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Abstract
Recommender systems have been widely adopted by online
e-commerce websites like Amazon and music streaming ser-
vices like Spotify. However, most research efforts have not
sufficiently considered the context in which recommenda-
tions are made, especially when the input is implicit.

In this work, we investigate the value of including con-
textual information like day-of-week in collaborative fil-
tering recommender systems. For the investigation, we
first implemented two algorithms, namely contextual pre-
filtering and contextual post-filtering. Then, we evaluated
these algorithms with user data collected from Spotify.

Experiment results show that the pre-filtering algorithm
shows some promise against an item similarity baseline, in-
dicating that further investigation could be rewarding. The
post-filtering algorithm underperforms a popularity-derived
baseline, due to information loss in the recommendation
process.



Referat
Förbättrade rekommenadtionsalgoritmer
genom att använda användarens kontext.

Rekommendationssystem har spridda användsningom-
råden så som e-handels företag som Amazon och internet-
baserade musiktjänster som Spotify. Mesta forskningen in-
om rekommendationssystem har inte tagit användares con-
text i beaktning och speciellt inte då datan är av implicit
typ.

I det här projektet har vi undersökt vikten av att inklud-
era information om användares context, så som veckodag, i
traditionella rekommendationssystem baserat på collabora-
tive filtering. Vi har implementerat två algoritmer, contex-
tual pre-filtering och contextual post-filtering och utvärder-
at dem på användardata från Spotify.

Experimenten visar att post-filtering algoritmen prester-
ar sämre än en standard popularitetsbaserad algoritm på
grund utav informationsförlust i rekommendationssteget.
Algoritmen baserad på pre-filtering visar lovande resultat
jämfört med en standard item similarity algoritm vilket
lovordar vidare undersökningar.
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Chapter 1

Introduction

In this chapter we first provide an overview of the challenges of recommender sys-
tems and describe the goals of this thesis. Then, we briefly present the methodology
followed in this thesis. We end the chapter by providing an outline of the thesis.

1.1 Motivation
Providing relevant recommendations to users is a challenge faced by many online
services these days. The users are presented with an abundance of choices, like
different products in an online store like Amazon1, or songs in services like Spotify2

and Pandora3.
The goal of a recommender system is to help users to make choices, by rec-

ommending items that are relevant to their interests and current context. The
approach followed by most systems is to use some form of collaborative filtering
or content based recommendation system or, quite often, use a hybrid approach
combining the two.

The problem with these approaches is that they do not take context into account.
A definition of context is given by Abowd et al. [2]:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.

The importance of including context in a personalization system is shown by
Palmisano et al. [47] and Gorgolione et al. [24], where it is made clear that including
context in a recommendation system can have a positive effect on the performance
as it helps in modeling users in more detail and achieving a better understanding
of their behavior.

1http://www.amazon.com
2http://www.spotify.com
3http://www.pandora.com
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CHAPTER 1. INTRODUCTION

In the domain of music recommendation an “entity” can be a user or a song.
Schedl et al. [58] also make a distinction between user and music context, which
correspond to these two entities. User context can include a user’s mood, social
context or his location, factors that are “dynamic and frequently changing”. Music
context can include semantic labels, information on the release date of the track,
and its geographic origin. In general they are factors relevant to the song that
cannot be extracted from the audio signal.

These are important factors that can influence the way a user selects music, and
hence they should be taken into consideration when designing a recommendation
system.

1.2 Goals
One goal of this project is to extend a baseline collaborative filtering recommenda-
tion system in order to include user context in the decision process. Our goal is to
improve the accuracy of the recommendations made by the system, evaluating the
performance of our approach using some of the metrics proposed by Herlocker et
al. in [29].

Another important goal is for the system to be an extension of existing ap-
proaches, thereby making it possible to be used together with already established
methods in the field. This ensures that all the research that has already been made
in the field, as well as investments in building recommender systems by companies
can be used in conjunction with the algorithms developed.

Finally the systems designed should be scalable and be able to provide recom-
mendations in cases where we have millions of users and items. For this reason we
avoided overly complicated techniques and focused on methods with clear scalability
potential.

1.3 Methodology
Our approach includes using learning techniques which detect behavioral patterns
that might be present in user logs. Those may indicate users acting in specific
manners under specific contexts. We follow two main methodologies in order to
achieve this goal. One is using one traditional recommender system to provide
recommendations which are then “contextualized” according to user behavior within
the context. The other approach creates different traditional recommender systems
which are trained on data that correspond to a contextual slice of the complete
dataset. The appropriate recommender is used according to the context in which
we are making the recommendation in.

For our experiments we used time as the contextual variable, as it is a contextual
variable that can be obtained easily without the need for any inference, and it
provides an intuitive way to separate the data on the assumption that user behavior
will differ in different time-frames. The experiments were performed on a number

2



1.4. THESIS OUTLINE

of different datasets, covering different periods within a day and within a year as
well as different platforms. This allowed us to test the developed algorithms under
many different settings and provide a better evaluation of the algorithms.

1.4 Thesis outline
In the introduction we provided the motivation for using contextual information
in a recommender system. In Chapter 2 we will provide a thorough overview of
the field of recommender systems and current research in the field. In Chapter 3
we will present a number of approaches that have been presented in context-aware
recommender systems, providing a categorization of the various algorithms and ex-
amining the advantages and limitations of the current state-of-the-art. In Chapter 4
we will present the algorithms developed for this thesis, and a presentation of the
experiments performed will be made in Chapter 5, along with an evaluation of the
performance of the algorithms. We will close the thesis with Chapter 6 with our
final thoughts on the developed methods and a look at future work.
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Chapter 2

Background

In this section we present a comprehensive overview of past and current research
on recommender systems. We will start by describing Collaborative Filtering (CF)
in Section 2.1, continue with content-based algorithms in Section 2.2 and provide a
short introduction to context-aware systems in Section 2.3. We will examine hybrid
recommender systems in Section 2.4 and end the chapter with an overview of the
evaluation of recommender systems in Section 2.5.

2.1 Collaborative filtering

Collaborative filtering is arguably the most widely used recommender system tech-
nique. CF algorithms are commonly categorized as memory-based and model-based
[60]. Memory-based CF algorithms make use of the similarity between users to
make recommendations [54] and are therefore also known as neighborhood-based
algorithms. Model-based algorithms build statistical models out of users’ ratings
and their interactions with the system in order to make predictions such as what
ratings the users would give to unknown items [40], [31], [67].

Memory-based approaches were some of the early algorithms developed for rec-
ommendations. These approaches usually examined the complete user-item matrix
in order to discover similarities between users. The similarity between every user in
the dataset was calculated using a vector-space model, as is common in the Infor-
mation Retrieval field. Each user was represented by a vector containing his ratings
for the items in the dataset, and measures such as the Pearson correlation coefficient
(2.1) or cosine similarity (2.2) were used in order to compute the similarity between
users. In Equation 2.1 and Equation 2.2 ~x, ~y are the user vectors we are examining,
rx,i is the rating of user x for item i, rx is the average rating that user x has for
items he has rated, and Ixy is the set of items that have been rated by both user x
and user y.
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pearson(~x, ~y) =

∑
i∈Ixy

(rx,i − rx)(ry,i − ry)√ ∑
i∈Ixy

(rx,i − rx)2 ∑
i∈Ixy

(ry,i − ry)2
(2.1)

cos(~x, ~y) = ~x · ~y
‖~x‖‖~y‖

=

∑
i∈Ixy

rx,iry,i√ ∑
i∈Ix

r2
x,i

√ ∑
i∈Iy

r2
y,i

(2.2)

The rating prediction for a user-item pair was then made by selecting the nearest
neighbors for the target user, and aggregating their ratings for the target item,
typically using a weighted average function. In order to recommend the N best
items for the target user, the items for which his nearest neighbors showed the
most preference were selected. Improvements that were made to the base algorithm
included normalizing user rows in order to counteract the influence of very active
users who have interacted with many items, or including a normalizing factor in the
rating prediction that modeled the average rating given by the target user.

While user-based CF systems were popular, they were not scalable to millions
of users and items which is the size of datasets that companies like Amazon and
Spotify are dealing with. The complexity of these neighborhood-based algorithms
grows linearly with the number of users, making them unsuitable for large-scale
applications. These systems also suffered from data sparsity, were pairs of users
who have rated only a few items with the same ratings would be labeled as very
similar were such a similarity would be unwarranted for so few data points.

In order to counter-act this problem an item-based CF algorithm was proposed
by Sarwar et al. [56]. Linden et al. [41] described the item-to-item collaborative
filtering algorithm used in the online retailer Amazon, which was based on ideas
from Sarwar’s work. The main idea behind this algorithm is to first match a user’s
purchased and rated items to similar items. Depending on the application items
could be products in an online retailer or music tracks in a music streaming service.
Then, it provides the user with a recommendation list based on those similar items.
In order to discover similar items, an item similarity table is built by finding items
that users tend to purchase together.

However, iterating through each item pair to find their similarity would be
computationally inefficient because many of the product pairs will not have common
purchasers. Instead, an iterative approach that calculates the “similarity between
a single product and all related products” is used. The similarity between items
is calculated by comparing the vectors that represent them. This is contrary to
traditional CF systems which represent each user with an n dimensional vector,
where n is the number of items in the system, and try to find similar users using some
vector similarity measure, such as cosine similarity. In item-to-item collaborative
filtering the length of the vectors being compared depends on the number of users
that have interacted with an item, which in an online service the size of Amazon is
bound to be much smaller than the total number of items available in the system.

6
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This characteristic of the algorithm provides it with an advantage over tradi-
tional collaborative filtering techniques in performance and scalability. The ex-
pensive item-to-item similarity calculation is performed offline with a algorithmic
complexity of O(nm) where m is the number of users and n the number of items a
user has interacted with. Once the similarity table is created, recommendations are
made by finding items similar to a users’ rated and purchased items and presenting
them as a list to that user. Depending on the number of items a user has rated and
purchased, the creation of this list is a computationally inexpensive procedure.

Other model-based techniques try to model the relationships present in the data
of user ratings and interactions with the system, like purchases in an online retailer
or streams in a music streaming service. Lemire et al. [40] utilized the differences
in ratings between items in order to make predictions. They take pairs of items
and try to determine how much better one item is liked than the other. This can
be determined, for example, by subtracting the average rating of two items. This
difference is used to predict the rating of one item for a user, given the rating he
has given to the other.

Clustering techniques are also commonly used for making recommendations.
Ungar et al. [67] clustered users and items using different k-means algorithms and
Gibbs sampling [19]. They used the items rated by users to cluster the users and
the users that rated the items to cluster the items.

Hofmann [31] adapted the probabilistic Latent Semantic Analysis (pLSA) tech-
nique [30] to tackle collaborative filtering problems. Using pLSA in such a context
provides for higher accuracy and the capability to automatically identify user com-
munities and item categories.

One major push in the development of recommendation algorithms was accom-
plished with the organization of the Netflix Prize [12]. This was a competition
organized by the video streaming service Netflix1 that provided a large dataset
to researchers containing 100 million ratings with timestamps from 480 thousand
subscribers on close to 18 thousand movies. The challenge was to improve the
performance of its existing recommendation system, according to the Root Mean
Square Error metric, which measures the algorithms ability to predict the rating
that a user gave to a movie. The team that achieved the biggest reduction in the
error was awarded $1,000,000. The best performing algorithms in that contest [36],
[51], [62] were algorithms that employed techniques based on latent factor models.

Latent factor models learn feature vectors for users and items from the data,
modeling users and items using a number of factors. The rating prediction for
a user-item pair for these systems is then performed by taking the inner product
of the user factor vector and the item factor vector. One technique developed by
Bell and Koren [11] was based on alternating least squares (ALS). Using matrix
factorization techniques the user-item matrix is factorized into two matrices, one
containing the user factor vectors and one containing the item factor vectors. The
number of factors f we choose determines the dimensions of the two matrices, which

1http://www.netflix.com

7

http://www.netflix.com
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will have m × f and f × n dimensions for the user factor and item factor matrix
respectively, where m is the number of users and n the number of items. The
product Q of these two matrices should approximate the original user-item matrix.
The goal is then to minimize the square of the error between the original matrix
and the product matrix Q by optimizing the values in the user factor and item
factor matrices. Since optimizing both matrices at the same time is a non-convex
optimization problem, we choose to maintain one of the matrices fixed, and solve
the system of linear equations for the other matrix, which is a tractable, convex
optimization problem. In ALS we alternate between having the user and item
matrix fixed. One of the major advantages of ALS is that the factorization can
be performed in a distributed manner, and the performance scales linearly as more
machines are added [32]. Using such techniques, computation of recommendations
for huge datasets containing millions of users and items becomes tractable.

Collaborative filtering however has some inherent problems like dealing with the
sparsity of the data. As users will tend to give ratings or interact with only a small
number of items from the millions that might be available, the resulting user-item
matrices are extremely sparse. This sparsity can give rise to the cold start problem
and cause performance issues. The cold start problem refers to the inability of
collaborative filtering systems to make accurate recommendations to users who have
not rated enough items, as well as recommending items before a number of users
have rated them. In order to mitigate the effect of data sparsity on performance,
matrix factorization techniques like ALS and Singular Value Decomposition (SVD)
have been employed [57] while techniques like pLSA can also improve performance.

Collaborative filtering systems also suffer from popularity bias, which is the
phenomenon of more popular items being recommended more often due to their
popularity. This is amplified by the long tail problem [6], where a small number of
items makes up the majority of the user preferences and a large number of items
forms the long tail, items that are interacted with by a small number of users. This
creates a positive feedback loop and gives rise to a rich-get-richer phenomenon [21]
in the system. The concept is described in more detail in Section 2.5.

Considerations for implicit data

Since we will be using implicit user data for our experiments it is important to
note some considerations that need to be made when working with implicit versus
explicit data.

By implicit data we mean that we measure user preference for items using inter-
action data, such as number of purchases, number of streams, or clickstream data.
The main assumption we make is that a user who interact many times with an
item, for example a user that streams the same track many times, probably likes
that item. Hu et al. examine the problem of making recommendations for implicit
feedback datasets in [32].

One of the main issues that the authors raise is the lack of negative feedback in
implicit data. The fact that a user has not interacted with an item could indicate

8
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that the user dislikes the item, but it could also indicate that the user is simply
not aware of the item. This is an issue that does not arise in explicit rating data
where the ratings indicate exactly what the users do and do not like. In explicit
recommenders the data for which we do not have ratings on are treated as missing
data and are not taken into consideration for the modeling. Attempting to do this
with implicit data however would mean that we only take positive feedback into
account when building the user profile, which can lead to poor modeling of the real
user preferences.

The authors also note the problem of inherent noise in implicit feedback data.
One example in the domain of music can be a user who lets the computer play tracks
and then leaves the room. The user will have interacted with the items according
to the implicit data, but we cannot be sure whether he would actually enjoy the
tracks that were played during that time.

Another issue is that while “the numerical value of explicit feedback indicates
preference, the numerical value of implicit feedback indicates confidence”. What this
means is that having more interactions with an item does not necessarily mean that
a user likes that item more than another item with which he has less interactions
with. An example in the music domain would be a user that has some favorite
tracks that he no longer listens to often due to satiation with them, preferring to
listen to more popular recent tracks more often. His absolute preferences might be
with the older tracks, but his interactions indicate the more recent tracks. With
this taken into consideration we can claim that the number of interactions with an
item can provide us with an indication that a user likes an item but not an absolute
preference measure.

2.2 Content-based recommender systems

In content-based recommender systems we look at the actual features of the items
in order to find similarities or extract semantic information, which we then use to
make recommendations to users, typically by recommending items that are similar
to items that the user has already shown interest in.

In the domain of music, a lot of the features and techniques used in content-
based recommender systems are based on techniques developed for Music Informa-
tion Retrieval. Such techniques can be used in order to extract semantic information
directly from the audio signal, by using descriptors such as Mel Frequency Cepstral
Coefficients (MFCC) [42]. The information extracted can be low-level descriptors
such as timbre or tempo, or even higher level semantic information such as the
mood of the song [44], [63], or semantic labels such as genre, although the success
for this particular task has been limited due to the difficulty of extracting semantic
information from the audio signal [13]. Another common use-case is to calculate
the similarity between audio tracks and use the similarity in order to provide rec-
ommendations to users. Audio similarity was explored by Tzanetakis in his PhD
dissertation [65], where he explored the extraction of high level features from songs,

9
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including rhythm and harmony.
Van den Oord et al. [68] presented an approach based on convolutional neural

networks where the content of an audio track is used in order to extract latent
semantic information and use it to provide recommendations. The approach pre-
sented is able to out-perform traditional bag-of-word models when tested on the
Million Song Dataset [14] by a large margin. However the performance of the al-
gorithm is still worse than using a collaborative filtering system. According to the
authors that outcome is expected since many aspects of the songs that can influence
the preferences of the users cannot be extracted from the audio signal alone. The
authors note the inability to predict the popularity of a song as a major limiting
factor in the approach. Trohidis et al. [63] made use of multi-label classification in
order to assign moods to songs. The authors used MARSYAS, a feature extrac-
tion framework developed by Tzanetakis et al. [66] to extract rhythmic features like
Beats per Minute and timbre features such as the aforementioned MFCC features.
The recognition of emotions was performed using multi-label classifiers [64] on a set
of songs labeled with emotions in the Tellegen-Watson-Clark model [61].

Some of the limitations and advantages of content-based recommendation sys-
tems are listed in [21]. The drawbacks include the lack of novelty in recommen-
dations which can be an undesired effect of having a well performing similarity
function. If we only recommend similar sounding tracks to the users, our recom-
mendations will end up lacking in novelty and serendipity, two concepts we will
explain further in Section 2.5. These systems also do not take user preferences and
listening habits into account, which can to a large extent influence whether a user
will actually enjoy a song or not.

Content-based approaches however mitigate a number of the problems that CF
systems face. That includes the inability to recommend a new item (cold start
problem), as we don’t need to wait for users to make ratings in order to be able to
recommend an item and essentially removes the problem of popularity bias as user
ratings are not included in the recommendation process.

2.3 Context-aware recommender systems

Context-aware recommender systems (CARS) will be the main focus of this project
and we will provide a more extensive overview for them in Chapter 3 so we will only
mention a number of approaches in this section. The main idea behind context-
aware recommender systems is to include contextual information about the user or
the item in the recommendation process, thereby making the recommendation more
relevant to the current context.

A number of researchers have used time as context [8], [23], [20] [18] as time
data can be readily available in datasets and can be incorporated directly without
the need for inference. One approach followed in [8] is to use existing collaborative
filtering techniques but only on slices of data corresponding to the current context.
Tensor factorization can also be used in order to model the time context, as is done

10
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in [20] or any other context type as the authors of [33] did.
Other approaches include trying to extract user context from diverse sources of

information [10], [49], [38]. Mobile sensors can be used to extract information such
as temperature and location which can then be used to infer the user context. The
aforementioned approaches will be discussed in more detail in Chapter 3.

2.4 Hybrid systems

Hybrid systems are systems that use a combination of the aforementioned techniques
in order to improve the overall quality of the recommendation system.

There are many different ways to combine different techniques [60]. One could
be to have some kind of combination of the results of two or more approaches in
order to have a final score for the recommendation. In [46] the authors combine a
content-based and a collaborative filtering method, using each method as a means to
overcome the limitations of the other. More specifically the content-based method
is used to overcome the cold-start problem of the CF method and the CF method
is used to improve the quality of recommendations.

Another way would be to use them in sequence, for example creating a list of
recommendations using a collaborative filtering system and then re-ranking that list
using a context-aware recommender. This is an approach used in [28], a context-
aware system which we will describe in Chapter 3.

Hybrid systems, when leveraged correctly, can often have better performance
than using individual systems [17]. For that reason they are often employed in
commercial applications, also in the forms of ensembles, where several CF and con-
tent algorithms may be used in conjuction in order to achieve the highest possible
performance. In many cases researchers use different techniques, or different al-
gorithms within the same discipline in order to achieve better recommendations.
In [71] the authors combine model-based and memory-based techniques to achieve
better performance than the individual algorithms.

2.5 Evaluation of recommender systems

There are a number of challenges researchers face when trying to evaluate recom-
mender systems. Depending on the task we are trying to tackle, different evaluation
metrics may give different results.

In [29] Herlocker et al. made a comprehensive study of the challenge that eval-
uating recommender systems poses. They differentiate among domain features of
datasets. Those may include the user tasks that are supported by the recommender,
such as Find Good Items or Recommend Sequence, or the need for novelty in the
recommendation and how important we deem their quality. Other properties may
pertain to inherent features of the data, such as whether the ratings are explicit
or implicit and the presence of a timestamp. Finally they note the importance of
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sample features, as in any other case where we have to evaluate a dataset. These
can include the size and distribution of the data set and its sparseness.

An important concept relating to the distribution of the dataset and how users
consume is the Long Tail concept [6], described in [72] and examined in depth in [21]
specifically in the domain of music. The theory behind this idea is that a relatively
small number of popular items dominate the user preferences, lying in the head
of the distribution, and a very large number of items lies in the long tail, niche
items that are not popular on their own but as a whole account for a considerable
percentage of items consumed. In the music industry, Celma [21] cites numbers
from the 2007 Nielsen “State of the industry report”:

844 million digital tracks were sold in 2007, but only 1% of all digital
tracks—the head part of the curve—accounted for 80% of all track sales.
Also, 1,000 albums accounted for 50% of all album sales, and 450,344
of the 570,000 albums sold were purchased less than 100 times.

The distribution of the consumption of items can follow a power-law distribu-
tion, although not necessarily, and the specifics of the distribution can affect the
performance of the recommendation techniques used, as shown in [72]. It is there-
fore very important to consider the distribution of the dataset when deciding on
the recommender system, and also when evaluating new techniques.

Some more recent work focused on accuracy measures is presented in [26]. In
this work the authors provide guidelines in selecting appropriate similarity mea-
sures according to the user task. They also focus on the importance of having a
statistically sound manner by which we verify the performance of the algorithms,
by providing tests for statistical significance when comparing the performance of
algorithms and ranking them.

Some of the metrics that are often used in evaluating the accuracy of recom-
mender systems metrics are:

• Precision-Recall. These have a similar definition as the one given to them
in the Information Retrieval field. Precision is a way of evaluating the al-
gorithm’s ability to provide recommendations that are relevant to the user,
versus making irrelevant recommendations. Recall in the recommendation
context is a measure of how well the recommendations we make cover the
range of the users’ taste, i.e. from all the items that the users interacted with
in the test set, how many we are able to recommend.

• Receiver operating characteristic or ROC curves. These compare the true
positive rate to the false positive rate. A variant which is precision-recall
curves was used in the evaluation of the algorithms developed from this thesis.

• Utility measures. These try to measure the utility of a ranked recommendation
list to users, according to the usefulness/relevance of the recommended items
in respect to their position in the list.
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• Hit Ratio [34], a recall-like measure for recommendation lists which measures
the ratio of held-out items returned by the algorithm in the list, and can be
evaluated at different list lengths.

In Section 5.2 we will provide a more detailed look at the metrics that we used
in this thesis.

In [29] as well as [45] the importance of looking beyond just accuracy when
evaluating recommender systems is noted. Recommender systems must be useful
to users and in order to do that we should try to cover a number of aspects. The
system should provide sufficient coverage over the available items and its learning
rate should be such that new users are able to receive acceptable recommendations
after only a few interactions with the system. Another important topic is the
novelty and serendipity of the recommendations. Novelty refers to providing the
user with items that he might enjoy and has not encountered before. Serendipity is
a bit more involved than that, as it tries to measure the ability of the algorithm to
provide the users with unseen items that are also outside the users’ usual preferences.
An example provided in [29] that can aid in discerning between the two is that
recommending a movie from a user’s favorite director that the user has not seen yet
would be a novel recommendation, while a serendipitous recommendation would be
one where we recommend a movie from a genre totally unrelated to what the user
usually watches but the user ends up enjoying. The main problem with metrics
such as serendipity is that they are usually difficult to measure as they are open to
interpretation and depend on each individual user.

Another dimension we may want to examine when evaluating a recommender
system is its robustness to attacks that attempt to influence its results. Online
recommender systems can be the target of attacks by people looking to benefit from
“gaming” the system in order to promote their items and gain, usually financially,
from the increased exposure their items will receive. This problem was studied
in [37] where the authors examine shill attacks, where the attacker creates fake
user accounts and uses those to provide favorable ratings for the items he wants to
promote. The susceptibility of different algorithms to attacks is examined as well as
how easy or hard it is to detect such attacks. The authors provide some guidelines
for recommender systems designers in order to better protect their systems against
attacks such as the importance of protecting new items which can be more sensitive
to attacks.

Before continuing we should make note of one of the major problems with the
offline evaluation of recommender systems. The ground truth in offline testing is the
interaction history of the users, and the goal that we try to achieve is to “recommend
back” items that the users interacted with in their history. What we define in our
measures as “irrelevant” user-item pairs are pairs that were not present in the ground
truth. However, the users might have found the recommended items to be a good
recommendation, relevant to their context. If the user never interacts with an item
it will never appear in the test set, meaning that any serendipitous recommendation
made by the algorithm will actually be counted as a failed recommendation when
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it could be a better recommendation when compared to many items in the test set.
In order to mitigate such problems one should run live tests of the recommender
systems and gather feedback from actual user interactions with the system.

14



Chapter 3

Previous Work

In this chapter we will provide an overview of other approaches to context-aware
recommender systems.

In Section 1.1 we provided a definition of context and indicated its importance in
improving recommendations using Context-aware recommender systems (CARS).
In the field of music, Schedl et al. [58] provide a separation between user context
which can include the user’s social context, weather conditions, time of day and
other factors and music context which includes factors that “cannot be extracted
directly from the audio, but are nevertheless related to the music item”. These can
include information about the artist and metadata such when or where the track
was recorded. That information can be in the form of semantic labels, such as those
crowd-sourced by the users of the service last.fm1.

As far as user context is concerned there are many ways to attack the problem,
as there exist a multitude of factors that we can include in what we define as user
context. These can include the mood of the user, the time of day or day of year,
the weather conditions, the location of the user, and the social context i.e. whether
the user is alone or with a group. In general we could include any factor that fits
the definition for context given in Section 1.1, if we make the assumption that it
will improve the performance of our system.

The main challenge with user context is that most of the information about
it has to be derived from sensors or other implicit data about user behavior. In
some studies the users were asked to provide their context explicitly [9], [33] but
as examined by Pu et al. [52], enforced preference elicitation can be detrimental to
the user experience, so the authors of [52] recommend minimizing the need for user
input. As we will see in the following sections, many of the recommender systems
choose instead to use contextual information that is more readily available such as
time and date and weather information.

A categorization for context-aware recommender systems is provided in [5],
which classifies the techniques based on which part of the recommendation pipeline
context is used in. The categorization provided is the following:

1http://www.last.fm

15

http://www.last.fm


CHAPTER 3. PREVIOUS WORK

• Contextual pre-filtering: Figure 3.1(a). In this category the context is used as
a means to pre-filter the data, so that we split the initial dataset that includes
the contextual information into a number of different datasets depending on
the values of the contextual variables, that are in turn used to train different
traditional recommendation systems. Recommendations are then made by
using the appropriate recommender system based on the target context.

• Contextual post-filtering: Figure 3.1(b). In this category the context is used
as a means to adjust the output of a traditional recommender system, by
incorporating context so that the recommendations better match the target
context.

• Contextual modeling: Figure 3.1(c). This category of systems integrate con-
text directly in the recommendation procedure. These systems are mul-
tidimensional recommender systems, and can be extensions of existing 2D
(User × Item) techniques that are able to handle multiple dimensions.

Figure 3.1. CARS categorization. Source: [5]

The pre-filtering and post-filtering approaches have the advantage of working in
conjunction with traditional recommender systems, thereby allowing us to make use
of existing technologies and easing the transition from a 2D to a multidimensional
approach. This is especially true for companies who have already invested heavily in
creating a high-performing 2D based recommendation system, as replacing it com-
pletely would not make technological or financial sense. Contextual modeling can
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have the potential advantage of improved performance from including the context
as a central feature of the recommendation system.

As already mentioned in Section 2.4 multiple approaches can be combined in an
ensemble in order to achieve increased performance. The same is true also in the case
of context-aware recommendation systems where an ensemble of techniques from one
or more of the approaches described previously can be used together. Adomavicius
et al. follow this approach in [3] where they combine different contextual pre-filters
in order to approach the current context using a number of potentially generalized
contexts and then combining the ratings generated from each filter in order to
produce the final recommendation score. The way this is achieved is by determining
which of the pre-filters performs better than the 2D approach used as a baseline and
choosing to use the appropriate best-performing pre-filter for the target context.

In the following sections we present a number of research efforts in the field, clas-
sified using Adomavicius’ categorization into contextual pre-filtering, post-filtering
and contextual modeling algorithms. Where applicable we will also mention whether
the algorithm focuses on user context or music context data, as defined by Schedl.

3.1 Contextual pre-filtering

As we mentioned in the introduction to this chapter, time is one of the contextual
variables that are easier to obtain. In [8] Baltrunas et al. use time as a way to
pre-filter the interaction data and split each user profile into micro-profiles, each
representing a user in a specific context, defined as different non-overlapping time
segments. The predictions are then made using the micro-profiles instead of the
complete user profiles. The main idea behind this approach is that by limiting
the training set for each mirco-profile into context that is relevant to the specific
situation, the system will be able to model the temporal differences in user taste
more accurately. However the problem of splitting the user profiles in separate time
slices in a way that improves the prediction is a major challenge. That is made
evident by the authors in their efforts to find the optimal split for the profiles,
as well as in the experimental results. The authors were able to achieve better
quantitative performance by using a split of user profiles into even and odd hours,
a split that should not contain any semantic information, as we don’t expect users
to have different music taste in even and odd hours.

An approach that focuses specifically on deriving context from user event logs is
provided in [38]. The authors once again use a variety of input sources to get context
data which they then abstract into concepts such as “summer” or “weekend”, also
allowing for fuzziness for contexts that don’t have clear boundaries between them,
for example the difference between spring and summer, in contrast to the approach
in [8] we just mentioned. The authors then use different techniques in order to
incorporate the context into their predictions, for example by using a simple pre-
filtering approach, or determining the popularity of an item in a specific context.
Unfortunately the report is lacking in implementation details and the experiments
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performed focused on parameters like number of similar users and varying the per-
centage of the dataset used for training the algorithms, which do not reveal so much
about the actual performance of the algorithms against other techniques.

Using case-based reasoning [1] as a way to incorporate context in the recom-
mendation procedure was explored in [39]. The authors used temporal data such
as season and weekday, location and weather data as the contextual information.
Users were defined by using profile information such as gender, age and their lis-
tening habits. The context of the users was logged together with their listening
habits so that the authors had access to which tracks users listened to under spe-
cific contexts. The recommendation procedure in order to recommend tracks to a
user under a specific context was to find similar users who listened to music in a
similar context and use their listening history in order to make recommendations
to the target user.

3.2 Contextual post-filtering

In contextual post-filtering traditional 2D recommenders are used as input, and
trained on non-contextual data. The resulting recommendation lists are then ad-
justed by the post-filtering algorithm in order to better fit the target context.

This an approach is taken by Hariri et al. in [27] where the output of a 2D
recommender is re-ranked according to contextual information as evidenced by the
sequence of tracks played by the user. There the authors use the semantic tags
provided by last.fm users in order to perform topic modeling [15] on the sequence of
songs using Latend Dirichlect Allocation [16] (LDA) and then mine human-created
playlists in order to discover frequent sequential patterns among the discovered
topics. After that is done, the current sequence of topics selected by the user is
matched against the mined patterns and those are used in order to predict the
following topic and from that recommend a song.

An important aspect of this algorithm is the exploitation of the user’s current
playing information, with the goal of making the recommendation more relevant to
the current state of the user. The fact that a user’s preferences can change during
an active session can cause problems however. A short session does not provide
enough predictive power while longer sessions make it more likely that the user’s
preferences have drifted. The authors use an all-K’th-order method in order to
mitigate this effect. If the algorithm cannot make any recommendations for a given
size of a session, its size is iteratively reduced until a recommendation is generated.

This algorithm makes the underlying assumption that a user’s context is modeled
in the way that he selects music order, and that playlists also model a certain type
of listening context. If the number of topics generated is very large though, a large
data set is needed in order to be able to make recommendations on the highly
varying sequences that a user may select to listen to. The fact that the dataset
needed is very large though can also lead spurious relations appearing, especially
for shorter user sessions.
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Some more work that looks at playlists and ordering as defining music context
is performed at [22]. Here the author makes use of content based techniques and
artist graph information based on data from the social network Myspace2 in order
to generate playlists. A technique to calculate playlist similarity is also proposed
which also uses topics generated using LDA from social tags in order to represent
songs.

3.3 Contextual modeling
In contextual modeling, 2D recommenders are not used in the recommendation
pipeline. Instead the complete multidimensional data, including users, items and
the contextual dimensions are used to train the recommendation systems.

In [28] the authors develop an extension to the LDA algorithm that allows
them to include the semantic tags as features of the items, when modeling the way
that a user selects songs. Each user is modeled as a multinomial distribution over
the discovered topics and each topic has a distribution over the set of items and
features. Items are assumed to be generated for a user by sampling a topic from
the user distribution and then, according to the selected topic, sampling the item
and its features from the corresponding distributions. In order to use this model for
recommendations, the probability p(i|u, c) for a user u to select item i in the context
c is calculated based on estimates of the user topic, the item topic and item feature
distributions. The hyperparameters for these distributions are approximated using
variational message passing, a Bayesian inference method proposed by Winn et
al. [69]. One advantage of this technique when using semantic tags as features, is
that it provides a grouping of these tags as a result of the topics discovered, so
we have an overview of which tags the algorithms clusters together, allowing for
a qualitative evaluation of the algorithm’s performance and a visualization of the
users preferences as well as the ability to calculate the similarity between artists
and songs.

In [23] the authors present an entry to the Challenge on Context-aware Movie
Recommendation [55] that uses time as context. The task was to predict the movies
that users would rate in a set of weeks, the Christmas week and the week leading
up to the Academy Awards in 2010. The authors used Pairwise Interaction Tensor
Factorization (PITF) [53], a tensor factorization model developed in order to predict
tags, to model the time context. Despite including context into the calculations
though, the method proposed by the authors performs worse than other methods
not using time or other contextual information. The authors attribute this to the
lack of time in optimizing the model, but it should also serve as an indicator that
including contextual information into a recommendation system can lead to worse
performance. It could be the case that the contextual information actually holds no
value that can improve the recommendation, or its value can be diminished during
the processing steps, due to information loss.

2http://www.myspace.com
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Apart from time, other information about the current user situation can also be
leveraged, especially from mobile devices like smartphones which contain a number
of sensors from which information about the context of the user can be derived. In
[10] the authors propose a way to combine social and mobile data as well as sensor
networks in order to enable a multitude of context-aware applications, which they
name SocialFusion. This work looks at the problem from a broader application per-
spective and the authors touch upon issues such as security and privacy concerns.
The authors propose mining this diverse set of inputs in order to make recommen-
dations for individuals or a group of users, in order to discover patterns or frequent
itemsets. They also present an experimental application, SocialFlicks which “rec-
ommends movie trailers to one or more users who are watching a common display”.
The undertaking described is a highly integrated system that has to deal with gath-
ering and interpreting input from multiple sources, and its reliance on a network of
sensors is probably something that places far away from being implemented in the
foreseeable future.

In [49] Wang et al. propose another approach for music recommendations that
uses a number of readily available data sources such as weather data and information
from sensors that could be available on a smartphone, such as environment noise
and luminance. The contextual information is used in conjunction with demographic
data, such as the gender and age of users. The data are treated and then combined
as factors into a fuzzy Bayesian Network which is used to infer the state of the user.
The recommendation score is then calculated by taking into account the context
evidence as gathered from the sensors and other input sources and combining that
with preferences gathered from the users. This report suffers however from a lack
of a quantitative evaluation so its utility to users cannot be concluded from it.

Karatzoglou et al. [33] proposed a multidimensional approach which directly
takes advantage of the context in order to build the recommendation model. The
authors list a number of advantages in using a multidimensional model, or Multi-
verse Recommendations as they describe their approach. The improvements include
the lack of post or pre-filtering which can lead to information loss, improved com-
putational complexity and the ability to handle an arbitrary number of context
dimensions. The information about the users, items and context are stored in a
multidimensional matrix. The context can have an arbitrary number of dimensions,
for example time can be added as a dimension and location as another. While the
results of this approach seem promising, the actual evaluation is somewhat limited.
The experiments were performed on one dataset using semi-synthetic data where
the contextual data were randomly generated, and two more datasets that used real
user data but where limited in size, using data from a few hundred users which were
asked to provide their context explicitly.
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Method

In this chapter we will present the two algorithms we implemented for this thesis.
We focused on one algorithm from the contextual post-filtering paradigm and one
from the contextual pre-filtering paradigm. The reason these types of algorithms
were selected is mainly the fact that we can use any already established 2D recom-
mendation algorithm as a base for the algorithms. Thereby all research efforts that
have already been performed in the field of 2D recommender systems are still appli-
cable in this setting, as opposed to contextual modeling, where an algorithm would
have to be built from the ground up in order to take advantage of the contextual
data.

Using a pre- or post-filtering approach also provides us with a straightforward
way to compare the performance of the algorithms by comparing their performance
to that of the non-contextual baseline algorithm. Making this comparison fair how-
ever presents us with some experimental design problems, especially for the pre-
filtering algorithm, which we will discuss in detail in Chapter 5.

We will begin the chapter by describing the baseline algorithms that were used
to create the 2D recommendation lists, followed by a description of the post-filtering
method we implemented and close the chapter with a description of the pre-filtering
method developed.

4.1 Baseline algorithms

Since the algorithms that were implemented for this project belong in the contextual
pre-filtering and contextual post-filtering paradigms, a traditional 2D recommender
had to be used as a source of recommendations for the algorithms. We chose to use
two algorithms to test our algorithms, a popularity baseline and an item similarity
baseline. The popularity baseline is a simple recommendation technique and the
reason that we chose this method was its speed and simplicity. This allowed us to
iterate quickly in the early stages of our research. The item similarity baseline is a
more complicated algorithm and was used as a more realistic test of the performance
the algorithms. Because the largest datasets we worked with contained tens of
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thousands of users and hundreds of thousands of items, we had to make sure that the
baseline algorithms were implemented in a high performance, parallel or distributed
environment. We chose to use Graphlab [43], a high-performance, parallel machine
learning framework. This allowed us to focus our efforts on the development of the
contextual algorithms and not the baseline algorithms.

4.1.1 Popularity

The popularity algorithm is one of the simplest one can employ for recommending
items, as it simply recommends the most popular items in the dataset to all the
users. The popularity of the items is determined by the total number of streams for
each track in the dataset, and all the users are presented with the same recommen-
dation list, where the items are ranked according to their popularity. Despite its
simplicity, the popularity algorithm can perform reasonably well, perhaps due to the
power-law distribution observed in music consumption as examined in Section 2.5.
In other words, the fact that popular items dominate the distribution of streams
among users makes the popularity algorithm a viable approach. With a long enough
recommendation list of the most popular items, there is a good chance that we will
cover the preferences of a large number of users and be able to recommend items
that the users will end up listening to.

Another advantage for this algorithm is lack of parameters and the fact that due
to its simplicity we are able to make recommendations for datasets containing tens
of thousands of users and hundreds of thousands of items very fast. Both of these
factors contributed in making experimentation much easier, an important factor for
a baseline algorithm.

This benefit however comes at a cost for the quality of the recommendations.
Since the algorithm performs no personalization in the recommendations made, all
users are presented with the same recommendation list. Its utility to the users is
also limited, as popular items could be easily discovered by users on their own,
so it is hard to use this algorithm in order to discover new tracks that the users
might enjoy. As a result, metrics like coverage and novelty, described in Section 2.5,
will suffer greatly. There is a limit to the performance of the algorithm in terms
of accuracy, due to the variance of the users’ listening habits. The method will
perform well for homogeneous groups of users with similar listening habits, but will
fail when faced with a group of users with diverse taste. The method also will fail
in cases where the most popular items are excluded from the songs we are able to
recommend. This is the case when we exclude songs that the users have already
interacted with from the songs that we are allowed to recommend to them, in order
to ensure novel recommendations and avoid replay bias. Replay bias is caused by
the fact that users tend to replay their favorite songs often, and recommending them
back to the user is an easy task that has no utility for the users.

If we exclude the items that make up the head of the distribution the difference
in popularity between the items that reside in the tail is usually very small and is
not a real indication of user preference.
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4.1.2 Item similarity

We provided an introduction to item-to-item collaborative filtering in Section 2.1,
so in this section we will briefly re-iterate the main assumptions behind the algo-
rithm, and look at a few implementation details. The description we provide of the
algorithm fits both the cases where we have explicit ratings available for the items,
and the case where we only have implicit data, as was the case in our experiments.

Item-to-item collaborative filtering tries to overcome the problems of neighbor-
hood based algorithms by looking at the similarities between items instead of the
similarities between users. As the number of users and items grows the computation
of similar users at recommendation time, as performed by most neighborhood-based
algorithms, becomes very expensive computationally. What item-to-item CF does
instead is to pre-compute the similarity between items and use these similarities to
make recommendations to users, by predicting the rating the users would give to a
new item according to the ratings they have given to similar items.

The main assumption behind this algorithm is that users will be more interested
in items similar to those they have rated positively in the past, and less interested
in items that are similar to those they have given negative ratings to. We should
note that this negative feedback is not available for the case of implicit feedback
ratings, which has a negative effect on the performance of the algorithm. The
speedup for the algorithm comes from the fact that these similarities can be pre-
computed and used in recommendation time. While this pre-computation could also
be done for users in theory, we would be faced with the problem that user-to-user
similarity is much more dynamic and can change dramatically as users rate more
items. In contrast the relationships between items are much more static and should
not change dramatically once a large enough number of ratings has been made on
the items, allowing us to perform the expensive computation of the item similarity
matrix periodically and not have to do an expensive search on the user-item matrix
at recommendation time.

We will now provide a brief explanation of the recommendation process for this
algorithm. The algorithm performs the rating prediction for a user u and an item i
by examining the items that the user has rated and getting the similarity for each
rated item to the target item i. After the most similar items are discovered, the
rating is predicted by taking a weighted average of the ratings the target user has
given to these similar items. Since each item is represented as a vector comprised
of the ratings that users have given for that item we can use any vector similarity
measure to compute the similarity between items. Two measures that we examined
are the Jaccard similarity and the cosine similarity. Jaccard similarity, also known
as Jaccard index, is defined in Equation 4.1. It measures the ratio of users the two
items have in common versus the total number distinct users in both sets. X and
Y are the item vectors with ratings for each user in the dataset as elements.

jac( ~X, ~Y ) = |
~X ∩ ~Y |
| ~X ∪ ~Y |

(4.1)
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Cosine similarity is computed as shown in Equation 4.2. It measures the similar-
ity between the two vectors using the cosine of the angle between them, calculated
as their inner product divided by the product of their magnitudes.

cos( ~X, ~Y ) =
~X · ~Y
‖ ~X‖‖~Y ‖

(4.2)

We experimented with using cosine and Jaccard similarity and settled on using
Jaccard similarity. The reasoning behind this decision is that any difference in rec-
ommendation quality should affect both the baseline and the contextual algorithms
in the same manner. Since Jaccard similarity is less complex and therefore faster
to compute we decided to use that for our experiments. In the parameter selection
experiments we performed it also outperformed the cosine similarity, as can be seen
in Subsection A.1.2.

4.2 Contextual post-filtering
Our first approach was a variation of a method described by Panniello et al. [48].
This is a post-filtering approach where the recommendations made by a traditional
2D recommender are contextualized using one of two methods, Filter or Weight,
based on a contextual probability P (u, i, c), where u is a user, i is an item and c is
a context. In [48] the authors estimate this probability by retrieving a pre-defined
number of nearest neighbors (NNs) for user u and examining how many from those
neighbors have interacted with item i within the target context. The number of
NNs who have interacted with item i divided by the total number of NNs retrieved
gives us the contextual probability. In the Weight method this probability is then
multiplied with the score produced by the 2D recommender to “contextualize” it
and the list of recommendations is re-ranked based on the new score. In the Filter
method we use the contextual probability to filter out recommendations that have
a probability that is lower than a specified threshold.

In the variation we have implemented, instead of a contextual probability as
already described, we calculated a contextual score. The score ContScore(u, i, c)
(4.3) is the sum of the playcounts of the nearest neighbors of u for item i in context
c, divided by the number of neighbors. The assumption behind this approach is that
items that users interact with more often in a certain context should be considered
more important for that context and receive a higher score in the final list. In the
initial experiments we performed, the performance of the two methods, using the
contextual probability and using the contextual score did not show major differences
in the quality of the recommendations, while using the contextual score provided a
minor speedup in the running time of the algorithm so we selected to use that one
for the rest of our experiments.

ContScore(u, i, c) =
∑

u′∈NN(u) ru′i

|NN(u)| (4.3)
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In the Weight method, the final score for the recommendation was calculated us-
ing Equation 4.4 where ContScore(u, i, c) is the contextual score and 2DScore(u, i)
the original non-contextual score for the recommendation generated by the 2D al-
gorithm. For the Filter method we use Equation 4.5, removing entries for recom-
mendations that were below the set threshold, t. The threshold value we selected
for the experiments was t = 0.1. This parameter is highly dependent on the dataset
being used, so we took into consideration the distribution of values for the contex-
tual score in the recommendation list, making sure that we have a large enough
number of recommendations left after the filtering step to provide most users in
the set with a non-empty recommendation list. The same threshold value was also
used in [48]. The number of neighbors examined was another parameter that was
set experimentally. Following the example of [48] we experimented with different
values in the 10−−200 range and settled with 50 neighbors, as using more neigh-
bors did not provide any clear benefit in the quality of recommendations, while
increasing the size of the neighbor list has a negative effect on the execution speed
of the algorithm. We can see the effect of neighborhood size on the performance of
the algorithm in Figure 4.1.

The measures we use in these experiments are F1-Score and Hit Ratio at 10
(HR@10). F1-Score is a summary precision-recall measure and HR@10 is a ranking
measure, indicating how the algorithm performs when examining only the top 10
recommendations in the list. Both measures will be explained in more detail in
Section 5.2 For F1-Score we only include the plot for the Filter method, since
the precision-recall measures remain the same for the Weight method regardless of
neighborhood size. We can see no clear benefit when using more neighbors when
we consider both the ranking HR@10 measure and the F1-Score together, as we
observe an increase for F1-Score for the weekend context but a decrease in HR@10.

We should note that the parameter selection experiments were performed only
on the largest of the datasets, that is the 2 month October to December 2013
dataset. The reasoning behind this decision was that adjusting the parameters to
a setting that performed reasonably well on the bigger datasets would allow us to
test the technique’s ability to generalize to other datasets, and we avoid overfitting
the model by optimizing the parameter values to each dataset.

WeightedScore(u, i, c) = 2DScore(u, i) ∗ ContScore(u, i, c) (4.4)

FilteredScore(u, i, c) =
{

2DScore(u, i) ContScore(u, i, c) ≥ t

0 ContScore(u, i, c) < t
(4.5)

Since the datasets we used for the post-filtering experiments contained thousands
of users and tens of thousands of items, we had to perform a matrix factorization
step on the user-item matrix to make the nearest neighbor search tractable. By
factorizing the matrices we are able to model the user preferences using only a
relatively small number of factors, providing a better separation between users, and
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Figure 4.1. Effect of nearest neighbor count on performance of post-filtering

also making the calculation of the distance between two users much faster. For the
factorization of the matrices we used a high-performance variation of the alternating
least squares algorithm that we presented in Section 2.1. The variation used was
cyclic coordinate descent (CCD) [50] and the specific implementation we used was
CCD++1, proposed by Yu et al. [70] which was chosen due its high performance in
a parallel and distributed environment.

In order to retrieve the neighbors in an efficient manner, an approximate nearest
neighbor search was performed on the user component of the factorized matrices.
The nearest neighbor index building was performed using locality sensitive hashing
[7], a probabilistic technique for finding approximate nearest neighbors in a high
dimensional space. The implementation used was the annoy2 library. It uses ran-
dom projections, a technique to approximate the cosine distance between vectors
by hashing the input vectors in random hyperplanes. It builds a tree by choosing
a random hyperplane at every node of the tree, which divides the vector space into
two subspaces. The tree construction is performed k number of times, creating a
forest of k trees. The complete pre-processing of the data is illustrated in Figure 4.2

While using matrix factorization and approximate nearest neighbors allowed us
to perform experiments on large datasets, it introduced many parameters to the
algorithm that increased its complexity and made the design of our experiments
harder. For CCD++ the most important parameter we had to choose was the
number of latent factors used to represent the user-item matrix. We experimented
with using 40 factors and 100 factors as Yu et al. did in their testing of the algorithm.

1http://www.cs.utexas.edu/~rofuyu/libpmf/
2http://github.com/spotify/annoy/
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Figure 4.2. Pre-processing steps for post-filtering recommender

The experiments were performed on a dataset containing data from October to
December 2013. We found that while using 100 factors did have a minor positive
effect on the accuracy of the recommendations the effect was not significant, and
given the degradation in running time that increasing the dimensionality causes
we chose to use 40 latent factors. The results of these experiments are shown
in Subsection A.1.1 of the appendix. For LSH we had to choose the number of
trees that were built for the index. There we followed the advice of the library’s
author and created 2 ∗ f trees, where f is the number of factors used in the matrix
factorization step.

4.3 Contextual pre-filtering
The second algorithm we implemented was a pre-filtering approach. Using this ap-
proach we make recommendations using a traditional 2D recommender that was
trained on the part of the complete data that is most relevant to the context we
are making the recommendation in. Adomavicius et. al [4] present a reduction-
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based approach. Using this algorithm we reduce the multidimensional problem of
contextual recommendations to a traditional 2D recommendation problem. In this
approach we create a different 2D recommender for each contextual dimension we
are examining, using only data from the corresponding context to train each recom-
mender. The appropriate recommender is then used to make recommendations for
each context. The method we implemented is described as exact pre-filtering (EPF)
in [4] as opposed to generalized pre-filtering which selects contextual information
based on the best available generalization of the current context. In figure 4.3 we
can see an illustration of how the baseline and pre-filtering recommenders were cre-
ated for the experiments we performed, using the weekend-weekday context. The
train data for the contextual recommenders are derived from the complete set using
a process we will describe in more detail in Subsection 5.3.2

Complete train data
U x I x R x C

Weekend train data
U x I x R

Weekday train data
U x I x R

Weekday 2D
Recommender

Weekend 2D
Recommender

Baseline 2D
Recommender

Figure 4.3. Creation of the different recommenders for pre-filtering

The assumption behind EPF is that by using more specific training data we will
be able to provide recommendations that are more relevant to the current context,
thereby negating the expected negative effect of the reduction in available train data.
For example, a user’s listening habits during the weekend could be different from his
habits during the week. This difference will be reflected in the data and therefore
the more specific recommenders will achieve better performance from one that has
been trained on the less specific, complete dataset. One concern with reduction-
based approaches is the selection of the type of context on which the datasets are
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split. Having redundant contextual splits can lead to decreased performance due
to the lack of semantic meaning in a context. For example, splitting the context
into even and odd hours, as the authors of [8] did to test their hypothesis, does not
contain any semantic meaning and we don’t expect it to provide an improvement
in performance. However the authors did obtain a result that outperformed their
baseline, indicating that there are still issues with the understanding of the way
that such a contextual split models user behavior. Apart from the lack of semantic
meaning, the increased data sparsity from slicing down the data can be problematic.
For a very specific type of context we might end up with too few training points
to make a relevant recommendation and the baseline could end up always out-
performing the very specific contextual recommender.
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Chapter 5

Evaluation

In this chapter we present the experiment results and analyze the performance of
the algorithms. We will investigate the differences in performance between the
baseline and the developed algorithms. We begin the chapter with a description
of the datasets that were used for the evaluation. Then, we present an analysis
of the experiments performed, starting with a presentation of the metrics used for
the evaluation, and a look at the performance of each algorithm starting with the
post-filtering algorithm and continuing with the pre-filtering algorithm. We also
dedicate a section to the experiment design challenges we had to tackle during the
testing of the pre-filtering algorithm.

5.1 Datasets

Our main source of data was implicit user-item interactions measured as the number
of times a user interacted with an item within the time and context specified. The
playcount data were gathered from real users of Spotify. We aggregated streams
from users in the United Kingdom during a particular time period of every day.
Instead of using binary scores to indicate whether a user interacted with an item
or not, as done in [32], streams were weighted according to the play source. For
example we might weight streams that originated from a user searching for a specific
track more heavily than streams that occurred due a track being the next song in a
playlist. We also made sure to give small weights to streams originating from sources
where recommender systems generated the playlists such as the Radio feature of
Spotify. In order to remove artifacts such as skipped songs we only considered
items which the user listened to for more than 30 seconds.

Data were gathered over specific periods of time and labeled as streams occurring
in a specific context, namely whether the stream occurred during the weekend or on
a weekday. A number training datasets were created for this purpose. We gathered
the data using streams from different time periods, including stream data for two
weeks in June 2013, November 2013 and February 2014. These datasets were used
to explore the performance of the algorithms in different time periods. Larger
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datasets were also created in order to provide the algorithms with more training
data and to allow for further exploration of their performance. The post-filtering
method was tested on datasets that reached up to 2 months of user data, gathered
during October to December 2013, while the pre-filtering algorithm was also tested
on datasets that contained 6 months and one year of user data, ranging from April
2013 to April 2014. In total we examined data from 6 different time periods. The
largest dataset that we examined, that is the one year dataset, contained data from
30,353 users interacting with 1,103,127 items, for a total of 5,580,489 interactions.
As we will mention later though, we only examined the interactions made with the
20,000 most popular items for the pref-filtering algorithm.

For each experiment two test sets were created, one with data from a weekday
and one with data from a weekend. The contextual algorithm and the corresponding
baseline were then both tested on these datasets.

For the post-filtering experiments we created test sets from different days follow-
ing the training set. For example, for a train set gathering data in the 2013-06-10
to 2013-06-24 period, the test set for the weekend context was created using data
gathered on 2013-06-29 which was a weekend day, and the test set for the weekday
context was created from data gathered on 2013-06-27 which was a weekday.

For the pre-filtering experiments the complete data were split into a train and a
test set, using a process that we will describe in detail in Subsection 5.3.2. In short,
we split the complete set into a train and a test set and then used subsets of the
complete test set to create the contextual test sets, thereby ensuring that user-item
pairs that appeared in the training sets did not appear in any test set.

In all of the experiments we performed, we generated a list of 300 user-item
recommendation pairs, recommending only items that the users had not already
interacted with in the training set. That allowed us to avoid replay bias i.e. the fact
that users will tend to replay their favorite tracks making the recommendation of
such tracks an easy way to boost the accuracy scores of an algorithm, but providing
no real utility to the users. We chose a list of length 300 in order to have sufficient
depth in our recommendations, while at the same allowing us to be able iterate
relatively quickly on our experiments.

5.2 Metrics

In this section we will present the metrics used for the evaluation of the algorithms,
and briefly explain how each metric measures a different aspect of the algorithms.
The metrics used for the evaluation were accuracy based metrics like precision-recall
as well as ranking measures. In particular we used overall precision, overall recall,
and F1-Score as our precision-recall metrics, while Hit Ratio and Mean Percentage
Ranking were used as our ranking metrics.
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5.2.1 Precision-Recall measures

Overall precision (5.1) is defined as the ratio between the number of correct rec-
ommendations made divided by the size of the recommendation list. By correct
recommendations we mean user-item pairs that appeared both in the recommen-
dation list and the test set. It measures the ability of the algorithm to recommend
songs that are relevant to the user versus recommendations that are considered
irrelevant.

precision = |{(u, i) in test set} ∩ {(u, i) in recommendation list}|
|{(u, i) in recommendation list}| (5.1)

Overall recall (5.2) is defined as the ratio between the number of correct predic-
tions versus the size of the test set. Recall measures the probability that an item
the user considers relevant was actually recommended to the user, or in other words
the algorithm’s ability to cover the users’ preferences.

recall = |{(u, i) in test set} ∩ {(u, i) in recommendation list}|
|{(u, i) in test set}| (5.2)

F1-Score is defined as the harmonic mean of precision and recall, and can be
used as a metric that provides a summary of both precision and recall. Its definition
is given in Equation 5.3

F1 = 2 · precision · recallprecision + recall (5.3)

In addition to overall precision and recall we also create Precision-Recall (PR)
curves, a variant of ROC curves, to measure the performance of the algorithm at
different precision and recall levels. Following the example presented by Schein et
al. [59] we created Global and Customer PR curves. Global PR curves are similar
to the ROC curves suggested by Herlocker et al. in [29]. They are useful when “we
are allowed to recommend more often to some users than others”. A use case for
this example would be playlist backfilling where we have to add a certain number
of songs to a playlist in order to reach a certain length as indicated by the the user
or other factors. They are constructed using Algorithm 1.

Algorithm 1 Global PR Curve Calculation
1: procedure Global PR Curve(points)
2: Order the recommended user-item pairs according to descending score
3: for points do
4:

Pick number k, calculate precision and recall using only the
top k recommendations, use PR values to plot the point

5: end for
6: end procedure
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The first step of the algorithm is to sort the recommendation list in descending
order of score, thereby placing the recommendations the algorithm indicates as more
relevant in the beginning of the recommendation list. We then repeat the step in
Line 4 as many times as we indicate with the variable points, which determines
how many points our curve will have. What we do in this step is select the top k
recommendations and determine the recall and precision using only those points.
The number k is determined by the number of points we want our curve to have
and the size of the recommendations list. For our experiments we created 30 points
for each curve.

The customer PR curve indicates the performance of the algorithm in cases
where the same number of items has to be recommended to all the users. This is
the typical case where we have to provide all our users with a list of songs that fit
their preferences, for example in a song discovery setting. The algorithm illustrated
in Algorithm 2 is similar to the one for the global PR curve, only this time the
recommendation list is sorted according to users first and then secondary sorted on
the score. The items recommended are also selected so that we pick the top k items
for each user.

Algorithm 2 Customer PR Curve Calculation
1: procedure Customer PR Curve(points)
2:

For each user, order the recommended user-item pairs according
to descending score

3: for points do

4:
Pick number k, calculate precision and recall using only the
top k recommendations for each user, use the PR values to
plot the point

5: end for
6: end procedure

5.2.2 Ranking measures

The ranking measures we used were Hit Ratio (HR) and Mean Percentage Ranking
(MPR).

HR [34] is a recall based measure that calculates the percentage of items recom-
mended in the top-k part of the recommendation list that were hits, where top-k
is defined per-user as was done in the customer PR curve. As such, the measure
is equivalent to a per-user recall-at-k measure. This measure was calculated for
k = [10, 20, 30]. HR indicates the performance of the algorithm near the top of the
recommendation list for each user. It is an important measure as users are unlikely
to search too deep in a recommendation list [25]. A formal definition is given in
Equation 5.4. We will use the syntax HR@k in this thesis to indicate the HR score
at the depth k.
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HR(k) = |{(u, i) in test set} ∩ {(u, i) in top-k recommendation list}|
|{(u, i) in test set}| (5.4)

MPR [35] is a measure of a user’s satisfaction with an ordered list of items.
For every generated list of ranked recommendations, let rankui be the percentile
ranking of item i in the ordered list of all items for users u. A rankui = 0% would
indicate that the item i is the most preferred item for user u. A rankui = 100%
indicates that i is predicted to be less desirable for user u. The percentile ranking
is then evenly distributed among the remaining items in the list by steps of 100%

|R|
where R denotes the list of recommendations. MPR is then defined by the expected
percentile ranking, according to the preference shown by a user in specific items. The
preference is determined by the number of times a user has streamed those items,
and their position in the recommendation list, determined by rankui as shown in
Equation 5.5, where rt

ui denotes the number of times user u has streamed item i in
the test set.

MPR =
∑

ui rt
uirankui∑
ui rt

ui

(5.5)

For MPR, lower values are more desirable since they indicate that items placed
higher in the generated recommendation lists were listened to more often in the test
set by the users.

5.3 Analysis
In this section, we present the analysis of the experiments performed and the per-
formance of the two algorithms. We start by analyzing the results of the contextual
post-filtering method, and then present a validation process and an explanation for
the observed results. Then, we examine the challenges in experimental design for
the pre-filtering method and how to overcome them. After a proper experimental
process has been established, we proceed with a presentation of the pre-filtering
results, along with the discussion of the algorithm’s performance.

5.3.1 Contextual post-filtering

The first algorithm we implemented and performed experiments with was the post-
filtering algorithm, using the Weight and Filter methods explained in Section 4.2.
The parameters used for the algorithm were a neighborhood size of 50 for obtaining
the contextual nearest neighbors and the threshold for the Filter method was set
at 0.1. We tested the algorithm against a test set selected within the specified
context on a day occurring shortly after the train set. As we will see below the
algorithm ended up under-performing the baseline for reasons that we will explain
in the following sections.
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Comparison of methods

Figure 5.1 and Figure 5.2 show the performance of the Filter and Weight methods,
compared against the popularity baseline. We can see that the Filter method
outperforms the baseline in precision but at a cost in recall. The F1-score favors the
filtering method but not significantly. Note that since the precision-recall metrics are
identical for the baseline and Weight method, as the items in the recommendation
list are the same, we have collapse their values into one box, indicated by the yellow
color in the precision-recall figures. The ranking measures for the post-filtering
methods consistently under-perform the baseline however.

In Figure 5.3 and Figure 5.4 we can see the problems of the post-filtering methods
in the PR curves generated from the 2 month October-December 2013 dataset. The
Weight method under-performs the popularity baseline in both the Global and
Customer PR curves, indicating that the contextual score does not actually provide
enough information to improve the ranking. Since the size of the recommendation
lists returned by the Filter method is much smaller than those returned by the
Weight and baseline methods, its recall measure suffers significantly as evidenced
by the fact that its curve stops expanding towards higher recall values much sooner
than the other two methods. We can however see the better performance precision
wise in the Global curves in Figure 5.4.

The performance of the Filter algorithm can be explained by the fact that it
reduces the number of recommendations by a significant factor, depending on the
threshold used. That results in increased precision as the recommendations become
much more specific but at the same time the recall will suffer, as confirmed by
our experiments. As we increase the threshold value the performance of the Filter
method will approach the performance of the baseline until the two methods become
identical for a high enough threshold value.

The performance of the Weight method however is an indicator for the value of
the post-filtering method overall. Since the ranking is not improved by incorporating
the contextual score, it indicates that the contextual score does not provide enough
value in the recommendation. This realization lead to to a re-examining of the partly
positive results in the Filter method which we present in the following section.

Validation of results

The fact that the Weight method under-performed the popularity baseline in all
our experiments tells us that the value of the contextual score as an indicator of
user preference in a context is limited. Since the same contextual score is also used
as an indicator of whether or not to keep a recommendation from the initial list in
the Filter method, a re-examining of the results had to be performed in order to
determine the true reason of the increase in precision. The hypothesis we tested
against was that the decreased length of the recommendation lists were the main
factor for the increase in precision.

For our first experiments we created recommendation lists that had the same
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Figure 5.1. Precision-recall measures for post-filtering

length as those created by the Filter method, however the recommendations that
were retained were selected randomly. The positive effect of the Filter method
remained in that case, so in order to make the test stricter we selected from each
recommendation list the top-k items according to the score assigned to them by the
baseline recommender, where k was the length of the recommendation list returned
by the Filter method for that experiment.

As can be seen in Figures 5.5 and 5.6 selecting the top-k recommendations from
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Figure 5.3. Customer PR curves for post-filtering

the baseline algorithm actually out-performs the Filter method in all metrics, as we
expected after we observed the poor performance of the Weight method.

Discussion

As we described in Section 4.2 post-filtering is an involved process with a number of
parameters to be set, and any step of the process can influence the end performance
of the algorithm. Our assumption for the poor performance of the algorithm is that
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the value of the contextual information is in fact lost during one of the preparatory
steps of the algorithm. To reiterate the process briefly, first we have to create ap-
proximate nearest neighbor indices for the users based on the user component of
the factorized user-item matrix. We then use these approximate nearest neighbors
at recommendation time in order to calculate the contextual score for each recom-
mendation according to the preference that the nearest neighbors of the target user
have shown in the target item, for the target context.

The matrix factorization step and approximate nearest search are by definition
sources of information loss as we exchange accuracy for performance. Since the
calculation of the contextual score depends on the results of two probabilistic oper-
ations in a row, we are faced with a case of propagation of uncertainty, that has an
immediate negative influence on the result. In other words since we are performing
an approximate nearest neighbor search on a matrix where we have reduced the
item dimensions from tens of thousands to 40 as we did in the case of the user
matrix, it is possible that the nearest neighbors that we obtain for the users are not
representative of the true similar nearest neighbors in the initial data.

Another important consideration is the distribution of the contextualscores,
where we observe that the majority of the user-item pairs, receive a contextual
score of 0, as shown in Figure 5.7 which was generated from the recommendation
list for the two month October to December 2013 dataset. For this plot we set a
cutoff value at 0.30, as we only had less than 2000 user-item pairs where the contex-
tual score was higher than that, from a list of more than 3,000,000 user-item pairs.
In fact, for this dataset, more than 80% of the recommendations have a contextual
score of 0. A contextual score of 0 means that none of the nearest neighbors of the
target user has streamed the target track in that context. This extremely skewed
distribution of contextual scores can be explained due to two reasons. First, many
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Figure 5.5. Precision-recall measures for Filter against selecting the top recommen-
dations

of the items that appear in the complete set do not appear in the contextual sets,
and as a result will receive a contextual score of 0. Second, the power-law distribu-
tion of music item consumption means that apart from a number of popular items,
the majority of the items listened to by the users will belong in the long tail. Due
to the vast amount of items available, and the fact that most users will listen to a
very large number of items just once, the probability that a user will have listened
to the same item as a user determined as similar will have in a particular context
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becomes very small.

Figure 5.7. Distribution of contextual score values

For these reasons the majority of the contextual scores end up being zero, which
provides us with no contextual information on most of the recommendations and
leads to the overall worse performance of the algorithm.

After observing this result we can expect that changing the baseline algorithm
to the item similarity one is not going to have a major effect in the performance of
the post-filtering method. To verify this hypothesis we performed an experiment
using item similarity as a baseline on the October-December 2013 dataset, where
the post-filtering method was again unable to out-perform selecting the top entries
of the algorithm.

41



CHAPTER 5. EVALUATION

5.3.2 Contextual pre-filtering

In this section we will present the performance of the pre-filtering algorithm. We
will start by looking at the challenges with experimental design for pre-filtering al-
gorithms, including a brief look at our first attempts at designing an experiment and
how we corrected the initial mistakes made. We will then present the performance
of the algorithm versus the two baseline algorithms, popularity and item similarity,
focusing on the effect the time period over which data were gathered has on the
performance of the algorithm.

Experimental design

When dealing with different train sets for algorithms that we want to compare
against each other, as is the case with contextual pre-filtering, one must be very
careful to ensure that the algorithms are tested on equal grounds.

Our initial experiment design for pre-filtering was similar to the one we used in
the post-filtering case. Each recommender was trained on a slice of the complete
data corresponding to some context, so in the experiments we performed we had one
baseline recommender trained on the complete set, one trained on only the weekend
data and one trained on only the weekday data. The test sets were again taken from
a day according to the context, from a date shortly after the end of the training
data. For example for the 2 month dataset, comprising of user data gathered during
October to December 2013, the test data for the weekend contextual segment were
gathered from the first Sunday after the train set and similarly for the weekday test
data.

We performed the first batch of experiments using this setup and we got back
results where the pre-filtering algorithm was out-performing the baseline algorithms
on most of the measures, many times by a margin of 25% in the weekend set. Given
that the size of the weekend train data was approximately one third of the size
of the complete data that kind of performance improvement seemed very unlikely,
especially when we consider the fact that a 2 month dataset will most likely not be
large enough to determine some recurring pattern of user behavior. After investi-
gating the design of the experiment we determined that the way that we excluded
some items from being recommended was the cause for this abnormal performance
increase.

As we mentioned in the previous section, the items that we recommended for
each user could only be items that the user had not already interacted with. Since
the users had more interactions on average in the complete set when compared to
the contextual sets it was also more likely that they will interacted with a larger
number of distinct items. As a result the recommender trained on the complete data
had a smaller “pool” of songs from which to recommend to for each user, which lead
to worse performance when compared to the contextual algorithms trained with the
smaller datasets. Ensuring that the same number of distinct items appeared on all
the train sets did not help either, because even if the number of distinct items is
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the same in both sets, the users in the complete set will on average interact with
more of the items, thereby again limiting the individual “pool” of items available
for recommendation for each user.

In order then to correct the experimental design we had to move away from
using a test set that came from separate day, as that way it was not possible to
ensure parity in the train and test sets of all the segments. We instead adopted the
experimental design proposed by Baltrunas et al. [8], which was specifically designed
for pre-filtering recommender systems. An illustration of the idea is provided in
Figure 5.8, adapted from [8]. The main goal of this design is to ensure that the
train and test sets are completely disjoint for the complete as well as the contextual
segments.

Initially the complete dataset is split into the contextual segments, in our case
corresponding to the weekend and weekday data. We also split the complete set into
a train and test set. We then extract the test sets for the contextual segments by
extracting the user-item pairs that are present in both the complete test set and the
contextual segment. After extracting the test set from the contextual segment, the
remainder of the segment is used as the training set for the contextual recommender.
The important difference here is that we don’t split each contextual segment into
a train and test set individually as that way we could end up with some user-item
pairs that are present in the test set also being present in the train set. For our
experiments we initially split the complete dataset into two parts, using 90% of the
data for training and 10% for testing.

Pre-filtering vs. Baseline

In order to test the performance of the pre-filtering algorithm against the baseline
we used data from different periods in the year, as well as gathered during different
time-frames and on different platforms. We tested the algorithm against two differ-
ent baselines, the popularity-based algorithm and the item similarity. Contrary to
the post-filtering algorithm there were no parameters to be set in the pre-filtering
algorithm itself, but rather in the algorithms used as a baseline, such as for example
the similarity measure for the item similarity algorithm.

One important difference in the way that the experiments were performed, apart
from the experimental design we already described, was limiting the items to the
top 20.000 most popular ones in our experiments. The reason this limitation had
to be imposed was the memory requirements of building the item similarity matrix.
The number of items our complete sets contained made the calculation intractable
for the complete set, since the similarity has to be calculated in a pairwise manner.
However since the advantage of having fewer items to recommend from applies to
both the baseline as well as the pre-filtering algorithms the comparison between their
relative performance remains valid. Especially in the case of the popularity baseline
the limitation makes no difference since the algorithm will just recommend the k
most popular tracks to users either way, where k is the length of the recommendation
list we generate, set to k = 300 for our experiments. Limiting the tail of the track
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Figure 5.8. Illustration of experiment design for pre-filtering

distribution then has no impact on the performance of the algorithm.
Our first look will be at the overall performance of the algorithm in all the

datasets. Figures 5.9 and 5.10 show the aggregated performance of the algorithm
versus the popularity baseline. Using the popularity as the input algorithm results
in performance that is worse than the baseline. The justification for this drop in
performance comes from the way that the popularity algorithm works. Since the
contextual recommenders are trained on datasets that are smaller than those of the
complete recommender, the popular items in those recommenders will be less diverse
and perhaps missing some of the items that are in fact the most popular ones when
we look at the complete dataset. In other words when we use the popularity of items
to make recommendations, using smaller datasets will result in worse performance
as smaller datasets will capture a smaller part of the taste of users. This results
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in the recommendation of items that are popular in a segment of the dataset, but
the overall most popular songs will still dominate the user plays and those can be
missing from the contextual datasets.
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Figure 5.9. Precision-recall measures for Pre-filtering vs. Popularity

Another observation we can make is the high variance of the results, something
which is more obvious for the weekend results. This indicates another disadvantage
of the popularity method, in that its success depends in a large way on the set of
items that we exclude when making the recommendation. Exclusion of many items
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Figure 5.10. Ranking measures for Pre-filtering vs. Popularity

from recommendation as happens in the case of the weekend can lead to worse
recommendations, depending on the dataset examined.

The situation changes when we use the item similarity algorithm as input as
we can see in Figures 5.11 and 5.12. The performance of the baseline and the
pre-filtering algorithms are now mostly on the same level, with the pre-filtering
algorithm actually out-performing the baseline for the HR metric. We see that the
large variations in performance are not a problem with the item similarity algorithm,
since the recommendation lists generated are suited to the preferences of each user.
We are now recommending items in a way that is tied to how users consume the
items and the relationships that emerge between items, providing a better model
for the users’ preferences which is also made evident by the difference in magnitude
between the metrics when using the popularity and the item similarity baselines.

Pre-filtering for larger datasets

One interesting observation we made was the continuous improvement in relative
performance of the pre-filtering method against the baseline as we increased the size
of the dataset. Figures 5.13 to 5.18 show the performance of the algorithm when
examining only the datasets that contain at least 6 months of training data. In the
case of the item similarity baseline, shown in Figures 5.13 and 5.14, we now see an
advantage in all the metrics for the pre-filtering method, and a more pronounced
gain for HR metric. While the performance gain is generally not significant, one
has to consider the fact that the contextual recommenders were trained with much
less data and nonetheless out-perform the baseline algorithm. The difference in
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Figure 5.11. Precision-recall measures for Pre-filtering vs. Item similarity

performance is also evident in the PR plots presented in Figures 5.15 and 5.16.
Our assumption for this change is that as we add more usage data in the model

some clear patterns emerge in the way that the users consume music in the different
contexts, which were not possible to be detected in the shorter datasets due to the
short term drift of the users’ preferences.

It is also interesting to observe the case of the popularity baseline for the big
datasets, shown in Figures 5.17 and 5.18. We see that the pre-filtering algorithm
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Figure 5.12. Ranking measures for Pre-filtering vs. Item similarity

achieves parity with the baseline in most of the measures, in contrast to the much
worse performance it had when we examined all the datasets. The cause for this
change is the fact that for a large enough dataset, the items that are popular in the
contextual datasets will tend to converge to the overall most popular items, hence
the recommendation lists for the two methods, baseline popularity and pre-filtering,
will be pretty much identical, since the length of the recommendation list we use
will only cover the 300 most popular items anyway. In a sense we reach the limit of
the popularity baseline’s performance for pre-filtering, and we cannot do any better
than the baseline when examining using the popularity as the input algorithm.

48



5.3. ANALYSIS

0.000

0.005

0.010

0.015

0.020

Weekday Weekend
Context

O
ve

ra
ll 

P
re

ci
si

on

Method

Baseline

Pre−filtering

(a) Pre-filtering vs. Item similarity Precision

0.0

0.1

0.2

0.3

0.4

Weekday Weekend
Context

O
ve

ra
ll 

R
ec

al
l

Method

Baseline

Pre−filtering

(b) Pre-filtering vs. Item similarity Recall

0.00

0.01

0.02

0.03

Weekday Weekend
Context

F
1 

S
co

re Method

Baseline

Pre−filtering

(c) Pre-filtering vs. Item similarity F1-Score

Figure 5.13. Precision-recall measures for Pre-filtering vs. Item similarity, using
datasets at least 6 months long
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Figure 5.15. Customer PR curves for item similarity pre-filtering, 1 year set
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Figure 5.16. Global PR curves for item similarity pre-filtering, 1 year set
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Figure 5.17. Precision-recall measures for Pre-filtering vs. Popularity, using
datasets at least 6 months long
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Chapter 6

Conclusion

In this chapter we will provide our closing remarks for the work performed during
this thesis, as well as directions for future work.

6.1 Discussion of results

Recommender systems have now become prevalent in a number of online appli-
cations and their importance in driving user satisfaction and sales has been es-
tablished. Despite an increased interest on research in the field sparked by the
Netflix Prize, context-aware recommendation systems are still an area that has not
been explored thoroughly. This project’s aim was to investigate the performance
of context-aware recommendation methods on implicit user data, making use of
already established collaborative filtering algorithms.

The post-filtering algorithm developed performed worse than the baseline, where
the sparsity of the data proved to be a major challenge for the performance of the
algorithm. Given the complexity of the steps involved in the algorithm, significant
changes would have to be made to the algorithm in order to provide higher quality
recommendations while ensuring that the algorithm also scales to handle millions
of users and items.

The pre-filtering algorithm provided some more challenges in setting up the ex-
periments properly. Its performance proved to be better than the item similarity
baseline when a large enough dataset was used as input, which indicates that fur-
ther investigation is warranted for this algorithm. The fact that this algorithm can
use any already established algorithm as input and that we don’t need to set any
parameters apart from the choice of contextual dimensions make it an attractive
option.

However we must be aware of the potential problems that could arise if we
introduce too many contextual dimensions, which would split the complete dataset
into segments that are too small to generate quality recommendations. The fact
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that different recommenders have to be created and maintained for every contextual
variable is also a concern, as such a process can be very expensive when we have
to provide recommendations to millions of users for millions of items. Running
live tests with the algorithm on real users to gather feedback on the utility of
the recommendations to users is also necessary to determine its viability as an
alternative to using the baseline algorithms.

6.2 Future work
Since the purpose of this thesis was to perform an exploration on the techniques
available in the field, there are many aspects of CARS that we did not explore.

The most obvious one would be trying out the same algorithms using contextual
variables other than the weekend-weekday split. While time is a contextual vari-
able that can have semantic meaning and can be easily obtained, there are other
contextual variables that we can obtain from users that have a semantic meaning,
such as the platform being used, or maybe pre-filtering on demographic data that
would be good candidates to examine. It would be interesting then to check the
performance of the algorithms developed using different contextual variables, and
perhaps splitting the data using more dimensions in order to observe the effect the
additional specicifity can have when counteracted by the more severe reduction in
data size. In order to verify the strength of the positive results we obtained for pre-
filtering, we could also perform experiments where we use a more advanced baseline
technique, and run the algorithm on all the available items.

Apart from additional experiments on the same techniques, exploration of other
context-aware techniques would be of great interest. In particular, testing the per-
formance of contextual modeling algorithms using the dataset available at Spotify
would provide valuable insights into the performance of the algorithms, especially
testing the scalability of the algorithms as they are tasked to handle millions of users
and items. As we discussed in Section 3.3, topic modeling techniques can be used
for the personalization of recommendations, and even though their performance
individually may be worse that the best performing CF algorithms, contextual al-
gorithms can also provide value as one of the features in an ensemble method.

Another interesting related field is context inference. The inference of high level
concepts about users, like their mood or their social situation from implicit data can
be very important in driving recommendations. Having such contextual variables
available can be valuable as input for contextual recommendation algorithms. With
the wide adoption of mobile devices with a multitude of sensors available, we now
have a number of sources that we can use in order to infer the context of the user.
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APPENDIX A. PLOTS

A.1.1 Selection of number of factors for CCD++
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Figure A.1. Effect of number of factors used in CCD++ on post-filtering, for
precision-recall measures
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A.1. PARAMETER SELECTION EXPERIMENTS
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Figure A.2. Effect of number of factors used in CCD++ on post-filtering, for
ranking measures

65



APPENDIX A. PLOTS

A.1.2 Selection of similarity measure for pre-filtering
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Figure A.3. Effect of similarity measure on pre-filtering, for precision-recall mea-
sures
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Figure A.4. Effect of similarity measure on pre-filtering, for ranking measures
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