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Abstract 
The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle acti-
vated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Dop-
pler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of 
the radar on the road. However, clear methodologies for in-field calibration have not been care-
fully established. The signs are often installed by subjective judgment which results in measure-
ment errors. This paper develops a calibration method based on mining the data collected and 
matching individual vehicles travelling between two radars. The data was cleaned and prepared in 
two ways: cleaning and reconstructing. The results showed that the proposed correction factor 
derived from the cleaned data corresponded well with the experimental factor done on site. In ad-
dition, this proposed factor showed superior performance to the one derived from the recon-
structed data. 
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1. Introduction 
A range of road traffic safety solutions have been recently developed and used by public traffic agencies to ensure 
safety and traffic efficiency. One such traffic safety solution being investigated by traffic authorities is the Vehicle 
Activated Sign (VAS). VAS is a digital road sign that displays a message when a vehicle’s speed exceeds a pre-set 
trigger speed. At present, most existing VAS systems are static in nature. These systems have a pre-set trigger 
speed which is set relative to the static speed limit applied on a specific road. In certain cases, simply setting the 
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trigger speed relative to the speed limit may not be optimal for the existing traffic conditions, thus limiting the 
efficiency of the VAS [1] [2]. Hence it is necessary to develop an adaptive Vehicle Activated Sign system 
(adaptive VAS) which will respond to traffic and road conditions. The adaptive VAS system consists of two 
fundamental stages: The first one is to collect accurate and significant data; whereas, the second is to automati-
cally find the suitable trigger speed based on that data. Since the performance of the sign is sensitive to the trigger 
speed the ability to accurately calibrate the sign is an important factor for VAS systems. The aforementioned data 
could be detected by many kinds of devices, such as loop detectors, cameras, radar guns and Doppler radars. 
This study is concerned with the data that is mainly collected by a continuous wave Doppler radar.  

The problem of data collection might seem simple and easy to achieve. In reality the problem is complex for 
several reasons. Firstly, since the velocities of the vehicles are acquired from a continuous wave Doppler radar, 
the vehicle is not travelling directly towards the radar but is slightly inclined at an angleα (see Figure 1) [3]. 
Therefore, the radar will not measure the actual velocity, but only the relative velocity in the direction of the 
beam. The cosine of this angle between the radar unit and its target determines the magnitude of the error. This 
error is known as the cosine error and it becomes significant when the angle to the roadway is large. The greater 
the angle between the radar and the roadway, the lower is the indicated velocity [4]. The relationship between 
the measured velocity mv  and the actual velocity av  is usually expressed by the following Equation (1) [5]: 

1 cosa mv v α= ∗                                       (1) 

where: 
mv  is the velocity of the vehicle detected by the radar 
av  is the actual velocity of the vehicle 
α  is the angle between the radar and the traveling direction of the vehicle 
Secondly, a successful measurement requires a direct view of the radar towards the vehicles. If the radar is in-

stalled in a side fire position, the radar must be located parallel to the roadway and face the coming traffic at an 
angle α . The distance to the oncoming lane should be between 0.5 and 3 metres. The radar is usually mounted 
in a side fire overhead position where the installation of the radar becomes more challenging. For this mounting, 
the radar must be set at a fixed height, so that its lower edge is 2.25 to 3.25 metres above the traffic lane’s 
ground. The radar must also be tilted to a 20˚ angle; otherwise the vehicles will not drive through the radar beam 
(see Figure 2). This installation is expected to be carefully set because precise alignment of the radar is the de-
cisive factor in obtaining an exact velocity measurement and vehicle classification.  
 

 

Figure 1. Relation between actual velocity av  and measured 
velocity mv  [3].                                        

 

 
Figure 2. Doppler radar mounted on a sidefire overhead posi- 
tion and tiled to 20 degrees.                               
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Setting the radar to a fixed height and distance can be done free from error, but eliminating errors due to the 
tilt of the radar to the oncoming lane is hard to achieve. Therefore measuring the angles accurately is proble- 
matic and requires careful measurement of road gradients and other factors. Thus, calibration has been set by 
subjective judgment rather than systematic judgment. In other words, the radar is typically placed at the site 
without a proper method and is simply set up “by eye”. A question raised in this paper is how calibration can be 
established with minimum equipment requirements in the field? Can a speed correction factor be derived from 
the available measurements collected by the radar? How can validation be completed through finding data 
driven by the correction factor? This paper proposes a systematic way to design an experiment for calibrating 
the radar with minimum requirements to be established in the field. The objective of this study is to perform a 
data driven calibration algorithm, which takes the data collected from two radars and derives the speed correc-
tion factor. The rationale behind using two radars is that no specialist or different equipment (or additional field 
personnel) are needed; once calibration has been done, the second radar can be redeployed to a new site.  

The rest of the paper is organized as follows: At first, an overview about the calibration for a Doppler radar 
done in previous work is given in Section 2. In Section 3, data collection and experiment design are presented. 
Section 4 describes the calibration algorithm performed in this paper. An experiment is presented in Section 5. 
The results are explained in Section 6. The paper finally presents conclusions and proposes possible future stud-
ies in Section 7.  

2. Related Work 
There are several methods that have been used in radar calibration. A common method is a tuning fork that is tuned 
to vibrate at a certain frequency and placed in front of the radar. This method has been previously tested and 
proved as a stable and suitable standard for calibrating Doppler police radar guns [6]. Another study examined the 
uncertainties of different methods in calibration of speed enforcement down to road radar. The proposed methods 
were tuning forks, a vehicle’s speedometer, speed simulators, and a fifth wheel [3]. The most uncertain method 
regarding vehicle speed was a vehicle’s speedometer and the least uncertain was the laboratory speed simulator. 
Uncertainty in the tuning fork method was approximately the same as the laboratory speed simulator. Another 
study developed a radar calibration system of Doppler/range radars with high precision. The developed system 
provides information regarding several parameters, such as the Doppler frequency shift, the frequency measured 
with a universal time interval counter, the emulated speed, and the weather conditions [7] and [8]. Due to the 
measurement error of frequency that directly affects the measured velocity, a new radar based velocity measuring 
system, based on a processor, was incorporated instead of calibrating the radar used in the their study. This system 
uses the Doppler principle based on underlying hardware design [9]. Furthermore, another study proposed a new 
vehicle speed and traffic flow measurement radar to get higher resolutions in speed and traffic flow management. 
This study is based on eliminating the interference of other vehicles on the road when detecting a certain vehicle 
[10]. A data fusion of Doppler radar with video camera had been proposed for a traffic surveillance system which 
was capable of automatically monitoring all vehicle speeds [11]. A majority of the work reported above consid-
ered a calibration method based on either comparing radar frequency or developing new calibration systems and to 
the best of our knowledge none have considered a data driven calibration. Data driven calibration methods were 
used in various traffic models such as speed-density model [12] and time gap model [13]. 

3. Data Collection and Experimental Design 
A test site on Mjälga roadway in Borlänge, Sweden was selected for the experiment. No external factors, such as 
the presence of bends, junctions or roundabouts were present to affect the consistency of the data collection. The 
meaning of data consistency is that each vehicle which travels along the test site should be present in the data set. 
Since the aim of this study was to calibrate the radar used in the adaptive VAS system, two main components form 
the data collection system: VAS and three Siersega radars. The VAS used in the current study displays two 
warning messages in succession. The first is a reminder of the posted speed limit, which is 40 km/h, which is 
followed by a “SÄNK FARTEN” (reduce speed) message. Typically the messages are displayed only when the 
vehicle speed exceeds a pre-set threshold speed, i.e. the trigger speed. 

The Siersega device is an advanced traffic counter. It consists of a Doppler radar sensor integrated by a Flash 
RAM data memory, a real time clock, a serial data interface and a battery pack. Individual vehicle data was col-
lected by the Siersega placed across the roads 100 m before the VAS (Position A), at the site of the VAS (Posi-
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tion B) and 60 m after the VAS (Position C) (see Figure 3). The device at Position A is labelled as AS  and the 
devices at Positions B and C are labelled as BS  and CS  respectively. On each occasion that the Siersega re-
corded a time, the velocity, the direction of travel and the vehicle type for each individual vehicle for 24 hours a 
day for a whole week. 

Data from the radar at the VAS is matched with data collected by two other radars installed at a distance of 60 
meters and 100 meters on either side of the VAS (see Figure 3) for further analysis. Note that such radars are 
placed appropriately to cover the vehicles’ prior and posterior VAS velocities.  

In addition, several test runs were carried out by the research team by driving a car on the road segment where 
the radars are installed; to be able to work out the baseline difference in the velocities reported by the radars as 
opposed to velocity of the car. Such difference has further been used to validate the correction factor obtained in 
this work (see Section 6). At this point it is worth mentioning that the baseline difference will be referred to as 
the experimental correction factor from this point forward. The experimental correction factor in the current case 
is equal to 1.18.  

4. Calibration 
Calibration in the current case is mainly based on mining the data collected and finding the distance correction 
factor. The distance correction factor is the ratio between the actual distance and the distance derived from the 
two radars. Figure 4 is an overview of the proposed calibration system. Data is preliminary explored to be able 
to detect discrepancies in the radar detection (see Section 4.1). Data is then preprocessed in two stages; detection 
and correction respectively (see Sections 4.2.1 and 4.2.2). Finally each individual vehicle is matched to calculate 
the correction factor that will be based on the distance travelled between the radars (see Section 4.3). 

4.1. Data Exploration 
In ideal conditions, the radars should detect each vehicle and each vehicle should be visible to all of the three 
radars established on the road. In the real world the detection of the vehicles is often sensitive to some disturbances 
and this might lead to presence of missing values and outliers. At this point it is worth mentioning that the radars 
 

 
Figure 3. Location of radars AS , BS , CS  and VAS on the roadway.       

 

 
Figure 4. The stages of the calibration system.                             
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should be time synchronized where the individual travel time is the time difference between the synchronous 
radars. However, there can be a delay between the radars’ clocks due to an incorrect setup of the clocks. Despite 
the radars being synchronized initially, the clocks may be delayed due to disturbances in the radar detection of the 
vehicle. The most challenging disturbance is the arrival of vehicles from different directions at the same time and 
at the same position. This means that the radar may be occupied by another vehicle passing from the other direc-
tion. Besides, overtaking and double counting can also contribute to the presence of missing values and outliers. 
Figure 5(a) presents a sketch showing vehicles and their corresponding times at different locations. Suppose 
Vehicle V  is passing by Radars, AS , BS and CS  at time At  , Bt  and Ct  and Vehicle V ′  is passing by Ra-
dars, AS , BS and CS  at time At′  , Bt′  and Ct′ . Vehicle V ′  is approaching from the opposite direction of Vehi-
cle V . The travel time for V , i.e. time spent, between AS  and BS  is ABt  and the travel time for V  between 

CS  and BS , is CBt . The same for Vehicle V ′ , the travel time for V ′  between AS  and BS , is ABt′  and the 
travel time for V ′  between CS  and BS  is CBt′ . Bt  is the sum of At  and ABt  and Bt′  is the sum of Ct′  and 

CBt′ . In Figure 5(b), when V  and V ′  arrive at Radar BS  at the same time, B Bt t′= , the radar detects either V  
or V ′ . Several cases of missing vehicles can be listed, but only two cases are presented here; missing vehicles by 
Radar BS  (Case 1 and 2) (see Equations (2) and (3)).   

Case 1: Vehicle V  detected by Radar AS  at time At  but missed by Radar BS  

B A ABt t t= +                                       (2) 

Case 2: Vehicle V ′  detected by Radar CS  at time Ct′  but missed by Radar BS  

B C CBt t t′ ′ ′= +                                       (3) 

4.2. Data Preprocessing 
Traffic data collected in real time often suffers from incomplete and noisy data. Data pre-processing was therefore 
employed to eliminate noisy data and also to be able to repair missing data [7]. Pre-processing in the current case 
deals mainly with detection and correction tasks respectively (see Sections 4.2.1 and 4.2.2). 

4.2.1. Detection 
In this step, three types of detections are of concern: 

A. Detection of time delay 
B. Detection of outliers 
C. Detection of missing values 
A. Detection of time delay 

The detection of a time delay is first extracted from the data set by using a numerical algorithm. The fixed point 
iteration method is one of these algorithms that can be used in order to obtain an estimate as to the time delay 
between radars. The algorithm converges at a fixed point under some conditions given by the theorem described 
by previous mathematical study [14]. Based on the aforementioned study, the proposed algorithm starts at any 
point and recursively approaches to an approximate solution. In this paper, an optimal time delay δ  is applied by 
the following algorithm [15] and [16]: 

1) Start by an initial value to time delay δ : ( ) ( ) ( ) ( )2 1 1 1 2 3 4 2 1 2k t t v v v t t v v vδ = − + − − +  

2) Choose threshold 0.01τ =  
 

  
(a)                                                       (b) 

Figure 5. Sketch of the detection problem (a) Vehicle V  and V ′  arrive at time At  at Radar AS  respectively at time Ct′  
at Radar CS ; (b) Vehicle V  and V ′  arrive at Radar BS  at the same time B Bt t′= .                                 
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3) Calculate the estimated distance, ( )( )2 2 1 1kx t t vδ= − −  

4) Derive expected error 1 2

1 2

x x
v v

ω = −  

5) Calculate a new time delay 1
1
2k kδ δ ω+ = −  

6) If 1k kδ δ τ+ − ≥ , then 1k kδ δ += , go back to step 3 
7) If 1k kδ δ τ+ − < , end 

where 
1x  is the real distance between AS  and BS  
1v  is the mean velocity for the first vehicle travelling between AS  and BS  
2v  is the mean velocity for the second vehicle travelling between AS  and BS  

1t , 2t  is the time recorded for the first vehicle by radars AS  respective BS  
3t , 4t  is the time recorded for the second vehicle by radars AS  respective BS  

B. Detection of outliers 
At this point it is worth mentioning that detection of outliers mainly relies on understanding statistical data. 

Most of the outliers are usually detected by using either basic descriptive statistics, such as mean, median and 
standard deviation, or by visualizing the data using appropriate plots, such as scatter plots or box plots. Both show 
the mean prevalence of the value in the data. It should be noted that any record that significantly differs from the 
mean is considered as an outlier. In this work, vehicles traveling at a velocity that is higher or lower than the mean 
velocity relative to the data are regarded as outliers. For example, the common velocity of a motorcycle or truck 
differs from the common velocity of a car. Therefore data was grouped into four smaller groups based on the type 
of vehicle to aid in the detection of outliers. Grouping is based on the length of vehicles detected by the radar as 
follows: 

Class 1: Motorcycle (length < 2 m) 
Class 2: Cars (length >= 2 & length < 6 m) 
Class 3: Trucks (length >= 6 & length < 9.5 m) 
Class 4: Long trucks (length >= 9.5 & length < 25.5 m) 
Based on this classification, the box plot in the figure below shows the outlier detection. The main idea is to 

obtain only vehicles with minimum standard deviation from the overall mean velocity. Larger variations in vehicle 
velocity provide inconsistency in the correction factor that will be derived later in this study. The first plots in 
Figure 6(a) are the velocities of vehicles respective to the four classes detected by Radar AS  (100 m before the  
sign). The second plot in Figure 6(b) presents the velocities of vehicles respective to the four classes detected by 
Radar BS  (at the sign located) and the last plot in Figure 6(c) shows the velocities of vehicles passing Radar CS  
(60 m after the sign). All the plots are clearly presenting that the presence of outliers mostly exist in Class 2. The 
outliers detected by Radar BS  can therefore be considered as vehicles travelling under 30 km/h and vehicles 
travelling over 60 km/h. Next, it is seen in the histogram presented in Figure 7 that most of the vehicles passing 
 

 
(a)                                 (b)                                     (c) 

Figure 6. Vehicle velocities respective to Class 1 (motorcycle), Class 2 (cars), Class 3 (trucks) and Class 4 (trucks with 
trailers). (a) At radar AS ; (b) At radar BS ; (c) At radar CS .                                                          
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Radar BS  are travelling between 30 km/h and 60 km/h. 
C. Detection of missing values 
In the current work detection of missing values mainly relies on the disturbance of radar detection which has 

been explained in an earlier section. Detection is therefore done by calculating the time gap. The time gap is the 
time difference between two successive individual vehicles. Matching is done based on these time gaps. If the 
difference between the time gaps is insignificant, a missing value is present. The difference is compared to a user 
defined threshold that cannot exceed 20 seconds. The threshold is chosen, after some in-field trials, based on the 
average max time gap that may occur between vehicles.  

4.2.2. Correction 
After the detection of the location of missing values and outliers in the data set, the data is corrected in two ways:  
• Data cleaning: The data is cleaned by removing records that are detected as outliers and missing values. After 

this stage, the data contains only the records that are matched with the lowest vehicle variation. 
• Data construction: The data is completely constructed by filling in missing records and keeping all outliers. 

The main idea of the data construction is to build a complete data set without missing any individual vehicle. 
The best estimate of the missing value is derived from the time and velocity of the vehicle passing from the 
opposite direction.  

4.3. Matching and Correction Factor 
The basic idea is to find the velocity obtained by the radar by calculating the expected distance travelled by the 
vehicles. For instance, time records from Radar AS  are matched to time records from Radar BS . The travelled 
distances are extracted from the matched velocities and time recorded by both radars. The Speed Correction Factor; 
CF, is based on the estimated distance for each vehicle. CF is entitled by Equations (4) and (5). Additionally, the 
estimated distances are compared to the actual distance between the two radars. The time delay is included in order 
to find the travel time. 

( )optm i Bi Aix v t t δ= − −                                  (4) 

( )
1

CF 1
n

a m
i

N x x
=

= ∑                                    (5) 

where:  
mx  is the estimated distance for each vehicle  
ax  is the actual distance 
iv  is the average speed for Vehicle i  
Bit  is the measured time for Vehicle i  recorded by Radar BS  
Ait  is the measured time for Vehicle i  respective 1i +  recorded by Radar AS  

CF  is the correction factor based on estimated distance mx  
optδ  is the optimal estimated time delay derived between Radar A  and Radar B  

 

 
(a)                                 (b)                                     (c) 

Figure 7. Histogram for vehicle velocities. (a) At radar AS ; (b) At radar BS ; (c) At radar CS .                              
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n  is the number of vehicles 

5. Analysis 
The calibration system presented in previous section (see Section 4) is tested on two data sets: 
• Data Set 1: Data Set 1 was collected by Radar AS  and Radar BS  where the distance between the radars is 

100 m. 
• Data Set 2: Data Set 2 was collected by Radar BS  and Radar CS  where the distance between the radars is 60 

m. 
As explained earlier (see section 4.2.1), the optimal time delay between the deployed radars should be first 

noticed. Figure 8 shows the optimal time delay obtained from the numerical algorithm proposed in earlier section. 
Note that the optimal value is reached when the time delay is approaching the minimum value that the algorithm 
can provide. 

In Figure 8(a), the time delay between Radar AS  and Radar BS (Data Set 1) is presented. In Figure 8(b) the 
optimal time delay is between Radar BS  and Radar CS  (Data Set 2). In both data sets, the algorithm finds the 
optimal time delay after 8 iterations. The time delay between Radar AS  and Radar BS  is 61 seconds, whereas 
there are 402 seconds between Radar BS  and Radar CS .  

Figure 9 and Figure 10 show the matched velocities for vehicles from Data Set 1 and Data Set 2, respectively. 
In Figure 9(a) and Figure 10(a), the data is cleaned by removing records of missing occurrences. In Figures 9(b) 
and Figure 10(b), the data is reconstructed to fill in missing data.  

6. Results and Discussion 
The results of the proposed correction factors are depicted in Table 1. The proposed correction factor is performed 
on both data sets prepared on either cleaning the data or constructing the data. Note that in the table below, the 
distance between AS  and BS  is named as AB and the distance between BS  and CS  is named as BC. To be able 
to validate the obtained results, normalized root mean square error (called NRMSE) had been calculated. NRMSE 
is used as a measure of the difference between the distance estimated by the correction factors and the actual 
distance between the radars. The NRMSE is basically the square root of the mean square error which (see Equa-
tion (6c)).  

( )21NRMSE 1a m ax x x
n

= −∑                                 (6) 
 

where:  
xa is the actual distance between radars  
xm is the estimated distance used in Equation (4) 

Results obtained clearly indicate that the correction factor obtained after data cleaning was much closer to the 
reference correction factor than the one obtained through data reconstruction. A fitted linear regression and 
goodness of fit (R-squared) to identify the relationship between the matched velocities has also been investi-
gated. The fact that the R-squared value for the cleaned Data set 2 is higher when compared to Data Set 1 further 
reinforces our findings (see Table 1). Note that the correction factor is even closer to the reference correction 
factor and the normalized root mean squared error(NRMSE) is low when the distance between the radars is 
equal to 60 meters in particular, cleaned Data Set 2. A good discussion about NRMSE can be found elsewhere 
[17]. The fact that the proposed correction factor reported using cleaned Data Set 2 is closer to the experimental 
correction factor (see Section 3) i.e. 1.18, further supports the findings. 
 

Table 1. Comparison between different correction factors, NRMSE and R-squared respective to Data Set 1 and Data Set 2.                                                

 Data Set 1 (AB = 100 m) Data Set 2 (BC = 60 m) 

 Cleaned Complete Cleaned Complete 

Proposed correction factor 1.26 1.78 1.20 3.42 

NRMSE 0.26 0.48 0.19 0.70 

R-squared 0.45 0.51 0.63 0.56 
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(a)                                               (b) 

Figure 8. (a) The optimal time delay between Radar AS  and Radar BS  respective to the number of itera- 
tions; (b) The optimal time delay between Radar BS  and Radar CS  respective to the number of iterations.           

 

 
(a)                                               (b) 

Figure 9. Matching velocities for vehicles travelling between Radar AS  and Radar BS  (Data Set 1). (a) 
cleaned data; (b) Complete data.                                                                  

 

 
(a)                                               (b) 

Figure 10. Matching velocities for vehicles travelling between Radar BS  and Radar CS  (Data Set 2). (a) 
Cleaned data; (b) Complete data.                                                                       
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7. Conclusion and Future Work 
In this paper, a data based calibration system was applied to accurately correct vehicle velocity collected by a 
Doppler radar and used on the adaptive VAS system. A data driven system entails an ability to preprocess the 
gathered data and to match individual vehicles to find out the correction factor for vehicle velocities detected by 
radar. In fact, the correction factor is the ratio for the actual vehicle velocities to the measured velocities by the 
radar. In this study, the proposed correction factor, extracted directly from data collected by two Doppler radars 
placed at a pre-set distance apart, corresponds well to the true correction factor derived from the experimental 
calibration at the site. The proposed correction factor obtained from the cleaned data also showed more superior 
performance than that from the reconstructed data, indicating that filling the missing values with an estimated 
time and velocity provided an inaccurate data set. An estimation of time and velocity for missing values could be 
improved with an intelligent prediction algorithm to get further accuracy of the reconstructed data. However, the 
study reveals the correction factor for vehicle velocity which allows avoiding dealing with the mounting problem 
of the Doppler radar. The validation performed is rather a comparison with the experiment on site. Another type of 
validation needs to be established and explored to ensure the accuracy of the calibration system. One plausible 
way of testing the accuracy is by comparing the calibration system against a baseline method such as a tuning fork. 
Testing the system at other test sites also needs to be done in further studies.  

In the near future, an adaptive fuzzy inference system can be developed to calibrate radar installation. The input 
to such a system can be the distance of the road, the mounting height and the tilted angle and the output is the 
correction factor. Also, a real time video surveillance algorithm can facilitate the detection of vehicles, the clas-
sification of vehicle types, the accurate counting of vehicles and the time difference between records. Using the 
real time surveillance algorithm, individual vehicles can be definitely tracked where many types of radar can be 
calibrated simultaneously. Monitoring and voice recording systems can be another way to calibrate the radar by 
analyzing the voice signals detected from the traffic. A mobile application can be a good tool to calibrate the radar 
on site. A mobile phone application can make it easier to track the time and velocity at a certain location using the 
phone’s GPS. Finally, a VAS can be developed in a way that is automatically adapted to the location by using 
artificial intelligence techniques.  
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