robot and manipulate objects that are not in the
immediate surrounding of the user, whereas proximate interaction, lets say with
a mobile service robot, requires social interaction [2].

In social interactions, the robots and the humans interact as peers or
companions, however the important factor is that social interaction often
requires close proximity.

While the distance between the robot and the user alters the nature of
communication, it doesn’t define the level or quality of the interaction. The
designer, attempts to understand and shape this interaction process in the hope
of making it more beneficial for the user. From the designers point of view, the
following five attributes can be altered to affect the interaction process [2]:

• Level and behavior of autonomy

• Nature of the information exchange

• Structure of the team

• Adaptation, learning and training of users and the robot

• Shape of the task

2.1.1 Levels of Autonomy
Robots that can perform the desired tasks in an unstructured environment
without human intervention are autonomous [2]. From an operational point of
view, the amount of time during which a robot can be left without supervision
is an important characteristic of autonomy. A robot with high autonomy can
be left alone for longer periods of time, whereas a robot with lower autonomy
needs continuous supervision and user control. Autonomy, however, is not
the highest achievable goal in the field of HRI, but only a means to support
productive interaction. Therefore in a human centered applications the notion
of levels of autonomy (LOA) gains more importance. Even though there are
many scales for LOA the following one proposed by Sheridan and Verplank
[3] is the most cited one [2]:

1. Computer offers no assistance; human does it all.

2.1 Human-Robot Interaction (HRI) 9

2. Computer offers a complete set of action alternatives.

3. Computer narrows the selection down to a few choices.

4. Computer suggests a single action.

5. Computer executes that action if the user approves.

6. Computer allows the human limited time to veto before automatic
execution.

7. Computer executes automatically then necessarily informs the human.

8. Computer informs human after automatic execution only if human asks.

9. Computer informs human after automatic execution only if it decides
too.

10. Computer decides everything and acts autonomously, ignoring the hu-
man.

Note that, these scales may not always be applicable to the whole problem
domain but are more beneficial when applied to the subtasks.

The scale proposed by Sheridan helps to determine how autonomous a
robot is under certain circumstances, however it does not help to evaluate
the level of interaction between the user and the robot from an HRI point of
view. This can be illustrated by the following example: A service robot should
exhibit different levels of autonomy during the programming phase and the
execution phase. A different perspective of autonomy regarding the level of
interaction is presented in Figure 2.1. It should be noted the ends of the scale
do not indicate less versus more autonomy, thus on the direct control side of the
scale, the challenge is to develop a user interface that minimizes the operator’s
cognitive load. At the other end of the scale, the issue is to create robots with
the appropriate cognitive skills in order to interact naturally and efficiently
to achieve peer-to-peer collaboration with a human [2]. In addition to fully
autonomy at sub-level tasks peer-to-peer collaboration also requires robot with
social skills for seamless HRI, therefore it is often considered more difficult to
achieve than full autonomy alone.

8 Chapter 2. Background

cases remote interaction is solely limited to spatial separation, e.g. in the case
with teleoperated surgery robots. This division helps to distinguish between
applications that require mobility, physical manipulation or social interaction.
As an example teleoperation and telemanipulations use remote interaction
to control mobile remote robot and manipulate objects that are not in the
immediate surrounding of the user, whereas proximate interaction, lets say with
a mobile service robot, requires social interaction [2].

In social interactions, the robots and the humans interact as peers or
companions, however the important factor is that social interaction often
requires close proximity.

While the distance between the robot and the user alters the nature of
communication, it doesn’t define the level or quality of the interaction. The
designer, attempts to understand and shape this interaction process in the hope
of making it more beneficial for the user. From the designers point of view, the
following five attributes can be altered to affect the interaction process [2]:

• Level and behavior of autonomy

• Nature of the information exchange

• Structure of the team

• Adaptation, learning and training of users and the robot

• Shape of the task

2.1.1 Levels of Autonomy
Robots that can perform the desired tasks in an unstructured environment
without human intervention are autonomous [2]. From an operational point of
view, the amount of time during which a robot can be left without supervision
is an important characteristic of autonomy. A robot with high autonomy can
be left alone for longer periods of time, whereas a robot with lower autonomy
needs continuous supervision and user control. Autonomy, however, is not
the highest achievable goal in the field of HRI, but only a means to support
productive interaction. Therefore in a human centered applications the notion
of levels of autonomy (LOA) gains more importance. Even though there are
many scales for LOA the following one proposed by Sheridan and Verplank
[3] is the most cited one [2]:

1. Computer offers no assistance; human does it all.

2.1 Human-Robot Interaction (HRI) 9

2. Computer offers a complete set of action alternatives.

3. Computer narrows the selection down to a few choices.

4. Computer suggests a single action.

5. Computer executes that action if the user approves.

6. Computer allows the human limited time to veto before automatic
execution.

7. Computer executes automatically then necessarily informs the human.

8. Computer informs human after automatic execution only if human asks.

9. Computer informs human after automatic execution only if it decides
too.

10. Computer decides everything and acts autonomously, ignoring the hu-
man.

Note that, these scales may not always be applicable to the whole problem
domain but are more beneficial when applied to the subtasks.

The scale proposed by Sheridan helps to determine how autonomous a
robot is under certain circumstances, however it does not help to evaluate
the level of interaction between the user and the robot from an HRI point of
view. This can be illustrated by the following example: A service robot should
exhibit different levels of autonomy during the programming phase and the
execution phase. A different perspective of autonomy regarding the level of
interaction is presented in Figure 2.1. It should be noted the ends of the scale
do not indicate less versus more autonomy, thus on the direct control side of the
scale, the challenge is to develop a user interface that minimizes the operator’s
cognitive load. At the other end of the scale, the issue is to create robots with
the appropriate cognitive skills in order to interact naturally and efficiently
to achieve peer-to-peer collaboration with a human [2]. In addition to fully
autonomy at sub-level tasks peer-to-peer collaboration also requires robot with
social skills for seamless HRI, therefore it is often considered more difficult to
achieve than full autonomy alone.

10 Chapter 2. Background

Figure 2.1: Levels of autonomy with emphasis on human interaction.

2.1.2 Nature of Information Exchange

Autonomy is only one aspect that governs the interaction between a human
and a robot. The second component defines how the information is exchanged.
Input modality defines the nature of the interaction between the robot and
the user. Different modalities carry different types of information. While
interacting with computers or robots often three of the five senses we use are
utilized: audio, visual and touch. However, the same message can be carried
over two different channels that address two different senses, e.g. text and
speech may carry the same information but appeal to two different senses. Both
represent verbal information exchange, but speech carries additional channels
such as tonality so the information exchange really has two modalities: verbal
and non-verbal. Verbal communication could be better suited for passing
commands to the robot and non-verbal communication through gestures is
more suitable for conveying spatial information. However, combining these
two modalities would yield a more complete and richer communication
between the robot and the user.

Speech is an important modality for exchanging information between a
robot and a user. The user can give speech commands to the robot to make it
interact with the objects in a scene. These commands can be like: “Pick up the
blue object” or “Put it next to the green object”. It is also possible to adjust
the settings for the task. The user may command the robot to go “faster”, or
“slower”, etc. These commands will enable the user to fine-tune the tasks and
the skills. Also, any skills or tasks that have been taught to the robot, can be
executed through these speech commands.

A gesture is a form of non-verbal communication where visible bodily

2.1 Human-Robot Interaction (HRI) 11

actions communicate particular messages. Gestures include movement of the
hands, face, or other parts of the body. Gestures differ from physical non-verbal
communication in that they do not communicate a specific messages. Gestures
can be static or dynamic meaning that, the gesture can be a certain pose of
the hand or the body or a movement in certain predetermined patterns. As an
example, a pointing gesture is a static gesture while drawing a circle figure is a
dynamic gesture. Gestures can be used to program or control robots [4]. Voyles
and Khosia integrated a gesture based set of commands into a programming by
demonstration framework [5]. Strobel et al. use static gestures to direct the
attention of a robot to a specific part of the scene [6].

2.1.3 Structure of the Team
It could be that interaction is not limited to one user and one robot. There can be
cases in which a person needs to command and interact with multiple robots, or
multiple users with different roles interact with a single robot, or multiple users
interact with multiple robots. Robots used in search and rescue operations are
often operated by two humans, with special roles in the team [7] is an example
of many-to-one interaction. On the other hand many unmanned/uninhabited
air vehicles (UAVs) can be controlled simultaneously by a single operator [8].

Designing the structure of the team is another aspect of HRI. There are
several questions that arise in this respect:

• Who has the authority to make certain decisions: the human or the robot?
• Who has the authority to instruct the robot and at which level?
• How are conflicts solved?
• How are the roles of the robot and the user defined?

The question of what is the role of the human has recently gained importance
[9]. Often robots may need to interact with humans who are bystanders with
no training at all, e.g., a health-assistant robot must help patients and interact
with visitors.

2.1.4 Adaptation, Learning and Training
Designing robots that have the ability to adapt and learn has been widely
researched in academia. Even though HRI researchers often want to create
robot systems, that can be used with little to no training on the users side, it
is sometimes necessary to give training to the users or even HRI designers.
This section addresses the issues regarding the training of operators, designers,

10 Chapter 2. Background

Figure 2.1: Levels of autonomy with emphasis on human interaction.

2.1.2 Nature of Information Exchange

Autonomy is only one aspect that governs the interaction between a human
and a robot. The second component defines how the information is exchanged.
Input modality defines the nature of the interaction between the robot and
the user. Different modalities carry different types of information. While
interacting with computers or robots often three of the five senses we use are
utilized: audio, visual and touch. However, the same message can be carried
over two different channels that address two different senses, e.g. text and
speech may carry the same information but appeal to two different senses. Both
represent verbal information exchange, but speech carries additional channels
such as tonality so the information exchange really has two modalities: verbal
and non-verbal. Verbal communication could be better suited for passing
commands to the robot and non-verbal communication through gestures is
more suitable for conveying spatial information. However, combining these
two modalities would yield a more complete and richer communication
between the robot and the user.

Speech is an important modality for exchanging information between a
robot and a user. The user can give speech commands to the robot to make it
interact with the objects in a scene. These commands can be like: “Pick up the
blue object” or “Put it next to the green object”. It is also possible to adjust
the settings for the task. The user may command the robot to go “faster”, or
“slower”, etc. These commands will enable the user to fine-tune the tasks and
the skills. Also, any skills or tasks that have been taught to the robot, can be
executed through these speech commands.

A gesture is a form of non-verbal communication where visible bodily

2.1 Human-Robot Interaction (HRI) 11

actions communicate particular messages. Gestures include movement of the
hands, face, or other parts of the body. Gestures differ from physical non-verbal
communication in that they do not communicate a specific messages. Gestures
can be static or dynamic meaning that, the gesture can be a certain pose of
the hand or the body or a movement in certain predetermined patterns. As an
example, a pointing gesture is a static gesture while drawing a circle figure is a
dynamic gesture. Gestures can be used to program or control robots [4]. Voyles
and Khosia integrated a gesture based set of commands into a programming by
demonstration framework [5]. Strobel et al. use static gestures to direct the
attention of a robot to a specific part of the scene [6].

2.1.3 Structure of the Team
It could be that interaction is not limited to one user and one robot. There can be
cases in which a person needs to command and interact with multiple robots, or
multiple users with different roles interact with a single robot, or multiple users
interact with multiple robots. Robots used in search and rescue operations are
often operated by two humans, with special roles in the team [7] is an example
of many-to-one interaction. On the other hand many unmanned/uninhabited
air vehicles (UAVs) can be controlled simultaneously by a single operator [8].

Designing the structure of the team is another aspect of HRI. There are
several questions that arise in this respect:

• Who has the authority to make certain decisions: the human or the robot?
• Who has the authority to instruct the robot and at which level?
• How are conflicts solved?
• How are the roles of the robot and the user defined?

The question of what is the role of the human has recently gained importance
[9]. Often robots may need to interact with humans who are bystanders with
no training at all, e.g., a health-assistant robot must help patients and interact
with visitors.

2.1.4 Adaptation, Learning and Training
Designing robots that have the ability to adapt and learn has been widely
researched in academia. Even though HRI researchers often want to create
robot systems, that can be used with little to no training on the users side, it
is sometimes necessary to give training to the users or even HRI designers.
This section addresses the issues regarding the training of operators, designers,

12 Chapter 2. Background

as well as robots. The training is often given in the hope of understanding
and improving the user interface, interpreting video feedback, controlling the
robot, coordinating with other team members and staying safe while operating
the robot in a hostile environment [10].

Efforts to Train Users

Even though one of the goals of successful HRI is to minimize the training
of the users, certain applications require careful training given to the users in
cases where the operator workload or risk is too high. Examples of such cases
are military and law enforcement applications, space applications, and search
and rescue operations. On the other hand, robots that interact with humans
socially are often designed to change the behavior of, educate or train their
users, especially if longterm interaction is assumed [11].

Training Designers

The training of designers has received little attention in the HRI literature;
however, it is important that they do receive training in the procedures and
practices in the fields they seek to help. There are workshops and tutorials for
search and rescue robotics [7] as well as tutorials on metrics and experiment
design for robot applications [12].

Training Robots

It is often the case that robots need to learn and adapt to the environment
or to the user once they leave the factory or the laboratory where they are
preprogrammed regarding certain skills and behaviors. However, a well-
designed robot, that is beneficial to its user, continues to learn and adapt by
improving its reasoning capabilities through interaction. Approaches to robot
learning include teaching/programming by demonstration (PbD), as well as
task and skill learning. Methods for programming robots are discussed in more
detail in Section 2.2.

2.1.5 Task Shaping
As new technology is introduced to our lives, the way we do certain things
changes. Similarly, introduction of new robot technologies allow a human
to perform things that they were not capable of doing before, or it eases the
physical or cognitive workload by making the task easier or more pleasant

2.2 Robot Programming Systems 13

Figure 2.2: Categories of robot programming systems

perform. This means that introducing new technologies fundamentally change
the way humans perform the task. Task shaping is the term that emphasizes the
importance of considering how the task should be done or will be done after a
new technology is introduced [2].

2.2 Robot Programming Systems

This section gives a brief overview of how robots are programmed. This
overview is in line with the classification in Biggs and Macdonald [13]. The
field of robot programming is divided in to two: manual programming and
automatic programming (Fig 2.2). In manual programming the code is created
by hand, and this is done through either text-based programming or graphical
programming. In automatic mode the robot code is automatically generated
and the user has little or no direct control over the code.

12 Chapter 2. Background

as well as robots. The training is often given in the hope of understanding
and improving the user interface, interpreting video feedback, controlling the
robot, coordinating with other team members and staying safe while operating
the robot in a hostile environment [10].

Efforts to Train Users

Even though one of the goals of successful HRI is to minimize the training
of the users, certain applications require careful training given to the users in
cases where the operator workload or risk is too high. Examples of such cases
are military and law enforcement applications, space applications, and search
and rescue operations. On the other hand, robots that interact with humans
socially are often designed to change the behavior of, educate or train their
users, especially if longterm interaction is assumed [11].

Training Designers

The training of designers has received little attention in the HRI literature;
however, it is important that they do receive training in the procedures and
practices in the fields they seek to help. There are workshops and tutorials for
search and rescue robotics [7] as well as tutorials on metrics and experiment
design for robot applications [12].

Training Robots

It is often the case that robots need to learn and adapt to the environment
or to the user once they leave the factory or the laboratory where they are
preprogrammed regarding certain skills and behaviors. However, a well-
designed robot, that is beneficial to its user, continues to learn and adapt by
improving its reasoning capabilities through interaction. Approaches to robot
learning include teaching/programming by demonstration (PbD), as well as
task and skill learning. Methods for programming robots are discussed in more
detail in Section 2.2.

2.1.5 Task Shaping
As new technology is introduced to our lives, the way we do certain things
changes. Similarly, introduction of new robot technologies allow a human
to perform things that they were not capable of doing before, or it eases the
physical or cognitive workload by making the task easier or more pleasant

2.2 Robot Programming Systems 13

Figure 2.2: Categories of robot programming systems

perform. This means that introducing new technologies fundamentally change
the way humans perform the task. Task shaping is the term that emphasizes the
importance of considering how the task should be done or will be done after a
new technology is introduced [2].

2.2 Robot Programming Systems

This section gives a brief overview of how robots are programmed. This
overview is in line with the classification in Biggs and Macdonald [13]. The
field of robot programming is divided in to two: manual programming and
automatic programming (Fig 2.2). In manual programming the code is created
by hand, and this is done through either text-based programming or graphical
programming. In automatic mode the robot code is automatically generated
and the user has little or no direct control over the code.

14 Chapter 2. Background

2.2.1 Manual Programming Systems

Manual programming systems require the user to create the program by hand
often without the actual robot. Once the program is finished, it is loaded into
the robot and tested. Manual programming systems are offline methods for
programming robots, because the code is created either without using the robot,
or with the robot disconnected from the programming environment. However
when there are no safety concerns, for example while programming toy robots,
it might be possible to control the robot online through an interpreted language
where line-by-line execution is possible while creating the code.

Manual programming systems can be divided into two groups: (i) text-
based systems, and (ii) graphical programming environments.

Text-Based Systems

Text-based programming systems makes use of conventional programming. It
is also the most common mean to program industrial robots together with lead-
through programming. Text-based systems can be grouped depending on the
type of language used, i.e., controller-specific languages, generic-procedural
languages, and behavior based languages.

Controller-specific languages are the most common methods for program-
ing industrial robots. Ever since the invention of industrial robots and robot
controllers there has been a machine language, and often a programming
language to go with it that can be used to create robot programs. These
languages often consists of simple commands for controlling the robot,
input/output (I/O), and program flow. ABB’s RAPID programming language
[14] is an example of controller specific languages (Fig. 2.3). Similarly, all
other major industrial robot manufacturer have their own languages dedicated
to their own robots and/or systems, e.g., KUKA [15], Motoman [16], and
Comau Robotics [17].

In fact, there are as many languages as there are manufacturers. The major
disadvantage of controller specific languages is the lack of collaboration, e.g.
international standards, in order to develop common languages that can used by
several manufacturers. If a company owns robots from several manufacturers,
either in-house programmers need to be trained for each type of robot or the
company will need to outsource robot programming.

2.2 Robot Programming Systems 15

Figure 2.3: A screenshot of the ABB Robot Studio [1]

Generic procedural languages provide an alternative to controller specific
languages. Generic programming languages for robots extends standard
high-level procedural languages such as C/C++ or Java in a way to provide
functionality for the target robot platform. Such an approach is beneficial
in research environments, where generic languages are extended to meet the
needs of the research project. The extended generic language can be used for
system programming or application level programming.

The abstraction provided by the generic language, which consists of a set of
functions and/or classes, can facilitate the programming process. Abstraction
provides an easy mean to control the robot, while hiding low-level issues, such
as handling I/O’s or raw sensor data, e.g. moving the robot to a particular
position.

Behavior-based languages provide an alternative to the procedural lan-
guages. When using these languages one can define how a robot should
react to some stimulus or event rather than following a procedural description.
The idea behind behavior-based programming is to supply a set of behaviors
that independently work to accomplish their goals, while allowing the robot
to accomplish high-level tasks. Behavior-based programming employs a

14 Chapter 2. Background

2.2.1 Manual Programming Systems

Manual programming systems require the user to create the program by hand
often without the actual robot. Once the program is finished, it is loaded into
the robot and tested. Manual programming systems are offline methods for
programming robots, because the code is created either without using the robot,
or with the robot disconnected from the programming environment. However
when there are no safety concerns, for example while programming toy robots,
it might be possible to control the robot online through an interpreted language
where line-by-line execution is possible while creating the code.

Manual programming systems can be divided into two groups: (i) text-
based systems, and (ii) graphical programming environments.

Text-Based Systems

Text-based programming systems makes use of conventional programming. It
is also the most common mean to program industrial robots together with lead-
through programming. Text-based systems can be grouped depending on the
type of language used, i.e., controller-specific languages, generic-procedural
languages, and behavior based languages.

Controller-specific languages are the most common methods for program-
ing industrial robots. Ever since the invention of industrial robots and robot
controllers there has been a machine language, and often a programming
language to go with it that can be used to create robot programs. These
languages often consists of simple commands for controlling the robot,
input/output (I/O), and program flow. ABB’s RAPID programming language
[14] is an example of controller specific languages (Fig. 2.3). Similarly, all
other major industrial robot manufacturer have their own languages dedicated
to their own robots and/or systems, e.g., KUKA [15], Motoman [16], and
Comau Robotics [17].

In fact, there are as many languages as there are manufacturers. The major
disadvantage of controller specific languages is the lack of collaboration, e.g.
international standards, in order to develop common languages that can used by
several manufacturers. If a company owns robots from several manufacturers,
either in-house programmers need to be trained for each type of robot or the
company will need to outsource robot programming.

2.2 Robot Programming Systems 15

Figure 2.3: A screenshot of the ABB Robot Studio [1]

Generic procedural languages provide an alternative to controller specific
languages. Generic programming languages for robots extends standard
high-level procedural languages such as C/C++ or Java in a way to provide
functionality for the target robot platform. Such an approach is beneficial
in research environments, where generic languages are extended to meet the
needs of the research project. The extended generic language can be used for
system programming or application level programming.

The abstraction provided by the generic language, which consists of a set of
functions and/or classes, can facilitate the programming process. Abstraction
provides an easy mean to control the robot, while hiding low-level issues, such
as handling I/O’s or raw sensor data, e.g. moving the robot to a particular
position.

Behavior-based languages provide an alternative to the procedural lan-
guages. When using these languages one can define how a robot should
react to some stimulus or event rather than following a procedural description.
The idea behind behavior-based programming is to supply a set of behaviors
that independently work to accomplish their goals, while allowing the robot
to accomplish high-level tasks. Behavior-based programming employs a

16 Chapter 2. Background

hierarchical system of behaviors specifically written to perform an action
based on a set of triggers (cruise, bumper escape, avoid, home, etc..). As
the complexity of the overall system increases, new behaviors can be added
without changing existing ones. As an example to behaviur based programing
is Functional Reactive Programming (FRP) which reacts to both analog and
discrete signals. Yampa [18] and Frob [19] are two recent extensions of the
FRP architecture. The advantage of FRP is that it is much more code efficient
in comparison with procedural languages. In Yampa, for example, it is possible
to write a wall-following algorithm with just 8 lines of code.

Graphical Programming Environments

Graphical programming environments provide an alternative to their text-
based counterparts. Even though graphical and automatic programming
environments have common features, the former are still regarded as manual
programming environments. This is because, the user still needs to manually
design the program flow and actions. Graphical programming environments
utilize graphs, flow charts or diagrams to provide means for programming a
robot. In short, small interdependent modules are connected to each other to
create procedural flow or behaviors.

Lego’s Mindstorm NXT [20] products provide an intuitive and easy to
use flowchart based programming environment (Fig. 2.4). Its design is very
simple, since its primary target is children. In the programming environment
iconic building blocks representing low-level functions are stacked together
to produce a sequence of actions. It is also possible to create macros within
the programming environment. The generated sequence of commands can
either be executed as the main process of the robot, or mapped as a behavior
when a certain sensor is triggered. A similar approach developed by Bischoff
et al. [21] has been used to program industrial robots. In their system the
user joins iconic low-level functions to reconfigure the robot to perform the
required tasks. Usability tests show that both experts and novice users found
the graphical system easier for handling robots.

2.2.2 Automatic Programming Systems
Automatic programming systems can be divided into there categories: (i)
learning systems, (ii) programming by demonstration and (iii) instructive
systems.

In learning systems, the robot learns by inductive inference from user

2.2 Robot Programming Systems 17

Figure 2.4: Lego Midstorm programming environment

provided examples and self exploration [13]. First the robot watches and
observes the user through a range of sensors and then tries to imitate the
user. Billard and Schaal created a hierarchy of neural networks developed for
learning the motion of human arm in 3D space [22]. Weng and Zhang proposed
a robot that can learn simple tasks and chain them together to form larger and
complex behaviors [23].

Programming by Demonstration (PbD) is a common method for pro-
gramming robots for trajectory oriented tasks such as arc welding or gluing
[24]. Lead-through programing, which can be categorized as PbD, started
about 30 years ago with the development of industrial robots and has grown
importantly in the last decade with the advances in computer science and
sensor technology [13]. Traditional PbD systems use a teach-pendant to jog
the robot to the desired position. This position is recorded and a sequence of
these positions is used to generate a robot program that will move the robot
through a certain path. This method has been the industry standard for many

16 Chapter 2. Background

hierarchical system of behaviors specifically written to perform an action
based on a set of triggers (cruise, bumper escape, avoid, home, etc..). As
the complexity of the overall system increases, new behaviors can be added
without changing existing ones. As an example to behaviur based programing
is Functional Reactive Programming (FRP) which reacts to both analog and
discrete signals. Yampa [18] and Frob [19] are two recent extensions of the
FRP architecture. The advantage of FRP is that it is much more code efficient
in comparison with procedural languages. In Yampa, for example, it is possible
to write a wall-following algorithm with just 8 lines of code.

Graphical Programming Environments

Graphical programming environments provide an alternative to their text-
based counterparts. Even though graphical and automatic programming
environments have common features, the former are still regarded as manual
programming environments. This is because, the user still needs to manually
design the program flow and actions. Graphical programming environments
utilize graphs, flow charts or diagrams to provide means for programming a
robot. In short, small interdependent modules are connected to each other to
create procedural flow or behaviors.

Lego’s Mindstorm NXT [20] products provide an intuitive and easy to
use flowchart based programming environment (Fig. 2.4). Its design is very
simple, since its primary target is children. In the programming environment
iconic building blocks representing low-level functions are stacked together
to produce a sequence of actions. It is also possible to create macros within
the programming environment. The generated sequence of commands can
either be executed as the main process of the robot, or mapped as a behavior
when a certain sensor is triggered. A similar approach developed by Bischoff
et al. [21] has been used to program industrial robots. In their system the
user joins iconic low-level functions to reconfigure the robot to perform the
required tasks. Usability tests show that both experts and novice users found
the graphical system easier for handling robots.

2.2.2 Automatic Programming Systems
Automatic programming systems can be divided into there categories: (i)
learning systems, (ii) programming by demonstration and (iii) instructive
systems.

In learning systems, the robot learns by inductive inference from user

2.2 Robot Programming Systems 17

Figure 2.4: Lego Midstorm programming environment

provided examples and self exploration [13]. First the robot watches and
observes the user through a range of sensors and then tries to imitate the
user. Billard and Schaal created a hierarchy of neural networks developed for
learning the motion of human arm in 3D space [22]. Weng and Zhang proposed
a robot that can learn simple tasks and chain them together to form larger and
complex behaviors [23].

Programming by Demonstration (PbD) is a common method for pro-
gramming robots for trajectory oriented tasks such as arc welding or gluing
[24]. Lead-through programing, which can be categorized as PbD, started
about 30 years ago with the development of industrial robots and has grown
importantly in the last decade with the advances in computer science and
sensor technology [13]. Traditional PbD systems use a teach-pendant to jog
the robot to the desired position. This position is recorded and a sequence of
these positions is used to generate a robot program that will move the robot
through a certain path. This method has been the industry standard for many

18 Chapter 2. Background

years. In research this traditional ways of guiding/teleoperating the robot was
progressively replaced by more user-friendly and intuitive means [25], such
as vision [26, 27], data gloves [28], laser range finder [27] or kinesthetic
teaching (ie. by physical guiding the robot’s arm through motion) [29, 30, 31].
Kinesthetics provide a rapid way of teaching new paths to robots, especially
when used in assembly. Myers et al. [32] used programming by demonstration
to teach the robot subtasks which are then grouped into sequential tasks by the
programmer.

Over the years, research and applications has moved from simply copying
or imitating the demonstrations to generalizing across a set of demonstrations.
Münch et al. [33] suggested the use of machine learning (ML) techniques
to recognize elementary operators, thus defining a discrete set of basic motor
skills. In their work, they have also issued how to (i) generalize a task, (ii)
reproduce a skill in a completely novel situation, (iii) refine the reproduction
attempt, and (iv) better define the role of the teacher during learning. There are
two different approaches for skill representation. A low-level representation
of the skill can be seen as nonlinear mapping between sensory and motor
inputs. Trajectory encoding is an example of low-level skills. By contrast,
high-level representation of a skill decomposes the skill into a sequence of
elementary actions and perception units also referred as symbolic encoding
[25]. A significant portion of the work done in the PbD field uses symbolic
representation of both the learning and the encoding of skills and tasks [33, 34].

In the case of instructive systems, series of instructions are given to the
robot. This type of programming is best suited for executing series of tasks
that the robot is already trained for. Using speech to instruct a robot provides
a natural and intuitive way. Lauria et al. [35] use a speech based natural
language input to navigate a mobile robot to different locations via specified
routes. Brick and Scheutz [36] provide an incremental framework where the
robot can act upon sufficient information to distinguish the intended referent
from perceivable alternatives, even when this information occurs before the
end of the syntactic constituent. Hand gestures are also used as input by
Voyles and Khosia [37] who integrated a gesture based set of commands into
a programming by demonstration framework. Strobel et al. [6] use static
gestures to direct the attention of the robot to a specific part of the scene.
Combining the two modalities can even provide improved robustness [38].

2.3 Multimodal Interaction 19

2.3 Multimodal Interaction

In-person communication between humans is a multimodal and incremental
process [36]. Multimodality allows us to use different, and independent,
information channels while communicating with each other. In addition,
the incremental nature of this process means that humans start processing
of inputs from different channels as soon as the signals are initiated. Thus
semantic meanings of the inputs are integrated in real time. Multimodality
and incremental processing benefit the interaction between humans in several
ways:

Firstly some modalities can transfer certain types of information more
precisely while others are more error-prone to special data types. In a
multimodal communication, humans use the modality which is more reliable
for the information to be transferred. As an example when someone asks about
directions to a location, a good way of informing them is using a map, the
visual channel, rather than explaining it with words. This is due to the fact that
in this context the audio channel is more error-prone to spatial data.

Secondly in a multimodal interaction, different modalities are complemen-
tary to each other. This helps to reduce the ambiguity in perceived information
and removal of vague data [39]. For example, instructions for assembling
newly bought furniture would be more ambiguous and vague without any
pictures and only with plain text.

Lastly, the incremental nature of communication in humans helps to start
processing of perceived inputs from different modalities as they are being
received and build up the semantic meaning of them [40]. The incremental
process also applies at context resolving and planning levels. It means that
humans build up their responses or reactions as they perceive the inputs
[40, 36]. In the HCI/HRI domain, incremental processing helps to improve
response times of computer systems. This is specially beneficial for audio
inputs, since the computer can use the speech time for performing most of its
calculations, thus resulting a much more improved response time [41, 42]. A
fast response time is an important feature for designing a multimodal system.
Otherwise they may lead to repetition of commands from the user, causing
more ambiguity in the recognition process, and user annoyance [43].

Apart from helping in addressing ambiguities in error-prone inputs, multi-
modal interfaces have other benefits including, interface robustness, reliability,
error recovery, alternate communication methods on different situations and in-
creased communication bandwidth [44, 45]. Due to these qualities multimodal
interfaces are highly desired in HCI/HRI applications

18 Chapter 2. Background

years. In research this traditional ways of guiding/teleoperating the robot was
progressively replaced by more user-friendly and intuitive means [25], such
as vision [26, 27], data gloves [28], laser range finder [27] or kinesthetic
teaching (ie. by physical guiding the robot’s arm through motion) [29, 30, 31].
Kinesthetics provide a rapid way of teaching new paths to robots, especially
when used in assembly. Myers et al. [32] used programming by demonstration
to teach the robot subtasks which are then grouped into sequential tasks by the
programmer.

Over the years, research and applications has moved from simply copying
or imitating the demonstrations to generalizing across a set of demonstrations.
Münch et al. [33] suggested the use of machine learning (ML) techniques
to recognize elementary operators, thus defining a discrete set of basic motor
skills. In their work, they have also issued how to (i) generalize a task, (ii)
reproduce a skill in a completely novel situation, (iii) refine the reproduction
attempt, and (iv) better define the role of the teacher during learning. There are
two different approaches for skill representation. A low-level representation
of the skill can be seen as nonlinear mapping between sensory and motor
inputs. Trajectory encoding is an example of low-level skills. By contrast,
high-level representation of a skill decomposes the skill into a sequence of
elementary actions and perception units also referred as symbolic encoding
[25]. A significant portion of the work done in the PbD field uses symbolic
representation of both the learning and the encoding of skills and tasks [33, 34].

In the case of instructive systems, series of instructions are given to the
robot. This type of programming is best suited for executing series of tasks
that the robot is already trained for. Using speech to instruct a robot provides
a natural and intuitive way. Lauria et al. [35] use a speech based natural
language input to navigate a mobile robot to different locations via specified
routes. Brick and Scheutz [36] provide an incremental framework where the
robot can act upon sufficient information to distinguish the intended referent
from perceivable alternatives, even when this information occurs before the
end of the syntactic constituent. Hand gestures are also used as input by
Voyles and Khosia [37] who integrated a gesture based set of commands into
a programming by demonstration framework. Strobel et al. [6] use static
gestures to direct the attention of the robot to a specific part of the scene.
Combining the two modalities can even provide improved robustness [38].

2.3 Multimodal Interaction 19

2.3 Multimodal Interaction

In-person communication between humans is a multimodal and incremental
process [36]. Multimodality allows us to use different, and independent,
information channels while communicating with each other. In addition,
the incremental nature of this process means that humans start processing
of inputs from different channels as soon as the signals are initiated. Thus
semantic meanings of the inputs are integrated in real time. Multimodality
and incremental processing benefit the interaction between humans in several
ways:

Firstly some modalities can transfer certain types of information more
precisely while others are more error-prone to special data types. In a
multimodal communication, humans use the modality which is more reliable
for the information to be transferred. As an example when someone asks about
directions to a location, a good way of informing them is using a map, the
visual channel, rather than explaining it with words. This is due to the fact that
in this context the audio channel is more error-prone to spatial data.

Secondly in a multimodal interaction, different modalities are complemen-
tary to each other. This helps to reduce the ambiguity in perceived information
and removal of vague data [39]. For example, instructions for assembling
newly bought furniture would be more ambiguous and vague without any
pictures and only with plain text.

Lastly, the incremental nature of communication in humans helps to start
processing of perceived inputs from different modalities as they are being
received and build up the semantic meaning of them [40]. The incremental
process also applies at context resolving and planning levels. It means that
humans build up their responses or reactions as they perceive the inputs
[40, 36]. In the HCI/HRI domain, incremental processing helps to improve
response times of computer systems. This is specially beneficial for audio
inputs, since the computer can use the speech time for performing most of its
calculations, thus resulting a much more improved response time [41, 42]. A
fast response time is an important feature for designing a multimodal system.
Otherwise they may lead to repetition of commands from the user, causing
more ambiguity in the recognition process, and user annoyance [43].

Apart from helping in addressing ambiguities in error-prone inputs, multi-
modal interfaces have other benefits including, interface robustness, reliability,
error recovery, alternate communication methods on different situations and in-
creased communication bandwidth [44, 45]. Due to these qualities multimodal
interfaces are highly desired in HCI/HRI applications

20 Chapter 2. Background

2.4 Symbolic Planning
Planning in artificial intelligence is a process of composing a sequence of
actions to achieve a certain set of goals. In general planning problems can be
defined in a formal manner using three entities, i.e. states, actions and goals.

States. Planners use logical conditions to define facts about the world
and use conjunctions of these facts to represent states. Propositional literals
(e.g., nothing, empty) or first order literals (e.g., at(robot1, machine1), pro-
cessed(obj1, machine1)) can be used to represent true statements in a robot
cell. Conditions that are not mentioned in the state are assumed to be false.

Goals. A goal is the specification of the desired state in the planning
problem. A state s satisfies a goal g if s contains all the atoms in g.

Actions. An action consists of preconditions, which must be true before
the action can be executed, and effects, which describes how the state changes
when the action is executed. A sample action schema to define the movements
of a robot from one machine to the next one can be defined as:

jog(?robot, ?from, ?to)
pre: at(?robot, ?from)
add: at(?robot, ?to)
del: at(?robot, ?from)

jog(?robot, ?from, ?to) serves to identify the action. The action requires the
?robot to be at location ?from as a precondition. When the action is executed,
the atom at(?robot, ?to) will be added to the state, and the atom at(?robot,
?from) will be removed from state. From this action schema different actions
are created by assigning applicable values to variables ?robot, ?from, and ?to.

2.4.1 Planning with State-space Search
Forward Chaining Planning with forward state-space search, sometimes
called progression planning, starts from the initial state and applicable actions
are applied to the state at every iteration to get the successor state. Any
series of actions that achieve reaches the goal state is a solution. Forward
search considers all possible actions therefore without efficient heuristics, the
algorithm slows down quickly due to high branching factor.

Backward Chaining Planning with backward chaining starts from the goal
state and progresses backwards by only adding actions that achieve the desired
goal. An action is relevant to a conjunctive goal if it achieves one of the

2.4 Symbolic Planning 21

conjuncts of the goal. Limiting the search algorithm to use only relevant
actions which leads to a lower branching factor than forward search.

2.4.2 Partially Ordered Planners
Totally ordered planners, which search through the state space forwards or
backwards, explore only linear sequences of actions by connecting initial state
and goal state. Instead of working on subgoals separately, these planners tries
to sequence actions from all subgoals. Even a simple planning problem may
have many solutions solely because of different ordering of actions. On the
other hand partial order planners work on different subgoals independently
and then combines the subplans when necessary. This feature is called least
commitment strategy. It lessens the search space since the search is carried out
in plan space rather than state space. Another important feature of partial order
planners is that two or more actions can be added into a plan without specifying
which one comes first as the algorithm offers the possibility to execute these
actions simultaneously.

A partial order plan can be represented by a set of actions A, a set
of constraints O and a set of causal links L, together forming a tuple
< A,O,L >. Each action a in A is an instantiation of an action A scheme
which is defined in the planning domain. A plan may contain multiple
instances of an action [46]. Every action is represented using the STRIPS
[47] representation, where each actions has a list of preconditions and set of
achieved conditions and removed conditions.

A partial ordering is a transitive and asymmetric less-than relation between
the actions. A partial constraint ai < aj forces the action ai to occur before
action aj [48]. The planner starts with a set of initial conditions I, and a set
of goals G. For uniformity I and G can be treated as actions aI and aG , where
the effects of aI represents the initial conditions, of the planning problem and
the preconditions of aG represent the goals of the problem [46]. When the
preconditions of action aG hold true, the problem is solved [48]. Any total
ordering of actions that is consistent with the partial ordering will be able to
solve the planning problem from initial state to the goal state.

A causal link, ai
q−→ aj , represents a commitment by the planner that

precondition q of action aj is to be fulfilled by an effect of action ai. An open
condition,

q−→ ai, is a precondition q of action ai that has not yet been linked
to an effect of another action [46]. If there exists an action at whose effects
unifies with the negation q, then that action forms a threat against the causal
link ai

q−→ aj . In such cases the causal link ai
q−→ aj must be protected

20 Chapter 2. Background

2.4 Symbolic Planning
Planning in artificial intelligence is a process of composing a sequence of
actions to achieve a certain set of goals. In general planning problems can be
defined in a formal manner using three entities, i.e. states, actions and goals.

States. Planners use logical conditions to define facts about the world
and use conjunctions of these facts to represent states. Propositional literals
(e.g., nothing, empty) or first order literals (e.g., at(robot1, machine1), pro-
cessed(obj1, machine1)) can be used to represent true statements in a robot
cell. Conditions that are not mentioned in the state are assumed to be false.

Goals. A goal is the specification of the desired state in the planning
problem. A state s satisfies a goal g if s contains all the atoms in g.

Actions. An action consists of preconditions, which must be true before
the action can be executed, and effects, which describes how the state changes
when the action is executed. A sample action schema to define the movements
of a robot from one machine to the next one can be defined as:

jog(?robot, ?from, ?to)
pre: at(?robot, ?from)
add: at(?robot, ?to)
del: at(?robot, ?from)

jog(?robot, ?from, ?to) serves to identify the action. The action requires the
?robot to be at location ?from as a precondition. When the action is executed,
the atom at(?robot, ?to) will be added to the state, and the atom at(?robot,
?from) will be removed from state. From this action schema different actions
are created by assigning applicable values to variables ?robot, ?from, and ?to.

2.4.1 Planning with State-space Search
Forward Chaining Planning with forward state-space search, sometimes
called progression planning, starts from the initial state and applicable actions
are applied to the state at every iteration to get the successor state. Any
series of actions that achieve reaches the goal state is a solution. Forward
search considers all possible actions therefore without efficient heuristics, the
algorithm slows down quickly due to high branching factor.

Backward Chaining Planning with backward chaining starts from the goal
state and progresses backwards by only adding actions that achieve the desired
goal. An action is relevant to a conjunctive goal if it achieves one of the

2.4 Symbolic Planning 21

conjuncts of the goal. Limiting the search algorithm to use only relevant
actions which leads to a lower branching factor than forward search.

2.4.2 Partially Ordered Planners
Totally ordered planners, which search through the state space forwards or
backwards, explore only linear sequences of actions by connecting initial state
and goal state. Instead of working on subgoals separately, these planners tries
to sequence actions from all subgoals. Even a simple planning problem may
have many solutions solely because of different ordering of actions. On the
other hand partial order planners work on different subgoals independently
and then combines the subplans when necessary. This feature is called least
commitment strategy. It lessens the search space since the search is carried out
in plan space rather than state space. Another important feature of partial order
planners is that two or more actions can be added into a plan without specifying
which one comes first as the algorithm offers the possibility to execute these
actions simultaneously.

A partial order plan can be represented by a set of actions A, a set
of constraints O and a set of causal links L, together forming a tuple
< A,O,L >. Each action a in A is an instantiation of an action A scheme
which is defined in the planning domain. A plan may contain multiple
instances of an action [46]. Every action is represented using the STRIPS
[47] representation, where each actions has a list of preconditions and set of
achieved conditions and removed conditions.

A partial ordering is a transitive and asymmetric less-than relation between
the actions. A partial constraint ai < aj forces the action ai to occur before
action aj [48]. The planner starts with a set of initial conditions I, and a set
of goals G. For uniformity I and G can be treated as actions aI and aG , where
the effects of aI represents the initial conditions, of the planning problem and
the preconditions of aG represent the goals of the problem [46]. When the
preconditions of action aG hold true, the problem is solved [48]. Any total
ordering of actions that is consistent with the partial ordering will be able to
solve the planning problem from initial state to the goal state.

A causal link, ai
q−→ aj , represents a commitment by the planner that

precondition q of action aj is to be fulfilled by an effect of action ai. An open
condition,

q−→ ai, is a precondition q of action ai that has not yet been linked
to an effect of another action [46]. If there exists an action at whose effects
unifies with the negation q, then that action forms a threat against the causal
link ai

q−→ aj . In such cases the causal link ai
q−→ aj must be protected

22 Chapter 2. Background

against action ak and new constraints must be added to satisfy either that action
ak comes before ai (promotion), or ak must come after aj (demotion).

A partial-order planner starts with the actions aI and aG and the partial
ordering constraint aI < aG . Every action that is added to the plan must
come after aI and before aG . The planner maintains an agenda that is a set of
< q, a > pairs, where a is an action in the plan and q is one of the preconditions
of a that must be achieved. Initially the agenda contains pairs < g, aG >, where
g is one of the atoms that must be true in the goal state [48].

At each iteration, in the planning process, a pair < q, aj > is selected from
the agenda. Then an action, ai, is chosen to achieve q. That action is either
already in the plan, e.g. the start action, or it is a new action that must be
added to the plan. If action ai already exists then a constraint is added such
that ai < aj . If the action ai is newly added than the following two constraints
aI < ai and ai < aG are also added. A new causal link is also added to L
which states ai achieves q for action aj . This causal link is protected by adding
extra constraints if it is threatened by other actions. If ai is a newly added
action, its preconditions are added to the agenda, and the process continues
until the agenda is empty [48].

2.5 Summary of Verification for Growth Process

As a direct consequence of the research results, the plausibility of the proposed
solutions in the market place is investigated through VINNOVAs VFT process
(results described below are from the VFT-0 step) [49]. The primary goal was
to find out if there is a concrete interest in the technology that is developed,
in addition to finding out how such a system is perceived by various types of
players. In this context the players are robot manufacturers, integrators that
sell complete robot cell, sometimes including after market services, to the end
customer, and finally the end customer itself.

Within all these three categories there are different companies. Thus, all
robot manufacturers have the same service portfolio meaning that other players
are needed in order to fulfill even the basic requirements of end customers.
ABB Robotics seems to an exception in this context, i.e. the company prefers
to provide robots to integrators in other words they do not provide complete
robot cell to all their customers. Thus, the integrators are needed in the chain.
It is then the role of the integrators to provide a complete robot cell to the
customer. This is at least the case for minor customers, such as most SMEs.
This means that an average SME is highly dependent on the integrators if they

2.5 Summary of Verification for Growth Process 23

have chosen to populate their workshops with robots made by ABB.
Some integrators have a large after market portfolio whereas others prefer

to sell a complete system and let other integrators to take over after that the
cell is delivered. The end customers, whether a large company or an SME,
are heterogeneous as a group. However, in most cases it is unlikely that there
are in-house expert robot programmers that can provide the necessary service.
This is thus true for all companies, although it creates a rather delicate situation
for an average SME.

The result of the interviews made by A-Focus AB [50] indicate that
not only the SMEs and the robot manufacturers, but also the integrators
welcome a tool that help SMEs in their everyday activities with respect to
robot programming. Previously it was assumed that the integrators would feel
threatened by such a system, since it would make SMEs address a number of
problems that solely integrators can solve. The rationale behind the integrators
argument is that many times there is no economical gain in selling maintenance
services. In addition, the integrators have dense tight schedule, thus they
actually lack the time needed to help with minor issues.

To conclude, it is obvious that this independent study made by A-focus
verify our main assumption on the type of solution that is needed by the SMEs
in order to facilitate their industrial robot investments. The interviews clearly
pointed our SMEs and short series of production. Note that this case is the
stating point of this project from the perspective of an innovation potential.

22 Chapter 2. Background

against action ak and new constraints must be added to satisfy either that action
ak comes before ai (promotion), or ak must come after aj (demotion).

A partial-order planner starts with the actions aI and aG and the partial
ordering constraint aI < aG . Every action that is added to the plan must
come after aI and before aG . The planner maintains an agenda that is a set of
< q, a > pairs, where a is an action in the plan and q is one of the preconditions
of a that must be achieved. Initially the agenda contains pairs < g, aG >, where
g is one of the atoms that must be true in the goal state [48].

At each iteration, in the planning process, a pair < q, aj > is selected from
the agenda. Then an action, ai, is chosen to achieve q. That action is either
already in the plan, e.g. the start action, or it is a new action that must be
added to the plan. If action ai already exists then a constraint is added such
that ai < aj . If the action ai is newly added than the following two constraints
aI < ai and ai < aG are also added. A new causal link is also added to L
which states ai achieves q for action aj . This causal link is protected by adding
extra constraints if it is threatened by other actions. If ai is a newly added
action, its preconditions are added to the agenda, and the process continues
until the agenda is empty [48].

2.5 Summary of Verification for Growth Process

As a direct consequence of the research results, the plausibility of the proposed
solutions in the market place is investigated through VINNOVAs VFT process
(results described below are from the VFT-0 step) [49]. The primary goal was
to find out if there is a concrete interest in the technology that is developed,
in addition to finding out how such a system is perceived by various types of
players. In this context the players are robot manufacturers, integrators that
sell complete robot cell, sometimes including after market services, to the end
customer, and finally the end customer itself.

Within all these three categories there are different companies. Thus, all
robot manufacturers have the same service portfolio meaning that other players
are needed in order to fulfill even the basic requirements of end customers.
ABB Robotics seems to an exception in this context, i.e. the company prefers
to provide robots to integrators in other words they do not provide complete
robot cell to all their customers. Thus, the integrators are needed in the chain.
It is then the role of the integrators to provide a complete robot cell to the
customer. This is at least the case for minor customers, such as most SMEs.
This means that an average SME is highly dependent on the integrators if they

2.5 Summary of Verification for Growth Process 23

have chosen to populate their workshops with robots made by ABB.
Some integrators have a large after market portfolio whereas others prefer

to sell a complete system and let other integrators to take over after that the
cell is delivered. The end customers, whether a large company or an SME,
are heterogeneous as a group. However, in most cases it is unlikely that there
are in-house expert robot programmers that can provide the necessary service.
This is thus true for all companies, although it creates a rather delicate situation
for an average SME.

The result of the interviews made by A-Focus AB [50] indicate that
not only the SMEs and the robot manufacturers, but also the integrators
welcome a tool that help SMEs in their everyday activities with respect to
robot programming. Previously it was assumed that the integrators would feel
threatened by such a system, since it would make SMEs address a number of
problems that solely integrators can solve. The rationale behind the integrators
argument is that many times there is no economical gain in selling maintenance
services. In addition, the integrators have dense tight schedule, thus they
actually lack the time needed to help with minor issues.

To conclude, it is obvious that this independent study made by A-focus
verify our main assumption on the type of solution that is needed by the SMEs
in order to facilitate their industrial robot investments. The interviews clearly
pointed our SMEs and short series of production. Note that this case is the
stating point of this project from the perspective of an innovation potential.

Chapter 3

Research Goals and
Methodology

In this chapter the scope of the thesis is presented by formulating the main
research goal and employed research methodology. The main research goal
is furthermore divided into sub research goals that are required to achieve the
main research goal.

3.1 Research Goal
As previously described in Section 1 introducing industrial robots to SME’s is
a challenging task due to low volume production, crowded and less organized
shop floors and lack of skilled technicians that can program robots. The main
effort put into this thesis covers the issues regarding lack of skilled technicians
in SME’s.

For an industrial robot to be used in the manufacturing process, it has to be
programmed. This is typically done by either an in house robot programmer, or
through an integrator company. An in house robot programmer is an expensive
resource for an SME, and in most cases buying the programming need as
service from an integrator is not rewarding given the short life cycles of the
produced products.

The hypothesis is that in order to address these issues, industrial robots
should easily be (re)programmable by engineers that work in the production
line at a manufacturing plant. The intention of this thesis is to give an

25

Chapter 3

Research Goals and
Methodology

In this chapter the scope of the thesis is presented by formulating the main
research goal and employed research methodology. The main research goal
is furthermore divided into sub research goals that are required to achieve the
main research goal.

3.1 Research Goal
As previously described in Section 1 introducing industrial robots to SME’s is
a challenging task due to low volume production, crowded and less organized
shop floors and lack of skilled technicians that can program robots. The main
effort put into this thesis covers the issues regarding lack of skilled technicians
in SME’s.

For an industrial robot to be used in the manufacturing process, it has to be
programmed. This is typically done by either an in house robot programmer, or
through an integrator company. An in house robot programmer is an expensive
resource for an SME, and in most cases buying the programming need as
service from an integrator is not rewarding given the short life cycles of the
produced products.

The hypothesis is that in order to address these issues, industrial robots
should easily be (re)programmable by engineers that work in the production
line at a manufacturing plant. The intention of this thesis is to give an

25

26 Chapter 3. Research Goals and Methodology

industrial robot the ability to communicate with its human colleagues in the
way that humans communicate with each other, thus making the programming
of industrial robots more intuitive and simple. Consequently, a human-like
interaction interface for robots will lead to a richer communication between
humans and robots.

Based on the arguments above the objective of the thesis, thus the research
goal, can be formulated as follows:

Provide tools and methods to make task-level robot programming
easier and more available to a wider range of users.

The research goal presented above points out a complex problem which
raises several questions and admits many possible answers. In order to refine
this general problem, we define three smaller subgoals that are addressed in the
thesis.

3.2 Research Subgoals
This section presents our motivation for the three research subgoals, followed
by the iteration of the research subgoal.

3.2.1 Research subgoal 1.
In simplest terms, programming a robot can be seen as a user instructing a
robot, to perform some actions related to the robot itself, the machines in
the cell or materials to be processed. The commands given by the user need
to be parsed and semantically analyzed. Inherent characteristics of natural
language, the instructions that are given by the user are either incomplete or
can be missing entire chain of actions. The missing information in the users
instructions should be filled in by a planner. Later, the actions of the robot
should be scheduled to optimize the cell. Finally, this schedule needs to be
converted into robot code while paying attention to errors in the code, such as
singularities or out of reach commands. Accordingly, the first research subgoal
can be formulated as follows.

Identify the basic elementary features of human-robot interaction to
support seamless interaction between a human user and an industrial
robot.

(RSG1)

3.2 Research Subgoals 27

3.2.2 Research subgoal 2.

The interaction language between the robot and the user is important since
the information flows through this language. Since the overall goal of this
thesis is to make robot programming easier for people who lack background in
programming or robot programming, the choice of language should be readily
available, such as natural language.

Nature of information exchange is an important part of natural language
interaction between a robot and a human. In-person communications between
humans is a multimodal and incremental process [36]. Multimodality allows
us to use different information channels while communicating with each other.
Incremental nature of this process means (1) humans start processing inputs
from different channel as soon as the signals are received, (2) they build up
the semantic meaning of the inputs on the fly. These two features benefit the
interaction between humans in several ways:

First, multimodal inputs form a basis for a more robust communication
scheme as some modalities are more error-prone to some special types of
information [39]. They can transfer other data types more precisely. Second,
in a multimodal interaction, different modalities are complementary to each
other. This helps to reduce the ambiguity in perceived information and removal
of vague data [39]. Third, the incremental nature of communication in humans
helps to start processing of perceived inputs from different modalities as they
are being received and build up the semantic meaning of them. The incremental
process also applies at context resolving and planning levels. It means that
humans build up their response or reaction as they perceive the inputs [40, 36].

Apart from helping in addressing ambiguities in error-prone inputs, multi-
modal interfaces have other benefits including: interface robustness, reliability,
error recovery, alternate communication methods on different situations and
more communication bandwidth [44, 45]. These qualities make multimodal
interfaces a good choice for most HCI/HRI applications.

All these benefits of using multimodal natural language helps us to motivate
our next research subgoal.

Developing a multimodal and incremental interaction interface to
support seamless interaction between the robot and the user

(RSG2)

26 Chapter 3. Research Goals and Methodology

industrial robot the ability to communicate with its human colleagues in the
way that humans communicate with each other, thus making the programming
of industrial robots more intuitive and simple. Consequently, a human-like
interaction interface for robots will lead to a richer communication between
humans and robots.

Based on the arguments above the objective of the thesis, thus the research
goal, can be formulated as follows:

Provide tools and methods to make task-level robot programming
easier and more available to a wider range of users.

The research goal presented above points out a complex problem which
raises several questions and admits many possible answers. In order to refine
this general problem, we define three smaller subgoals that are addressed in the
thesis.

3.2 Research Subgoals
This section presents our motivation for the three research subgoals, followed
by the iteration of the research subgoal.

3.2.1 Research subgoal 1.
In simplest terms, programming a robot can be seen as a user instructing a
robot, to perform some actions related to the robot itself, the machines in
the cell or materials to be processed. The commands given by the user need
to be parsed and semantically analyzed. Inherent characteristics of natural
language, the instructions that are given by the user are either incomplete or
can be missing entire chain of actions. The missing information in the users
instructions should be filled in by a planner. Later, the actions of the robot
should be scheduled to optimize the cell. Finally, this schedule needs to be
converted into robot code while paying attention to errors in the code, such as
singularities or out of reach commands. Accordingly, the first research subgoal
can be formulated as follows.

Identify the basic elementary features of human-robot interaction to
support seamless interaction between a human user and an industrial
robot.

(RSG1)

3.2 Research Subgoals 27

3.2.2 Research subgoal 2.

The interaction language between the robot and the user is important since
the information flows through this language. Since the overall goal of this
thesis is to make robot programming easier for people who lack background in
programming or robot programming, the choice of language should be readily
available, such as natural language.

Nature of information exchange is an important part of natural language
interaction between a robot and a human. In-person communications between
humans is a multimodal and incremental process [36]. Multimodality allows
us to use different information channels while communicating with each other.
Incremental nature of this process means (1) humans start processing inputs
from different channel as soon as the signals are received, (2) they build up
the semantic meaning of the inputs on the fly. These two features benefit the
interaction between humans in several ways:

First, multimodal inputs form a basis for a more robust communication
scheme as some modalities are more error-prone to some special types of
information [39]. They can transfer other data types more precisely. Second,
in a multimodal interaction, different modalities are complementary to each
other. This helps to reduce the ambiguity in perceived information and removal
of vague data [39]. Third, the incremental nature of communication in humans
helps to start processing of perceived inputs from different modalities as they
are being received and build up the semantic meaning of them. The incremental
process also applies at context resolving and planning levels. It means that
humans build up their response or reaction as they perceive the inputs [40, 36].

Apart from helping in addressing ambiguities in error-prone inputs, multi-
modal interfaces have other benefits including: interface robustness, reliability,
error recovery, alternate communication methods on different situations and
more communication bandwidth [44, 45]. These qualities make multimodal
interfaces a good choice for most HCI/HRI applications.

All these benefits of using multimodal natural language helps us to motivate
our next research subgoal.

Developing a multimodal and incremental interaction interface to
support seamless interaction between the robot and the user

(RSG2)

28 Chapter 3. Research Goals and Methodology

3.2.3 Research subgoal 3.
From a different perspective, programming a robot using natural language
interaction is not only semantically decoding users instructions, but it is also a
planning problem. Inherent characteristics of natural language imply that user
instructions might be incomplete, e.g. in a machine tending application the
user may not explicitly specify the gripper or which machine to use if there
are parallel machines. The users’ instructions might as well be missing entire
chains of actions, e.g. a user might instruct the robot to load machine Mi with
raw material and then load the object into machine Mj . In this case several
instructions might be absent: starting Mi, jogging the robot to Mi, picking
the partially processed object from Mi and jogging to Mj . Thus, the missing
information in the user’s instructions should be filled by a planner.

From the performance point of view, the robot program generated by the
system should be optimal or near optimal. Machine tending, where the robot
is responsible for loading and unloading raw materials into machinery for
processing, is one of the typical usages of industrial robots. Sequencing,
scheduling and optimizing robot’s movements in machine tending cells is
normally considered as a flow shop problem. The complexity of the robot
cell scheduling problem increases if the cell has more complex structure, e.g.
cells with multiple robots, dual-gripper robots and/or parallel machines.

There are other logical constraints as well, which are related to the planning
problem: (i) a gripper cannot hold more than one object, (ii) the robot cannot
load a machine which is already in use, (iii) the robot cannot unload a machine
which is empty and (iv) the grippers of the same robot cannot be at different
machines at the same time.

This justifies our third and final research subgoal:

Generating a complete production process from user instructions based
on a single object.

(RSG3)

3.3 Research Methodology 29

3.3 Research Methodology
Research is a process that begins with defining a problem and ends with
proposing a solution to the problem. It is a systematic, methodical and ethical
process for solving practical and/or problems and generates new knowledge
within the domain [51]. During the research process, it is vital to adopt an
appropriate research methodology and research methods that are proper for the
given research domain.

The research presented in this thesis is motivated by a practical industrial
problem - providing tools and methods to make task level robot programming
easier and more available to a wider range of users - therefore it falls into the
category of applied research. More specifically the research proposes solutions
that fall in to human-robot interaction and symbolic AI planning.

The basic research methodology was to identify and formulate a general
research problem by studying the related work and try to propose better
solutions to the problem. Through this work new tools have been iteratively
developed, measured, analyzed and validated until no more improvements
seemed possible. Essentially the following steps were performed iteratively.

1. Perform literature review on the current research problem.

2. Propose a solution based on the state of the art.

3. Construct a prototype that implements the proposed solution.

4. Verify and validate the prototype through experiments.

In this thesis in order to understand the given research problem, first we
performed information gathering and state-of-the-art investigation covering
and familiarizing ourselves with previous work conducted on the research
problem. Based on the findings from the state-of-the-art investigation, research
subgoals were formulated as described in Section 3.2. In the following phases
of research, each research subgoal were addressed individually.

Paper A initially address the issues on instructing and receiving feedback
from the robot. Papers B and C enriches this communication by adding extra
information channels. Paper D is based on taking the input from procedures
described in papers A, B, C and tries to generate a complete plan to operate the
robot cell.

28 Chapter 3. Research Goals and Methodology

3.2.3 Research subgoal 3.
From a different perspective, programming a robot using natural language
interaction is not only semantically decoding users instructions, but it is also a
planning problem. Inherent characteristics of natural language imply that user
instructions might be incomplete, e.g. in a machine tending application the
user may not explicitly specify the gripper or which machine to use if there
are parallel machines. The users’ instructions might as well be missing entire
chains of actions, e.g. a user might instruct the robot to load machine Mi with
raw material and then load the object into machine Mj . In this case several
instructions might be absent: starting Mi, jogging the robot to Mi, picking
the partially processed object from Mi and jogging to Mj . Thus, the missing
information in the user’s instructions should be filled by a planner.

From the performance point of view, the robot program generated by the
system should be optimal or near optimal. Machine tending, where the robot
is responsible for loading and unloading raw materials into machinery for
processing, is one of the typical usages of industrial robots. Sequencing,
scheduling and optimizing robot’s movements in machine tending cells is
normally considered as a flow shop problem. The complexity of the robot
cell scheduling problem increases if the cell has more complex structure, e.g.
cells with multiple robots, dual-gripper robots and/or parallel machines.

There are other logical constraints as well, which are related to the planning
problem: (i) a gripper cannot hold more than one object, (ii) the robot cannot
load a machine which is already in use, (iii) the robot cannot unload a machine
which is empty and (iv) the grippers of the same robot cannot be at different
machines at the same time.

This justifies our third and final research subgoal:

Generating a complete production process from user instructions based
on a single object.

(RSG3)

3.3 Research Methodology 29

3.3 Research Methodology
Research is a process that begins with defining a problem and ends with
proposing a solution to the problem. It is a systematic, methodical and ethical
process for solving practical and/or problems and generates new knowledge
within the domain [51]. During the research process, it is vital to adopt an
appropriate research methodology and research methods that are proper for the
given research domain.

The research presented in this thesis is motivated by a practical industrial
problem - providing tools and methods to make task level robot programming
easier and more available to a wider range of users - therefore it falls into the
category of applied research. More specifically the research proposes solutions
that fall in to human-robot interaction and symbolic AI planning.

The basic research methodology was to identify and formulate a general
research problem by studying the related work and try to propose better
solutions to the problem. Through this work new tools have been iteratively
developed, measured, analyzed and validated until no more improvements
seemed possible. Essentially the following steps were performed iteratively.

1. Perform literature review on the current research problem.

2. Propose a solution based on the state of the art.

3. Construct a prototype that implements the proposed solution.

4. Verify and validate the prototype through experiments.

In this thesis in order to understand the given research problem, first we
performed information gathering and state-of-the-art investigation covering
and familiarizing ourselves with previous work conducted on the research
problem. Based on the findings from the state-of-the-art investigation, research
subgoals were formulated as described in Section 3.2. In the following phases
of research, each research subgoal were addressed individually.

Paper A initially address the issues on instructing and receiving feedback
from the robot. Papers B and C enriches this communication by adding extra
information channels. Paper D is based on taking the input from procedures
described in papers A, B, C and tries to generate a complete plan to operate the
robot cell.

Chapter 4

Related Work

This chapter relates the work presented in this thesis to work of others. The
chapter is divided into subsections in which comparisons are provided for each
area respectively.

4.1 Programming Industrial Robots

Activities within the scope of industrial robot programming can be divided
into two groups, i.e. low-level programming and high-level programming. The
former consists of path creation and programming the logic aspects, whereas
the latter focuses on a group of operations or tasks. As an example low-level
programming approach would define the joint angles of the robot while picking
up an object. On the other hand high-level programming approach would
provide instructions like ”pick object” [52].

In further division low-level programming systems can be grouped into two
groups as academic research work and commercially available products. In
their survey, Rossano et al. [52], provides an industrial perspective by present-
ing commercially available low-level solutions. They further divide low-level
programming into five sub categories, including icon-based programming [53],
programming via data flow diagrams [54], CAD-based programming [55, 56],
wizard-based programming [57] and lead through programming [58].

Relevant research projects also focus on high, low and combination of
both. In addition, combination of different methods are also used to perform
robot programming. Pires [59] uses a combination of voice and lead through

31

Chapter 4

Related Work

This chapter relates the work presented in this thesis to work of others. The
chapter is divided into subsections in which comparisons are provided for each
area respectively.

4.1 Programming Industrial Robots

Activities within the scope of industrial robot programming can be divided
into two groups, i.e. low-level programming and high-level programming. The
former consists of path creation and programming the logic aspects, whereas
the latter focuses on a group of operations or tasks. As an example low-level
programming approach would define the joint angles of the robot while picking
up an object. On the other hand high-level programming approach would
provide instructions like ”pick object” [52].

In further division low-level programming systems can be grouped into two
groups as academic research work and commercially available products. In
their survey, Rossano et al. [52], provides an industrial perspective by present-
ing commercially available low-level solutions. They further divide low-level
programming into five sub categories, including icon-based programming [53],
programming via data flow diagrams [54], CAD-based programming [55, 56],
wizard-based programming [57] and lead through programming [58].

Relevant research projects also focus on high, low and combination of
both. In addition, combination of different methods are also used to perform
robot programming. Pires [59] uses a combination of voice and lead through

31

32 Chapter 4. Related Work

programming where the robot arm is manipulated by the user from point A to
point B while the user speaks out the type of path the robot should follow.

On a higher level of abstraction, speech modality alone has been used
by Pires [60] to command an industrial robot through switching between
preprogrammed asks. In their work, an automatic speech recognition system
is used to convert structured spoken commands into text in order to control the
robot.

Marin et al. [61, 62] presents a user interface and a system architecture
of an Internet based telelaboratory that allow remote control and programming
of two online robots. An augmented reality and nonimmersive virtual reality
interfaces gives the remote operator information about the objects in the robot
cell. The system can receive high-level voice commands such as “pick up an
object” or “release object”.

4.2 Multimodal Approach

Designing and implementing a multimodal interface is a high cost process, thus
multimodal application frameworks are needed [44, 43]. Several researchers
have proposed multimodal frameworks to address this shortcoming [63, 64,
65, 66].

W3C has introduced a web-specific multimodal framework [67]. It is
a markup language for multimodal systems and does not define system
architecture. It is designed to be used as a guideline for implementing
multimodal systems. As a part of this framework, W3C has introduced EMMA
(Extensible Multi-Modal Annotation markup language) which has later been
used by other researches for implementing multimodal interfaces [68]. The
framework is limited in the sense that it can not handle new innovative ways of
interactions easily, mostly due to the fact that it does not support programming
languages and most of the programming is only available through Javascript
[69].

Multimodal grammars were proposed by Johnston et al. [70, 71] for
definition of mixed inputs from different modalities. In his work unification-
based approaches and later, finite-state transducers (FST) to parse and fuse
different modality inputs are used [71, 72]. A useful feature of multimodal
grammars is that they represent the input from different modalities in a
single file which also can represent semantic data simultaneously. This
allows rapid development of multimodal applications and also increases their
maintainability.

4.2 Multimodal Approach 33

A more dynamic approach compared to FST model is presented by
Stiefelhagen et al. [73]. The model uses a graph with terminal and non-
terminal nodes for grammar representation. This approach allows for real time
expansion of a graph during the recognition [73].

A framework which uses spatial ontologies and user context for multimodal
integration is described by Iriwati et al. [74]. Object ontologies are defined in
OpenCyc, and Microsoft’s Speech API (SAPI) is used for speech recognition.
The grammar is defined as a part of SAPI, thus object and other modalities’
anchors are defined as a part of the speech grammar. This means that non-
speech modalities need a specific speech anchor in order to be integrated
into the multimodal interaction. As an example, the phrase “put it here” has
two words, “it” and “here”, which act as objects anchors. The multimodal
integration engine then uses these two anchors and object ontologies to perform
the integration. This means that without the anchor words, other modalities will
be ignored.

Another multimodal system with an incremental pipeline is presented by
Brick and Scheutz [36]. This system which is called Robotic Incremental
Semantic Engine (RISE), can process syntactic and semantic information from
audio/visual inputs incrementally and generates the feedback in real time.
RISE’s architecture is based on incremental parsing of speech input with
different sub-systems that try to resolve the references in the speech through
visual data or the context of dialog. Therefore RISE is not a fully multimodal
system, since non-speech modalities are complementary to the speech, thus are
not part of the interaction.

An abstract model for implementing an incremental dialog manager is
proposed in [75]. Although the model is not designed for multimodal
interactions, but it can easily be modified for that purpose.

Similar to the works of Irawati et al. [74] and Brick et al. [36], the solution
proposed in this thesis also use object references during fusion. The difference
is that in order to dismiss the problem of using speech as the main modality,
we have defined a multimodal language which allows for definition of all
possibles mixtures of different modality inputs. Through this language (which
we call it COLD) any modality or any mixture of modalities can be used in the
interaction. Pure non-speech communications are easily achievable through
COLD. We also take a similar approach as [73] for grammar representation
and parsing. Our contribution is in expanding this model to a more general one
which can represent several modalities in the same graph.

32 Chapter 4. Related Work

programming where the robot arm is manipulated by the user from point A to
point B while the user speaks out the type of path the robot should follow.

On a higher level of abstraction, speech modality alone has been used
by Pires [60] to command an industrial robot through switching between
preprogrammed asks. In their work, an automatic speech recognition system
is used to convert structured spoken commands into text in order to control the
robot.

Marin et al. [61, 62] presents a user interface and a system architecture
of an Internet based telelaboratory that allow remote control and programming
of two online robots. An augmented reality and nonimmersive virtual reality
interfaces gives the remote operator information about the objects in the robot
cell. The system can receive high-level voice commands such as “pick up an
object” or “release object”.

4.2 Multimodal Approach

Designing and implementing a multimodal interface is a high cost process, thus
multimodal application frameworks are needed [44, 43]. Several researchers
have proposed multimodal frameworks to address this shortcoming [63, 64,
65, 66].

W3C has introduced a web-specific multimodal framework [67]. It is
a markup language for multimodal systems and does not define system
architecture. It is designed to be used as a guideline for implementing
multimodal systems. As a part of this framework, W3C has introduced EMMA
(Extensible Multi-Modal Annotation markup language) which has later been
used by other researches for implementing multimodal interfaces [68]. The
framework is limited in the sense that it can not handle new innovative ways of
interactions easily, mostly due to the fact that it does not support programming
languages and most of the programming is only available through Javascript
[69].

Multimodal grammars were proposed by Johnston et al. [70, 71] for
definition of mixed inputs from different modalities. In his work unification-
based approaches and later, finite-state transducers (FST) to parse and fuse
different modality inputs are used [71, 72]. A useful feature of multimodal
grammars is that they represent the input from different modalities in a
single file which also can represent semantic data simultaneously. This
allows rapid development of multimodal applications and also increases their
maintainability.

4.2 Multimodal Approach 33

A more dynamic approach compared to FST model is presented by
Stiefelhagen et al. [73]. The model uses a graph with terminal and non-
terminal nodes for grammar representation. This approach allows for real time
expansion of a graph during the recognition [73].

A framework which uses spatial ontologies and user context for multimodal
integration is described by Iriwati et al. [74]. Object ontologies are defined in
OpenCyc, and Microsoft’s Speech API (SAPI) is used for speech recognition.
The grammar is defined as a part of SAPI, thus object and other modalities’
anchors are defined as a part of the speech grammar. This means that non-
speech modalities need a specific speech anchor in order to be integrated
into the multimodal interaction. As an example, the phrase “put it here” has
two words, “it” and “here”, which act as objects anchors. The multimodal
integration engine then uses these two anchors and object ontologies to perform
the integration. This means that without the anchor words, other modalities will
be ignored.

Another multimodal system with an incremental pipeline is presented by
Brick and Scheutz [36]. This system which is called Robotic Incremental
Semantic Engine (RISE), can process syntactic and semantic information from
audio/visual inputs incrementally and generates the feedback in real time.
RISE’s architecture is based on incremental parsing of speech input with
different sub-systems that try to resolve the references in the speech through
visual data or the context of dialog. Therefore RISE is not a fully multimodal
system, since non-speech modalities are complementary to the speech, thus are
not part of the interaction.

An abstract model for implementing an incremental dialog manager is
proposed in [75]. Although the model is not designed for multimodal
interactions, but it can easily be modified for that purpose.

Similar to the works of Irawati et al. [74] and Brick et al. [36], the solution
proposed in this thesis also use object references during fusion. The difference
is that in order to dismiss the problem of using speech as the main modality,
we have defined a multimodal language which allows for definition of all
possibles mixtures of different modality inputs. Through this language (which
we call it COLD) any modality or any mixture of modalities can be used in the
interaction. Pure non-speech communications are easily achievable through
COLD. We also take a similar approach as [73] for grammar representation
and parsing. Our contribution is in expanding this model to a more general one
which can represent several modalities in the same graph.

34 Chapter 4. Related Work

4.3 Augmented Reality

Augmented reality (AR) is a term used for overlaying computer generated
graphics, text, two dimensional (2D) and three dimensional (3D) models over
real video stream. Virtual information is embedded into the real world, thereby
augmenting the real scene with additional information. Augmented reality is
proved to be useful in several industrial cases, especially for visualizations.
Olwal et al. [76] used 3D optical visualization techniques to visualize the
process of a CNC machine in order to support a machine operator. AR also
provides great opportunities for HRI, and has been widely used in telerobotics
since AR allows the operator to work as if he is present at the remote working
environment [77, 61, 78]. However AR can be beneficial for programming
industrial robots as well whether it is remote or local. Through wearable
computers and head mounted displays it is possible to visualize and generate
paths through a pointing device [79]. In their work Chong et al. [80] visually
tracked marker to define collision-free paths for the industrial robot to follow.
Once the path is generated a virtual robot simulates the behavior of the robot
on the screen.

4.4 Scheduling

Robotic flow shop problems, in which travel times between machines are not
negligible, have received fair amount of interest from industry. After all,
scheduling the robot’s movements between the machines will influence the
throughput of a robot cell. A detailed classification of types of robot cell
scheduling problems is given by Dawande et al. [81].

Configuration of a robot cell is also an influential factor when it comes to
deciding on a scheduling strategy for robot cells. A configuration consisting of
parallel machines or a dual/multiple gripper robot adds new challenges to the
scheduling problem [82].

In their work, Fan and Winley [83] use a heuristic search algorithm for
the flow shop scheduling problem based on best-first search. Even though the
work presented in the paper is not for a robot cell, the best-first search guided
by heuristic can be used to guide a search in a robot cell application.

Other solutions for the general problem include mathematical methods
such as mixed integer programming. In their work Koné et al. [84]
present an event based mixed integer linear programming method for resource-
constrained project scheduling problem.

4.5 Planning 35

4.5 Planning
As discussed earlier in the Introduction, the problem presented in this thesis is
also a symbolic AI planning problem. Classical symbolic planning algorithms
such as STRIPS [47] and Graphplan [85] exist in literature as totally ordered
planners.

LAMA planner [86] uses heuristic guided best-first search to find a
solution with minimum action cost. It pre-processes the problem and extracts
landmarks, which are propositions that must be true in every plan, to use as
subgoals. LAMA employs a forward state-space search by imposing a total-
order on the actions. This avoids the need for explicit search on conflicts in the
plan. In a totally ordered plan, a new action can start only after the previous
finishes. However, solving a flow shop problem requires planning many actions
that should be executed in parallel. Partial order planners [87, 46] can order
actions in parallel with each other, if the required resources for the actions
are mutually exclusive. Partial order planners often use backward chaining,
starting from a goal state adding actions to support the goal. Backward
chaining reduces the search space as it explores only the possibilities that
would lead to the goal, with the cost of constantly searching for conflicts
between actions in the plan.

In their work, Coles et al. [88] present partial order planning with forward
chaining with the advantage of reducing searches for conflicts.

In comparison to the work presented above, the solution that is proposed in
this paper deals with the robotic flow shop problem. The proposed algorithm
can handle dual gripper robots, parallel machines and machines with complex
configurations. Best-first search strategy is used similar to the works of Fan et
al. [83] and the LAMA planner [89]. In order to schedule actions which can
run in parallel with each other a modified version of the partial order planning
algorithm was used. Similar to the LAMA planner [89], landmarks were used
to narrow the search space. However, the landmarks are used in this work are
the partial commands uttered by the user.

34 Chapter 4. Related Work

4.3 Augmented Reality

Augmented reality (AR) is a term used for overlaying computer generated
graphics, text, two dimensional (2D) and three dimensional (3D) models over
real video stream. Virtual information is embedded into the real world, thereby
augmenting the real scene with additional information. Augmented reality is
proved to be useful in several industrial cases, especially for visualizations.
Olwal et al. [76] used 3D optical visualization techniques to visualize the
process of a CNC machine in order to support a machine operator. AR also
provides great opportunities for HRI, and has been widely used in telerobotics
since AR allows the operator to work as if he is present at the remote working
environment [77, 61, 78]. However AR can be beneficial for programming
industrial robots as well whether it is remote or local. Through wearable
computers and head mounted displays it is possible to visualize and generate
paths through a pointing device [79]. In their work Chong et al. [80] visually
tracked marker to define collision-free paths for the industrial robot to follow.
Once the path is generated a virtual robot simulates the behavior of the robot
on the screen.

4.4 Scheduling

Robotic flow shop problems, in which travel times between machines are not
negligible, have received fair amount of interest from industry. After all,
scheduling the robot’s movements between the machines will influence the
throughput of a robot cell. A detailed classification of types of robot cell
scheduling problems is given by Dawande et al. [81].

Configuration of a robot cell is also an influential factor when it comes to
deciding on a scheduling strategy for robot cells. A configuration consisting of
parallel machines or a dual/multiple gripper robot adds new challenges to the
scheduling problem [82].

In their work, Fan and Winley [83] use a heuristic search algorithm for
the flow shop scheduling problem based on best-first search. Even though the
work presented in the paper is not for a robot cell, the best-first search guided
by heuristic can be used to guide a search in a robot cell application.

Other solutions for the general problem include mathematical methods
such as mixed integer programming. In their work Koné et al. [84]
present an event based mixed integer linear programming method for resource-
constrained project scheduling problem.

4.5 Planning 35

4.5 Planning
As discussed earlier in the Introduction, the problem presented in this thesis is
also a symbolic AI planning problem. Classical symbolic planning algorithms
such as STRIPS [47] and Graphplan [85] exist in literature as totally ordered
planners.

LAMA planner [86] uses heuristic guided best-first search to find a
solution with minimum action cost. It pre-processes the problem and extracts
landmarks, which are propositions that must be true in every plan, to use as
subgoals. LAMA employs a forward state-space search by imposing a total-
order on the actions. This avoids the need for explicit search on conflicts in the
plan. In a totally ordered plan, a new action can start only after the previous
finishes. However, solving a flow shop problem requires planning many actions
that should be executed in parallel. Partial order planners [87, 46] can order
actions in parallel with each other, if the required resources for the actions
are mutually exclusive. Partial order planners often use backward chaining,
starting from a goal state adding actions to support the goal. Backward
chaining reduces the search space as it explores only the possibilities that
would lead to the goal, with the cost of constantly searching for conflicts
between actions in the plan.

In their work, Coles et al. [88] present partial order planning with forward
chaining with the advantage of reducing searches for conflicts.

In comparison to the work presented above, the solution that is proposed in
this paper deals with the robotic flow shop problem. The proposed algorithm
can handle dual gripper robots, parallel machines and machines with complex
configurations. Best-first search strategy is used similar to the works of Fan et
al. [83] and the LAMA planner [89]. In order to schedule actions which can
run in parallel with each other a modified version of the partial order planning
algorithm was used. Similar to the LAMA planner [89], landmarks were used
to narrow the search space. However, the landmarks are used in this work are
the partial commands uttered by the user.

Chapter 5

Results

This chapter, which is divided into two sections, presents the results achieved
within this thesis. The first is a summary of the research done in relation to the
research subgoals presented in Section 3.2. The second part presents a short
summary, specific scientific contribution, and the author’s contribution of the
Papers A-E.

5.1 Contributions
The contributions of this thesis can be divided into four parts.

5.1.1 Object-Based Programming Scheme
Programming industrial robots is not an easy task for a person who doesn’t
have previous experience. One of the reasons is that, even though we occupy
the same physical space as the robots, the intrinsic representation of the world
is different for humans and robots. Humans represent the world around
them by describing objects and spatial relations between these objects in a
natural language. Robots, by contrast, work in abstract numeric coordinate
systems which are not intuitive to us. Papers A and C aims to find a mapping
between our object-based representation of the world and the robots’ numeric
representation.

Paper A explores the use of speech only natural language that is supported
by spatial relations in an industrial environment. In the paper, a high-level
language in order to command an industrial robot for simple pick-and-place

37

Chapter 5

Results

This chapter, which is divided into two sections, presents the results achieved
within this thesis. The first is a summary of the research done in relation to the
research subgoals presented in Section 3.2. The second part presents a short
summary, specific scientific contribution, and the author’s contribution of the
Papers A-E.

5.1 Contributions
The contributions of this thesis can be divided into four parts.

5.1.1 Object-Based Programming Scheme
Programming industrial robots is not an easy task for a person who doesn’t
have previous experience. One of the reasons is that, even though we occupy
the same physical space as the robots, the intrinsic representation of the world
is different for humans and robots. Humans represent the world around
them by describing objects and spatial relations between these objects in a
natural language. Robots, by contrast, work in abstract numeric coordinate
systems which are not intuitive to us. Papers A and C aims to find a mapping
between our object-based representation of the world and the robots’ numeric
representation.

Paper A explores the use of speech only natural language that is supported
by spatial relations in an industrial environment. In the paper, a high-level
language in order to command an industrial robot for simple pick-and-place

37

38 Chapter 5. Results

applications is demonstrated. The proposed high-level language allows the
user to give high-level commands to the robot to manipulate the objects. The
proposed language can handle attributes of the objects in the environment,
such as shapes, colors, and other features. It is equipped with functions for
handling spatial information, enabling the user to be able to relate objects
spatially to other objects. Using the features about the objects in the scene
and their spatial relations to one another it is possible to give commands like
“pick the round object to the left of the red one”. Which helps to make the
communication natural and human like, and frees the user from think about the
working coordinate system of the robot.

Paper C improves the work presented in Paper A by introducing the
multimodal framework and augmented reality into the system. This allows
the user to sequence basic skills e.g. picking and placing objects to accomplish
more complex tasks. A camera mounted on the gripper of the robot, gives
the ability to see through the eyes of the robot and select objects and drop
locations for these objects and give high-level speech commands to manipulate
the objects. The commands that the user has given is overlaid on the augmented
reality window showing the path of the robot, pick and place operations and
the final positions of the objects. This gives confidence to the user that the
commands were understood correctly removing any vagueness.

The proposed system demonstrates an alternative method for interaction
between industrial robots and humans. Using natural means of communication
is definitely an interesting alternative to well-established robot programming
methods. These methods require considerable larger amount of time, and
perhaps more importantly, a programming expert. In the experiments it is
demonstrated that efficient collaboration between the robot and its human peer
can help to clarify vague situations easily. Multimodal language allows the
system to understand the user’s intentions in a faster and more robust way.

Finally Paper E brings together the components that were developed earlier
for creating a novel system for task-level programming of industrial robots.

The proposed system has also received positive attention for its innovative
approach in programming from VINNOVA - Swedish Governmental Agency
for Innovation Systems. Based on an independent survey done by A-Focus
AB [50] where interviews with 8 companies is performed, the prosed system
has been granted VFT-0 [49]. According to the interviews such a system
is demanded by the industry and is believed to increase the companies
competitiveness and decrease programming costs.

5.1 Contributions 39

5.1.2 General Multimodal Framework

There have been numerous efforts to implement multimodal interfaces for
computers and robots [90, 41, 91, 75]. Yet there is no general standard
framework for developing multimodal interfaces. In order to design and
implement such interfaces efficiently, we propose a general framework. The
proposed framework in Paper B is designed to perform natural language
understanding, modality fusion and semantic analysis through an incremental
pipeline.

The framework also employs a new grammar definition language which
is called COactive Language Definition (COLD) which is responsible for
multimodal grammar definition and semantic analysis representation. COLD is
used to (i) generate separate grammars for each modality, (ii) define the fusion
pattern, (iii) define the semantic variables and calculations and (iv) define
dialog patterns and dialog turns. This means that COLD affects the whole
process from the processing of inputs to modality fusion, semantic analysis
and dialog management.

The framework is also an incremental system which allows to start
processing of input words or signals from other modalities as they are
received before the sentence is complete. Parsing, modality fusion, semantic
meaning generation and execution are all performed through this incremental
pipeline. With an incremental system it is easy to build a response to user
inputs even before the sentence is completed. In the HCI/HRI domain,
incremental processing helps to improve the response times of computer
systems. Multimodal systems should be responsive, because they would
otherwise require the repetition of commands from the user, more ambiguity
in the recognition process as well as user annoyance.

5.1.3 POPStar Planner

The third contribution of this thesis, presented in Paper D, is a symbolic planner
based on a partial order planner (POP). The proposed planner, POPStar, is used
for planning and scheduling the robot’s motions as well as operation of other
machinery in the cell. The challenges of this part of the research is associated
with RSG3. The system takes the landmarks extracted from user instructions as
input, and tries to create a sequence of actions to operate the robot cell with the
shortest possible makespan. The proposed system takes advantage of partial
order capabilities of POP to execute actions in parallel and employs a best-first
search algorithm to seek the series of actions that lead to the shortest makespan.

38 Chapter 5. Results

applications is demonstrated. The proposed high-level language allows the
user to give high-level commands to the robot to manipulate the objects. The
proposed language can handle attributes of the objects in the environment,
such as shapes, colors, and other features. It is equipped with functions for
handling spatial information, enabling the user to be able to relate objects
spatially to other objects. Using the features about the objects in the scene
and their spatial relations to one another it is possible to give commands like
“pick the round object to the left of the red one”. Which helps to make the
communication natural and human like, and frees the user from think about the
working coordinate system of the robot.

Paper C improves the work presented in Paper A by introducing the
multimodal framework and augmented reality into the system. This allows
the user to sequence basic skills e.g. picking and placing objects to accomplish
more complex tasks. A camera mounted on the gripper of the robot, gives
the ability to see through the eyes of the robot and select objects and drop
locations for these objects and give high-level speech commands to manipulate
the objects. The commands that the user has given is overlaid on the augmented
reality window showing the path of the robot, pick and place operations and
the final positions of the objects. This gives confidence to the user that the
commands were understood correctly removing any vagueness.

The proposed system demonstrates an alternative method for interaction
between industrial robots and humans. Using natural means of communication
is definitely an interesting alternative to well-established robot programming
methods. These methods require considerable larger amount of time, and
perhaps more importantly, a programming expert. In the experiments it is
demonstrated that efficient collaboration between the robot and its human peer
can help to clarify vague situations easily. Multimodal language allows the
system to understand the user’s intentions in a faster and more robust way.

Finally Paper E brings together the components that were developed earlier
for creating a novel system for task-level programming of industrial robots.

The proposed system has also received positive attention for its innovative
approach in programming from VINNOVA - Swedish Governmental Agency
for Innovation Systems. Based on an independent survey done by A-Focus
AB [50] where interviews with 8 companies is performed, the prosed system
has been granted VFT-0 [49]. According to the interviews such a system
is demanded by the industry and is believed to increase the companies
competitiveness and decrease programming costs.

5.1 Contributions 39

5.1.2 General Multimodal Framework

There have been numerous efforts to implement multimodal interfaces for
computers and robots [90, 41, 91, 75]. Yet there is no general standard
framework for developing multimodal interfaces. In order to design and
implement such interfaces efficiently, we propose a general framework. The
proposed framework in Paper B is designed to perform natural language
understanding, modality fusion and semantic analysis through an incremental
pipeline.

The framework also employs a new grammar definition language which
is called COactive Language Definition (COLD) which is responsible for
multimodal grammar definition and semantic analysis representation. COLD is
used to (i) generate separate grammars for each modality, (ii) define the fusion
pattern, (iii) define the semantic variables and calculations and (iv) define
dialog patterns and dialog turns. This means that COLD affects the whole
process from the processing of inputs to modality fusion, semantic analysis
and dialog management.

The framework is also an incremental system which allows to start
processing of input words or signals from other modalities as they are
received before the sentence is complete. Parsing, modality fusion, semantic
meaning generation and execution are all performed through this incremental
pipeline. With an incremental system it is easy to build a response to user
inputs even before the sentence is completed. In the HCI/HRI domain,
incremental processing helps to improve the response times of computer
systems. Multimodal systems should be responsive, because they would
otherwise require the repetition of commands from the user, more ambiguity
in the recognition process as well as user annoyance.

5.1.3 POPStar Planner

The third contribution of this thesis, presented in Paper D, is a symbolic planner
based on a partial order planner (POP). The proposed planner, POPStar, is used
for planning and scheduling the robot’s motions as well as operation of other
machinery in the cell. The challenges of this part of the research is associated
with RSG3. The system takes the landmarks extracted from user instructions as
input, and tries to create a sequence of actions to operate the robot cell with the
shortest possible makespan. The proposed system takes advantage of partial
order capabilities of POP to execute actions in parallel and employs a best-first
search algorithm to seek the series of actions that lead to the shortest makespan.

40 Chapter 5. Results

Since POPStar uses first order logic to define the rules of the operating
world, new constraints can be added easily. As an example gripping patterns
or which gripper to use can be added as constraints for some machines. Our
proposed planner can handle robots with multiple grippers, as well as parallel
machines in deterministic free-pickup robot cells. Using different topologies in
the landmark graph, one can generate schedules for processing multiple type
objects simultaneously or with smooth transition from one type to another.
Using POPStar planner it is possible to generate complete production process
based on users’ instructions.

5.1.4 Simulation Environment
A simulation environment which can simulate a general 6 Degree of Freedom
(6DoF) industrial robot has been created in an OpenGL environment. Besides
providing a quick test environment, it also acts as a visual feedback to the user.
The simulator wraps around basic movement functions of ABB RAPID [14]
language. Basically the simulator provides a similar programming interface as
the RAPID language provides, making it possible to program them through C#
[92]. With an extended version of this API it is also possible to use Prolog
[93], which is a general-purpose logic programming language, to program the
robot. Calls from C# are tested for reachability along a path. Collision free
path planning from point A to point B can be performed. The simulator can
work as a augmented reality engine as well. Overlying virtual objects and robot
paths over live camera feed, it is possible to create a rich user interface to be
used with incremental multimodal framework as shown in Paper C. Through
the simulator it is possible to do both offline and online programming.

5.2 Overview of Papers

5.2.1 Paper A
Object Selection using a Spatial Language for Flexible Assembly, Batu Akan,
Baran Çürüklü, Giacomo Spampinato, Lars Asplund, In Proceedings of the
14th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’09), Mallorca, Spain, September, 2009.

Summary: In this paper we propose a limited natural language that utilizes
spatial terms to hide the complexities of robots programming. We use Gaussian
kernels to represent spatial regions such as “left” or “above”. We also

5.2 Overview of Papers 41

introduce our robot simulation environment where we check for reachability
and collisions. The simulation environment also provides application program-
mers interfaces for procedural and behavioral programming in C# and Prolog
languages.

Author’s contribution: I was the main author of this paper contributing with
the development of the system, together with the programming interfaces. The
co-authors contributed with technical aspects, such as inverse kinematics for
the robot and valuable feedback on the overall paper.

5.2.2 Paper B
A General Framework for Incremental Processing of Multimodal Inputs,
Afshin Ameri E., Batu Akan, Baran Çürüklü, Lars Asplund, In Proceedings
of the 13th International Conference on Multimodal Interaction (ICMI’11),
Alicante, Spain, November, 2011.

Summary: In this paper we propose a framework for the rapid development
of multimodal interfaces. The framework is designed to perform modality
fusion and semantic analysis through an incremental pipeline. The incremental
pipeline allows for semantic analysis and meaning generation as the inputs
are being received. The framework also employs a new grammar definition
language which is called COactive Language Definition (COLD). COLD is
responsible for multimodal grammar definition and semantic analysis represen-
tation. This makes it easy for multimodal application developers to view and
edit all the required resources for representation and analysis of multimodal
inputs at one place and through one language.

Author’s contribution: As the second author of this paper, I contributed
with the idea and formalization of COLD, the partial development of the
system, experiments and the editing of the paper

5.2.3 Paper C
Intuitive Industrial Robot Programming Through Incremental Multimodal
Language and Augmented Reality, Batu Akan, Afshin Ameri E., Baran
Çürüklü, Lars Asplund, In proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’11), Shanghai, China, May, 2011.

40 Chapter 5. Results

Since POPStar uses first order logic to define the rules of the operating
world, new constraints can be added easily. As an example gripping patterns
or which gripper to use can be added as constraints for some machines. Our
proposed planner can handle robots with multiple grippers, as well as parallel
machines in deterministic free-pickup robot cells. Using different topologies in
the landmark graph, one can generate schedules for processing multiple type
objects simultaneously or with smooth transition from one type to another.
Using POPStar planner it is possible to generate complete production process
based on users’ instructions.

5.1.4 Simulation Environment
A simulation environment which can simulate a general 6 Degree of Freedom
(6DoF) industrial robot has been created in an OpenGL environment. Besides
providing a quick test environment, it also acts as a visual feedback to the user.
The simulator wraps around basic movement functions of ABB RAPID [14]
language. Basically the simulator provides a similar programming interface as
the RAPID language provides, making it possible to program them through C#
[92]. With an extended version of this API it is also possible to use Prolog
[93], which is a general-purpose logic programming language, to program the
robot. Calls from C# are tested for reachability along a path. Collision free
path planning from point A to point B can be performed. The simulator can
work as a augmented reality engine as well. Overlying virtual objects and robot
paths over live camera feed, it is possible to create a rich user interface to be
used with incremental multimodal framework as shown in Paper C. Through
the simulator it is possible to do both offline and online programming.

5.2 Overview of Papers

5.2.1 Paper A
Object Selection using a Spatial Language for Flexible Assembly, Batu Akan,
Baran Çürüklü, Giacomo Spampinato, Lars Asplund, In Proceedings of the
14th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’09), Mallorca, Spain, September, 2009.

Summary: In this paper we propose a limited natural language that utilizes
spatial terms to hide the complexities of robots programming. We use Gaussian
kernels to represent spatial regions such as “left” or “above”. We also

5.2 Overview of Papers 41

introduce our robot simulation environment where we check for reachability
and collisions. The simulation environment also provides application program-
mers interfaces for procedural and behavioral programming in C# and Prolog
languages.

Author’s contribution: I was the main author of this paper contributing with
the development of the system, together with the programming interfaces. The
co-authors contributed with technical aspects, such as inverse kinematics for
the robot and valuable feedback on the overall paper.

5.2.2 Paper B
A General Framework for Incremental Processing of Multimodal Inputs,
Afshin Ameri E., Batu Akan, Baran Çürüklü, Lars Asplund, In Proceedings
of the 13th International Conference on Multimodal Interaction (ICMI’11),
Alicante, Spain, November, 2011.

Summary: In this paper we propose a framework for the rapid development
of multimodal interfaces. The framework is designed to perform modality
fusion and semantic analysis through an incremental pipeline. The incremental
pipeline allows for semantic analysis and meaning generation as the inputs
are being received. The framework also employs a new grammar definition
language which is called COactive Language Definition (COLD). COLD is
responsible for multimodal grammar definition and semantic analysis represen-
tation. This makes it easy for multimodal application developers to view and
edit all the required resources for representation and analysis of multimodal
inputs at one place and through one language.

Author’s contribution: As the second author of this paper, I contributed
with the idea and formalization of COLD, the partial development of the
system, experiments and the editing of the paper

5.2.3 Paper C
Intuitive Industrial Robot Programming Through Incremental Multimodal
Language and Augmented Reality, Batu Akan, Afshin Ameri E., Baran
Çürüklü, Lars Asplund, In proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’11), Shanghai, China, May, 2011.

42 Chapter 5. Results

Summary: In this paper, we propose to use an incremental and multimodal
natural language, which we developed in Paper B, in combination with our
simulation environment and augmented reality. A view of the working
environment is presented to the user through a unified system. The system
overlays visuals through augmented reality to the user and also receives
inputs and voice commands through our high-level multimodal language. The
proposed system architecture makes it possible to manipulate, pick or place
the objects in the scene. Such a language shifts the focus of industrial robot
programming from a coordinate-based programming paradigm to an object-
based programming scheme.

Author’s contribution: I am the main author of this paper and contributed
with the development of the AR module, the experimental setup and the writing
of the paper. The co-authors contributed with technical aspects and valuable
feedback on the overall paper.

5.2.4 Paper D
Scheduling for Multiple Type Objects Using POPStar Planner, Batu Akan,
Afshin Ameri E., Baran Çürüklü, In proceedings of the IEEE Emerging
Technologies and Factory Automation (ETFA’14), p 1-7, Barcelona, Spain,
September, 2014

Summary: This paper presents scheduling algorithm for robot cells that
produce multiple object types in low volume productions. The main challenge
is to adopt the schedule for changing object types while maximizing the
number of objects produced in a given time window. Proposed algorithm,
POPStar, is based on a partial order planner which is guided by best-first
search algorithm and landmarks. The best-first search, uses heuristics to help
the planner to create complete plans while minimizing the makespan. The
algorithm takes landmarks, which are extracted from user’s instructions as
input. Using the POPStar algorithm, it is possible to create schedules for
changing object types using different topologies for the landmarks graph.

Author’s contribution: I was the main author of this paper contributing with
the idea, software development and prepared most of the manuscript. The other
co-authors contributed with technical aspects of the paper

5.2 Overview of Papers 43

5.2.5 Paper E
Towards Creation of Robot Programs Through User Interaction, Batu Akan,
Afshin Ameri E., Baran Çürüklü, To be submitted as a journal paper

Summary: This paper brings together the components that were previously
developed to create a novel system for task-level programming. The user
interacts with an industrial robot by giving instructions in a structured natural
language and by selecting objects through an augmented reality interface. The
proposed system consists of two parts. The first component is a multimodal
framework which provides a natural language interface to the user to interact
in which the framework performs modality fusion and semantic analysis. The
second component is the POPStar planner, which creates a sequence of actions
to operate the robotic cell with minimal makespan. Results show that the
proposed system can create and adapt schedules for robot cells with changing
product types in low volume production based on user’s instructions. The work
presented in this paper deals with all three research subgoals simultaneously.

Author’s contribution: I am the main author of this paper and I am
responsible for software development and the manuscript. The co-authors
contributes with technical aspects and valuable feedback on the overall paper.

42 Chapter 5. Results

Summary: In this paper, we propose to use an incremental and multimodal
natural language, which we developed in Paper B, in combination with our
simulation environment and augmented reality. A view of the working
environment is presented to the user through a unified system. The system
overlays visuals through augmented reality to the user and also receives
inputs and voice commands through our high-level multimodal language. The
proposed system architecture makes it possible to manipulate, pick or place
the objects in the scene. Such a language shifts the focus of industrial robot
programming from a coordinate-based programming paradigm to an object-
based programming scheme.

Author’s contribution: I am the main author of this paper and contributed
with the development of the AR module, the experimental setup and the writing
of the paper. The co-authors contributed with technical aspects and valuable
feedback on the overall paper.

5.2.4 Paper D
Scheduling for Multiple Type Objects Using POPStar Planner, Batu Akan,
Afshin Ameri E., Baran Çürüklü, In proceedings of the IEEE Emerging
Technologies and Factory Automation (ETFA’14), p 1-7, Barcelona, Spain,
September, 2014

Summary: This paper presents scheduling algorithm for robot cells that
produce multiple object types in low volume productions. The main challenge
is to adopt the schedule for changing object types while maximizing the
number of objects produced in a given time window. Proposed algorithm,
POPStar, is based on a partial order planner which is guided by best-first
search algorithm and landmarks. The best-first search, uses heuristics to help
the planner to create complete plans while minimizing the makespan. The
algorithm takes landmarks, which are extracted from user’s instructions as
input. Using the POPStar algorithm, it is possible to create schedules for
changing object types using different topologies for the landmarks graph.

Author’s contribution: I was the main author of this paper contributing with
the idea, software development and prepared most of the manuscript. The other
co-authors contributed with technical aspects of the paper

5.2 Overview of Papers 43

5.2.5 Paper E
Towards Creation of Robot Programs Through User Interaction, Batu Akan,
Afshin Ameri E., Baran Çürüklü, To be submitted as a journal paper

Summary: This paper brings together the components that were previously
developed to create a novel system for task-level programming. The user
interacts with an industrial robot by giving instructions in a structured natural
language and by selecting objects through an augmented reality interface. The
proposed system consists of two parts. The first component is a multimodal
framework which provides a natural language interface to the user to interact
in which the framework performs modality fusion and semantic analysis. The
second component is the POPStar planner, which creates a sequence of actions
to operate the robotic cell with minimal makespan. Results show that the
proposed system can create and adapt schedules for robot cells with changing
product types in low volume production based on user’s instructions. The work
presented in this paper deals with all three research subgoals simultaneously.

Author’s contribution: I am the main author of this paper and I am
responsible for software development and the manuscript. The co-authors
contributes with technical aspects and valuable feedback on the overall paper.

Chapter 6

Conclusions and Future
Work

This chapter provides a brief summary of the thesis and conclude with possible
directions for further research within this topic.

6.1 Conclusions
The objective of the research presented in this thesis is to develop tools and
methods to make task level robot programming easier and more available to a
wider range of users. The motivation behind issues related to programming
industrial robots is presented in Chapter 3 and scientific contribution of
included papers are presented in Chapter 5.

Within the context of the proposed methods and tools, robot programming
process can be divided into 3 parts, (i) user communicating with the robot, (ii)
planning and sequencing actions and (iii) generating code to operate the robot
cell. The work presented in the thesis touches upon all aspects described.

The communication is an important aspect of the whole process. We
propose that any method for communication, should be clear and easily be
used by an untrained operator, thus the user needs to give high-level user
commands as well as should easily describe which object to be manipulated
by the robot. Communication is also a two way process. As the user gives
the commands, the system needs to give feedback to make sure that the user
understands the system’s status, e.g. that the system has interpreted the given

45

Chapter 6

Conclusions and Future
Work

This chapter provides a brief summary of the thesis and conclude with possible
directions for further research within this topic.

6.1 Conclusions
The objective of the research presented in this thesis is to develop tools and
methods to make task level robot programming easier and more available to a
wider range of users. The motivation behind issues related to programming
industrial robots is presented in Chapter 3 and scientific contribution of
included papers are presented in Chapter 5.

Within the context of the proposed methods and tools, robot programming
process can be divided into 3 parts, (i) user communicating with the robot, (ii)
planning and sequencing actions and (iii) generating code to operate the robot
cell. The work presented in the thesis touches upon all aspects described.

The communication is an important aspect of the whole process. We
propose that any method for communication, should be clear and easily be
used by an untrained operator, thus the user needs to give high-level user
commands as well as should easily describe which object to be manipulated
by the robot. Communication is also a two way process. As the user gives
the commands, the system needs to give feedback to make sure that the user
understands the system’s status, e.g. that the system has interpreted the given

45

46 Chapter 6. Conclusions and Future Work

command in the correct way, or if any information is missing. Papers A, B and
C address the communication issues. Paper A addresses the problem by trying
to refer to objects in the scene by using their spatial relation with one each
other. Papers B and C proposes a multimodal framework where the user can
directly point out to an object in the scene by selecting through an augmented
reality interface using the simulation environment. This is important as it allow
the user to communicate with the system based on references to objects rather
than abstract coordinate systems.

The proposed multimodal framework is designed to perform natural lan-
guage understanding, modality fusion and semantic analysis through an
incremental pipeline. It also provides a novel grammar definition language,
COLD which is used to define the multimodal grammar and semantic analysis
procedures. The incremental nature of the framework allows to for in-time
interaction between the robot and its user. Apart from programming industrial
robots, the proposed multimodal framework can be used in areas of computer
games, human-computer interaction or human-robot interaction. The common
ground found in all these application domains is the need of rich information
exchange.

The second issue that is addressed in the thesis is the planning and schedul-
ing phase of programming. This need rises from the inherent characteristics of
natural language where the users instructions are either incomplete or missing
hence needs to be filled in by a planner. Furthermore, to run the robot cell
optimally the order of actions of the robot needs to be carefully scheduled. The
solution that we have proposed is the POPStar algorithm that uses best-first
search with guidance of heuristics to generate schedules and hence programs
to run the robot cell. POPStar uses first order logic to define possible actions
and state of the cell.

The advantage of POPStar against other solutions is that it uses first-order
logic to create the constraints in the search space through the definitions of
actions, therefore it is simpler to define and extend the problem to similar types
of robot cells where different constraints must be kept. POPStar algorithm is
evaluated with a flow shop scheduling problem with parallel machines and
multi-gripper robots. This algorithm suits well with task level programming as
it takes incomplete instructions as input and generates plans for accomplishing
the task while optimizing the resource usage and minimizing the makespan.
This feature provides an advantage to the user since he/she can focus on the
core aspects of the program that has to be composed.

Overall the multimodal framework and the POPStar planner helps us
achieve our main goal by enabling the system to receive commands from

6.2 Future Work 47

the user based on ordinary objects in the scene and the planner helps to fill
in the missing information to achieve the given task. The proposed system,
which is easy to learn and use, enables large numbers of users to benefit
from that technology, since it lowers the threshold associated with industrial
robot programming. Minimizing the need of expert knowledge is beneficial for
the industry, especially for SMEs. Providing such a solution to this segment
might encourage them to invest in robot automation, which in return might
help to boost productivity. It is not only SMEs that can benefit from the easy
programming of industrial robots; integrators, who develop robotic automation
solutions for various companies can do so too. Developing and delivering
solutions to their customers at the fraction of the time it took before would
increase their competitiveness in the market.

6.2 Future Work
This thesis opens up possibilities to conduct further research in certain areas
that needs additional attention.

6.2.1 Multimodal Framework

The current work addresses the interaction between the robot and the user.
In a way the robot understands the user’s intentions, but it has no sense of
the environment. Object recognition and localization are essential abilities for
robots in order to work in unstructured environments. From the point of view of
this thesis, object localization abilities will also enrich the interaction process
between the robot and the user. In the future we plan to add a vision system
capable of object recognition and object localization.

In our initial experiments, users have found the system easy to learn and
to use. The application domain is solely pick-and-place applications. We have
not touched upon, e.g. spot/arc welding applications or assembly applications.
It is plausible to assume that widening of the application domain will help to
test the system further, and find shortcomings that are hidden in the current
system.

The current natural grammar is limited in size, As the grammar grows upon
requests from the industry, it is necessary to analyze the impact of this growth
and how it effects the multimodal framework. Another extension would be
to introduce a context analyzer, which switches on and off some of the rules
defined in COLD to improve the robustness of the framework as the size of the

46 Chapter 6. Conclusions and Future Work

command in the correct way, or if any information is missing. Papers A, B and
C address the communication issues. Paper A addresses the problem by trying
to refer to objects in the scene by using their spatial relation with one each
other. Papers B and C proposes a multimodal framework where the user can
directly point out to an object in the scene by selecting through an augmented
reality interface using the simulation environment. This is important as it allow
the user to communicate with the system based on references to objects rather
than abstract coordinate systems.

The proposed multimodal framework is designed to perform natural lan-
guage understanding, modality fusion and semantic analysis through an
incremental pipeline. It also provides a novel grammar definition language,
COLD which is used to define the multimodal grammar and semantic analysis
procedures. The incremental nature of the framework allows to for in-time
interaction between the robot and its user. Apart from programming industrial
robots, the proposed multimodal framework can be used in areas of computer
games, human-computer interaction or human-robot interaction. The common
ground found in all these application domains is the need of rich information
exchange.

The second issue that is addressed in the thesis is the planning and schedul-
ing phase of programming. This need rises from the inherent characteristics of
natural language where the users instructions are either incomplete or missing
hence needs to be filled in by a planner. Furthermore, to run the robot cell
optimally the order of actions of the robot needs to be carefully scheduled. The
solution that we have proposed is the POPStar algorithm that uses best-first
search with guidance of heuristics to generate schedules and hence programs
to run the robot cell. POPStar uses first order logic to define possible actions
and state of the cell.

The advantage of POPStar against other solutions is that it uses first-order
logic to create the constraints in the search space through the definitions of
actions, therefore it is simpler to define and extend the problem to similar types
of robot cells where different constraints must be kept. POPStar algorithm is
evaluated with a flow shop scheduling problem with parallel machines and
multi-gripper robots. This algorithm suits well with task level programming as
it takes incomplete instructions as input and generates plans for accomplishing
the task while optimizing the resource usage and minimizing the makespan.
This feature provides an advantage to the user since he/she can focus on the
core aspects of the program that has to be composed.

Overall the multimodal framework and the POPStar planner helps us
achieve our main goal by enabling the system to receive commands from

6.2 Future Work 47

the user based on ordinary objects in the scene and the planner helps to fill
in the missing information to achieve the given task. The proposed system,
which is easy to learn and use, enables large numbers of users to benefit
from that technology, since it lowers the threshold associated with industrial
robot programming. Minimizing the need of expert knowledge is beneficial for
the industry, especially for SMEs. Providing such a solution to this segment
might encourage them to invest in robot automation, which in return might
help to boost productivity. It is not only SMEs that can benefit from the easy
programming of industrial robots; integrators, who develop robotic automation
solutions for various companies can do so too. Developing and delivering
solutions to their customers at the fraction of the time it took before would
increase their competitiveness in the market.

6.2 Future Work
This thesis opens up possibilities to conduct further research in certain areas
that needs additional attention.

6.2.1 Multimodal Framework

The current work addresses the interaction between the robot and the user.
In a way the robot understands the user’s intentions, but it has no sense of
the environment. Object recognition and localization are essential abilities for
robots in order to work in unstructured environments. From the point of view of
this thesis, object localization abilities will also enrich the interaction process
between the robot and the user. In the future we plan to add a vision system
capable of object recognition and object localization.

In our initial experiments, users have found the system easy to learn and
to use. The application domain is solely pick-and-place applications. We have
not touched upon, e.g. spot/arc welding applications or assembly applications.
It is plausible to assume that widening of the application domain will help to
test the system further, and find shortcomings that are hidden in the current
system.

The current natural grammar is limited in size, As the grammar grows upon
requests from the industry, it is necessary to analyze the impact of this growth
and how it effects the multimodal framework. Another extension would be
to introduce a context analyzer, which switches on and off some of the rules
defined in COLD to improve the robustness of the framework as the size of the

48 Chapter 6. Conclusions and Future Work

grammar gets bigger.

6.2.2 POPStar
In terms of flow shop scheduling problem, our implementation currently
supports free-pickup cells, although a new heuristic can be introduced to
support no-wait and interval-pickup cells as well.

In the case of producing multiple types of objects simultaneously a load
balancer can be added to the planner so that different production rates can be
assigned to different object types. This would increase the user’s possibility
to control the operation of the robot cell even further. It is also possible to
control the planner in an interactive manner so that it would merge new plans
with already existing ones while the robot cell is operating. This will give
the user the ability to handle changes which might be required in a robot cell,
interactively. This offers the flexibility that is of great importance to an SME
as well as their larger counter parts.

Bibliography

[1] “ABB RobotStudio,” accessed: 29 August 2014. [Online]. Available:
http://new.abb.com/products/robotics/robotstudio

[2] M. a. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Survey,”
Foundations and Trends in Human-Computer Interaction, vol. 1, no. 3,
pp. 203–275, 2007.

[3] T. B. Sheridan and W. L. Verplank, “Human and Computer Control of
Undersea Teleoperators,” Tech. Rep., 1978.

[4] T. Zhang, V. Ampornaramveth, M. Bhuiyan, Y. Shirai, and H. Ueno,
“Face and gesture recognition using subspace method for human-robot
interaction,” Advances in Multimedia, pp. 369–376, 2005.

[5] R. Voyles and P. Khosla, “Gesture-based programming: a preliminary
demonstration,” Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), no. May, pp. 708–713,
1999.

[6] M. Strobel, J. Illmann, B. Kluge, and F. Marrone, “Using spatial context
knowledge in gesture recognition for commanding a domestic service
robot.” Robot and Human Interactive Communication, 2002, 2002, pp.
468–473.

[7] R. R. Murphy, “HumanRobot Interaction in Rescue Robotics,” IEEE
Transactions on Systems Man and Cybernetics Part C Applications and
Reviews, vol. 34, no. 2, pp. 138–153, 2004.

[8] J. S. McCarley and C. D. Wickens, “Human Factors Implications of UAVs
in the National Airspace,” Human Factors, no. April, 2005.

49

48 Chapter 6. Conclusions and Future Work

grammar gets bigger.

6.2.2 POPStar
In terms of flow shop scheduling problem, our implementation currently
supports free-pickup cells, although a new heuristic can be introduced to
support no-wait and interval-pickup cells as well.

In the case of producing multiple types of objects simultaneously a load
balancer can be added to the planner so that different production rates can be
assigned to different object types. This would increase the user’s possibility
to control the operation of the robot cell even further. It is also possible to
control the planner in an interactive manner so that it would merge new plans
with already existing ones while the robot cell is operating. This will give
the user the ability to handle changes which might be required in a robot cell,
interactively. This offers the flexibility that is of great importance to an SME
as well as their larger counter parts.

Bibliography

[1] “ABB RobotStudio,” accessed: 29 August 2014. [Online]. Available:
http://new.abb.com/products/robotics/robotstudio

[2] M. a. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Survey,”
Foundations and Trends in Human-Computer Interaction, vol. 1, no. 3,
pp. 203–275, 2007.

[3] T. B. Sheridan and W. L. Verplank, “Human and Computer Control of
Undersea Teleoperators,” Tech. Rep., 1978.

[4] T. Zhang, V. Ampornaramveth, M. Bhuiyan, Y. Shirai, and H. Ueno,
“Face and gesture recognition using subspace method for human-robot
interaction,” Advances in Multimedia, pp. 369–376, 2005.

[5] R. Voyles and P. Khosla, “Gesture-based programming: a preliminary
demonstration,” Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), no. May, pp. 708–713,
1999.

[6] M. Strobel, J. Illmann, B. Kluge, and F. Marrone, “Using spatial context
knowledge in gesture recognition for commanding a domestic service
robot.” Robot and Human Interactive Communication, 2002, 2002, pp.
468–473.

[7] R. R. Murphy, “HumanRobot Interaction in Rescue Robotics,” IEEE
Transactions on Systems Man and Cybernetics Part C Applications and
Reviews, vol. 34, no. 2, pp. 138–153, 2004.

[8] J. S. McCarley and C. D. Wickens, “Human Factors Implications of UAVs
in the National Airspace,” Human Factors, no. April, 2005.

49

50 Bibliography

[9] J. Scholtz, “Theory and evaluation of human robot interactions,” System
Sciences, 2003. Proceedings of the 36th, 2003.

[10] Z. Pronk and M. Schoonmade, Mission preparation and training
facility for the European Robotic Arm (ERA), ser. NLR TP //
Nationaal Lucht- en Ruimtevaartlaboratorium. Nationaal Lucht- en
Ruimtevaartlaboratorium, 1999.

[11] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive Robots as
Social Partners and Peer Tutors for Children: A Field Trial,” Human-
Computer Interaction, vol. 19, no. 1, pp. 61–84, 2004.

[12] G. Trafton, “Experimental Desing in HRI,” 2007.

[13] G. Biggs and B. MacDonald, “A Survey of Robot Programming
Systems,” in Proceedings of the Australasian conference on robotics
and automation, Australasian Conference on Robotics and Automation.
Citeseer, Dec. 2003.

[14] RAPID Reference Manual 4.0, ABB Flexible Automation, 72168,
Vasteras, SWEDEN.

[15] “KUKA Roboter GmbH,” accessed: 21 October 2014. [Online].
Available: http://www.kuka-robotics.com/en/

[16] “Yaskawa America, Inc.” accessed: 21 October 2014. [Online].
Available: http://www.motoman.com/

[17] “Comau Robotics,” accessed: 21 October 2014. [Online]. Available:
http://www.robotics.comau.com/

[18] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, Robots, and
Functional Reactive Programming,” in Advanced Functional Program-
ming, 4th International School, volume 2638 of LNCS. Springer-Verlag,
2002, pp. 159–187.

[19] J. Peterson, G. D. Hager, and P. Hudak, “A language for declarative
robotic programming,” Proceedings 1999 IEEE International Conference
on Robotics and Automation Cat No99CH36288C, pp. 1144–1151, 1999.

[20] “Lego Mindstorms,” http://mindstorms.lego.com/en-us/Default.aspx, ac-
cessed: 21 October 2014.

Bibliography 51

[21] R. Bischoff, A. Kazi, M. Seyfarth, A. K.-r. De, and I. D. B, “The
MORPHA Style Guide for Icon-Based Programming,” Robotics, 2002.

[22] A. Billard and S.Schaal, “Robust learning of arm trajectories through
human demonstration.” Intelligent Robots and Systems, 2001, pp. 734–
739.

[23] Y. Zhang and J. Weng, “Action chaining by a developmental robot with
value system.” International Conference on Development and Learning,
2002, pp. 53–60.

[24] R. D. Schraft and C. Meyer, “The Need For an Intuitive Teaching Method
For Small and Medium Enterprises.” International Symposium on
Robotics, May 2006.

[25] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Handbook of Robotics
: Robot Programming by Demonstration. Springer, Jan. 2008, ch. 59.

[26] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Teaching by showing:
Generating robot programs by visual observation of human performance,”
International Symposium on Industrial Robots, 1989.

[27] S. B. Kang and K. Ikeuchi, “A Robot System that Observes and
Replicates Grasping Tasks,” in The Fifth International Conference on
Computer Vision, Jun. 1995, pp. 1093–1099.

[28] C. P. Tung and A. C. Kak, “Automatic learning of assembly tasks using
a DataGlove system,” in IROS ’95: Proceedings of the International
Conference on Intelligent Robots and Systems (IROS). Washington, DC,
USA: IEEE Computer Society, 1995, pp. 1–8.

[29] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems,Man and Cybernetics, Part B. Special issue on robot learning
by observation, demonstration and imitation, pp. 286–298, 2007.

[30] M. Ito, K. Noda, Y.Hoshino, and J. Tani, “Dynamic and interactive
generation of object handling behaviors by a small humanoid robot using
a dynamic neural network model,” Neural Networks, vol. 19, no. 3, pp.
323–337, 2006.

50 Bibliography

[9] J. Scholtz, “Theory and evaluation of human robot interactions,” System
Sciences, 2003. Proceedings of the 36th, 2003.

[10] Z. Pronk and M. Schoonmade, Mission preparation and training
facility for the European Robotic Arm (ERA), ser. NLR TP //
Nationaal Lucht- en Ruimtevaartlaboratorium. Nationaal Lucht- en
Ruimtevaartlaboratorium, 1999.

[11] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive Robots as
Social Partners and Peer Tutors for Children: A Field Trial,” Human-
Computer Interaction, vol. 19, no. 1, pp. 61–84, 2004.

[12] G. Trafton, “Experimental Desing in HRI,” 2007.

[13] G. Biggs and B. MacDonald, “A Survey of Robot Programming
Systems,” in Proceedings of the Australasian conference on robotics
and automation, Australasian Conference on Robotics and Automation.
Citeseer, Dec. 2003.

[14] RAPID Reference Manual 4.0, ABB Flexible Automation, 72168,
Vasteras, SWEDEN.

[15] “KUKA Roboter GmbH,” accessed: 21 October 2014. [Online].
Available: http://www.kuka-robotics.com/en/

[16] “Yaskawa America, Inc.” accessed: 21 October 2014. [Online].
Available: http://www.motoman.com/

[17] “Comau Robotics,” accessed: 21 October 2014. [Online]. Available:
http://www.robotics.comau.com/

[18] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, Robots, and
Functional Reactive Programming,” in Advanced Functional Program-
ming, 4th International School, volume 2638 of LNCS. Springer-Verlag,
2002, pp. 159–187.

[19] J. Peterson, G. D. Hager, and P. Hudak, “A language for declarative
robotic programming,” Proceedings 1999 IEEE International Conference
on Robotics and Automation Cat No99CH36288C, pp. 1144–1151, 1999.

[20] “Lego Mindstorms,” http://mindstorms.lego.com/en-us/Default.aspx, ac-
cessed: 21 October 2014.

Bibliography 51

[21] R. Bischoff, A. Kazi, M. Seyfarth, A. K.-r. De, and I. D. B, “The
MORPHA Style Guide for Icon-Based Programming,” Robotics, 2002.

[22] A. Billard and S.Schaal, “Robust learning of arm trajectories through
human demonstration.” Intelligent Robots and Systems, 2001, pp. 734–
739.

[23] Y. Zhang and J. Weng, “Action chaining by a developmental robot with
value system.” International Conference on Development and Learning,
2002, pp. 53–60.

[24] R. D. Schraft and C. Meyer, “The Need For an Intuitive Teaching Method
For Small and Medium Enterprises.” International Symposium on
Robotics, May 2006.

[25] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Handbook of Robotics
: Robot Programming by Demonstration. Springer, Jan. 2008, ch. 59.

[26] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Teaching by showing:
Generating robot programs by visual observation of human performance,”
International Symposium on Industrial Robots, 1989.

[27] S. B. Kang and K. Ikeuchi, “A Robot System that Observes and
Replicates Grasping Tasks,” in The Fifth International Conference on
Computer Vision, Jun. 1995, pp. 1093–1099.

[28] C. P. Tung and A. C. Kak, “Automatic learning of assembly tasks using
a DataGlove system,” in IROS ’95: Proceedings of the International
Conference on Intelligent Robots and Systems (IROS). Washington, DC,
USA: IEEE Computer Society, 1995, pp. 1–8.

[29] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems,Man and Cybernetics, Part B. Special issue on robot learning
by observation, demonstration and imitation, pp. 286–298, 2007.

[30] M. Ito, K. Noda, Y.Hoshino, and J. Tani, “Dynamic and interactive
generation of object handling behaviors by a small humanoid robot using
a dynamic neural network model,” Neural Networks, vol. 19, no. 3, pp.
323–337, 2006.

52 Bibliography

[31] T. Inamura, N. Kojo, and M. Inaba, “Situation recognition and behavior
induction based on geometric symbol representation of multimodal
sensorimotor patterns,” in Intelligent Robots and Systems,, Beijing,
China, Oct. 2006, pp. 5147–5152.

[32] D. R. Myers, M. J. Pritchard, and M. D. J. Brown, “Automated program-
ming of an industrial robot through teach-by showing.” International
Conference on Robotics and Automation, 2001, pp. 4078–4083.

[33] J. Kreuziger, M. Kaiser, and R. Dillmann, “Robot programming by
demonstration (rpd) - using machine learning and user interaction
methods for the development of easy and comfortable robot programming
systems,” in In Proceedings of the 24th International Symposium on
Industrial Robots, 1994, pp. 685–693.

[34] M. Pardowitz, S. Knoop, and R. Dillmann, “Incremental Learning
of Tasks From User Demonstrations, Past Experiences, and Vocal
Comments,” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBER-
NETICSPART B: CYBERNETICS, vol. 37, no. 2, pp. 322–332, 2007.

[35] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, “Mobile robot
programming using natural language,” Robotics and Autonomous
Systems, vol. 38, no. 3-4, pp. 171–181, Mar. 2002.

[36] T. Brick and M. Scheutz, “Incremental natural language processing
for HRI,” in Proceeding of the ACM/IEEE international conference on
Human-robot interaction - HRI ’07, vol. 07pages. New York, New York,
USA: ACM Press, 2007, p. 263.

[37] R. M. Voyles and P. K. Khosia, “Gesture-Based Programming: A
Preliminary Approach.”

[38] S. Iba, C. J. J. Paredis, and P. Khosla, “Interactive Multi-Modal Robot
Programming.”

[39] S. Oviatt, “Ten myths of multimodal interaction,” Communications of the
ACM, vol. 42, no. 11, pp. 74–81, 1999.

[40] Y. Kamide, G. T. M. Altmann, and S. L. Haywood, “The time-
course of prediction in incremental sentence processing: Evidence from
anticipatory eye movements,” Journal of Memory and Language, vol. 49,
no. 1, pp. 133–156, 2003.

Bibliography 53

[41] D. Mori, S. Matsubara, and Y. Inagaki, Incremental parsing for
interactive natural language interface. IEEE, 2001.

[42] C. P. Rose, A. Roque, and S. Francisco, “An Efficient Incremental
Architecture for Robust Interpretation,” in In Proceedings of the Human
Languages Technologies Conference, 2002, pp. 307–312.

[43] F. Flippo, A. Krebs, and I. Marsic, “A framework for rapid development
of multimodal interfaces,” Proceedings of the 5th international confer-
ence on Multimodal interfaces - ICMI ’03, p. 109, 2003.

[44] A. Jaimes and N. Sebe, “Multimodal human-computer interaction: A
survey,” Computer Vision and Image Understanding, vol. 108, no. 1-2,
pp. 116–134, 2007.

[45] B. Dumas, D. Lalanne, and S. Oviatt, “Multimodal interfaces: A survey
of principles, models and frameworks,” Human Machine Interaction, vol.
5440 LNCS, pp. 1–25, 2009.

[46] R. G. Simmons, “VHPOP : Versatile Heuristic Partial Order Planner,”
vol. 20, pp. 405–430, 2003.

[47] R. E. Fikes and N. J. Nhsson, “STRIPS : A New Approach to the
Application of . Theorem Proving to Problem Solving ’,” vol. 2, 1971.

[48] D. Poole and A. K. Mackworth, Artificial Intelligence - Foundations of
Computational Agents. Cambridge University Press, 2010.

[49] “VINNOVA - Verification for Growth,” accessed: 1 October
2014. [Online]. Available: http://www.vinnova.se/en/Our-acitivities/
Innovativeness-of-specific-target-groups/The-Knowledge-Triangle/
VINN-Verification/

[50] “A-Focus AB,” accessed: 1 October 2014. [Online]. Available:
http://http//www.a-focus.se/

[51] C. Neville, “Introduction to research and research methods,” July 2007.

[52] G. F. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. a.
Fuhlbrigge, “Easy robot programming concepts: An industrial perspec-
tive,” 2013 IEEE International Conference on Automation Science and
Engineering (CASE), pp. 1119–1126, Aug. 2013.

52 Bibliography

[31] T. Inamura, N. Kojo, and M. Inaba, “Situation recognition and behavior
induction based on geometric symbol representation of multimodal
sensorimotor patterns,” in Intelligent Robots and Systems,, Beijing,
China, Oct. 2006, pp. 5147–5152.

[32] D. R. Myers, M. J. Pritchard, and M. D. J. Brown, “Automated program-
ming of an industrial robot through teach-by showing.” International
Conference on Robotics and Automation, 2001, pp. 4078–4083.

[33] J. Kreuziger, M. Kaiser, and R. Dillmann, “Robot programming by
demonstration (rpd) - using machine learning and user interaction
methods for the development of easy and comfortable robot programming
systems,” in In Proceedings of the 24th International Symposium on
Industrial Robots, 1994, pp. 685–693.

[34] M. Pardowitz, S. Knoop, and R. Dillmann, “Incremental Learning
of Tasks From User Demonstrations, Past Experiences, and Vocal
Comments,” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBER-
NETICSPART B: CYBERNETICS, vol. 37, no. 2, pp. 322–332, 2007.

[35] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, “Mobile robot
programming using natural language,” Robotics and Autonomous
Systems, vol. 38, no. 3-4, pp. 171–181, Mar. 2002.

[36] T. Brick and M. Scheutz, “Incremental natural language processing
for HRI,” in Proceeding of the ACM/IEEE international conference on
Human-robot interaction - HRI ’07, vol. 07pages. New York, New York,
USA: ACM Press, 2007, p. 263.

[37] R. M. Voyles and P. K. Khosia, “Gesture-Based Programming: A
Preliminary Approach.”

[38] S. Iba, C. J. J. Paredis, and P. Khosla, “Interactive Multi-Modal Robot
Programming.”

[39] S. Oviatt, “Ten myths of multimodal interaction,” Communications of the
ACM, vol. 42, no. 11, pp. 74–81, 1999.

[40] Y. Kamide, G. T. M. Altmann, and S. L. Haywood, “The time-
course of prediction in incremental sentence processing: Evidence from
anticipatory eye movements,” Journal of Memory and Language, vol. 49,
no. 1, pp. 133–156, 2003.

Bibliography 53

[41] D. Mori, S. Matsubara, and Y. Inagaki, Incremental parsing for
interactive natural language interface. IEEE, 2001.

[42] C. P. Rose, A. Roque, and S. Francisco, “An Efficient Incremental
Architecture for Robust Interpretation,” in In Proceedings of the Human
Languages Technologies Conference, 2002, pp. 307–312.

[43] F. Flippo, A. Krebs, and I. Marsic, “A framework for rapid development
of multimodal interfaces,” Proceedings of the 5th international confer-
ence on Multimodal interfaces - ICMI ’03, p. 109, 2003.

[44] A. Jaimes and N. Sebe, “Multimodal human-computer interaction: A
survey,” Computer Vision and Image Understanding, vol. 108, no. 1-2,
pp. 116–134, 2007.

[45] B. Dumas, D. Lalanne, and S. Oviatt, “Multimodal interfaces: A survey
of principles, models and frameworks,” Human Machine Interaction, vol.
5440 LNCS, pp. 1–25, 2009.

[46] R. G. Simmons, “VHPOP : Versatile Heuristic Partial Order Planner,”
vol. 20, pp. 405–430, 2003.

[47] R. E. Fikes and N. J. Nhsson, “STRIPS : A New Approach to the
Application of . Theorem Proving to Problem Solving ’,” vol. 2, 1971.

[48] D. Poole and A. K. Mackworth, Artificial Intelligence - Foundations of
Computational Agents. Cambridge University Press, 2010.

[49] “VINNOVA - Verification for Growth,” accessed: 1 October
2014. [Online]. Available: http://www.vinnova.se/en/Our-acitivities/
Innovativeness-of-specific-target-groups/The-Knowledge-Triangle/
VINN-Verification/

[50] “A-Focus AB,” accessed: 1 October 2014. [Online]. Available:
http://http//www.a-focus.se/

[51] C. Neville, “Introduction to research and research methods,” July 2007.

[52] G. F. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. a.
Fuhlbrigge, “Easy robot programming concepts: An industrial perspec-
tive,” 2013 IEEE International Conference on Automation Science and
Engineering (CASE), pp. 1119–1126, Aug. 2013.

54 Bibliography

[53] “Morpha,” accessed: 21 October 2014. [Online]. Available: http:
//www.morpha.de/download/flyer englisch Stand Feb2002.pdf

[54] “LabVIEW,” accessed: 21 October 2014. [Online]. Available:
http://www.ni.com/labview

[55] “MotoSim EG,” accessed: 21 October 2014. [Online]. Available:
http://www.motoman.com/datasheets/MotoSim%20EG.pdf

[56] “ROBOTGUIDE FANUC Robotics Simulation Software,” accessed
21 October 2014. [Online]. Available: http://www.fanucrobotics.de/en/
products/software/simulation%20and%20development/roboguide

[57] “Universal Robots,” accessed: 21 October 2014. [Online].
Available: http://media1.limitless.dk/UR Manual/UR5 User Manual/
UR5 User Manual GB.pdf

[58] “IEEE Spectrum, How Rethink Robotics Built Its New
Baxter Robot Worker,” accessed: 21 October 2014.
[Online]. Available: http://spectrum.ieee.org/robotics/industrial-robots/
rethink-robotics-baxter-robot-factory-worker

[59] J. N. Pires, G. Veiga, and R. Araújo, “Programming-by-demonstration
in the coworker scenario for SMEs,” Industrial Robot: An International
Journal, vol. 36, no. 1, pp. 73–83, 2009.

[60] J. N. Pires, “Robot-by-voice : Experiments on commanding an industrial
robot using the human voice,” vol. 32, no. 6, 2005.

[61] R. Marin, P. Sanz, and J. Sanchez, “A very high level interface to
teleoperate a robot via Web including augmented reality,” Proceedings
2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), no. May, pp. 2725–2730, 2002.

[62] R. Marin, P. Sanz, P. Nebot, and R. Wirz, “A Multimodal Interface
to Control a Robot Arm via the Web: A Case Study on Remote
Programming,” IEEE Transactions on Industrial Electronics, vol. 52,
no. 6, pp. 1506–1520, Dec. 2005.

[63] C. Elting, S. Rapp, G. Möhler, and M. Strube, “Architecture and
implementation of multimodal plug and play,” Proceedings of the 5th
international conference on Multimodal interfaces - ICMI ’03, p. 93,
2003.

Bibliography 55

[64] M. Turunen and J. Hakulinen, “JASPIS 2 - An Architecture for
Supporting Distributed Spoken Dialogues,” in Eurospeech, 2003.

[65] K. Katsurada, Y. Nakamura, H. Yamada, and T. Nitta, “XISL: a language
for describing multimodal interaction scenarios,” in Proceedings of the
5th international conference on Multimodal interfaces. ACM, 2003, pp.
281–284.

[66] M. Araki and K. Tachibana, “Multimodal dialog description language for
rapid system development,” Proceedings of the 7th SIGdial Workshop on
Discourse and Dialogue - SigDIAL ’06, no. July, p. 109, 2006.

[67] J. A. Larson and T. V. Raman, “W3C Multimodal Interaction
Framework,” http://www.w3.org/TR/mmi-framework, Dec., 2002,
Accessed: 21 October 2014. [Online]. Available: http:
//www.w3.org/TR/mmi-framework

[68] M. Johnston, “Building multimodal applications with EMMA,” Proceed-
ings of the 2009 international conference on Multimodal interfaces -
ICMI-MLMI ’09, p. 47, 2009.

[69] S. Sire and S. Chatty, “The Markup Way to Multimodal Toolkits,” in W3C
Multimodal Interaction Workshop, Sophia Antipolis, France, 2004.

[70] M. Johnston, P. R. Cohen, D. McGee, S. L. Oviatt, J. a. Pittman, and
I. Smith, “Unification-based multimodal integration,” Proceedings of the
35th annual meeting on Association for Computational Linguistics -, pp.
281–288, 1997.

[71] M. Johnston, “Unification-based multimodal parsing,” Annual Meeting of
the ACL, p. 624, 1998.

[72] M. Johnston and S. Bangalore, “Finite-state multimodal integration and
understanding,” Natural Language Engineering, vol. 11, no. 02, pp. 159–
187, 2005.

[73] R. Stiefelhagen, C. Fogen, P. Gieselmann, H. Holzapfel, K. Nickel, and
a. Waibel, “Natural human-robot interaction using speech, head pose and
gestures,” 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566), pp. 2422–2427, 2004.

54 Bibliography

[53] “Morpha,” accessed: 21 October 2014. [Online]. Available: http:
//www.morpha.de/download/flyer englisch Stand Feb2002.pdf

[54] “LabVIEW,” accessed: 21 October 2014. [Online]. Available:
http://www.ni.com/labview

[55] “MotoSim EG,” accessed: 21 October 2014. [Online]. Available:
http://www.motoman.com/datasheets/MotoSim%20EG.pdf

[56] “ROBOTGUIDE FANUC Robotics Simulation Software,” accessed
21 October 2014. [Online]. Available: http://www.fanucrobotics.de/en/
products/software/simulation%20and%20development/roboguide

[57] “Universal Robots,” accessed: 21 October 2014. [Online].
Available: http://media1.limitless.dk/UR Manual/UR5 User Manual/
UR5 User Manual GB.pdf

[58] “IEEE Spectrum, How Rethink Robotics Built Its New
Baxter Robot Worker,” accessed: 21 October 2014.
[Online]. Available: http://spectrum.ieee.org/robotics/industrial-robots/
rethink-robotics-baxter-robot-factory-worker

[59] J. N. Pires, G. Veiga, and R. Araújo, “Programming-by-demonstration
in the coworker scenario for SMEs,” Industrial Robot: An International
Journal, vol. 36, no. 1, pp. 73–83, 2009.

[60] J. N. Pires, “Robot-by-voice : Experiments on commanding an industrial
robot using the human voice,” vol. 32, no. 6, 2005.

[61] R. Marin, P. Sanz, and J. Sanchez, “A very high level interface to
teleoperate a robot via Web including augmented reality,” Proceedings
2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), no. May, pp. 2725–2730, 2002.

[62] R. Marin, P. Sanz, P. Nebot, and R. Wirz, “A Multimodal Interface
to Control a Robot Arm via the Web: A Case Study on Remote
Programming,” IEEE Transactions on Industrial Electronics, vol. 52,
no. 6, pp. 1506–1520, Dec. 2005.

[63] C. Elting, S. Rapp, G. Möhler, and M. Strube, “Architecture and
implementation of multimodal plug and play,” Proceedings of the 5th
international conference on Multimodal interfaces - ICMI ’03, p. 93,
2003.

Bibliography 55

[64] M. Turunen and J. Hakulinen, “JASPIS 2 - An Architecture for
Supporting Distributed Spoken Dialogues,” in Eurospeech, 2003.

[65] K. Katsurada, Y. Nakamura, H. Yamada, and T. Nitta, “XISL: a language
for describing multimodal interaction scenarios,” in Proceedings of the
5th international conference on Multimodal interfaces. ACM, 2003, pp.
281–284.

[66] M. Araki and K. Tachibana, “Multimodal dialog description language for
rapid system development,” Proceedings of the 7th SIGdial Workshop on
Discourse and Dialogue - SigDIAL ’06, no. July, p. 109, 2006.

[67] J. A. Larson and T. V. Raman, “W3C Multimodal Interaction
Framework,” http://www.w3.org/TR/mmi-framework, Dec., 2002,
Accessed: 21 October 2014. [Online]. Available: http:
//www.w3.org/TR/mmi-framework

[68] M. Johnston, “Building multimodal applications with EMMA,” Proceed-
ings of the 2009 international conference on Multimodal interfaces -
ICMI-MLMI ’09, p. 47, 2009.

[69] S. Sire and S. Chatty, “The Markup Way to Multimodal Toolkits,” in W3C
Multimodal Interaction Workshop, Sophia Antipolis, France, 2004.

[70] M. Johnston, P. R. Cohen, D. McGee, S. L. Oviatt, J. a. Pittman, and
I. Smith, “Unification-based multimodal integration,” Proceedings of the
35th annual meeting on Association for Computational Linguistics -, pp.
281–288, 1997.

[71] M. Johnston, “Unification-based multimodal parsing,” Annual Meeting of
the ACL, p. 624, 1998.

[72] M. Johnston and S. Bangalore, “Finite-state multimodal integration and
understanding,” Natural Language Engineering, vol. 11, no. 02, pp. 159–
187, 2005.

[73] R. Stiefelhagen, C. Fogen, P. Gieselmann, H. Holzapfel, K. Nickel, and
a. Waibel, “Natural human-robot interaction using speech, head pose and
gestures,” 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566), pp. 2422–2427, 2004.

56 Bibliography

[74] S. Irawati, D. Calderón, and H. Ko, “Spatial ontology for semantic
integration in 3D multimodal interaction framework,” in Proceedings of
the 2006 ACM international conference on Virtual reality continuum and
its applications, vol. 1, no. June. New York, New York, USA: ACM,
2006, pp. 129–135.

[75] D. Schlangen and G. Skantze, “A general, abstract model of incremental
dialogue processing,” in European Chapter Meeting of the ACL, 2009,
pp. 710–718.

[76] A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on
industrial CNC-machines,” Proceedings of SPIE, vol. 6804, pp. 680 409–
680 409–9, 2008.

[77] H. Fang, S. K. Ong, and A. Y.-C. Nee, Robot Programming Using
Augmented Reality. IEEE, Sep. 2009.

[78] A. de Robótica and A. de La Producción, “An augmented reality interface
for training robotics through the web,” Communication, pp. 189–194,
2009.

[79] T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and T. Lokstad,
“Augmented reality for programming industrial robots,” The Second
IEEE and ACM International Symposium on Mixed and Augmented
Reality, 2003. Proceedings., pp. 319–320, 2006.

[80] J. Chong, S. Ong, a.Y.C. Nee, and K. Youcef-Youmi, “Robot pro-
gramming using augmented reality: An interactive method for planning
collision-free paths,” Robotics and Computer-Integrated Manufacturing,
vol. 25, no. 3, pp. 689–701, Jun. 2009.

[81] M. Dawande, H. N. Geismar, S. P. Sethi, and C. Sriskandarajah,
“Sequencing and Scheduling in Robotic Cells: Recent Developments,”
Journal of Scheduling, vol. 8, no. 5, pp. 387–426, Oct. 2005.

[82] H. N. Geismar, M. Pinedo, and C. Sriskandarajah, “Robotic cells with
parallel machines and multiple dual gripper robots: a comparative
overview,” IIE Transactions, vol. 40, no. 12, pp. 1211–1227, Oct. 2008.

[83] J. P.-o. Fan and G. K. Winley, “A Heuristic Search Algorithm for Flow-
Shop Scheduling,” vol. 32, pp. 453–464, 2008.

[84] O. Kon, “Event-based MILP models for resource-constrained project
scheduling problems,” vol. 1, pp. 3–13, 2011.

[85] A. L. Blum and M. L. Furst, “Fast Planning Through Planning Graph
Analysis ,” pp. 1–20, 1997.

[86] S. Richter, M. Westphal, and M. Helmert, “LAMA 2008 and 2011,” The
2011 International . . . , 2011.

[87] I. B. M. T. J. Watson, Y. Heights, J. S. Penberthy, and D. S. Weld,
“UCPOP : A Sound , Complete , Partial Order Planner for ADL,” 1991.

[88] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-Chaining Partial-
Order Planning,” 2010.

[89] S. Richter and M. Westphal, “The LAMA Planner : Guiding Cost-Based
Anytime Planning with Landmarks,” vol. 39, pp. 127–177, 2010.

[90] K.-y. Hsiao, S. Vosoughi, S. Tellex, R. Kubat, and D. Roy, “Object
schemas for responsive robotic language use,” Proceedings of the 3rd
international conference on Human robot interaction - HRI ’08, p. 233,
2008.

[91] M. Johnston and S. Bangalore, “Finite-state multimodal parsing and
understanding,” International Conference On Computational Linguistics,
p. 369, 2000.

[92] “C# Language specification,” http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-334.pdf, accessed:
21 October 2014.

[93] J. Wielemaker, “An overview of the {SWI-Prolog} Programming
Environment,” in Proceedings of the 13th International Workshop on
Logic Programming Environments, F. Mesnard and A. Serebenik, Eds.
Heverlee, Belgium: Katholieke Universiteit Leuven, Dec. 2003, pp. 1–
16.

56 Bibliography

[74] S. Irawati, D. Calderón, and H. Ko, “Spatial ontology for semantic
integration in 3D multimodal interaction framework,” in Proceedings of
the 2006 ACM international conference on Virtual reality continuum and
its applications, vol. 1, no. June. New York, New York, USA: ACM,
2006, pp. 129–135.

[75] D. Schlangen and G. Skantze, “A general, abstract model of incremental
dialogue processing,” in European Chapter Meeting of the ACL, 2009,
pp. 710–718.

[76] A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on
industrial CNC-machines,” Proceedings of SPIE, vol. 6804, pp. 680 409–
680 409–9, 2008.

[77] H. Fang, S. K. Ong, and A. Y.-C. Nee, Robot Programming Using
Augmented Reality. IEEE, Sep. 2009.

[78] A. de Robótica and A. de La Producción, “An augmented reality interface
for training robotics through the web,” Communication, pp. 189–194,
2009.

[79] T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and T. Lokstad,
“Augmented reality for programming industrial robots,” The Second
IEEE and ACM International Symposium on Mixed and Augmented
Reality, 2003. Proceedings., pp. 319–320, 2006.

[80] J. Chong, S. Ong, a.Y.C. Nee, and K. Youcef-Youmi, “Robot pro-
gramming using augmented reality: An interactive method for planning
collision-free paths,” Robotics and Computer-Integrated Manufacturing,
vol. 25, no. 3, pp. 689–701, Jun. 2009.

[81] M. Dawande, H. N. Geismar, S. P. Sethi, and C. Sriskandarajah,
“Sequencing and Scheduling in Robotic Cells: Recent Developments,”
Journal of Scheduling, vol. 8, no. 5, pp. 387–426, Oct. 2005.

[82] H. N. Geismar, M. Pinedo, and C. Sriskandarajah, “Robotic cells with
parallel machines and multiple dual gripper robots: a comparative
overview,” IIE Transactions, vol. 40, no. 12, pp. 1211–1227, Oct. 2008.

[83] J. P.-o. Fan and G. K. Winley, “A Heuristic Search Algorithm for Flow-
Shop Scheduling,” vol. 32, pp. 453–464, 2008.

[84] O. Kon, “Event-based MILP models for resource-constrained project
scheduling problems,” vol. 1, pp. 3–13, 2011.

[85] A. L. Blum and M. L. Furst, “Fast Planning Through Planning Graph
Analysis ,” pp. 1–20, 1997.

[86] S. Richter, M. Westphal, and M. Helmert, “LAMA 2008 and 2011,” The
2011 International . . . , 2011.

[87] I. B. M. T. J. Watson, Y. Heights, J. S. Penberthy, and D. S. Weld,
“UCPOP : A Sound , Complete , Partial Order Planner for ADL,” 1991.

[88] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-Chaining Partial-
Order Planning,” 2010.

[89] S. Richter and M. Westphal, “The LAMA Planner : Guiding Cost-Based
Anytime Planning with Landmarks,” vol. 39, pp. 127–177, 2010.

[90] K.-y. Hsiao, S. Vosoughi, S. Tellex, R. Kubat, and D. Roy, “Object
schemas for responsive robotic language use,” Proceedings of the 3rd
international conference on Human robot interaction - HRI ’08, p. 233,
2008.

[91] M. Johnston and S. Bangalore, “Finite-state multimodal parsing and
understanding,” International Conference On Computational Linguistics,
p. 369, 2000.

[92] “C# Language specification,” http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-334.pdf, accessed:
21 October 2014.

[93] J. Wielemaker, “An overview of the {SWI-Prolog} Programming
Environment,” in Proceedings of the 13th International Workshop on
Logic Programming Environments, F. Mesnard and A. Serebenik, Eds.
Heverlee, Belgium: Katholieke Universiteit Leuven, Dec. 2003, pp. 1–
16.

