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Abstract
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The statistical practice of equating is needed when scores on different versions of the same
standardized test are to be compared. This thesis constitutes four contributions to the observed-
score equating framework kernel equating.

Paper I introduces the open source R package kequate which enables the equating of observed
scores using the kernel method of test equating in all common equating designs. The package
is designed for ease of use and integrates well with other packages. The equating methods non-
equivalent groups with covariates and item response theory observed-score kernel equating are
currently not available in any other software package.

In paper II an alternative bandwidth selection method for the kernel method of test equating is
proposed. The new method is designed for usage with non-smooth data such as when using the
observed data directly, without pre-smoothing. In previously used bandwidth selection methods,
the variability from the bandwidth selection was disregarded when calculating the asymptotic
standard errors. Here, the bandwidth selection is accounted for and updated asymptotic standard
error derivations are provided.

Item response theory observed-score kernel equating for the non-equivalent groups with
anchor test design is introduced in paper III. Multivariate observed-score kernel equating
functions are defined and their asymptotic covariance matrices are derived. An empirical
example in the form of a standardized achievement test is used and the item response theory
methods are compared to previously used log-linear methods.

In paper IV, Wald tests for equating differences in item response theory observed-score kernel
equating are conducted using the results from paper III. Simulations are performed to evaluate
the empirical significance level and power under different settings, showing that the Wald test is
more powerful than the Hommel multiple hypothesis testing method. Data from a psychometric
licensure test and a standardized achievement test are used to exemplify the hypothesis testing
procedure. The results show that using the Wald test can provide different conclusions to using
the Hommel procedure.
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1. Introduction

Test equating is the statistical procedure by which scores on two separate tests
on the same topic are related. The major area of application for test equat-
ing is in standardized testing, where a certain ability or abilities are measured
by a test designed for that specific purpose. Standardized testing is used in
many different settings, such as in evaluating the performance of a particular
population or when evaluating the performance of an individual. Examples of
the former case are PISA (Programme for International Student Assessment)
and TIMSS (Trends in International Mathematics and Science Study) and ex-
amples of the latter case are the Swedish Scholastic Aptitude Test, SAT and
TOEFL (Test of English as a Foreign Language). For these tests, different ver-
sions of the same test are administered at different points in time. Often the
different versions are administered to groups of people from populations which
differ from one instance to the next. For tests which are meant to evaluate the
performance of an individual, it is necessary to relate the scores on different
versions of the same test in order to compare the scores of the individuals tak-
ing the different versions. Test scores are the basis for admission to university
programs and are used in deciding between passing or failing a certification.
Hence it is of high importance that the scores are comparable from different
versions to ensure that the test-takers are evaluated fairly. In designing a test,
the overall item difficulty is meant to be equal across the different test versions
in order to facilitate comparisons between individuals taking the different ver-
sions. In practice, two tests consisting of different items are rarely perfectly
equal in difficulty. This leads to the purpose of test equating: to ensure that
scores from different administrations of the same test are comparable.

1.1 Data and data collection designs
Standardized tests often consist of multiple choice items which are scored as
either true (denoted as 1) or false (denoted as 0). Such items are said to be
dichotomous. The items can also be scored in multiple categories and such
items are called polytomous items. The score on a polytomous item with m
possible categories is denoted 0,1, . . . ,m − 1. The data resulting from a test
administration thus consist of a sequence of numbers denoting the score on
each item for each individual. Often, the data used in equating are the summed
scores over all the items for each individual.
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In equating, there are many different data collection designs used to relate
scores on two versions of the same standardized test. Let X and Y denote the
two different versions of the same standardized test and let P and Q denote the
populations, possibly identical, which the groups taking the respective tests are
from. The descriptions of the data collection designs given here are adapted
from Kolen and Brennan (2014) and von Davier et al. (2004).

In the equivalent groups (EG) design, different individuals from a common
population take each of the versions X and Y at different points in time, en-
abling the direct comparison of the scores on the different versions. In a single
group (SG) design, the same individuals take both tests X and Y , also enabling
the direct comparison of the scores on the two versions. This design is however
afflicted by a possible practice effect since one test is taken before the other.
A way to mitigate this effect is to have half of the group take test X first and
have the other half take test Y first. Such a design is called a counterbalanced
(CB) design.

In the non-equivalent groups design, individuals from different populations
take the versions X and Y at different points in time. In this design, it is not
possible to directly relate the scores on versions X and Y since the groups
do not come from the same population and may differ in ability. In order to
relate the scores of X and Y , common items can be administered to each group
in addition to X and Y . These common items constitute the anchor test A,
which may be part of the main tests X and Y (internal anchor) or may be given
separately (external anchor). The information that the common items provide
is used to relate the scores on X and Y . The described design is called a non-
equivalent groups with anchor test (NEAT) design. If an anchor test is not
administered, it is still possible to equate two versions X and Y if covariates
which are correlated with the test scores are available for the individuals. The
design in this setting is called the non-equivalent groups with covariates (NEC)
design (Bränberg and Wiberg, 2011).

1.2 Test equating
The object of an equating transformation is to relate the scores on two different
versions of the same test. Such a transformation is a function of the observed
data and estimated statistical models. Thus, equating is a statistical procedure
by which scores on different test forms are adjusted so that the scores from
these test forms can be used interchangeably (Kolen and Brennan, 2014).

In order for a transformation to be called an equating function, five require-
ments have been identified (Lord, 1980; von Davier et al., 2004; Kolen and
Brennan, 2014). First, the equal construct requirement says that the tests to
be equated should measure the same underlying construct. Second, the equal
reliability requirement means that the tests to be equated should have equal
reliability. Third, the symmetry requirement states that the equating transfor-
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mation should be symmetrical, i.e. for tests X and Y there should not be a
difference in equating X to Y compared to equating Y to X . Fourth, the equity
requirement means that it should not matter to an individual whether test X or
test Y is administered. Fifth, the population invariance requirement states that
the equating transformation should be identical no matter which population
were administered the tests X and Y . In practice, it is not possible to guaran-
tee that the requirements of equal reliability, equity and population invariance
hold but the tests are meant to be designed such that these requirements are ful-
filled. There are ways to empirically assess that the requirements are satisfied
for a given test administration, see e.g. Dorans and Holland (2000).

There are many different procedures that can be used to conduct an equat-
ing of two test forms. These procedures can in large part be separated into two
approaches: observed-score equating and true score equating. The observed
score is the score which a given individual receives after taking the test. The
true score equals the observed score plus a random, unobserved, error term.
When equating true scores, the object is to find the transformation applied to
the true score on test X such that the expected value of the transformation
equals the expected value of the true score on test Y . In observed-score equat-
ing, the object is to find the test Y equivalent observed score of test X . In this
thesis the focus is only on observed-score equating.

Observed-score equating is itself divided into two main approaches. The
first is called linear observed-score equating, which means that there is a linear
relationship between the observed scores on test X and test Y . Let X be a test
with kX dichotomous items. The possible score values on test X are then
{x1, . . . , xkX+1}. The linear equating function is defined as

eY (LIN) (x) = µY +
σY

σX
(x − µX ) , (1.1)

where µX and µY are the means and σX and σY are the standard deviations
of the test score distributions for tests X and Y , respectively. The second
type of observed-score equating function is called the equipercentile equating
function, defined as

eY (x) = G−1 [F (x)] , (1.2)

where F (·) and G(·) are the cumulative distribution functions for tests X and
Y , respectively. However, in standardized testing, scores are usually integer-
valued and hence the distribution functions in Equation 1.2 are not continuous.
For this reason continuous approximations must be defined. Before the advent
of kernel equating, these continuous approximations were calculated using
linear interpolation (Angoff, 1984). In linear interpolation, the continuous
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approximation to F (·) is defined as

FLI(x; αX ) =




0 if x ≤ x1 − 0.5∑kX+1
j=1 r j + [x − (xk − 0.5)]rk if x1 − 0.5 < x ≤ xkX+1 + 0.5

1 if x > xkX+1 + 0.5

,

(1.3)

where k equals the nearest integer to x, r j is the score probability for score
point j and rk is the score probability for score point k. Two drawbacks to
using linear interpolation are that the resulting distribution function is not ev-
erywhere differentiable and that the variance of the original distribution is not
preserved (see e.g. von Davier et al. (2004)).

1.3 Item response theory observed-score equating
Item response theory (IRT) is a commonly used statistical method to model the
responses to the items of a standardized test. In unidimensional IRT the prob-
abilities to answer each item on a test correctly are assumed to be functions of
an underlying latent variable θ and item parameters which determine the shape
of the functions (Hambleton and Swaminathan, 1985). A popular IRT model
is the three-parameter logistic model (Lord, 1980), where the probability to
answer the dichotomous item l on the test X correctly is modelled as

PXl (θ) = cXl +
1 − cXl

1 + exp [−aXl (θ − bXl )]
, (1.4)

where the parameter aXl denotes the discrimination of the item (how well the
item separates between low ability and high ability individuals), the parameter
bXl the difficulty of the item and cXl is the guessing parameter for the item
(the lower bound for the probability of answering the item correctly). Setting
cXl = 0 retrieves the two-parameter logistic model. The item parameters from
an IRT model can be used to calculate the score probabilities for each summed
score on the test. These score probabilities can then be used to conduct an
observed-score equating (Lord and Wingersky, 1984). Hence, the IRT model
estimation can be viewed as a pre-smoothing step in the equating process.

1.4 The kernel equating framework
Kernel equating was first introduced by researchers at Educational Testing
Service in the late 1980s where it was described for the EG, SG and NEAT
post-stratification equating (NEAT PSE) designs (Holland et al., 1989; Hol-
land and Thayer, 1989). At the time, kernel equating was unique in providing
standard errors of equating when using pre-smoothing with log-linear models.
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The kernel method of test equating was further developed in the early 2000s,
again at Educational Testing Service, when kernel equating was extended to
include the CB and NEAT chain equating (NEAT CE) designs. The concept
of standard error of equating difference (SEED) was also introduced. This re-
search was summarized in the book The Kernel Method of Test Equating (von
Davier et al., 2004) and in von Davier (2013).

The kernel method of test equating has typically been described as a proce-
dure comprising five steps:

1) Pre-smoothing of the score probabilities
In order to reduce the variance and get a more stable equating function a para-
metric model is most often fitted to the observed data. This procedure is called
pre-smoothing. The original proposal in kernel equating was to calculate the
summed score for each individual and fit log-linear models to smooth out the
resulting score probabilities (Holland and Thayer, 1989, 2000). Another op-
tion is to fit an IRT model from the responses for each individual on each item
and from this model calculate the implied, smoothed, score probabilities. It
is possible to avoid the pre-smoothing step and use the observed data directly.
However, pre-smoothing has been shown to be effective in improving the ac-
curacy of the resulting equating (Kolen and Brennan, 2014).

2) Calculation of the score probabilities
After fitting the parametric model to the data, the resulting parameter estimates
are used to calculate the score probabilities required for each design. This step
differs somewhat depending on the pre-smoothing method used. For the EG
and NEAT CE designs, the step is identical for pre-smoothing using either
log-linear or IRT models. In either pre-smoothing method, the marginal score
probability vectors r and s for tests X and Y respectively are calculated for
the EG design and the marginal score probability vectors rP , tP , sQ and tQ
for tests X and A on P and tests Y and A on Q, respectively, are calculated
for the NEAT CE design. The calculation of the score probabilities r and
s in the SG design and the score probabilities rS and sS in the NEAT PSE
design differs between the log-linear and IRT methods. For the log-linear
method, estimated bivariate distributions are used to calculate the required
score probabilities whereas for the IRT method concurrent calibration (SG)
or equating coefficients (NEAT PSE) are used. The NEAT PSE case is a bit
different than the other methods, since the resulting score probabilities rS and
sS are defined for a synthetic population S, a mixture of the two populations
P and Q:

S = wS × P + (1 − wS ) ×Q, (1.5)

where wS ∈ [0,1].
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3) Calculation of the continuous approximation to the discrete
test score distribution
When the score probabilities have been calculated, the resulting discrete dis-
tribution functions must be converted to continuous distribution functions in
order to conduct the equating. This step is identical for all methods of pre-
smoothing and for using the observed data directly. Consider an EG design,
where the discrete distribution function for test X with kX dichotomous items
is F (x; r ). The kernel method continuous approximation to F (x; r ) is

FhX (x; r ) =

kX+1∑
j=1

r jΦ
(

x − aX x j − (1 − aX )µX
aX hX

)
, (1.6)

where r j is the score probability for the j-th score value, Φ(·) denotes the
standard normal distribution function, x j is the j-th score value, µX is the
mean of the test scores, hX is the bandwidth and

aX =

√
σ2

X

σ2
X + h2

X

, (1.7)

where σ2
X is the variance of the test scores. The bandwidth hX is discussed

in Section 1.5. Let GhY (·; s) denote the continuous approximation for test Y .
In the NEAT CE design, let FPhX (·; rP ) and HPhAP (·; tP ) be the continuous
approximations of the distribution functions for tests X and A on P and let
GQhY (·; sQ) and HQhAQ (·; tQ) be the continuous approximations of the dis-
tribution functions for tests Y and A on Q. For the NEAT PSE design, define
FShX (·; rS ) and GShY (·; sS ) as the continuous approximations for tests X and
Y on the synthetic population S. Each continuous approximation is calculated
in the same way as that in Equation 1.6. The kernel equating framework en-
ables the usage of other kernels than the Gaussian kernel used in Equation 1.6,
such as the logistic and uniform kernels (Lee and von Davier, 2011). The con-
tinuous approximations provided by the kernel method are differentiable and
preserve both the mean and the variance of the original test score distributions
(von Davier et al., 2004).

4) Equating
At each score point of test X an equated value is calculated according to the
specific design. The function corresponding to this transformation is called
the equating function. In the EG design, the equating function from X to Y is
the inverse of the continuous approximation GhY (·; sQ) evaluated at the value
of the continuous approximation for test X evaluated at the score point x:

eY (EG) (x; r , s) = G−1
hY

[
FhX (x; r ); s

]
. (1.8)
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In the NEAT CE design, the equating function is a composite function of the
four continuous approximations for each test and population combination:

eY (CE) (x; rP , tP , sQ , tQ) = G−1
QhY

(
HQhAQ

(
H−1

PhAP

(
FPhX (x; rP ) ; tP

)
; tQ

)
; sQ

)
.

(1.9)

For the NEAT PSE design, the equating is conducted with respect to the syn-
thetic population S. The equating function in this design is defined as:

eY (PSE) (x; rS , sS ) = G−1
ShY

[
FShX (x; rS ); sS

]
. (1.10)

It is useful to consider the equating function as a vector function for all score
points x1, . . . , xkX+1 on test X , defined for any equating design and any method
of pre-smoothing. Hence, denote the general multivariate equating function
for a specific design D as

eY (D) (x; τ) =
[
eY (D) (x1; τ) . . . eY (D)

(
xkX+1; τ

)] ′
, (1.11)

where τ is the vector of parameters in the pre-smoothing model.

5) Calculating the standard error of equating
In practice, the equating function is unknown and must be estimated. Denote
the estimator of the general multivariate equating function êY (D) (x; τ̂). The
estimator is subject to sampling variability and hence calculating the variance
of the estimator is desirable. Let n be the sample size. Under an assumption of
asymptotic normality of the estimator of the score probabilities, large sample
approximations using the delta method are used to calculate the variance of
êY (D) (x; τ̂) (Ferguson, 1996). The delta method can be used since êY (D) (x; τ̂)
is continuous and differentiable with respect to the score probabilities. Thus,
as n → ∞,

√
n
(
êY (D) (x; τ̂) − eY (D) (x; τ)

)
→ N

(
0,ΣêY (D) (x;τ̂)

)
. (1.12)

Formulas which can be used to calculate ΣêY (D) (x;τ̂) when using pre-smoothing
with log-linear models in the EG, SG, CB, NEAT CE and NEAT PSE designs
are given in von Davier et al. (2004).

1.5 Bandwidth selection in kernel equating
The kernel method of test equating requires the selection of bandwidth param-
eters which determine the features of the resulting continuous approximations
to the discrete test score distributions. A small bandwidth puts more emphasis
on the value at which the function is evaluated whereas a larger bandwidth
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is influenced to a higher degree by the adjacent score points. A higher band-
width thus produces smoother distribution functions. If the bandwidths are set
to very large numbers, in von Davier et al. (2004) defined as 10 times the stan-
dard deviations of the test scores, the resulting equating function will closely
match the linear equating function. Although the bandwidth can be set be-
forehand by the practitioner to any desired value, in kernel equating two main
data-driven methods of selecting the bandwidth have been proposed. Both
methods utilize penalty functions to select a bandwidth which is in some sense
optimal for a given input of score probabilities. Let r̂ j denote the estimated
score proportion for score value j ∈ {1, . . . , kX + 1} and let F̂ ′

hX
(·) and F̂ ′′

hX
(·)

denote the first and second derivatives of the estimated continuous distribution
function, respectively. The first method selects the bandwidth by minimizing
the function

PEN1(hX ) =

kX+1∑
j=1

[
r̂ j − F̂ ′hX

(x j )
]2
, (1.13)

which gives a density function that closely resembles the estimated or ob-
served proportions. The second method selects the bandwidth by minimizing
the function

PEN(hX ) = PEN1(hX ) + κ

kX+1∑
j=1

Aj , (1.14)

where κ is a constant usually set to 1 and Aj = 1 if F̂ ′′
hX

(x j − ω) > 0 and
F̂ ′′
hX

(x j + ω) < 0 or if F̂ ′′
hX

(x j − ω) < 0 and F̂ ′′
hX

(x j + ω) > 0, where ω is
a constant typically set to ω = 1/4. The second method penalizes for irreg-
ularities around each score point, providing a more smooth density function.
Although the bandwidths are influenced by the features of the estimated score
probabilities and selection of the bandwidths will vary for each data set, the
bandwidth selection was not taken into account in the formulas for the stan-
dard errors of equating which were provided in von Davier et al. (2004).

1.6 Choosing between different equating functions
For a given data set in a particular design the pre-smoothing method and the
type of equating have to be decided. To guide the selection of the particular
equating method, it is possible to look at the model fit of the pre-smoothing
models considered, to compare the standard errors between the different equat-
ing methods and to consider various equating criteria (Kolen and Brennan,
2014).

Within the kernel equating framework, it has been suggested to look at the
Percent Relative Error (PRE) to help decide which equating function should
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be used. The PRE for the p-th moment for the equated distribution, X to Y , is
defined as

PRE(p) = 100
µp [eY (X)] − µp (Y)

µp (Y)
, (1.15)

where µp (Y) =
∑

k (yk )p sk and µp [eY (X)] =
∑

j

[
eY (x j )

] p
r j , where sk and

r j are the estimated or observed proportions corresponding to each score value
yk or equated value eY (x j ), respectively (von Davier et al., 2004). A PRE
closer to zero matches the p-th moment between the observed distribution and
the equated distribution better, which is desirable.

Additionally, it is possible to consider the SEED between two equating
functions êY1(x) and êY2(x) which are derived from the same pre-smoothing
model, defined as

SEEDêY1−Y2 (x) =
√

Var (êY1(x) − êY2(x)) . (1.16)

For instance, equatings in a NEAT design with log-linear pre-smoothing us-
ing CE and PSE can be compared. The SEED has also been generalized to
the multivariate case and hypothesis tests can be conducted for the equating
differences of two equating functions (Rijmen et al., 2011).
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2. Objective of the thesis

The objective of the thesis has been to extend the kernel equating framework
in multiple ways. Firstly by implementing an open source software package
for kernel equating, which can be used freely by practitioners and researchers.
Additionally, the bandwidth selection method has been improved and a data-
driven bandwidth choice has been introduced which enables the standard er-
rors of equating to incorporate the variability in the bandwidth selection. Fur-
thermore, IRT observed-score equating has been incorporated in the kernel
equating framework. Lastly, the equating function has been generalized to the
multivariate case and hypothesis testing between different equating methods
for two separate pre-smoothing settings has been investigated.
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3. Summary of papers

3.1 Performing the Kernel Method of Test Equating
with the Package kequate

In recent years, it has become increasingly popular to use open source software
such as R for statistical analysis. The R package kequate which implements
the kernel method of test equating is presented in paper I. The package is
released under the GPL-3 license and can be downloaded at http://cran.
r-project.org/package=kequate. While the kernel method of test equat-
ing has been implemented in the proprietary software package LOGLIN/KE
(Chen et al., 2011) and the C library Equating Recipes (Brennan et al., 2009)
there has not previously existed an accessible open source software package
to conduct kernel equating.

The implementation of the kernel method in kequate enables observed-
score equating using the EG, SG, CB, NEAT and NEC designs. Both data
which have been smoothed using log-linear models and unsmoothed data are
supported. Additionally, IRT observed-score kernel equating is included. For
data smoothed by log-linear models, kequate provides a convenient way of us-
ing objects created by the R function glm() (stats R Development Core Team,
2013). For IRT observed-score kernel equating, support is provided for IRT
model estimation with the package ltm (Rizopoulos, 2006). There also exists
an option to select the type of kernel to use in the continuous approximation
step, with Gaussian, logistic and uniform kernels supported.

The package offers various ways to customize the analysis by selecting the
bandwidth parameters manually and specifying the parameters used in the dif-
ferent kernels. Using kequate it is also easy to compare equatings with the
built-in functions to calculate the SEED and to plot the results. In the paper,
kernel equating is illustrated by equating tests in the EG, NEAT and NEC de-
signs. The NEC design and IRT observed-score kernel equating are currently
not available in any other software package. Due to the relative ease of ex-
tending the kernel method of test equating, new additions to this framework
are expected to be implemented in the package in the future.

3.2 Improving the Bandwidth Selection in Kernel
Equating

Paper II of the thesis discusses the most commonly used bandwidth selection
methods currently used in kernel equating and proposes a new bandwidth se-
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lection method for Gaussian kernels based on what is known as Silverman’s
rule of thumb. Using a variant of Silverman’s rule of thumb (Silverman, 1986),
the bandwidth proposed for usage in kernel equating equals a function of the
standard deviation of the test scores, σX , and the sample size NX ,

h =
9σX√

100N2/5
X − 81

. (3.1)

This way of selecting the bandwidth parameters provides sufficient smooth-
ing for erratic test score distributions while providing a way to account for
the variability in the bandwidth selection method in the standard error deriva-
tions. Unlike previous methods, using the above variant of Silverman’s rule of
thumb provides analytical standard errors which do not underestimate the true
standard errors. The updated standard error derivations are given in the paper.

Using the formula in Equation 3.1 to find the bandwidth generally results
in bandwidths which are slightly larger than when employing the bandwidth
selection method using penalty functions. A larger bandwidth implies an in-
crease in the bias in the kernel method. However, as shown in the paper, in
equating this bias does not manifest itself greatly compared to the commonly
used methods. When compared to the full penalty function which has typi-
cally been used with non-smooth data, the method based on Silverman’s rule
of thumb given in Equation 3.1 provides similar bandwidths to the full penalty
function. Selecting the bandwidth parameters by using the full penalty func-
tion is shown through a bootstrap analysis to have a large effect on the standard
error of equating at the extreme values. Overall, the proposed method provides
similar equating functions to the previous methods while being less computa-
tionally intensive and having analytical standard errors of equating which are
not underestimated.

3.3 Item Response Theory Observed-Score Kernel
Equating

When kernel equating was first introduced, pre-smoothing of the score proba-
bilities was conducted using log-linear models. However, any method of pre-
smoothing can be utilized in the kernel equating framework with the asymp-
totic results intact provided that the estimator of the score probabilities is
asymptotically normally distributed. In Ogasawara (2003) IRT observed-score
equating using traditional equipercentile equating was introduced. Building
on the results of Ogasawara (2003), observed-score kernel equating with the
two-parameter logistic and three-parameter logistic IRT models is introduced
in Paper III. IRT observed-score kernel equating in the NEAT CE and NEAT
PSE designs is presented and the asymptotic covariance matrices for the equat-
ing functions are derived for each design. The results generalize the work of
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Ogasawara (2003) by considering a vector-valued equating function and by al-
lowing for an arbitrary kernel in estimating the continuous approximations to
the discrete distribution functions. It is also shown that the asymptotic results
apply for the recently proposed IRT local kernel equating method (Wiberg
et al., 2014).

The provided derivations are verified with simulations for the two-parameter
and three-parameter logistic models in the NEAT CE and NEAT PSE designs.
With the NEAT PSE design, both moment methods and test characteristic
curve methods for estimating the equating coefficients are considered. The
results show that the asymptotic standard errors are accurate for sample sizes
as low as 500 when using the two-parameter logistic model with CE and with
PSE using the test characteristic curve methods. The three-parameter logis-
tic model works well only with sample sizes as large as 3000. Compared to
the two-parameter logistic model, the standard errors of equating are about
25-35% larger for the three-parameter logistic model with sample size 3000.
Data from a standardized achievement test are used to illustrate the methods
in a practical setting. A comparison to equating with log-linear models is in-
cluded, showing that the IRT methods offer lower standard errors of equating
for lower and higher score points.

3.4 An Evaluation of Hypothesis Testing Methods for
Equating Differences in Kernel Equating

In paper IV, the asymptotic results in paper III are used to conduct hypothe-
sis tests of equating differences for IRT observed-score kernel equating using
Wald tests (Wald, 1943). These hypothesis tests can be conducted across more
score points than previously described methods using log-linear models (Rij-
men et al., 2011) since the covariance matrix of the equating difference has full
rank when using IRT models. In addition to introducing hypothesis tests using
IRT models, simulations are conducted to evaluate the hypothesis testing of
equating differences when using log-linear models, which has previously not
been done. The tests are evaluated in a NEAT design by conducting simula-
tions under the null and alternative hypotheses and recording the rejection rates
for hypotheses of equality of the NEAT CE and NEAT PSE equating functions
for different score ranges. The Wald test is compared to the Hommel method
(Hommel, 1988), which is an alternative multiple hypothesis testing procedure
that works better in the given setting than e.g. the Bonferroni correction.

The results show that a large sample size is required in order to attain the
correct significance level when simulating under the null hypothesis. Across
eight score points the empirical significance level did not attain the nominal
level even with a very large sample size. For sample sizes which are interesting
for practical use, the test is undersized. Alternative hypotheses corresponding
to different degrees of violations to the null hypothesis are considered showing
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that the power of the tests is good for sample sizes 3000 and up. Overall, the
Wald test is much more powerful than the Hommel method. Two empirical
examples, in the EG and NEAT designs, are used, showing that the Wald test
can provide different conclusions to other methods in practice.
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4. Conclusions

In the past ten years, kernel equating has been developed on many levels. To
mention only a few developments, new kernels have been included (Lee and
von Davier, 2011), the utility of the standard error of equating difference has
been investigated (Moses and Zhang, 2011), new ways to assess the statistical
significance of differences between equating methods have been proposed (Ri-
jmen et al., 2011) and local equating methods have been introduced (Wiberg
et al., 2014).

This thesis contributes to the kernel method of equating in several important
ways. Kernel equating now incorporates all common equating designs for tests
consisting of dichotomous items and an easily accessible software implemen-
tation for all designs has been created. With these additions, the kernel method
of test equating is perhaps the most comprehensive and easily used observed-
score equating method for practitioners. The bandwidth selection in kernel
equating has been improved by providing an alternative data-driven way to se-
lect the bandwidth parameters when the data are not smooth and by accounting
for the bandwidth selection when estimating the standard errors. In addition to
IRT observed-score equating being included in the kernel equating framework,
the method has also been generalized to the multivariate case. This general-
ization allows for hypothesis testing of equating differences across more score
points than previously possible. Hypothesis testing of equating differences has
been further investigated and shown to offer a powerful method to detect dif-
ferences between NEAT CE and NEAT PSE equating functions. There now
exist more methods to choose from when conducting an equating and the new
hypothesis testing methods will help in applied work when determining which
equating function should be used for a given test administration.

There are many possible future research topics in the area of kernel equat-
ing. When tests consist of items scored in multiple categories, so called poly-
tomous items, the asymptotic covariance matrix of the resulting IRT observed-
score equating function can be derived. Additional equating coefficient es-
timators for the IRT NEAT PSE equating method can be integrated in the
kernel equating framework and the results compared to current methods. An-
other useful addition to the kernel equating framework would be to derive the
asymptotic results when taking the bandwidth selection with penalty functions
into account.
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