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Abstract

Iterative decoding of block codes is a rather old subject that regained much inter-
est recently. The main idea behind iterative decoding is to break up the decoding
problem into a sequence of stages, iterations, such that each stage utilizes the out-
put from the previous stages to formulate its own result. In order for the iterative
decoding algorithms to be practically feasible, the complexity in each stage, in
terms of number of operations and hardware complexity, should be much less than
that for the original non-iterative decoding problem. At the same time, the perfor-
mance should approach the optimum, maximum likelihood decoding performance
in terms of bit error rate.

In this thesis, we study the problem of iterative decoding of product codes. We
propose an iterative decoding algorithm that best suits product codes but can be
applied to other block codes of similar construction. The algorithm approaches
maximum likelihood performance. We also present another algorithm which is
suboptimal and can be viewed as a practical implementation of the first algorithm
on product codes. The performance of the suboptimal algorithm is investigated
both analytically and by computer simulations. The complexity is also investigated
and compared to the complexity of GMD and Viterbi decoding of product codes.
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Chapter 1

Introduction

1.1 Background

The task of data communication on a noisy channel involves many different prob-
lems which can be dealt with more or less separately. One of the main concerns
is how to deal with the errors introduced by the communication channel to the
received message. Claude Shannon showed in his famous work, see [1], that this
problem can be remedied by channel coding in the communication system. This
lead to an explosive search for constructions of powerful channel codes, where we
mean by powerful, that they have good error correction capability.

The concept of product codes is a good way to obtain long and powerful codes
by using simple constituent codes. Product codes were first presented by Elias in
[2]. In their simplest form, product codes can be represented as a set of matri-
ces such that each row in these matrices is a codeword in one constituent code
and each column is a codeword in another constituent code. These codes had a
very significant role in providing many theoretical results in coding theory. For
instance, in [2], Elias constructed multidimensional product codes that, asymptot-
ically, have a non-vanishing rate and non-vanishing fractional minimum distance1.
The product codes constructed by Elias were the first example of codes with such
asymptotic property. The idea of product codes was later developed into the con-
cept of concatenated codes by Forney, [3] [4], Blokh and Zyablov, [5] and Zyablov
and Zinoviev, [6] [7].

Product codes are also very efficient in wireless communication channels. Wire-
less communication channels suffer from noise and fading due to multi-path prop-

1Fractional minimum distance is the ratio between the minimum distance and the length of

the code.
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2 Chapter 1. Introduction.

agation. Fading causes burst errors in the transmitted data. Interleaving is, in
general, used to transform burst errors into random errors which then can be cor-
rected by forward error control codes. However, the effectiveness of interleaving
is limited by the maximum delay that can be supported by the communication
system. Product codes, on the other hand, have the proper structure for burst
error correction without the need for extra interleaving.

A well known decoding procedure is to decode the received message up to half
the minimum distance of the code. Such a decoder is called a Bounded Minimum
Distance decoder (BMD). However, this decoding procedure is not very efficient in
decoding powerful codes such as product codes. This is caused by the following
explanation: Powerful codes have, in general, large minimum distances and thus
the risk for the occurrence of undecodable error patterns is higher. I.e., when the
number of errors occurring in the received message is slightly greater than half the
minimum distance of the code, there is a high risk that there are no codewords at
all at a distance less than half the minimum distance from the received message.
The result would be a decoding failure of the BMD decoder even though the sent
codeword is the closest codeword to the received message 2. This is true for all
classes of long codes with large minimum distance.

This will have a direct effect on the system performance and the coding scheme
will operate properly only at high Signal-to-Noise Ratio (SNR). In fact, with BMD
decoding alone it is impossible to approach the channel capacity. This is illustrated
in Figure 1.1 where asymptotic bounds (upper and lower) on the rates of codes as a
function of the transition probability of a memoryless Binary Symmetric Channel
(BSC), with BMD decoding are given [8, pp. 557-566]. It is observed that for
transition probabilities greater than 0.06, the gap between the rates of optimum
codes and that predicted by the channel capacity is very large. This clearly shows
the short coming of bounded minimum distance decoding and thus more powerful
decoding algorithms (beyond half the minimum distance) are needed.

It is worth noting that in Figure 1.1, there is no constructive proof that codes
satisfying the Gilbert-Varshamov lower bound exist, see [8, pp. 306-315]. However,
Blokh and Zyablov showed in [9] that concatenated codes that reach this bound
exist. Since their proof is not constructive, it is reasonable to say that, in practice,
the code used should have a rate much less than the rates predicted by the Gilbert-
Varshamov lower bound when the decoding is limited to half the minimum distance.

In general, the more powerful a code is, the more difficult it is to decode. The
decoding complexity of long block codes with large minimum distance increases very
fast. For instance Lin showed that the complexity of decoding Bose-Chaudhuri-

2An example of this is that product codes can correct burst errors of Hamming weight much

greater than half the minimum distance of the code. Decoding only up to half the minimum

distance means that burst errors will not be corrected
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Figure 1.1: Channel capacity compared to achievable code rates using BMD de-
coding on BSC.

Hocquenghem (BCH), codes increases with, at least, the square of the minimum
distance [10, pp. 129-131]. This rule, however, is not totally applicable to product
codes and codes related to them. Usually, decoding a product codes is performed
by successive decoding operations of the constituent codes of the product code
used. Therefore, the complexity of decoding product codes is more dependent on
the complexity of decoding their, much smaller, constituent codes.

1.2 Product Codes and their Advantages

Even though the minimum distance of product codes is much smaller than the
minimum distance of optimal codes of comparable length, the error correcting
potential of product codes is quite large. In order to illustrate this capability, we
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observe some of the characteristics of product codes. One important property of
product codes is burst error correction. It can be easily seen that all error patterns
that are restricted to a number of rows less than half the minimum distance of the
column code or a number of columns less than half the minimum distance of the
row code are correctable.

Also, for random errors, if the number of errors in each row does not exceed
half the minimum distance of the row code then these errors are correctable. This
is true, in a similar fashion, for the case of errors not exceeding half the minimum
distance of the column code in each column. Needless to say, a received message
with such error patterns is still closest to the original sent codeword, since every
other codeword is even further from the received message. Therefore, a Maximum
Likelihood (ML) decoder is also capable of correcting these error patterns.

We also observe that the covering radius 3 of product codes is, usually, much
greater than half the minimum distance of the code, see Cohen et al [11, page
17] and [12]. This means that even when the error exceeds half the minimum
distance of the code, there is still a possibility to correct all the errors when using
an ML decoder. This definitely doesn’t mean that it is possible to correct all such
errors, rather, it means that not all such errors are uncorrectable. Thus, random
error patterns such that the number of errors in some rows and some columns
exceed half the minimum distance of the row code or the column code, respectively,
might still be correctable using a maximum likelihood or near maximum likelihood
decoder. A bounded minimum distance decoder, on the other hand can never
correct random errors of this type. It is this improvement in error correction that
the algorithms introduced in this thesis posses and which makes them superior
to other algorithms like Generalized Minimum Distance (GMD) decoding with a
slight increase in complexity.

The main reasons why we decided to investigate the decoding of product codes
can be summarized as follows:

1. Low complexity decoding algorithms will allow the use of more powerful prod-
uct codes. The results obtained by implementing Turbo decoding on product
codes prove that these codes have very good error correcting potential. The
only obstacle is the high complexity required for decoding them with Turbo
decoders.

2. Product codes include interleaving as an inherent feature in their design.
They, therefore, have very good burst error correction capability which in
turn makes them good candidates for radio communication.

3. Product codes are very closely related to multilevel codes and generalized
concatenated codes. We hope that an efficient algorithm devised for product

3The covering radius of a linear code can be defined as the maximum Hamming weight of a

correctable error pattern from the all zero codeword
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codes can easily be modified for decoding concatenated codes and multilevel
codes.

It should also be mentioned that the simple structure of product codes makes them
even more attractive from the analytical point of view when analyzing the qualities
and the decoding algorithms of these codes.

1.3 Advantages of Iterative Decoding

Iterative algorithms for decoding block codes are in general a good compromise be-
tween complexity and performance. Even though in most cases the results obtained
by iterative decoding only approach the performance of optimal algorithms such
as ML decoding, the decrease in decoding complexity makes iterative algorithms
an attractive alternative to optimal algorithms. Gallager’s Low Density Parity
Check (LDPC) codes, [13], and their iterative decoding algorithms and Berrou and
Glavieux’s turbo codes and turbo decoding are clear proofs of the claim that itera-
tive decoding is an efficient replacement to optimal decoding such as ML decoding
or Maximum Aposteriori Probability (MAP) decoding. This claim becomes quite
clear especially when the size of the code used is very large which makes optimal
decoding practically impossible.

Using a long and powerful code is a basic requirement for utilizing the full
capacity of the channel. Utilizing the full capacity of the channel is especially
important in the case of limited resources in the channel where many users compete
to use the same bandwidth. There are many codes that fulfill the requirements of
being long and powerful. However, the problem of decoding these codes is, in many
cases, the decisive factor of using or not using them in applications. Therefore,
the iterative decoding algorithms presented by Gallager, Berrou and Glavieux and
the improvements made on these basic algorithms by later researchers are very
significant. This is because they open the door for using certain codes that were
previously considered impractical from the point of view of decoding.

Utilizing turbo decoding and related decoding algorithms with product codes
show a very clear improvement in the performance of these codes in comparison
to previous, suboptimal, decoding algorithms. However, the complexity of turbo
decoding product codes is quite high and is actually exponentially increasing with
the code length if the fractional minimum distances of the constituent codes were
kept constant. The problem, we believe, is inherent and is caused by the structure
of product codes. The main reason for the high complexity of turbo decoding of
product codes is that, usually, the constituent codes are chosen to be optimal 4 or

4As previously mentioned, optimal codes are the codes that have the largest possible minimum

distance for a given length and cardinality
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near optimal block codes, e.g., BCH codes and Reed-Muller codes. These codes
are very hard to decode with known MAP algorithms except in the cases when the
codes have very high or very low rates. However, MAP algorithms are essential
in the case of turbo decoding. We believe, therefore, that in order to increase
the performance of product codes without drastic increase in complexity calls for
developing new algorithms that are categorically different from turbo decoding
tailored to fit the qualities of product codes.

In this thesis we present two algorithms for decoding product codes. These
algorithms are iterative in nature and are based on successive decoding of the rows
and columns of the incoming message. This iterative technique makes these pro-
posed algorithms similar to turbo decoding algorithms. The similarity, however,
stops there and the proposed algorithms are fundamentally different from turbo de-
coding. The performance of the first algorithm proposed in the thesis approaches
ML decoding while the performance of the other proposed algorithm, which we
will refer to as the suboptimal algorithm, only approach the performance of ML
algorithms with increasing complexity. It will be shown both analytically and with
the help of computer simulations that the second algorithm gives rather good re-
sults at a fraction of the complexity needed for ML decoding. The main objective
of designing the new algorithms is to keep the complexity of the decoding to a
minimum, comparable to BMD decoding or GMD decoding of the product code in
the cases of hard decoding and soft decoding respectively. We mean by compara-
ble that the difference in complexities between the proposed algorithm and BMD
decoding does not exceed or is a fraction of the total complexity of decoding.

Both proposed algorithms in the thesis are based on representing product codes
as an intersection of two codes. These two codes can easily be list decoded by
list decoding of the rows and columns of the matrix that is undergoing decoding.
When using the optimal algorithm, the rows and columns of the received message
are list decoded and those lists are used without further alteration throughout all
the decoding iterations. The suboptimal algorithm, on the other hand, list decodes
the rows or the columns from the previous iteration instead of the original message
and forgets this list after using it in each iteration. This is done so as to keep the
size of the list as small as possible and, as will be shown in Section 4.2, to decrease
the total number of iterations needed for decoding.

1.4 Related Work

Recently, many researchers have looked into the problem of decoding beyond half
the minimum distance of the code. A possible approach is to choose a simple code
construction, usually a concatenation of two or more codes, and try to decode the
received message much beyond half the minimum distance of the code. Even if
the minimum distance of the code used is small in comparison with optimal codes,
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the result will, in average, be better than that of a long code with large minimum
distance and BMD decoding. A very good example of such approach was given by
Glavieux and Berrou [14] with parallel concatenation of two convolutional codes
and an iterative decoding algorithm, a combination which they called Turbo Codes.
It was later discovered that Gallager, in a much earlier work [13], proposed a similar
idea which he called Low Density Parity Check Codes. The work continued in the
same track as Berrou and Glavieux to implement the same decoding algorithm,
namely, Turbo decoding, on other types of concatenated codes. Many researchers
implemented Turbo decoding with product codes.

Decoding product codes up to half their minimum distance of the code is quite
simple. It is just an instance of the GMD decoding introduced by Forney [3]. How-
ever, since the minimum distance of product codes is small compared to optimal
codes, BMD decoding of product codes is not very interesting from a practical
point of view. Because of that product codes did not gain a lot of attention dur-
ing the past years. Interest in product codes increased with the introduction of
Turbo decoding. One of the reasons is that product codes are closely related to
concatenated codes and multilevel codes, [15] [16]. A solution that works for prod-
uct codes can easily be extended to concatenated codes and multilevel codes. The
other reason is that product codes have a very simple structure and that makes
them easy to analyze and to implement.

Hagenauer, Offer and Papke were the first to investigate the idea of Turbo
decoding of product codes [17]. It was, however, found that direct application of
turbo decoding on product codes is too complex to implement and not possible to
use for codes of interest. Turbo decoding requires MAP decoding on the Trellis of
the constituent codes [18]. Since the constituent codes of product codes are usually
chosen to be linear block codes, their trellis complexity is quite high even for very
simple codes [19].

To overcome this complexity problem, Pyndiah, [20], proposed a new iterative
decoding algorithm for product codes. The proposed algorithm is an approxima-
tion to Turbo decoding where the MAP decoding of the constituent codes was
replaced by a modification of Chase’s second decoding algorithm [21]. However,
the approximations proposed by Pyndiah are not always explained or motivated by
a theoretical background. This makes Pyndiah’s algorithm very hard to analyze
and, therefore, becomes even harder to improve or generalize to other codes.

What is common in the results of both Hagenauer and Pyndiah is that the error
correcting performance of product codes was shown to be much greater than that
predicted by BMD decoding. In fact, the obtained results showed performance
comparable to that of Turbo codes when the number of iterations is kept small
and with a comparable decoding complexity. There is nowadays a great interest in
using product codes in combination with Turbo decoding both from the universities
and the industry, [22]. The decoding complexity is, however, still very high and
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only very short product codes can be used.

Many researchers tried afterward to analyze or improve the efficiency of iterative
decoding of product codes. For example, Fang et al., [23] introduce a special family
of product codes that are easily decodable by trubo decoding. Martin et al. [24]
tried to decrease the complexity of turbo decoding of product codes by lowering
the complexity of MAP decoding of the constituent codes and Be’ery et al., [25]
[26], investigated the convergence of turbo-decoding of product codes.

After the first reports about the effectiveness of iterative decoding of product
codes were published, many researchers investigated the possibility of using prod-
uct codes in communication systems. The following is but a sample of a huge
number of work published in the area. Hagenauer, [27] investigated the possibil-
ity of using product codes in Forward error correcting for Code Division Multiple
Access (CDMA) systems. Picart and Pyndiah, [28], investigated the possibility of
using product codes in combination with turbo-decoding in multilevel construc-
tions. Sanzi et al., [29], investigated the possibility of iterative channel estimation
and decoding in multi-carrier systems using product codes. Buch and Burkert, [30]
investigated the use of Unequal error protection with product codes with turbo
decoding and Souvignier et al., [31] tried to implement product codes with turbo
decoding in partial response channels.

1.5 Scope of the Thesis

The thesis can be regarded as an extensive discussion and motivation of the results
on this subject presented by the author in [32], [33] and [34]. The thesis begins in
Chapter 2, by defining product codes and discuss their features. We also give a
rather detailed discussion about the background of these codes and the background
of the decoding problem that we address in this thesis. The aim of Chapter 2 is to
point out the missing parts in the previous research regarding decoding of product
codes. This way we give a motivation to our research and the solutions we present
in the thesis.

In Chapter 3 we introduce a new representation for product codes defined as
an intersection of two simpler codes. From this representation of product codes,
a decoding algorithm, referred to as the “basic decoding algorithm”, is developed.
We prove in Chapter 3 that, under certain conditions, the basic decoding algorithm
has ML performance. We also prove in Chapter 5 that for good channels, i.e., suf-
ficiently low transition probability for binary symmetrical channels or high signal
to noise ratio for Euclidean channels, the complexity of the basic decoding algo-
rithm will be less than that for maximum likelihood Viterbi decoding on the trellis
of product codes. The basic decoding algorithm is very useful from a theoretical
point of view and can be used to derive bounds on the decoding complexity of



1.5. Scope of the Thesis. 9

product codes and their performance in Additive White Gaussian Noise (AWGN)
channels as done in Chapter 3 and in the Appendix.

The complexity of the basic decoding algorithm can be limited to a preset upper
limit. By varying this limit one can trade decoding complexity for performance and
vice versa. We try in this thesis to express the performance in terms of the chosen
complexity.

As mentioned above, the basic decoding algorithm only has theoretical value.
We, therefore, developed an iterative decoding algorithm, referred to as “subop-
timal iterative decoder”, based on the basic decoding algorithm. This is done in
Chapter 4. The proposed iterative decoder shares many features with Turbo decod-
ing and especially that proposed by Pyndiah [20]. It is, however, fundamentally
different from Turbo decoding. Turbo decoding, including Pyndiah’s algorithm,
rely on MAP decoding of the rows and columns in each iteration. The result from
MAP decoding is used to generate a vector of extrinsic reliability information to be
used in the following iteration. The iterative algorithm proposed in this thesis is
based on list decoding the rows and the columns at each iteration so that each row
or column will have several candidates and choosing only one of these candidates
for each row or each column to be a part of the result for the current iteration. I.e.,
no MAP decoding or generation of extrinsic information is needed. The complexity
of the iterative decoding algorithm can be controlled by limiting the complexity
of the list decoder for the rows and the list decoder for the columns. Decreasing
the complexity is, however, done at the expense of performance. Since one of the
main issues of the thesis is to limit the complexity, we concentrate mostly on the
implementations where the complexity is as low as possible, comparable to GMD
decoding of the product code under investigation.

The simulation results in Chapter 6 show that the performance of the proposed
decoding algorithm is better than GMD decoding for comparable complexities. For
example, by using GMD decoders of the constituent codes as list decoders for the
rows and for the columns and by keeping the total number of iterations sufficiently
small, then we will keep the complexity of the iterative decoder comparable to that
of GMD decoding of the product code. This is due to the fact that GMD decoding
of the product code incorporates GMD decoders of the constituent codes.

Also, in Chapter 6, the complexity of the suboptimal iterative decoder is studied
and it is shown that for the codes used in the simulation, the complexity of decoding
truly is comparable to the complexity of GMD decoding of the same product code.
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Chapter 2

Product Codes

In this chapter we try to present the basic concepts regarding the definition of
product codes, their characteristics and the decoding algorithms that can be used
in combination with product codes. We also touch on the subject of complexity
of using product codes in communication systems. We hope that by presenting
and partly analyzing the alternative methods of decoding, we will be able to give
and explain the motivation for devising a new decoding algorithm that can be used
with product codes.

Most of the information in this chapter is compiled from articles and results
of other researchers, e.g., Elias [2], MacWilliams and Sloane [8], Forney [3] [35],
Viterbi [36], Berrou and Glavieux [14], Pyndiah Pynd98 and Vardy [19].

2.1 Definition of Product Codes

Product codes are serially concatenated codes [8, pp. 568-571]. They were first
presented by Elias in 1954 [2]. The concept of product codes is very simple and
powerful at the same time where very long block codes can be constructed by
using two or more much shorter constituent codes. Consider two block codes A′

and B′ with parameters [n, kA, dA] an [m, kB , dB ], respectively. It should be noted
that we follow MacWilliams and Sloane’s notations, [8], where n, kA and dA are,r
respectively, the length, dimension and minimum Hamming distance of the code A′

andm, kB and dB are,r respectively, the length, dimension and minimum Hamming
distance of the code B′. The rates of the codes A′ and B′ are denoted by RA and
RB , respectively, and are equal to:

RA
4
=
kA

n
,RB

4
=
kB

m
.

11
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The product code C is obtained from the codes A′ and B′ in the following manner:

1. place kA × kB information bits in an array of kB rows and kA columns.

2. coding the kB rows using the code A′. Note that the result will be an array
of kB rows and n columns.

3. coding the n columns using the code B′.

The construction of the product code C = A′ ×B′ is illustrated in Figure 2.1. The

Checks on Columns

rows

Checks
  on

Checks
  on
Checks

PSfrag replacements

n

m

kA

kB

Figure 2.1: Construction of product codes

parameters of the resulting product code will be [mn, kAkB , dAdB ] and its rate
will be equal to RARB . Therefore, we can construct long block codes starting by
combining two short codes.

Another, and more general, definition of product codes is as follows. For the
same codes A′ and B′ defined above, the product code C is an [mn, kAkB , dAdB ]
code whose codewords can be represented by all m×n matrices such that each row
and each column of these matrices are members of the codes A′ and B′ respectively.
Note that this definition is valid for all constituent codes over any alphabet, linear
or non-linear.

Let GA and GB be the generator matrices of the codes A′ and B′ respectively.
The generator matrix for the code C can be obtained from the generator matrices,
GA and GB , of the constituent codes by taking the Kronecker product, denoted
by ⊗, of the two matrices, see MacWilliams and Sloane [8, pages 421 and 568],
as will be shown. Let GA be the generator matrix of the code A′ and let GB be
the generator matrix of the code B′. The generator matrix of the product code C,
denoted by GC is equal to:

GC = GB ⊗GA,
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where the Kronecker product between two matrices, L and M of dimensions a× b
and c× d respectively, is defined as follows:

L⊗M
4
=

L11M L12M . . . L1bM

L21M L22M . . . L1bM
...

...
. . .

...

La1M La2M . . . LbaM

,

where the resulting matrix will have dimensions ac× bd. We, therefore, denote the
product code C by:

C = A′ ⊗ B′.

It is worth noting that we change the order of codes in the product code operation
notation above as compared with the definition of the Kronecker product of two
matrices. We do this for the sake of clarity when describing the decoding algorithm
in this thesis.

When there is no possibility of misunderstanding, we will simply denote the
parameters of a product code as [m, kB , dB ] × [n, kA, dA], meaning that for the
product code in question, the constituent codes for the columns and the rows have
parameters [m, kB , dB ] and [n, kA, dA] respectively.

A codeword c in the product code can either be generated by multiplying a
kAkB long binary vector with the generator matrix for C or by using the following
equation:

c = GT
BuGA,

where u is a kB × kA binary matrix and GT
B is the transpose of the matrix GB .

The codeword c will then be an m× n binary matrix.

The minimum distance of the resulting product code will also be much larger
than the constituent codes A′ and B′. However, the fractional minimum distance
of the product code will be much smaller than the fractional minimum distance
of both the constituent codes as will be shown. Let δA and δB be the fractional
minimum distances of the codes A′ and B′, respectively, defined as follows:

δA
4
=

dA

n
,

δB
4
=

dB

m
,

δC
4
=

dAdB

mn
.

Clearly, the following is correct:

δC = δAδB < δA, δB .
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This decrease in the fractional minimum distance makes these codes less interesting
in classical coding theory. In classical coding theory, great interest and effort is put
into finding long codes with large fractional minimum distance. There are many
other constructions that combine two or more simple codes that result with codes
of lengths comparable to product codes but with much larger fractional minimum
distance. An example of such codes is Justesen codes, see [37] or [8, pp.306-315]

2.2 Qualities of Product Codes

As shown in Section 2.1, the minimum distance of product codes is small in com-
parison with the minimum distance of optimal codes of similar lengths and rates.
However, the minimum distance is a good measure of the error-correcting capabil-
ity of a code when the number of errors is less than half the minimum distance
of the code. If the number of errors exceeds half the minimum distance of the
code, then, the error-correcting potential of the code is related, in the case of linear
codes, to the weight distribution of the code, i.e., the number of codewords with
a certain Hamming weight for all possible weights. If the number of errors was
slightly greater than half the minimum distance of the code then, the error prob-
ability will be small if the number of codewords with small Hamming weights is
small and vice versa if the number of codewords with small Hamming weights was
large. The following example compares the weight distributions of a product code
with another code:
Example 2.1 Let the constituent code of both the rows and the columns of
the product code C be the [8, 4, 4] Reed-Muller code. The parameters of C are
[64, 16, 16] and its weight distribution is:

{(0, 1), (16, 196), (24, 4704), (28, 10752), (32, 34230), (36, 10752), (40, 4704),

(48, 196), (64, 1)},

where the first entry in each member of the set is the Hamming weight and the
second entry is the number of codewords in the code that have this Hamming
weight. The number of codewords with Hamming weight equal to or less than 16
is 197 which is 3.01 · 10−3 of the total number of codewords. On the other hand,
the number of codewords with Hamming weight equal to or less than 24 is 4901
which is 7.48 · 10−2 of the total number of codewords. We compare this code with
the [64, 16, 24] extended BCH code A′. The weight distribution of A′ is:

{(0, 1), (24, 5040), (28, 12544), (32, 30366), (36, 12544), (40, 5040), (64, 1)}.

The number of codewords with Hamming weight equal to or less than 24 is 5041
which is 7.69 · 10−2 of the total number of codewords. This means that when the
number of errors is equal to 12, the error-correcting capability of the code C might
be slightly better than that for the code A′.
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Many other examples can be given showing the same characteristics of the
weight distribution of product codes in comparison to other binary codes. However,
a general statement about the weight distribution of product codes is very hard
and requires extensive studies, [38].
The covering radius, ρ, for any code, is defined as the smallest integer such that all
vectors in the containing space are within Hamming distance, ρ, of some codeword.
Estimating the covering radius of codes is very hard when the lengths of the codes
are large. There exists, however, a very good lower bound on the covering radius
of product codes introduced by Cohen et al., [12]. Let the codes A′ and B′ be the
constituent codes of the product code C with lengths n and m respectively, then:

ρ(C) ≥ max(mρ(A′), nρ(B′)). (2.1)

The error-correcting potential of product codes can only be achieved if the employed
decoder can decode up to the covering radius of the code or at least close to the
covering radius of the code. It is easily seen that the covering radius of a product
code is much greater than its minimum distance which supports the argument for
trying to develop a decoder that decodes beyond half the minimum distance of the
code.

In order to illustrate the point regarding the high error correcting capabilities of
product codes, we give some examples of error patterns that are correctable using
product codes even when the Hamming weights of these error patterns exceed half
the minimum distance of the product code under study. The first example we give
is the ability of product codes to correct burst errors. Imagine the case where the
received message has errors located in a number of rows not exceeding b(dB − 1)/2c
and no errors in all the other rows in the message. Obviously, for every column
in the received message, the closest codeword in the code B′ to this column is the
corresponding column in the codeword sent by the transmitter. Therefore, without
consideration to how many errors are there in these b(dB − 1)/2c rows, the received
message is still correctable. The same argument is true for the case when there is
a burst error in the received message that is located in a number of columns not
exceeding b(dA − 1)/2c and no errors in all the other rows in the message. For
every row in the received message, the closest codeword in the code A′ to this row
is the corresponding row in the codeword sent by the transmitter.

In Chapter 3 the error correction capability of product codes is discussed even
further and more examples of correctable error patterns are presented and dis-
cussed.

2.3 Decoding of Product Codes

Many decoding algorithms for decoding product codes were presented since their
introduction by Elias in 1954. The most obvious method of decoding is the one
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suggested by Elias himself in his original work [2]. In Elias’s algorithm, the rows
in the received message are decoded using a decoder for the code A′ that decodes
up to half the minimum distance of A′. The columns of the resultant matrix are
then decoded using a decoder for the code B′ that decodes up to half the minimum
distance of B′. It can easily be shown that such a decoder can correct only up
b(dAdB)/4c, see Elias [2] and Ericson [39].

We start by presenting the system model used in the thesis and then follow by
presenting what we consider the most important and famous decoding algorithms
that were suggested for decoding product codes.

2.3.1 System Model

We first describe and define the system that we are investigating in the thesis. This
system will be the platform for comparing different decoding algorithms both in
performance and complexity. In the thesis we will only consider linear binary
product codes. The algorithms and the analytical results, however, are easily
extended to non-binary codes, linear or non-linear.

Consider the system shown in Figure 2.2 We assume the channel to be an

Encoder Modul−
tor

Channel DecoderDemod−
ulator

BSCPSfrag replacements

m x u v y x̂

Figure 2.2: Model of the system used in the thesis

AWGN Channel with double sided power spectral density of the noise equal to
N0/2. In our analysis, we consider both soft decision decoding and hard decision
decoding. In hard decision decoding, the channel will be equivalent to a Binary
Symmetrical Channel (BSC) with transition probability, p, which is related to the
used modulation as shown in Figure 2.2. Choosing the channel to be additive and
memoryless is a way to simplify the model and make it easier for analysis. We use
a very simplified model because our aim is to verify the correctness and investigate
the potential of the new decoding algorithms proposed in the thesis. As seen in
the figure, the encoder receives a message m from the source or the sender. In
the case of binary product codes, m can be considered to be a binary array of
dimensions kB × kA. However, any other message space can be used and the only
limitation is that there is a one to one mapping, bijection, between the messages
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in the message space and the codewords used in the code space. Since there is a
one to one mapping between the codewords and the messages, it is always possible
to find an estimation of the sent message as long as the decoder can produce some
estimation x̂ of the codeword.

The encoder encodes m to a codeword x where in the case of binary product
codes, this codeword can be considered to be a binary array of dimensions m× n.
The modulator modulates each binary symbol in the codeword to the Euclidean
space using a certain mapping M, related to the used modulation. For coherent
BPSK modulation the mapping M is as follows:

M : {0, 1} 7→ {+1,−1}
0 → +1
1 → −1

. (2.2)

We write:

u = M(x), (2.3)

to denote that the symbols of the codeword x are modulated one by one using the
mapping shown in 2.4. The output from the modulator is an m× n real matrix u

of +
√
Ec’s and −

√
Ec’s with Ec representing the average energy of the coded bit

Ec = RCEb,

where Eb is the average energy per uncoded information bit and R is the rate of
the code. The channel adds an error matrix, e to the codeword x as follows:

v = e + u,

with the elements of e are i.i.d. Gaussian variables with zero mean and variance
N0/2. In the case of BSC, the error matrix e is a binary matrix. In this case,
the demodulator demodulates each symbol vij in the received matrix, using the
following rule:

yij =

{

0, if vij ≥ 0
1, otherwise

(2.4)

The matrix y is then decoded to the binary matrix x̂ using some decoder for
product codes.

For soft decision decoding, the demodulator and the channel decoder cooperate.
In this case, the soft received vector v is used directly by the channel decoder. Each
member in the matrix v can be written as:

vi,j = M(ci,j) + ei,j , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. (2.5)
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where M is the modulation function given in (2.2). In matrix form, it can be
written as:

v = M(c) + e (2.6)

If the energy of each coded bit was equal to Ec, each element in v can be written
as follows, see [40]:

vi,j = ±
√

Ec + ei,j , (2.7)

where the ± signs are chosen according to the value of ci,j . When a hard decoder is
used in a AWGN channel and if coherent BPSK is used, the transition probability
of the BSC is given by, [41, p. 500] [42, p. 161]:

p = Q(

√

2RCEb

N0
), (2.8)

where RC is the rate of the code used and Q is defined as, [41, pp. 150-151]:

Q(x) =

∫ ∞

x

1√
2π

exp− t
2

2
dt . (2.9)

The squared Euclidean distance between two sequences, v and w of length n, in
the R

n Euclidean space, is given as follows:

d2
E(v,w)

4
=

n
∑

i=1

(vi − wi)
2

Ec
. (2.10)

In some publications, the definition in (2.10) is called the normalized Euclidean
distance. Since we never use any non-normalized form of the Euclidean distance in
this thesis we will, if there is no possibility for confusion, refer to it simply as the
Euclidean distance. A soft decoder is capable of utilizing the information about the
reliability of the symbols in the received sequence in order to return an estimation
of the sent codeword that is closer to the received message than that returned by
the hard decoder.

A maximum likelihood decoder returns the codeword that has the greatest
probability of being sent given the received message. Formally, for a received
message v, the ML estimation, x̂ML of this received message is a codeword in the
code C such that for any other codeword x′ ∈ C the following is true:

P (x′|v) < P (x̂ML|v),

where P (·|·) is the conditional probability. In memoryless Euclidean channels, the
ML solution coincides with the codeword that has the least Euclidean distance
between its modulated image and the received sequence, i.e.,:

d2
E(M(x′),v) ≥ d2

E(M(x̄),v).
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In soft decoding a certain received sequence, we say that one received symbol is
more reliable than another symbol in the same sequence if the squared Euclidean
distance between the received symbol and its estimate is smaller than the squared
Euclidean distance of the second symbol and its corresponding estimate. This def-
inition of reliability of the received symbols in the same sequence is important for
soft decision decoding of the constituent codes of the product code using General-
ized Minimum Distance decoding [3] or Chase decoding [21].

In order to evaluate the performance of the codes and decoders used in the
system, the channel capacity, see Cover and Thomas [43, pp. 183-223] and Johan-
nesson [44, p. 50], can be used for comparison. where the channel capacity for
BSC is:

C
4
= 1 − h(p), (2.11)

where p is the transition probability of the channel and h is the binary entropy
function defined as:

h(x)
4
= −p log2 p− (1 − p) log2(1 − p), (2.12)

In certain cases it is good to compare the performance of codes in terms of signal
to noise ratio instead of the transition probability. If we assume that the channel
used was AWGN channel, the modulation is BPSK and that hard decoding was
used for each bit.

The probability of error for each bit will be, as discussed in Section 3.3 and
shown in (3.13) which we state here one more time for the sake of clarity:

p = Q(

√

2RcEb

N0
), (2.13)

where Rc is rate of the code and Q is as defined in(2.9),

In the case of band-limited AWGN channels, the rate, R, of the code used is
limited from above as follows, [43, p. 250], [44, pp. 208-211]:

R ≤ C
4
=

1

2
log2(1 +

P

N0W
) bits per sample, (2.14)

where P is the power of the signal, N0/2 is the power spectral density and W is
the bandwidth of the channel. The definition of the channel capacity in (2.14) is
sometimes called If we assume that a code of length n and rate R is used and that
sending one codeword over the channel requires T seconds, then, the signal power
can be written in terms of information bit energy, Eb, as:

P =
EbnR

T
.

Since the receiver needs at least n samples to decode the message and there are at
most 2WT samples of the signal received in time T , each of which has a noise of
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variance N0/2. The ratio P/N0W can be written in terms of the information bit
energy to noise ratio Eb/N0 as follows:

P

N0W
=

EbnR

N0TW
(2.15)

=
2EbnR

2N0TW

= 2R
Eb

N0
,

where R should be equal to the capacity of the channel in order to obtain equality
in (2.14). A more detailed discussion on the channel capacity can be found in [43,
p. 250], [44, pp. 208-211] and [40, pp. 380-387,399].

2.3.2 Generalized Minimum Distance Decoding

Decoding product codes up to half the minimum distance is somewhat simple and
can be achieved by using a variant of the GMD decoder introduced by Forney, see
[3]. A GMD decoder was first suggested by Forney as a method of decoding binary
block codes in a way that makes use of the soft information coming from the chan-
nel while still using an algebraic decoder that can only use the hard interpretation,
i.e., zero or one for each symbol, of the symbols from coming from the channel.
The simplest definition of the term Generalized Distance, dGD, between two se-
quences, is the sum of the distances between the symbols in the two sequences
without consideration to what distance metric is used between these symbols. For
example, if the distance between the symbols was taken to be the Hamming dis-
tance, then, the generalized distance is the Hamming distance between the two
sequences. Similarly, if the distance between the symbols is Euclidean distance,
then, the generalized distance between the two sequences will be the summation of
the absolute Euclidean distances of the corresponding symbols in the two vectors,
and so on.

The term Generalized Minimum Distance refers to the minimum correctable
generalized distance between a vector in the Euclidean space and a codeword in
the code used in transmission using the algorithm presented by Forney. For a code
with minimum Hamming distance equal to d, the Generalized Minimum Distance
is proportional to d. It is also possible to use the square Euclidean distance instead
of the Generalized Distance as a metric when performing GMD decoding algorithm
with exactly the same results.

It was later shown by Forney [4], Blokh and Zyablov [9] and Zyablov and Zi-
noviev [7], that the GMD decoding algorithm can be used for a whole class of codes
called concatenated codes including product codes.
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GMD decoding of product codes assumes that there exists separate decoders
for both the row code and the column code that can correct all errors up to half the
minimum distance of the respective code. As a first step the GMD decoder decodes
each row in the received matrix up to half the minimum distance of the row code
and stores the result. Then, each column of the resultant matrix is decoded up to
half the minimum distance for the column code. The GMD decoder, then, starts
to successively erase the least reliable rows two by two as long as the number of
erased rows is less than the minimum distance of the column code. The columns are
re-decoded each time two rows are erased and the result is stored. In the end the
GMD decoder chooses from the different results, the codeword that is closest to the
received matrix. It can be shown that GMD decoding can correct all error patterns
of Hamming weight less than half the minimum distance of the code, see Forney
[3], Blokh and Zyablov [5] and Ericson [39]. However, there the GMD decoding
algorithm can decode many other patterns and some burst errors with Hamming
weight that is greater than half the minimum distance of the product code.

The GMD decoder of product codes can be made to take into consideration the
soft information of the symbols coming from the channel. This is simply done by
decoding the rows using a GMD decoder for the rows instead of a decoder that
corrects up to half the minimum distance of the row code.

2.3.3 Maximum Likelihood Decoding

As shown in 2.3.1, the ML solution in memoryless Euclidean channels is the mod-
ulated image of the codeword that is closest to the received message. One simple,
and obvious, method to obtain the ML solution would be to compare all the dis-
tances between the codewords in the code and the received message and pick the
codeword that is closest to the received message. Needless to say, such a method
is very time consuming and is impractical except in certain cases of very short
codes. Viterbi, [36], introduced a decoding algorithm for decoding convolutional
codes that makes ML Decoding practically feasible. Later, Forney, [35], showed
that the Viterbi algorithm is actually a dynamic algorithm for finding the shortest
path between the first node and the last node in a certain type of graphs called the
trellis of the code.

A trellis T representing a code U of length n is a graph composed of a finite
set of vertices, V , a finite set of labeled edges, E and a set of labels L where the
label set is the alphabet of the code. The vertices can be partitioned into disjoint
sets, V0, V1, . . . , Vn, where we call i the time. The trellis is such that for each
subset Vi there are edges connecting the vertices in Vi with the vertices in Vi−1 and
connecting the vertices in Vi with the vertices in Vi+1, and no other edges exist.
I.e., we can find paths of labeled edges connected by vertices starting from the first
set of vertices V0 and ending in the last set of vertices Vn. For such a trellis, each
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path, sequence of edges, of length n going through the vertices is a codeword in
the code U , see Vardy [19].

In 1974, Bahl, Cocke, Jelinek and Raviv [18], showed that linear block codes
can also be represented by a trellis and presented a method for constructing it. The
construction given by Bahl et al. was later shown by McEliece, [45] to be minimal,
where we mean by minimal that when comparing the minimal trellis T with any
other trellis representations, T ′, of the same code, the number of vertices at each
time i is less in T than that in T ′. The definition of minimal trellis is important
when discussing the subject of decoding complexity.

In order to further illustrate what is meant, we show, as an example, the trellis
representation of the [7, 4, 3] Hamming code in Figure 2.3. The method used for
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Figure 2.3: Trellis of the [7, 4, 3] Hamming code.

constructing the minimal trellis above, is the same method introduced by Bahl et
al. mentioned above. By observing the trellis of the [7, 4, 3] Hamming code, it is
clear that most of the attractive features in Viterbi decoding on the trellises of
convolutional codes are missing in the case of block codes. For example, it can be
seen that the number of vertices in the trellis of the Hamming code are different for
each time. Also, the edge connections between the vertices are very complicated
and different for each time. This is true for almost all classes of non-trivial and
famous block codes of interest, e.g., BCH codes, alternant codes, Reed-Muller codes
and many more. On the other hand, the trellises of convolutional codes are very
simple meaning that the number of states in a subset of vertices at a certain time is
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equal to the number of vertices in a subset at almost any other time in the trellis.
Also the connection of edges between the vertices of a subset at a certain time
to the vertices of the subset in the previous time, is identical to almost any other
connection of edges at any other time in the trellis. However, in the trellises of
convolutional codes, the first few subsets of vertices in the trellis and the edges
between them are different in number and form from those in the rest of the trellis.
Also, The last few subsets of vertices in the trellis and the edges between them are
different in number and form from those in the rest of the trellis. A much more
detailed explanation of trellises of convolutional codes can be found in [46].

It can be shown that the number of operations needed for performing Viterbi
decoding on a trellis T with vertices V and edges E is equal to:

2|E| − |V | + 1,

see Vardy [19]. It can also be shown that the number of edges in a trellis is closely
related to the number of vertices. Therefore, taking the number of vertices in the
trellis as the complexity measure between trellises is appropriate. An upper bound
on the logarithm of the maximum number of vertices at any time in a trellis of an
[n, k] binary linear code is the famous Wolf bound [47], which states:

log2 Vi ≤ min {k, n− k}, i ∈ {1, 2, . . . , n}.
In the case of Maximum Distance Separable (MDS) codes, equality is achieved. It
was shown by Vardy, [19], that this bound is actually very good, meaning that in
most cases, the logarithm of the maximum number of vertices at any time, is very
close to the Wolf bound.

It can easily be shown that for a product code with parameters [m, kB , dB ] ×
[n, kA, dA], the Wolf bound looks like:

log2 Vi ≤ min {kAkB , (n− kA)kB , kA(m− kB), (n− kA)(m− kB)},
i ∈ {1, 2, . . . ,mn}. (2.16)

The proof of this claim is done by observing the generator matrix of the product
code that is generated by taking the Kronecker product of the generator matrices
of the constituent codes that both have a minimal span form. For the definition
and construction of minimal span form generator matrices we refer to Kschischang
and Sorokine [48] and Vardy [19].

There is some work done in the area of investigating trellis constructions of
product codes and Viterbi decoding on them. However, the discussion above shows
that the complexity of Viterbi decoding on the trellis of product codes is exponen-
tially increasing with the size of the code. Therefore, we believe that Maximum
Likelihood Viterbi decoding on the trellis of product code is not practical except
in cases of very short codes or product codes with very high, alternatively, very
low rate. This belief is shared by many prominent researchers in this area which
supports our conviction.
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2.3.4 Turbo Decoding

We mentioned in Chapter 1 that Glavieux and Berrou were the ones who introduced
turbo decoding in 1993, [49]. The decoding algorithm was designed to iteratively
decode a parallel concatenation of two convolutional codes using a Maximum Apos-
teriori Probability (MAP) soft decoder of the constituent convolutional codes. The
decoder introduced by Bahl et al. [18], is a modification of the MAP algorithm
in such a way that it becomes directly implementable in decoding on a trellis rep-
resentation of the code. MAP decoding on the trellis utilizes a Viterbi-like stage
that perform decoding from the start of the trellis and forward or from the end of
the trellis and backward. It was later shown by Wiberg, [50], that this algorithm
is a subclass of algorithms that were later called the Forward-Backward algorithm,
see Forney [51]. MAP decoding has a complexity comparable to that of Viterbi
decoding. It can be shown that it requires a total number of operations that is
almost four times that required by Viterbi decoding.

The original form of the MAP decoder dates back to Hartmann and Rudolph
[52] and Battail [53]. We will try to give a quick presentation of the straight
forward implementation of this algorithm. I.e., our explanation does not include
the modification that makes it implementable on trellises. Let a binary code U
with parameters [n, k, d] be used for decoding. Let the received sequence be y and
the result from the decoder be x̂. The MAP decoder returns real value for each
symbol x̂i that can be evaluated as follows:

L(x̂i) = ln

∑

x∈U,xi=0

n
∏

l=1

P (yl|xl)

∑

x∈U,xi=1

n
∏

l=1

P (yl|xl)

, (2.17)

where L is the log-likelihood function of the symbols in x̂. The binary values of
the symbols in x̂ are found by setting each symbol x̂i to zero if its log-likelihood
function was greater than zero. Alternatively, the symbol is set to one if its corre-
sponding log-likelihood function was less than zero.

In turbo decoding, the received sequence is MAP decoded on the first con-
stituent code and the real values obtained from MAP decoding are used, without
mapping the results to binary symbols, as input for MAP decoding in the next
stage to MAP decode on the second constituent code. The procedure is repeated
in the following iterations using the real values returned by the MAP decoder in
the previous iteration.

The same result for the MAP decoder can be obtained by decoding on the dual
of the code, [8, p. 26]. Decoding on the dual code is more efficient for decoding
codes with very high rate. This is because the number of codewords in the dual
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code of a high rate code is much less than that for the original code. The form of
MAP decoding on the dual code can be obtained by performing the discrete Fourier
transform or the Hadamard transform on (2.17). This was first shown by Rudolph
and Hartmann [52] and later by Battail et al. [53]. We prefer, however, to present
it in the form shown be Hagenauer [17]. For the AWGN channel, the soft value for
each symbol returned by MAP decoding on the dual code can be given as follows:

L(x̂i) = ln
P (yi|xi = +1)

P (yi|xi = −1)
+ ln

∑

x∈U⊥

n
∏

l=1,l 6=i

tanh(
Lchyl

2
)xl

∑

x∈U⊥

(−1)xi

n
∏

l=1,l 6=i

tanh(
Lchyl

2
)xl

, (2.18)

where Lch is a constant that depends on the signal to noise ratio of the channel.
Hagenauer et al. [17] described and showed that it is possible to use turbo decoding
on product codes using MAP decoders on the constituent codes. They also gave
quite an extensive explanation and comparison between using MAP decoding on
the trellis of the constituent codes, using (2.17) or using (2.18).

It should be noted that, indeed, in the case of convolutional codes, the MAP
decoder on the trellis of the code as introduced by Bahl et al. [18], would mean
great decrease in complexity as compared with (2.17). This is due to the fact that
in convolutional codes, the maximum number of vertices at any time in the trellis is
much less than the total number of codewords in the convolutional code. However,
in block codes, the maximum number of vertices at any time in the trellis of the code
will be, using Wolf’s bound, of the same order of the total number of codewords of
either the original code or the dual code. Therefore, MAP decoding on the trellis
of block codes will not necessarily result in a decrease in decoding complexity. This
is a major obstacle toward using good block codes instead of convolutional codes
in systems that incorporate turbo decoding except in very limited cases when the
size of the code is very small or when the constituent codes are very simple.

In order to solve the problem with complexity of MAP decoding the constituent
codes, many suggestions were made. Hagenauer presented a soft output algorithm
called the Soft Output Viterbi Algorithm (SOVA), that approximates MAP decod-
ing, Lucas [54] presented an iterative algorithm that approximates MAP decoding
on the dual code were only the minimum weight codewords of the dual code are
used. Pyndiah [20], suggested another approximation for MAP decoding of the
constituent codes where a Chase II decoder is used to obtain a list of codewords
that are closest to the received sequence and then (2.17) is implemented using only
this subset of codewords instead of the whole code. In a Chase II decoder, the f
least reliable bits in the received sequence are identified and then, all 2f error pat-
terns that have one’s in these f bits and zeros elsewhere, are added to the received
sequence and decoded using a BMD decoder. In the original work of Chase [21], f
is chosen to be equal to b(d− 1)/2c, where d is the minimum distance of the code.
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Pyndiah, however, uses another variant were f is chosen to be much larger than
that suggested by Chase. Choosing a larger f is done in order to obtain a much
larger set of codewords to be used in the approximated MAP decoder.

2.4 Discussion

From the previous section we see that the decoding algorithms of product codes
can be split into two categories. The first category is algorithms with low complex-
ity but with low performance, e.g., GMD decoding of product codes. The other
category is algorithms with very high complexity and very high performance, e.g.,
Viterbi decoding on the trellis of product codes. Even though turbo decoding of
product codes is much less complex than Viterbi decoding, we still consider turbo
decoding of product codes to be, in general, a high complexity algorithm. Our
reasoning about the complexity of turbo decoding of product codes goes as follows:
Let the product code used have dimensions equal to [m, kB , dB ] × [n, kA, dA]. We
present our idea when the product code has low rate. The same argument can be
applied to high rate product codes after slight modifications. Each row requires
that (2.17) be performed for each symbol in the row. Similarly, each column re-
quires that (2.17) be performed for each symbol in column. This means that the
MAP equation will be performed 2mn times for the whole matrix. Since (2.17)
requires 2kA additions for the rows and 2kB for the columns, which means that a
total of m2kA + n2kB operations are needed for one iteration stage in turbo de-
coding. This is a great decrease in complexity compared with ML decoding, since,
ML decoding requires a number of operations of order 2kAkB . This means that the
complexity of ML decoding is exponentially increasing with the size of the product
code while the complexity of turbo decoding is exponentially increasing with the
size of the constituent codes. However, using very large codes with turbo decoding
is a requirement for gaining some advantages in terms of low bit error probability.
Therefore, although the complexity of turbo decoding of product codes is much
less than that of ML decoding, we still consider it a high complexity algorithm.

The contributions into decreasing the complexity of MAP decoding of block
codes truly decrease the total complexity of turbo decoding. However, how much
does the decrease in total complexity affects the performance is not investigated
and uncertain. It is quite possible that the number of iterations in turbo decoding
is increased to compensate for using suboptimal MAP decoder for the constituent
codes, which is undesired. In other cases, the degradation of performance becomes
so great that makes the idea of using a turbo decoder unnecessary.

We believe that the problems associated with turbo decoding of product codes
are inherent and cannot be solved by trimming the different processes in turbo
decoding or by introducing some ad hoc modifications of certain parts of the turbo
decoder. In this thesis, we state the question, is it possible to design a decoding
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algorithm for product codes that has as low complexity as possible for a given level
of performance? It is quite clear that this question is a bit vague since it is a
question of values and qualities such as the terms, “performance” and “complex-
ity” which have to be defined. In this thesis we present decoding algorithms for
product codes and analyze their performance and complexity using the definitions
given in the thesis. We try to show that it is possible to perform decoding at a
complexity much lower than that for other decoding algorithms with almost the
same performance. It is true that the qualitative analysis of these algorithms and
the comparison with other decoding algorithms might be different if we use other
definitions of performance and complexity. However, we believe that the compara-
tive results will be similar even when using other definitions of “performance” and
“complexity”. This is due to the fact that we chose very basic definitions of these
two terms as will be shown. Most of the alternative definitions of these terms are
dependent or related to the definitions we give in the thesis.

The basic idea about the new algorithms proposed in this thesis is to avoid MAP
decoding of the constituent codes altogether. The algorithms presented in the thesis
rely on methods for list decoding the received message and intelligent sorting of the
different candidates in a way that the number of unnecessary operations is kept as
small as possible. The suboptimal, iterative algorithm presented in Chapter 4 goes
even further in decreasing the complexity by fixing the complexity at each iteration
to maximum acceptable value. The iterative algorithm, however, incorporates a
method that combines the results of decoding the rows and the columns in a way
that they help each other toward the correct solution as will be shown in Chapter 4.

The thesis also give some important theoretical results regarding decoding prod-
uct codes in the form of upper bounds on the complexity of decoding given the
performance. Alternatively, we also present in the thesis upper bounds on the per-
formance of decoding given the maximum complexity allowed. These bounds will
be shown to be practical bounds that can be used when designing a communication
system that incorporates product codes.
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Chapter 3

The Basic Decoding

Algorithm

Let us assume that a certain code was used for data transmission on a certain
channel. It is quite clear that Maximum Likelihood decoding can, by definition,
be achieved by comparing the distances between the received vector and all the
codewords in the code and choosing the codeword closest to the received message.
This, however, is not practical unless the cardinality of the code is very small.
Therefore, what is needed is a method for excluding from the comparison set, those
codewords that are far from the received message or, equivalently, excluding error
patterns with low probability, thus keeping the average number of comparisons to
a minimum. In this chapter, we show that the problem of excluding error patterns
from the check set is equivalent to the problem of designing efficient algorithms for
sorting the weights of these error patterns, a problem that one is usually confronted
with in the design of computer algorithms. To solve this problem, the algorithm
should take advantage of certain features in the structure of product codes. A new
definition of product codes that emphasizes these features will first be made and
the decoding algorithm will be tailored to it accordingly. In this chapter, we restrict
ourselves to binary linear product codes and analyze their performance when used
with Binary Symmetrical Channel. Further generalizations of the algorithm are
discussed very briefly.

29
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3.1 Product codes and their decoding

3.1.1 Alternative representation of product codes

We give an alternative description of product codes as an intersection of two simpler
codes. This description allows us to devise a ML decoding algorithm for product
codes later on. Let A′ be an (n,N, dA) binary code and let A, be the code that
can be represented by the set of all m × n matrices such that each row in these
matrices is an element of the code A′. In a similar manner, let B′ be an (m,M, dB)
binary code and let B, be the code that can be represented by the set of all m× n
matrices such that each column in these matrices is an element of the code B′. The
code A can also be defined as the m-fold Cartesian product of the code A′ with
itself, and the code B can be defined as the n-fold Cartesian product of the code B′

with itself. Let the code C be the product code obtained from the codes A′ and B′.
It is quite clear that C can also be described as the intersection of the two codes A
and B as given below:

C = A′ ⊗ B′ = A ∩ B. (3.1)

If the two codes A′ and B′ were chosen to be simple codes in terms of decoding
complexity, the codes A and B will also have low decoding complexity. We will use
this fact in designing the algorithm.

3.1.2 A maximum likelihood decoder for product codes

As shown in Chapter 2, Viterbi decoding on the trellis of product codes is very
complex. We present a maximum likelihood decoder which is the main idea behind
this thesis. We first give a definition for the list decoder, ξe for a code V ⊂ F

n
2 . Let

u ∈ F
n
2 be the received vector, then, we say that ξe(u,V) is the list of all codewords

in V with Hamming distance from u equal to or less than e, ordered according to
their distance from u. If e was equal to n, then the result will be all the codewords
in the code ordered according to their distance from u. We call e the decoding
radius of the list decoder. Let the product code C given in (3.1) be used for data
transmission on a binary channel and let y and x̂ be, respectively, the received
matrix and the codeword in C that is closest to y. In the case of BSC, the covering
radius ρ(C) is equal to the maximum Hamming weight of all error patterns that
are uniquely corrected using a ML decoder. Let A be a list of all the codewords in
A with Hamming distances from y less than or equal to ρ(C) listed in an ascending
order using their Hamming distances dH from y. When list decoding beyond the
covering radius of a code, the problem of ties occur. In order to avoid this problem,
certain rules should be followed to uniquely decide which one of two or more vectors
is closer to y, even though they have the same Hamming distance from y. It is
easy to see that x̂ will be a member of A since x̂ is an element in A. In a similar



3.1. Product codes and their decoding. 31

manner, let B be a list of all the codewords in B with Hamming distance from y

less than the covering radius of C listed in an ascending order using their Hamming
distances from y and the same set of rules for solving ties used before. The ML
estimation, the codeword x̂, will be a member of this list also. It can also be proved
that the codeword x̂ will be the first member of the list A that is also a member
of the code B. This is true because, otherwise, there has to exist a codeword in C
that is closer to y than x̂ which contradicts the assumption that x̂ is the codeword
in C that is closest to y. Therefore, the decoding can commence by beginning from
the top of the list A, picking one word at a time, and checking to see if it is also
a codeword in B. If it is, the algorithm stops and returns it as the correct answer,
otherwise, it picks the next word in A, which is even further from y and so on.
An alternative variant would be to jump between the two lists, looking for a valid
codeword in both the lists. This is illustrated by Figure 3.1, where ML decoding
can be performed by checking each member of A beginning from the first, to see if
it also was a member of the code B. Alternatively, one can jump between the two
lists, checking the members at increasing distance. The algorithm above can be

A
4
=

a1

a2

...

x̂
...

af

, B
4
=

b1

b2

...

x̂
...

bg

dH(ai,y) ≤ dH(aj ,y),∀i < j, dH(bi,y) ≤ dH(bj ,y),∀i < j

Figure 3.1: List decoding of the codes A and B.

applied to any block code, since any block code can be described as an intersection
of two other codes. It is obvious, however, that unless one of the two codes or both
have very simple list decoding algorithms, the algorithm will not be feasible. In
the case of product codes, however, list decoding on A or B can be done by list
decoding the rows and columns respectively as follows: For the received message
y, we use a complete list decoder ξn(yi,·,A′) for each of the rows i of y. Thus, we
can generate a list of all the codewords in A sorted according to their Hamming
distance from y. Even though complete list decoding of the rows can result in a
complete list decoder for A as discussed above, this is neither practical nor is it
simple to analyze. A more practical method would be to use a list decoder for the
rows with a limited decoding radius to generate a short list using the candidate
codewords for each row. If after checking this short list, a valid codeword in the
product code is not found, the decoding radius of the list decoder for the rows is
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increased, thus resulting in an even longer list of matrices that can be checked.

3.2 Sorting and decoding

From the previous section we understand that the problem of decoding product
codes is transformed into a problem of list decoding one of the constituent codes,
or both, in addition to a task of sorting the resultant list of codewords according
to their distance from the received vector. Therefore, in order to decrease the
complexity of the decoder, efficient sorting algorithms that are adapted to this kind
of problem and low complexity list decoders for the constituent codes should be
implemented. We concentrate on the problem of generating only the l first elements
of the ordered list A, where l is an integer, and try to analyze the performance
and complexity of the decoder when it is limited to using only those elements.
Almost all the ideas in this section can be found in elementary books on computer
algorithms. However, we present it in a manner that best suits the problem of
decoding product codes in terms of complexity.

In Figure 3.2 below, we show an example of how the algorithm should find a
list of only two matrices that are closest to the received matrix y. The search for a
list of matrices closest to the received matrix is similar to looking through a search
tree. The sorting algorithm should look through all the lm different combinations
of candidates for each row for the closest l matrices to y that can be generated from
these candidates. The value of l is equal to 2 in this example. The list decoder for

row m

row 2

row 1

PSfrag replacements

1 2 3 2m

a1
1 a2

1

a1
2a1

2 a2
2a2

2

Figure 3.2: Search tree for finding a list of matrices.

the rows, in this example, returns for row i, two candidates, a1
i and a2

i , where a1
i

is closer to the corresponding row in y than a2
i . By using one of the two candidates

for each row, we can generate 2m different matrices. The distance of each one of
these matrices to the received matrix y is equal to the sum of distances of each
row to the corresponding row in y. Since the candidates for each row are ordered
according to their distance from the corresponding row in y, it would be easier
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to define a weight1, w, with respect to another vector and associated with each
candidate and thus we can say that:

w(aj
i )

4
= D(aj

i ,yi,·),

and that:
w(aj

i ) ≤ w(ak
i ), j < k.

The function D is the metric used in the channel. E.g., it can be the Hamming
distance, dH , in BSC or the squared Euclidean distance, d2

E , for Euclidean channels.
If we consider a matrix a that is constructed in the following way:

a =











a
j1
1

a
j2
2
...

ajm

m











I.e., a
ji

i is the i:th row in a. The weight will be:

w(a) = w(aj1
i ) + w(aj2

2 ) + . . .+ w(ajm

m ).

As mentioned above, the algorithm is required to return a list of length l of code-
words in the code A that are closest to the received matrix y. The problem can be
solved by a Depth First Search, see Aho et al [55, Chapter 5]. The required result,
however, is a list of members instead of a single, closest member. What we show
below is such a method. The task of generating the first l elements of A can be
separated into two different tasks. The first is to list decode the rows generating
m lists of cardinality l each. We call the list of members for each row the list
of candidates for that row. We assume, for now, that such a list decoder for the
rows exists. However, the practical aspect of the list decoder is further discussed
in Chapter 6. We also assume that each of the lists returned from the list decoder
for the rows is an ordered list according to the Hamming distance of its members
to the corresponding row in y. Each one of the lm combinations of candidates for
each row will be a member of the list A. Therefore, the second problem is to find
an efficient sorting algorithm that chooses only l combinations from all lm different
combinations of candidates for each row. The search for the l closest members
can be performed in the following way: Beginning from the first and second row,
find the l closest combinations of the candidates for the two rows and exclude the
rest. The closest combinations of the candidates for the first two rows are the ones
that have the least weight, where the weight of each combination is the sum of

1In coding theory, the weight usually refers to the Hamming weight, i.e., the number of non-

zero positions in the vector. What we mean by the weight here is different from that used in

coding theory and is only essential to the sorting algorithm we describe later on in this chapter.

The procedure of the sorting algorithm depends only on the real values, weights, of the members

of the lists to be sorted.
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the weights of the candidate for the first row and the weight of the candidate of
the second row. The same is done using these combinations and the list of candi-
dates for the third row to find the l closest combinations of the three rows. This
is continued for each row using only l closest combinations of the previous rows
until reaching the last row. We assume here, that the basic sorting function is to
compare and sort two members at each time. Other sorting alternatives where the
sorting function compares and sorts more than two members at a time are also
possible but will not be considered here. As an example, let us assume that the
two candidates for the first row are a1

1 and a2
1 with weights 0 and 5 respectively.

The candidates for the second row are a1
2 and a2

2 with weights 3 and 4 respectively.
There are 4 combinations of these candidates, namely, (a1

1,a
1
2), (a1

1,a
2
2), (a2

1,a
1
2),

and (a2
1,a

2
2), with weights 3, 4, 8 and 9 respectively. The sorting algorithm should

pick only the first two and combines them with the candidates of the third row and
so on. Thus, an important part of the sorting algorithm is an efficient procedure
that operates on two ordered lists of l real numbers, u and v, i.e., the weights
of the candidates for a row or combination of candidates of previous rows. This
procedure should return a list f of l smallest combinations of members of the lists
u and v. Without loss of generality, we assume that the first elements u1 and v1
of the two lists u and v, respectively, are equal to zero. It is possible, of course,
to generate all l2 combinations of elements from the two lists, sort them and then
choose the l smallest combinations from them. This however is not very efficient
since sorting such a list with l2 members requires at least O(l2 log l) comparisons,
see for example Aho et al [55, Chapter 3]. We present in Figure 3.3 a function λ
that finds the l least combinations between members of two ordered lists a and b.
This algorithm completes the task with O(l log l) comparisons and returns an array
of three columns and l rows, where the last column contains the l smallest combi-
nations of numbers and the other two columns contain the orders of the elements
in u and v that produced this number.

Simply explained, the algorithm adds two components of the two lists at a time,
beginning from the smallest members of the two lists, sorting the result in a new
list and stops when the size of the new list becomes equal to l. The algorithm
makes use of the stack g = {g1, g2, . . . , gl}, which is simply an array of l cells
each of which has three elements. The first two members of each cell in the stack
are natural numbers, each of which pointing to an element in u and v respectively.
The result of adding these two elements is stored in the third element of the same
cell. The cells are then ordered by their last members. In the algorithm below,
we make use of a function called, PushSort, which is an algorithm for pushing a
cell into an already ordered stack in its ordered position. Efficient algorithms that
use binary search trees and perform this task are well known in literature and it
can be proven that they require at most log l comparisons. See for example Aho
et al. [55, Chapters 2 and 3]. The sorting algorithm above is best explained by an
example.
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Algorithm 3.1 Function λ
1 Input: Two ordered lists of real numbers u= (u1, . . . , ul) and v= (v1, . . . , vl)
2 Output: l × 3 array f . Variables: i ∈ N, z ∈ N × N× R and stack g of l elements

such that gi ∈ N× N× R, ∀i ∈ {1, . . . , l}
3 Initialize:
4 for i ← 1 to l do
5 gi,1 = i, gi,2 = 0, gi,3 = ui

6 end for
7 i←1.

8 while i ≤ l do
9 z ← g1 . Copy the contents of the first cell of

10 g ← g\g1 . the stack to z and remove it.

11 if z2 = 0 then
12 z2 ← 1 . If the first member was not a valid

13 z3 ← uz1
+ vz2

. combination of two members of u and v,

14 g ← PushSort(z, g) . process it to find a new combination.

15 else
16 f i ← z . If it was a valid combination, then copy

17 i ← i + 1 . it’s contents to f , process it to find the

18 z2 ← z2 + 1 . next cell.

19 if z2 ≤ l
20 z3 ← uz1

+ vz2

21 g ← PushSort(z, g)
22 end if
23 end if
24 end while

Figure 3.3: Algorithm that finds a list of combinations of two lists.
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Example 3.1 Consider the two lists of numbers (0, 2, 3, 5) and (0, 1, 1, 3).
There will be 24 different combinations of members of the two lists, namely, 0 + 0,
0 + 1, 0 + 1, 0 + 3, 2 + 0, 2 + 1, 2 + 1, 2 + 3, 3 + 0, 3 + 1, 3 + 1, 3 + 3, 5 + 0,
5 + 1, 5 + 1 and 5 + 3. The algorithm should return the 4 smallest combinations
without actually creating the whole list of 16 members. Figure 3.4 shows how the
components of the stack change at each step. In order to find the resultant list, f ,
we look at the first member of the stack at each step and check if it was a valid
component, i.e., it is made up of combining two members from the input lists. If
it was valid, it is added to f otherwise we continue to the next step. The stack
f will in the end be {(1, 1, 0), (1, 2, 1), (1, 3, 1), (2, 1, 2)}. And we also see that the
algorithm stops at step number 5 even though in the figure we continue beyond this
step for illustrative purposes. It should be noted, however, that it is also possible
for the algorithm to return the ordered list of all l2 combinations simply by letting
it continue and not stop it after the first l members are found.

(1,1,0)

(2,0,2)

(3,0,3)

(1,2,1) (1,3,1)(1,0,0)

(2,0,2)

(3,0,3)

(4,0,5) (4,0,5)

(2,0,2) (2,2,3) (2,3,3) (1,4,3) (3,0,3)

(3,0,3)

(4,0,5)

(1,4,3)

(2,1,2)

(2,0,2)

(3,0,3)

(4,0,5) (4,0,5) (4,0,5) (4,0,5) (4,0,5) (4,0,5)

(3,0,3) (3,0,3) (3,0,3) (3,0,3)

(2,0,2) (1,4,3) (1,4,3) (1,4,3) (3,0,3)

(2,4,5)

(2,4,5)

(4,0,5)

0                 1                   2                  3                 4                   5                  6                  7                  8                  9Step

Stack
Contents

The Algorithm
stops here

Figure 3.4: The progress of Algorithm 3.1 to solve Example 3.1

It is very important to note that algorithm 3.1 is only an example of many
algorithms that can perform the same task in O(l) steps or, equivalently, that it
requires O(l log l) comparisons and at most 2l additions. We present the algorithm
here in order to develop the ideas for analyzing the decoding algorithm afterward.

We are now ready to present the decoding algorithm, which we will denote by
µ, in a more formal manner. In the description below, we assume that the decoding
is on a code C = A ∩ B and that the decoding radius e for the list decoder for the
rows, ξe is chosen in such a way that the list decoder always returns a list of at
least l codewords in A. This will be further discussed in Section 3.3 below. The list
L = {L(1), L(2), . . . , L(m−1)} is a list of m − 1 stacks, each of which is similar
to the stack g used in Algorithm 3.1 above and the sorting function λ is used for
sorting these stacks. The matrix Y in the algorithm below is m× l of elements such
that Yi,j ∈ A′. In step 6, we mean that only the l closest members of ξe(yi,·,A)
are assigned to Yi and that they are ordered according to their distances from the
corresponding row in y. If the number of candidate codewords for a row, say, i was
less than l, then, only this limited number of solutions is used and copied to Yi.
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Algorithm 3.2 Decoding Function µ
1 Input: m× n matrix y of real numbers and a real number e.

2 Output: m× n matrix x̂ of binary numbers and a binary flag S

3 Variables: h, i, j ∈ N, m × l matrix Y , a list L = (L(1), . . . , L(m−1)) such that

L(k) ∈ N
l × N

l × R
l.

4 Initialize: i ← 1, j ← 1, h ← 1, S ← 0.

5 for i = 1 to m do
6 Yi ← ξe(yi,·,A

′)
7 end for
8 L(1) ← λ(D(y1,·, Y1), D(y2,·, Y2))
9 for i = 2 to m-1 do
10 L(i) ← λ(L

(i−1)
3,· , D(yi+1,·, Yi+1)) . Generate the lists of stacks.

11 end for
12 while j ≤ l AND S = 0 do
13 h ← L

(m−1)
2,j . Construct the j:th element of the list A

14 x̂i,· ← Yi,h . by combining its rows from the matrix Y.

15 for i = m-1 downto 1 do
16 h ← L

(i)
1,j

17 x̂m,· ← Ym,h

18 end for
19 if x̂ ∈ B then . Check to see if the j:th element is

20 S ← 1 . a valid codeword. If it was, stop

21 end if . the search. Otherwise, continue

22 j ← j + 1 . to check the j+1:th element

23 end while

Figure 3.5: Decoding algorithm for product codes.

This is a slight abuse of the mathematic notation but we chose this form instead
of a more correct but cumbersome notation. If the flag S is equal to 1, then we
know that the decoding was successful. Step 19 can be implemented, for example,
by a simple syndrome check or information set check. If the decoder doesn’t find
a valid codeword, then it stops and declares that decoding was unsuccessful or we
can choose one of the words in the list to acquire the information bits. It is also
possible to add new codewords to the list afterward. This option, however, doesn’t
help in the analysis of the algorithm. We also observe that the algorithm doesn’t
generate the list A of ordered codewords in A. Rather, it generates lists of indices
L of candidate codewords for each row and then using these lists, in steps 12-23,
to generate each element in A. This is done in order to decrease the amount of
memory needed for storage in the algorithm.
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3.3 Analysis of performance

We saw in Section 3.1 that the performance of the decoding algorithm improves
by increasing the list size l so as to ensure that the ML codeword is contained in
the list. In order to increase l, however, we should use a list decoder ξe(·,A) of
greater decoding radius e which means an increase in complexity. On the other
hand, if there exists l candidate solutions for each row in the received matrix y,
it is possible to generate a list of lm matrices that can be checked until a valid
codeword, i.e., a codeword that is an element in both A and B is found. Also, the
condition that the list decoder for the rows returns a list of at least l elements can
be eased a bit, i.e., the lists of candidate codewords for each row can be shorter
than l. Still, we can generate a very long list, let us call this list A∗, which is
exactly

∏m
i=1 |ξe(yi,·,A)| long. We will not, however, rewrite Algorithm 3.2 with

the new modification since this won’t add much to understanding the procedure.
It is clear that A∗ ⊂ A and it is also quite clear that A∗ is a function of the
decoding radius of the list decoder for the rows and the received message y. We
will refrain however from writing other symbols showing this dependence for the
sake of simplicity of notation. However, it should be noted that it is not certain
that a codeword found by successively checking the members of A∗ instead of A

will be the ML codeword.
We discuss here the probability of decoding error, i.e., the probability that the
decoded message is different from the sent message and not whether it was the
ML codeword or not. We thus have to analyze the performance of the decoder
for both random errors and burst errors when the list decoder for the rows has
a fixed decoding radius. Even though we leave the discussion of complexity to a
later chapter, we can state that the complexity of the list decoder for the rows
increases greatly when the decoding radius exceeds dA. Therefore, we will give
special interest to the case where the decoding radius of the list decoder for the
rows is less than dA. We also assume that a system of an encoder using a binary
linear product code, C = A ∩ B, with parameters (mn,MN, dAdB), and the slight
modification mentioned above of Algorithm 3.2 is used for decoding on a binary
channel. The ideas can be easily modified to accommodated other types of channels
or other types of product codes.

We define a burst error as a very long pattern of errors that occupy less than
bdA/2c columns without consideration to the total Hamming weight of the error or,
alternatively, an error pattern covering less than bdB/2c rows without consideration
to the total Hamming weight of the error. We assume that a burst error will either
cover several columns or several rows but not both at the same time since it would
then mean that the Hamming weight of the error pattern is less than bdAdB/4c
located in a rectangle of dimensions less than dB/2×dA/2. We present the following
proposition:
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Proposition 3.1 Let A′, B′ be, respectively, an [n, kA, dA] code and an [m, kB , dB ]
code and let A be the code represented by all m× n matrices with their rows code-
words in A′. Also let B be the code represented by all m × n matrices with their
columns codewords in B′. Let the product code C = A ∩ B be used in combination
with Algorithm 3.2 above for data transmission on a channel with burst errors. If e
in Algorithm 3.2 is chosen between bdA/2c and ρ(A′), then, the decoder can correct
all burst errors covering less than dA/2 columns and some burst errors covering
less than ρ(A′) columns.

Proof: Assume that the all zero codeword was sent and the received message y

has a burst error covering less than ρ(A′) columns. If the decoding radius of the row
decoder is equal to ρ(A′), the zero codeword will be one of the members of the list
of candidate codewords for each row. This means that the all zero codeword will be
a member of A∗. If the all zero codeword was the closest codeword to the received
message, the decoder will confirm that it is a valid codeword and return it as the
correct answer. Otherwise, if there was another valid codeword in the list that is
closer to y, then it will be chosen instead. If the number of columns containing
burst errors is less than bdA/2c, then there cannot be any other codeword x ∈ C
in A∗ that is closer to y than the all zero codeword. If the burst error covers more
than dA/2 columns, then, the decoder will pick another codeword if and only if it
was closer to y than the all-zero codeword. 2

Next is to consider random errors. There are two aspects for the analysis of
such errors. The first is to consider the probability that the sent codeword is a
member of the list A∗, and the other is the probability that there is no other
codeword within ρ(C) that is a member of A∗ and, at the same time, closer to
the received message than the sent codeword. Let us denote the probability that
the sent codeword is not a member of the list A∗ by Plist. We begin by noticing
that for a Binary Symmetrical Channel (BSC), with transition probability p, the
probability that one row of the received matrix contains e or less errors is equal to:

e
∑

i=0

(

n
i

)

pi(1 − p)n−i,

where e is the decoding radius of the list decoder for the rows. If at least one of the
rows of the received matrix contains more that e errors, then, the sent codeword
will not be a member of the list A∗. Therefore, the probability that the sent
codeword is not a member of the list A is simply:

Plist = 1 −
(

e
∑

i=0

(

n
i

)

pi(1 − p)n−i

)m

. (3.2)

A similar expression is obtained for the probability that the sent codeword does
not exist in the list B∗ by replacing n by m and vice versa. The decoding radius
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for list decoder of the columns in the expression above is also e. It can be shown,
using elementary probability theory, that the event that the sent codeword is a
member of the list A∗ is independent from the event that it is a member of the
list B∗. This means that the probability that the sent codeword does not exist in
A∗ ∩ B∗ can be written as:

PA ∩ B = 1 −
(

e
∑

i=0

(

n
i

)

pi(1 − p)n−i

)m




e
∑

j=0

(

m
j

)

pi(1 − p)m−j





n

, (3.3)

where it is assumed that the decoding radius for the list decoder of the rows is
equal to the decoding radius for the list decoder of the columns and is equal to
e. The probability PA ∩ B is the probability that at least one row or one column
contains more than e errors. The probability that there is another valid codeword
in A∗ that is closer to y than the sent message, is much more complicated. It is
possible, however, to give some information about the structure of such a codeword
and derive an upper bound on the probability of such event. We start by noticing
that in order for a block error leading to one of the minimum weight codewords in
C, to occur, there requires at least ddAdB/2e ones located in the support, i.e., the
set of indices of non-zero positions, of such a codeword. But all such codewords
constitute, up to permutation of the rows and columns, a rectangle of dimensions
at most dB × dA. Thus, the supports of those ddAdB/2e ones must be contained
inside such a rectangle. Therefore, it is possible to say that for any error pattern
that can be decoded to one of the minimum weight codewords, we can find at
least ddAdB/2e ones that are located inside a rectangle of dimensions dB × dA.
We will try to make a similar constriction on the structure of the error in the
received matrix for a more general case and not only for the case of error patterns
leading to a minimum weight codeword. We present the following lemma and leave
the task of proving it to Appendix A. If the number of errors in each row is less
than or equal to the decoding radius of the list decoder for the rows, e, then, the
sent codeword will always be a member of the list A∗. However, a decoding error
might still occur if there existed in A∗ another valid codeword that is closer to the
received message. The following lemma explains which error patterns can lead to
a decoding error under such conditions. Before we continue with the analysis of
performance we present the following definitions first. The generalized Hamming
weights of the code D with dimension k, see [56], are defined as:

di(D)
4
= min

E
|Supp(E)|, i = 1, 2, . . . , k, (3.4)

where the minimum is taken over all linear sub-code E ⊆ D that have dimension
i. For convenience, we assume:

d0(D)
4
= 0,

by definition. It is clear that d1(D) = d(D), i.e., the minimum distance of the code.
Let A′⊥ be the dual code of the code A′. We define the sequence d⊥1 , d

⊥
2 , . . . , d

⊥
kA



3.3. Analysis of performance. 41

to be the generalized Hamming weights of the dual code. Let A∗ be an [n∗, k∗A, d
∗
A]

code obtained by shortening some of the coordinates of A′, see MacWilliams and
Sloane [8, page 29].

We also define the constructing rectangles of a product code C as all codewords
that have the shape, up to permutations of the rows and columns, of a rectangle.

Lemma 3.2 Let the product code C 4
= A ∩ B be used with the decoder µ presented

in Algorithm 3.2 introduced above for decoding. Let the decoding radius e of the
list decoder for the rows be less than dA and let the received matrix be y. If all the
following:

1. The Hamming weight of the error in each row in y is less than e.

2. The Hamming weight of the total error is less than ωA/2, where:

ωA
4
=

dAdB

dA − 2
(n− kA − r′), (3.5)

where r′ is an integer satisfying:

d⊥r′+1 ≥ n− ωA

dB
, d⊥r′ < n− ωA

dB
. (3.6)

3. The support of every constructing rectangle in y with dimensions f ×g where
g ≤ 2e contains less than fg/4 errors.

is correct, then, the decoding will be error-free.

Proof: See Appendix A 2

It should be noted that Inequality (3.6) can always be satisfied for some integer r′.
This is easily proven by noticing that ωA is monotonically decreasing with r′ while
d⊥r′ is monotonically increasing with r′. Furthermore, there exists a certain point,
namely r′ = 0, such that:

d⊥0 (A′) = 0 < n− ωA

dB
.

We can also find another point, namely r′ = n− kA such that:

d⊥n−kA
(A′) = n.

Therefore, the two functions intersect at some point within the interval 0 < r′ ≤
n− kA.
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The lemma above shows that under the conditions given in the lemma, an
error pattern leading to a decoding error will be such that at least fg/4 errors
are contained in the support of a constructing rectangle of dimension less than
f × g. Even though this is very useful information, there is an even stronger
condition for certain error weights. The following lemma gives such a condition.
The content of this lemma is based on the properties of product codes and their
weight distribution. A more detailed discussion about the weight distribution of
product codes can be found in [57] and [38].

Lemma 3.3 Let the product code C 4
= A∩B be used with Algorithm 3.2 with hard

decoding. Let the decoding radius of the list decoder for the rows be e, where:

e ≥ bdA − 1

2
c.

Let the sent codeword be x and the received matrix be y. Let:

dH(x,y) < dAdB − bdA

2
cbdB

2
c. (3.7)

If there exists a codeword c in C that is closer to y than the sent codeword, then,
there exists at least dwH(c)/2e errors contained in the support of a constructing
rectangle of dimensions less than f × g, where g ≤ 2e and f = wH(c/g).

Proof: Assume that the all zero codeword was sent. The minimum weight
codewords in the product code have the shape of a rectangle, up to permutation
of the rows and columns, with which sides are either minimum weight codewords
from A′ and B′ or the all zero vector. If the codeword is made up of adding
two constructing rectangles, each of which is a minimum weight codeword in the
product code, then, the weight of such a codeword will be at least:

w(dA, dB)
4
= 2dAdB − 2bdA

2
cbdB

2
c, (3.8)

since two constructing rectangles cannot overlap by more than:

bdA

2
cbdB

2
c,

ones. All codewords with weights ranging between dAdB and w(dA, dB) given in
Expression (3.8) will have the shape of a rectangle. Therefore, an error pattern
with weight less than that given in (3.7), will lead to a different codeword if and
only if at least fg/2 errors are located in the support of a constructing rectangle
with size less than f × g, where f and g are the sides of a constructing rectangle.

2

We are now ready to give an upper bound on the probability of block error for
product codes when the decoder described above is used:
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Theorem 3.4 Let the product code C 4
= A ∩ B and the Algorithm 3.2 be used for

data transmission on a BSC. Let the decoding radius for the list decoder of the
rows be e, where e is less than min(dA, dB) and let the transition probability for the
channel be p. The probability for block error, PE , in decoding is upper bounded as
follows:

PE ≤ 1 −
(

e
∑

i=0

(

n
i

)

pi(1 − p)n−i

)m

+

2e
∑

i=dA

βi(A′)

m
∑

j=dB

βj(B′)

bw(dA,dB)/2c
∑

h=dij/2e

P (p, h, i, j, 2)

+

2e
∑

i=dA

βi(A′)

m
∑

j=dB

βj(B′)

ωA/2
∑

h=bw(dA,dB)/2c+1

P (p, h, i, j, 4)

+
mn
∑

i=ωA/2

(

mn
i

)

pi(1 − p)mn−i, (3.9)

where βi is the number of codewords that have weight equal to i, [8, pp. 40]. The
function P (p, h, i, j, l) is the probability that the received matrix y has h errors and
such that at least dij/le errors are contained in a rectangle of dimensions j × i as
shown below:

P (p, h, i, j, l) =

(

mn
h

)

ph(1 − p)mn−h

ij
∑

g=dij/le

(

h
g

)(

mn− h
ij − g

)

(

mn
ij

) . (3.10)

Comments about Theorem 3.4

Before presenting the proof of the theorem, we give some explanation about the
meaning of this theorem. The theorem says that an error event can occur in two
cases: The first is when the sent codeword is not a member of the list of matrices
that will be checked. The probability of this event is given in the first row of
Inequality (3.9). The second event that may lead to an error is that even though
the sent codeword is a member of the list there exists another codeword in the list
that is closer to the sent codeword. A bound on the probability of the event that
there exists another codeword in the list can be given by dividing this event into
three sub-events. The first sub-event is when the number of errors added by the
channel is greater than ddAdB/2e and less than:

dAdB − bdA

2
cbdB

2
c. (3.11)
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For error patterns of this error weight, the only way for an error to occur is an error
leading to codeword which has the shape of a rectangle. The second sub-event is
when the weight of the error pattern exceeds that given in (3.11) and smaller
than ωA/2. Under the conditions imposed by the theorem, an error pattern with
such weight that may lead to an error in decoding should have at least dij/4e
errors contained in the support of a constructing rectangle of dimensions less than
i × j. For error patterns of weight exceeding ωA/2, the theorem does not give
any prediction whether an error pattern of weight greater than ωA/2 will cause a
decoding error or not, rather, it assumes that all error patterns of such weight will
cause an error.

Proof: Let the sent codeword be the all-zero codeword and the received matrix
be y. Using Lemma 3.2, The Event of error might occur if one of the following
conditions is satisfied:

1. The all-zero codeword is not a member of the list A∗.

2. The all zero codeword is a member of the list A∗ but there exists in A∗

another codeword in C that is closer to y than the all-zero codeword.

The second event above can be further partitioned and the total event of error can
be written in the following way:

1. The all-zero codeword is not a member of the list A∗.

2. The all zero codeword is a member of the list A∗. There exists in A∗ another
codeword in C that is closer to y than the all-zero codeword. The weight of the
error pattern is greater than ddAdB/2e but less than dAdB − bdA/2cbdB/2c.

3. The all zero codeword is a member of the list A∗. There exists in A∗ another
codeword in C that is closer to y than the all-zero codeword. The weight of
the error pattern is greater than dAdB − bdA/2cbdB/2c but less than ωA/2.

4. The all zero codeword is a member of the list A∗. There exists in A∗ another
codeword in C that is closer to y than the all-zero codeword. The weight of
the error pattern is greater than ωA/2.

The probability that the all-zero codeword is not a member of the list A∗ Plist

given in (3.2).
The probability of the fourth event can be bounded by the probability that the
error pattern is greater than ωA/2 which is

mn
∑

i=ωA/2

(

mn
i

)

pi(1 − p)mn−i.
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The second event can be bounded in the following manner: If there exists in A∗ a
codeword in C other than the all-zero codeword, then, the number of ones in each
row of this codeword cannot exceed 2e. Therefore, using Lemma 3.3, there has to
exist in y at least dij/2e ones located in the support of at least one constructing
rectangle of dimensions less than j × i.

The third event can be bounded in the following manner: If there exists in A∗

a codeword in C other than the all-zero codeword, then, the number of ones in each
row of this codeword cannot exceed 2e. Therefore, using Lemma 3.2, there has to
exist in y at least dij/4e ones located in the support of at least one constructing
rectangle of dimensions less than j × i.

The probability that a specific rectangle of dimensions j× i in y contains g ones
given that the Hamming weight of y is h, is similar to the probability of picking ij
balls from an urn containing h black balls and mn − h white balls and such that
g balls of the chosen ij are black. See, for example, Hines et al [58, page 30] and
Blom [59, page 30]. The probability of this occurring will then be:

(

h
g

)(

mn− h
ij − g

)

(

mn
ij

) . (3.12)

The probability that the Hamming weight of y is equal to h given that the
transition probability is p, is:

(

mn
h

)

ph(1 − p)mn−h.

The number of constructing rectangles with dimensions j×i is equal to βi(A′)βj(B′).
By multiplying with this number and by summing over all the probabilities of dif-
ferent Hamming weights of y, we prove the second and the third term in (3.9).

2

The bound given in the theorem above is an upper bound on probability of block
error for product codes since the decoding algorithm used for proving the theorem
is suboptimal in comparison to a ML decoder.

It should be noted that the second term of the bound sum up the probabilities
that more than half the symbols in some rectangle in the received matrix are in
error. It can be checked, however, that the dominant probability is that a rectangle
of dimensions exactly equal to dB × dA has ddAdB/2e errors. The probability that
a rectangle of greater dimensions with more than half of its symbols in error is
much lower. The same is true for the third term of the bound.
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Since the bound on the block error probability makes use of the union bound,
some peculiarities might be noticed in the value of this bound. For example, for very
high transition probability, the value of the bound might exceed 1 which makes the
bound useless. Also, when the decoding radius approaches the minimum distance
of the row code, dA, the bound on probability that at least one rectangle contains
dAdB/4 ones becomes higher than it should, since the probability of more than one
rectangle containing dAdB/4 ones at the same time becomes very high.
It is clear that the bound requires that we have some information about the weight
distribution of the constituent codes, but it is always possible to use some bounds
on the weight distribution.

In order to investigate the practicality of using the basic decoding algorithm
shown above, several examples of systems are given to illustrate the possibilities
and limitations of implementing the algorithm. As will be shown in Chapter 5, the
complexity of the list decoder of the rows will increase exponentially when the de-
coding radius becomes greater than the minimum distance of the code. Therefore,
we will assume in the following examples a decoding radius of the list decoder less
than or equal to dA − 1.

Example 3.2 Consider a simple case where the constituent codes of the prod-
uct code are the same and are the [8, 4, 4] extended binary Hamming code. The
rate of this code is 0.25 and, using the bound on the probability of block error
given in Theorem 3.4 and, taking for example a transition probability equal to
0.05, the upper bound on the probability for block error when the decoding radius
of the list decoder for the rows is equal to 3 will be equal to 0.03. The half the
minimum distance bound predicts a block error probability of about 0.044 for the
same transition probability. For transition probabilities less than 0.04, the half the
minimum distance bound is better than the new bound.

Example 3.3 If we use an even larger code, for example, if we use the extended
binary Golay code as a constituent code, the resultant product code has a rate equal
to 0.25. The transition probability used is the same as in the example above and
a decoding radius for the rows equal to 5. The upper bound on the probability of
block error will be 0.023. The half the minimum distance bound predicts a block
error probability less than 0.23.

Comparing the two examples above, we see that increasing the size of the code
and the minimum distance can result with better performance, as expected, even
though the decoding radius of the list decoder for the rows is slightly greater than
b(dA − 1)/2c for the two codes. In the following example we investigate the different
terms in the bound given in Theorem 3.4 and how the bound on the error varies
for different decoding radii.

Example 3.4 The constituent codes for the product code considered in this
example are the same, the [32, 21, 6] extended BCH code. In Figure 3.6, the graph
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shows the bounds on the probability of block error for the [32,21,6]X[32,21,6] prod-
uct code. The different terms in the bound are shown separately to illustrate their
effect on the total sum. We see that for high transition probabilities, the probabil-
ity that at least one rectangle in the received matrix contains more than bdAdB/4c
errors, i.e., the third term in Inequality (3.9) has most effect on the bound. For
lower transition probabilities, the probability that at least one row in the received
matrix has more errors than the list decoder can handle, will be more eminent.
The probability that a rectangle in the received matrix has dAdB/2 errors will al-
ways be very small in comparison to the other terms in the bound. In Figure 3.7,
we compare the bound on the same code but with different decoding radii for the
list decoder of the rows. The bounds are given as a function of the signal-to-noise
ratio Eb/N0. This is done in order to appreciate the improvement of the bound
measured in dB in comparison to half the minimum distance bound. Assuming
coherent BPSK BPSK modulation in AWGN channel, the transition probability
for such a system can be written as given in Equation 2.8:

p = Q(

√

2RCEb

N0
), (3.13)

where Eb/N0 is the signal to noise ration per symbol, RC the rate of the code and
Q is the Q-function defined in (2.9). Also, in the same graph, simulation results
for turbo decoding of the same product code are included, [14] [17]. Soft decoding
of rows and columns was performed using MAP decoding, see Bahl et al [18] on
the dual codes of the constituent codes, see Battail et al [53] and [60], Berkmann
[61], Hagenauer [17] and Riedel [62]. The number of iterations chosen is 10 in order
to be as close to optimum decoding as possible. It can be seen that the bound on
block error is much better than the half the minimum distance bound for almost
all the span of signal to noise ratio and closer to the results of turbo decoding of
the product code. Only at very high signal to noise ratio is the half the minimum
distance bound better than the new bound. We should keep in mind, however,
that in practice, the interesting region of block error probability is between 10−3

and 10−2, see Furuskär [63, p. 18] and the references therein.

From the previous examples we see that increasing both the size and the min-
imum distance of the constituent codes might result in better performance. This
leads to the question of what might happen in the asymptotic case if we continue to
increase the size and minimum distance of the code. The first observation is that if
the number of errors in each row were less than half the minimum distance for the
row code, then it would be sufficient to use a bounded minimum distance decoder
instead of a list decoder for the rows and the maximum likelihood codeword will be
the first element in the list A∗. In practice, a bounded minimum distance decoder
for the rows will not be sufficient. Instead, a dA/2+1 list decoder can be used. For
very large product codes, i.e., when the length of the constituent codes approach
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Figure 3.6: Different terms of bound (3.9)

infinity, the transition probability of the channel should not exceed:

p <
dA

2n
.

This is much larger than the transition probability predicted by using the half
minimum distance bound which is less than dAdB/2mn.

It should be noted that other bounds on the probability of block error can also be
used. For example, if the weight distribution of the product code was known, then
it is possible to use a bound similar to Viterbi’s bound, [36] or Meeberg’s bound,
[64], as shown in [65]. Such bounds, however, require full or very good knowledge
of the weight distribution of product codes. The bound presented in this thesis,
on the other hand, only requires some knowledge on the weight distribution of the
constituent codes. The new bound also requires some knowledge on the weight
hierarchy of the row code in order to evaluate the value of ωA. It is, however,
possible to bound the value of ωA without knowing the weight hierarchy of the row
code as shown in Appendix A.
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Chapter 4

Suboptimal Low Complexity

Decoding

In the previous chapter, a maximum likelihood decoder was presented and some
of it’s properties were discussed. Also, another variant was mentioned where the
decoder jumps between the two lists A and B, shown in Figure 3.1, while looking
for a valid codeword. Even though the two lists procedure converges faster than
the single list variant towards the maximum likelihood codeword, the complexity
is twice as great. Another important disadvantage is that the decoding radius of
the list decoder for the rows should be sufficiently large in order to guarantee that
the maximum likelihood codeword will be a member of the list A. Furthermore,
at each stage the decoder does not make use of the possibility that many of the
errors may already be corrected by a previous stage. In this chapter, we present
an iterative, suboptimal variant of the two lists method that fixes the complexity
of the decoder to a predetermined value and instead of bookkeeping a long list
of candidate codewords for the rows and columns, the result of each stage is re-
decoded by the following stage creating a new list and forgetting the old ones
from the previous stages. It will be shown that the performance of this algorithm
improves by increasing the decoding radius of the list decoders for the rows and
for the columns until it becomes maximum likelihood when the limitations are
totally removed. This flexibility of adjusting the complexity in order to improve
the performance, and keeping the complexity of the decoder constant for each stage
are the main advantages for using this suboptimal algorithm.

51
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4.1 Description of the iterative algorithm

We assume, as we did in the previous chapter, that the product code C = A ∩ B is
used, where A is the code represented by all m× n matrices with rows codewords
in the [n, kA, dA] code A′ and B is the code represented by all m×n matrices with
columns codewords in the [m, kB , dB , ] code B′. Also, let the received matrix be
y. The iterative decoder we present, needs only two different list decoders, one for
the rows and the other for the columns implemented in hardware or software. The
incoming message goes through the decoder and the output is fed back to the same
decoder, which is quite common for all iterative methods. It is, however, easier
to analyze the decoder by imagining that there exists a series of similar decoders
cascaded one after the other, processing the data from the previous stage. This is
illustrated in Figure 4.1. Decoding of the received matrix y is performed by using a
decoder for the rows, φ, and a decoder for the columns, ψ. The result is re-decoded
at each stage.

Stage lStage 1

PSfrag replacements

y

b(0) b(1) b(l−1) b(l)a(1) a(2)

a(l−1)

a(l)

i(0) i(1)i(1) i(2) i(l−1) i(l)i(l)

j(0)j(0) j(1)j(1)

j(2)

j(l−1)j(l−1) j(l)

φφφ ψ ψ

stage l

Figure 4.1: Decoding stages of the iterative decoder

Each stage is comprised of two functions, φ which is mainly a decoder for
the code A and ψ which is a decoder for the code B. We begin by explaining
the different variables shown in the figure above. At stage l, for example, the
suggested solution to the decoding problem from function φ is the matrix al which
is a codeword in the code A. This matrix, is processed by function ψ which gives
its suggestion for the decoding problem in matrix bl which is a member of the code
B. The matrix bl is, in turn, processed by the function φ in stage l + 1 and so on.
At stage l, for example, the variables il and jl are simply as follows:



4.1. Description of the iterative algorithm. 53

i0
4
= 0,

il
4
= D(al,y), l = 1, 2, . . .

j0
4
= 0,

jl 4
= D(bl,y), l = 1, 2, . . . . (4.1)

The function φ checks the incoming matrix bl−1 to see if it also is a member of the
code A. If it is, φ returns this matrix as the solution for the decoding. In a similar
manner, the function ψ checks the matrix al to see if it also is a member of the
code B. If it is, ψ returns this matrix as the solution for the decoding. Otherwise,
Those two functions process the incoming matrices in the following way: Included
in each of the functions φ and ψ is a decoder similar to that shown in Algorithm 3.2,
one for the rows and the other for the columns, respectively. Therefore, two lists
are associated to each stage, namely, Al and Bl the first generated at φ and the
second at ψ. Each row of each member of the list Al is one of the candidates of
the list decoder of the rows for the corresponding row in y. This can be written as
a Cartesian product as follows:

Al =
m
∏

h=1

ξeA
(bl−1

h,·,A′), (4.2)

where eA is the decoding radius of the list decoder of the rows implemented in
φ. In a similar manner, each column of each member of the list Bl is one of the
candidates of the list decoder of the columns for the corresponding column in y

and the list Bl can be written as follows:

Bl =
n
∏

h=1

ξeB
(al

·,h,B′), (4.3)

where eB is the decoding radius of the list decoder of the columns implemented in
ψ. The matrices al and bl are chosen from those lists in the following manner:

al = arg min
a′

∈ Al

D(a′, y)>min(il−1,jl−1)

D(a′, y)

bl = arg min
b′

∈ Bl

D(b′, y)>min(il,jl−1)

D(a′, y) (4.4)

In other words, the function φ at stage l, chooses the member of the list Al that
is closest to y, but at a distance greater than the previous suggested solutions in
the previous stages, namely, min(il−1, jl−1). Similarly, the function ψ at stage l,
chooses the member of the list Bl that is closest to y, but at a distance greater
than the previous suggested solutions in the previous stages, namely, min(il, jl−1).
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Algorithm 4.1 Iterative decoding
1 Input: m × n matrix a of real numbers and an integer number maximum- number-

of-iterations.

2 Output: m× n matrix x̂ of binary numbers.

3 Initialize: i ← 0, j ← 0.

4 if y ∈ C then
5 x̂ ← y

6 Stop
7 end if
8 b ← y

9 while l ≤ maximum-number-of-iterations do
10 if b ∈ A then
11 x̂ ← b

12 Stop
13 end if
14 (a, i) ← φ(b, i, j)
15 if a ∈ B then
16 x̂ ← b

17 Stop
18 end if
19 (b, j) ← ψ(a, i, j)
20 l ← l + 1

21 end while

Figure 4.2: The iterative, suboptimal algorithm for decoding product codes.
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In Figure 4.2 we show the complete decoding algorithm.

From the definition of the two functions φ and ψ above, it is easy to see that at
each stage, l, the two lists Al and Bl associated with this stage are, respectively,
subsets of the two lists A and B shown in Figure 3.1 for the maximum likelihood
algorithm. It is not certain, however, that the maximum likelihood codeword will
be chosen as the result in the end. The decoder given in Figure 4.2 might miss the
maximum likelihood codeword, x̂ because of the following reasons:

• The maximum likelihood codeword is not a member of neither Al nor Bl for
all the stages.

• For any stage l that the maximum likelihood codeword x̂ is a member of Al,
the distance D(x̂, y) is less than min(il−1, jl−1).

• Similarly, for any stage l that the maximum likelihood codeword x̂ is a mem-
ber of Bl, the distance D(x̂, y) is less than min(il, jl−1).

The fact that the decoder might miss the maximum likelihood codeword affects
not only the performance of the decoder, it also means that the algorithm does not
always converge to an answer. This is quite unfortunate and therefore the choice
of the maximum number of iterations is of crucial importance. Furthermore, the
decoder must be able to manage the cases where no valid codeword is found after the
maximum number of iterations is reached. Ad hoc solutions may be implemented
to solve the last problem, for example, the decoder may return a failure message
or the decoder may choose any codeword of the list generated at this stage and
uses it to return the information symbols. Even though it is not certain that the
algorithm converges, it is possible, however, to say something about the probability
of convergence. We begin by presenting the following proposition:

Proposition 4.1 Let A be the code represented by all m × n matrices with rows
codewords in the [n, kA, dA] code A′ and let B be the code represented by all m× n
matrices with columns codewords in the [m, kB , dB ] code B′. Let the product code
C = A ∩ B, be used in combination with Algorithm 4.1 shown in Figure 4.2 for
decoding. Also, let the decoding radius of the list decoder of the rows, eA, and the
decoding radius of the list decoder of the columns, eB, be equal to or greater than
ρ(A′) and ρ(B′), the covering radii of A′ and B′, respectively. Let the sent codeword
be x and the received matrix be y. Define:

I 4
= {i|i ∈ {1, 2, . . . ,m}, D(xi,·, yi,·) >

dA

2
}

J 4
= {j|j ∈ {1, 2, . . . , n}, D(x·,j , y·,j) >

dB

2
}. (4.5)

If |I| < dB/2 and |J | < dA/2, then, the decoder will converge after a sufficient
number of iterations.
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Proof: Let the sent codeword be the all zero matrix. Since eA and eB are equal to
or greater than ρ(A′) and ρ(B′), respectively, then, the event that the list decoders
for the rows and columns cannot produce any solution is not possible for all stages
of decoding. In accordance with Figure 4.1, let al and bl be the outputs from
functions φ and ψ respectively for stage l. Due to the conditions imposed by the
proposition, the matrix a1 will have less than dB/2 rows that are not zero and the
rest of the rows in the matrix are zero. Therefore, the all zero matrix will be one
of the members of the list B1 associated with the first stage. The matrix b1, in its
turn will have less than dA/2 columns that are not zero. This means that the all
zero matrix will be a member of the list A2 associated with the second stage. The
function φ in stage 2 either chooses the all zero matrix as the result or there exists
some other codeword in A that is closer to y than the all zero matrix. The same
argument applies for all stages in decoding. This means that unless there exists
some other codeword in C that is closer to y than the all zero matrix, the decoder
will either choose the zero matrix or some other valid codeword, i.e., it converges.

2

It is easy to see that when a BSC, with transition probability p, is used, the
probability that, at least m − dB/2 rows have a number of errors less than dA/2,
is greater than the following expression:





dB/2
∑

i=0

(

n
i

)

pi(1 − p)n−i





m−dB/2

, (4.6)

Similarly, the probability that at least n− dA/2 columns have a number of errors
less than dB/2, is greater than the following expression:





dA/2
∑

i=0

(

m
i

)

pi(1 − p)m−i





n−dA/2

, (4.7)

We can thus say that the probability of convergence is of the same order as the
expressions given in Equations (4.6) and (4.7). An exact expression, however, is
quite cumbersome and would not add much to understanding the process.

4.2 Error correction capability of the suboptimal

algorithm

As explained in the previous section, the iterative algorithm only approaches max-
imum likelihood performance when the decoding radii for the list decoders of the
rows and the columns are very large and for unlimited number of operations. It
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is possible, however, to analyze its performance concerning certain types of error
patterns. We begin by considering burst errors. As in Chapter 3, we define burst
errors as a very long pattern of errors that occupy less than bdA/2c columns or,
alternatively, less than bdB/2c. We present the following proposition:

Proposition 4.2 Let A be the code represented by all m × n matrices with rows
codewords in the [n, kA, dA] code A′ and let B be the code represented by all m× n
matrices with columns codewords in the [m, kB , dB ] code B′. Let the product code
C = A ∩ B, be used in combination with Algorithm 4.1 shown in Figure 4.2 for
decoding. Also, let the decoding radius of the list decoder of the rows, eA, and the
decoding radius of the list decoder of the columns, eB, be equal to or greater than
dA/2 and dB/2 respectively. Then, the decoder can correct all burst errors covering
less than dA/2 columns or all burst errors covering less than dB/2 rows.

Proof: Let us assume that the all-zero codeword was sent and that the received
matrix is y and start by proving the proposition for the case where the burst covers
less than dA/2 columns. Sine for each row, the all-zero solution will be the closest
candidate in A′ to the corresponding row in y, then, the all-zero codeword will be
the first member of the list boldmath A1 associated with the first stage. Thus the
all-zero codeword will be chosen as the correct answer. Now, let us assume that
the burst covers less than dB/2 rows. Then, the solution from the function φ in the
first stage, i.e., a1, will have errors in less than dB/2 rows. Sine for each column,
the all-zero solution will be the closest candidate in B′ to the corresponding column
in y, then, the all-zero codeword will be the first member of the list B1 associated
with the first stage. Thus the all-zero codeword will be chosen as the correct
answer in the following stage. This is illustrated in Figure 4.3. The figure shows
the correction of burst errors that are contained in less than dA/2 columns (left
picture) or burst errors contained in less dB/2 rows (right picture). The parameters
eA and eB are the decoding radii of the list decoders of the rows and the columns
respectively. 2

Besides the ability to correct burst errors, the previous proposition points out the
fact that correcting burst errors requires at most one iteration. It can also be noted
that, if the decoding radii of the list decoders of the rows and the columns are equal
to or greater than ρ(A′) and ρ(A′) respectively, then the decoder can correct some,
but not all, burst errors that cover more than dA/2 columns or dB/2 rows.

The next type of errors to consider is when the number of errors is less than half
the minimum distance of the product code. The theorem below states that, given
some conditions, the decoder can correct all errors less than half the minimum
distance:

Theorem 4.3 Let A be the code represented by all m × n matrices with rows
codewords in the [n, kA, dA] code A′ and let B be the code represented by all m× n
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Figure 4.3: Correction of burst errors.

matrices with columns codewords in the [m, kB , dB ] code B′, such that the covering
radii for the codes A′ and B′ are less than dA and dB respectively. Let the product
code C = A ∩ B, be used in combination with Algorithm 4.1 shown in Figure 4.2
for data transmission. Also, let the decoding radius of the list decoder of the rows,
eA, and the decoding radius of the list decoder of the columns, eB, be equal to or
greater than dA −1 and dB −1 respectively. Then, the decoder can correct all error
patterns of Hamming weight less than half the minimum distance, dAdB, of the
product code.

Proof: The proof is similar to the proof of Proposition 4.2. Since the decoding
radii of the list decoders for the rows and columns are equal to or greater than
the covering radii of the codes A′ and B′ respectively, the lists of candidates for
the rows and columns will never be empty for all the stages of decoding. Let the
sent codeword be the all-zero matrix and let the received message be the matrix
y. There will be four cases to consider:

1. Let the number of errors in each row be less than or equal to dA − 1 and let
the number of errors in each column be less than or equal to dB−1. Since the
decoding radius of the list decoder for the rows is equal to dA−1, The list Ai

associated with stage i will contain the all-zero codeword. Similarly, the list
Bi associated with stage i will contain the all-zero codeword. Therefore, the
decoder will, eventually, return the all-zero codeword as the correct solution
since there are no other codeword in the code C closer to y than the all-zero
codeword.
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2. Let us assume that the number of errors in some rows in y are greater than
dA −1. Even though the lists Ai might not contain the all-zero codeword for
all stages i, the lists Bi will contain the all-zero codeword for all stages i of
decoding and the decoder will eventually return it as the correct solution.

3. In a similar manner, let us assume that some columns in y contain more than
dB − 1 errors and that the number of errors in all the rows are less than or
equal to dA − 1. In this case all the lists Ai for each stage i will contain the
all-zero codeword.

4. The last possibility is that some rows contain more than dA − 1 errors and
some columns contain more than dB−1 errors. The output from the function
φ in the first stage, i.e., the matrix a1, will have errors contained in at most
dB − 1 rows. This means that the all-zero codeword will be a member of the
list B1 generated at ψ. The matrix b1, in its turn, will have errors contained
in at most dA − 1 columns which means that the all-zero codeword will be
contained in the list A2. Therefore, the matrices ai and bi decoded at each
stage i will be similar to either the second case or the third case and the the
all-zero codeword will be contained in either list Ai or in list Bi for each
stage i of decoding and the decoder will eventually return it as the correct
answer.

Figure 4.4 below illustrates the different cases of the proof. The four different cases
of the theorem are when the number of errors in each row and in each column is
less than or equal to dA − 1 and dB − 1 respectively, (upper left), the number of
errors in some columns is greater than dB − 1, (upper right), the number of errors
in some rows is greater than dA − 1 (lower left) and when the number of errors
in some rows and in some columns exceed dA − 1 and dB − 1 respectively, (lower
right). 2

The analysis above deals with hard decision decoding of the received matrix y.
It can also be proved that, instead of using a list decoder for the rows and a list
decoder for the columns with decoding radii equal to or greater than dA − 1 and
dB − 1 respectively, a bounded half the minimum distance decoder that can return
the erasure symbol can also be used. We do not prove this for the hard decision
case, however, and content ourselves by proving it for the case of soft decision
decoding, since the proof contains the case of hard decision decoding. When soft
decision decoding is used, the problem of list decoding the rows and columns can be
simplified a bit by using a suboptimal list decoder, for example a GMD decoder,
see Forney [3] or a Chase III decoder, [21]. By suboptimal, we mean that it is
not necessary that the list returned by these decoders is actually the closest set
of candidates to the received message and, even more, in some cases the list of
candidates will be empty and therefore an erasure symbol, ∆ is returned. These
algorithms, however, can correct all errors provided that the distance of the received
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Figure 4.4: Proof of Theorem 4.3.
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message does not exceed the square of half the minimum Euclidean distance of the
code. We denote the Euclidean distance between two vectors by dE and it can
easily be seen that if the mapping {0, 1} → {1,−1} is used to map the symbols
from from F2 to R, then for any code with minimum Hamming distance d, the
normalized minimum squared Euclidean distance is 4d and the square of half the
minimum Euclidean distance of this code will be d. The low complexity of such
decoders, however, makes them attractive from the practical point of view. We can
thus define a GMD list decoder as follows:

ξgmd
4
= {The set of all solutions returned by GMD algorithm} ∪ {∆}. (4.8)

The erasure symbol should also have a distance from the received message and,
assuming that we are decoding the received message v ∈ R

n on the [n, k, d] code U .
Let V be the list of codewords returned by the GMD decoder except the erasure.
I.e.,:

V = ξgmd(v,U)\{∆}. (4.9)

We choose the following distance for the erasure symbol:

d2
E(∆,v) =

{

d if V = {}
max{d2

E(V ,v) ∪ {d}} + δ otherwise
(4.10)

where d2
E(V ,v) is the set of distances of the members of V from v and δ is a

constant very small in comparison to d. The importance of the constant, δ is only
shown when the real values from the channel are quantized and it can be considered
to be zero when the precision is infinite.

The meaning of 4.10 in words is: if the GMD decoder fails to return any code-
word, the distance of the erasure symbol will be set equal to the square of half the
minimum Euclidean distance of the code. Otherwise, the distance of the erasure
symbol to the received message is set to be slightly larger than the distance of the
candidate that is farthest from the sent message. This is done in order to ensure
that at each stage of the iterative decoder shown in Algorithm 4.1, the list of can-
didates for each row and each column are exhausted before giving up and trying
the erasure symbol. The GMD decoder needs to have some information about
the reliability of the binary symbols and we choose the following method: at each
stage, l, in decoding, the reliability of each binary symbol in the matrices al and
bl is inversely proportional to the distance of this bit to the corresponding entry
in the received matrix y. I.e., if the squared Euclidean distance d2

E(al
i,j ,yi,j) is

greater than d2
E(al

i,h,yi,h), where j and h are not the same, then, the bit al
i,j

is more unreliable than the bit al
i,h. We show that this arrangement is also good

and that the iterative decoder that uses GMD decoders for the rows and for the
columns, can correct up to the square of half the minimum Euclidean distance of
the product code. In the following discussion we assume, as shown in the discussion
in Subsection 2.3.1, that the following mapping for each coordinate is used:

0 7→ 1
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1 7→ −1 (4.11)

If the sent codeword is c, each element in the received matrix y will be a real
variable equal to ±1 and some noise of real value added to it as shown in Subsec-
tion 2.3.1. We present the following theorem:

Theorem 4.4 Let A be the code represented by all m × n matrices with rows
codewords in the [n, kA, dA] code A′ and let B be the code represented by all m× n
matrices with columns codewords in the [m, kB , dB ] code B′. Let the product code
C = A ∩ B, be used in combination with Algorithm 4.1 shown in Figure 4.2 for data
transmission. Also, let the list decoders for the rows and for the columns be ξgmd

defined in (4.8). Then, the decoder can correct all error patterns provided that the
squared Euclidean distance between the received vector and the sent message is less
than the square of half the minimum Euclidean distance of the product code, i.e.,
when the square of the Euclidean distance between the received message and the
sent message is less than dAdB.

Proof: Without loss of generality, assume that the the sent codeword is the
all-zero codeword and the received, real valued, matrix is y. Assume that the first
dB rows are farthest from the corresponding rows in the sent codeword, i.e., for all
i ∈ {1, . . . , dB} and j ∈ {dB + 1, . . . ,m}, the following is correct:

d2
E(yi,·,0) ≥ d2

E(yj,·,0). (4.12)

Assume that the distances of the first dB rows in y to the all-zero n vector, are
slightly less than dA, then the row decoder will find the correct candidate for all the
rows and the all-zero matrix will be obtained as the correct solution. We should
keep in mind that the all-zero matrix will be missed by the column decoder only if
more than dB/2 rows are at a squared Euclidean distance greater than dA, since,
otherwise, the GMD decoder for the columns will always include the all-zero vector
as a candidate for each of the columns. Let us begin by assuming that the list of
candidates for each row consist of, at most, one candidate in addition to the erasure
symbol. Now, suppose that the distance of the first row to the all-zero vector is
equal to dA +δ1, then, in the worst case, one of the first dB rows, let it be the dB :th
row, has a distance to the all-zero vector less than dA − δ1. Let the rest of the
distances of the first dB rows to the all-zero vector be dA. But this means that even
if the all-zero vector was not included in the list returned by GMD decoding the
first row, the distance of the nearest candidate for the first row to its corresponding
row in y will be greater than dA−δ1, which is greater than the distance of the dB :th
row to the all-zero vector. Therefore, if the column decoder doesn’t find the all-zero
matrix first and return it as the correct answer, the iterative decoder will eventually
choose the erasure symbol for the first dB − 1 rows and the all-zero vector for the
last row. The result of GMD decoding the columns of the previous arrangement
will be the all-zero matrix. Now, let the first bdB/2c rows have distances from the
all-zero vector equal to dA + δi. Then, the sum of the distances of these rows to
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their closest candidate is greater than dBdA/2−
∑dB/2

i=1 δi. But this means that the
sum of the distances of the rest of the dB rows, i.e., rows dB/2 + 1 to row dB , to

the all-zero vector is less than dBdA/2 −∑dB/2
i=1 δi. This means that the iterative

decoder will eventually replace the first dB/2 rows by erasures, since they are less
reliable than the remaining rows, and thus, the GMD decoder for the columns will
return the all-zero matrix as the result. If the list of candidates for each row can
include more than one solution instead of at most one candidate in addition to the
erasure symbol, then, the result will be similar, since the iterative decoder searches
through all different combinations of the different candidates. 2

The previous theorem indicates that the performance of the iterative algorithm, in
the worst case, degenerates to that of GMD decoding of the product code. The
fact that the decoders for the rows and for the columns contain a list instead
of a single candidate in addition to the erasure symbol, increases the probability
that the sent codeword will be found among the members of the lists Al and Bl

associated with each stage l of decoding. Furthermore, the iterative algorithm is
more inclined to return an answer for each row or column instead of giving up and
returning the erasure symbol, which decreases the probability of there being so
many erasures that the GMD decoder for each row or each column cannot handle.
It is also clear that Algorithm 4.1 can correct many other patterns with a square
Euclidean distance greater than the square of half the minimum Euclidean distance
of the code. The number of correctable error patterns increases when the decoding
radii of the list decoders for the rows and the columns are increased. For example,
if the number of errors in each row and in each column is less than eA and eB

respectively, such that, eA > bdA/2c and eB > bdB/2c. Then the decoder can
correct the correctable error patterns of this type. By correctable we mean that
there does not exist any other codeword in the product code that is closer to the
received matrix than the sent codeword.
If we consider the case of hard decoding of the incoming message, then, with a
slight modification of Theorem 4.4, we prove that all error patterns of weight less
than half the minimum distance of the product code. This is a much stronger
result than that presented in Theorem 4.3 which demands that the list decoders
for the rows and for the columns have a decoding radius equal to or greater than
dA − 1 and dB − 1 respectively. The difference between the two theorems is that
in Theorem 4.3, unlike Theorem 4.4, the list decoders of the rows and for the
columns are not allowed to return the all erasure symbol as a member of the list
of candidates for each row or each column.
It was mentioned above that another suboptimal decoder can be used, based on
the Chase III decoder. Let us define this decoder as follows:

ξCh
4
= {The set of all solutions returned by Chase III algorithm} ∪ {∆}, (4.13)

where ∆ is the erasure symbol explained above. We can also set the distance of
the erasure symbol to the received vector in the same manner as given in (4.10).
It was shown by Nilsson, see [66], that the performance of the Chase III decoder
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is at least as good as the GMD decoder for binary codes. Therefore, this decoder
can be used as a suboptimal list decoder for the rows and columns instead and the
performance will be at least as good as that shown in Theorem 4.4.

We conclude this chapter by giving an example of the the error correction
capability of this algorithm:
Example 4.1 Let the [7, 4, 3] Hamming code be used as the constituent code
for both the rows and the columns and let the all-zero codeword be sent using
coherent BPSK modulation with the mapping of (4.11). Let the received message
y be as shown in Figure 4.5. The matrix to the left in the figure is the received
message y and to the right in the figure is the hard decision version of the received
matrix which is also the first matrix to be decoded. For the sake of simplicity, we
assume that the precision of calculations is two decimal points only. We also set
the constant δ in 4.1 to zero since in this example it does not affect the procedure
of the algorithm. The squared Euclidean distance of the matrix y to the sent
message, namely, the BPSK modulated all-zero matrix, is 8.2. This is less than
the minimum distance of the product code, which means that this error pattern is
correctable using a decoder that corrects up to the generalized minimum distance
of the product code as explained in Subsection 2.3.2. The hard decision matrix, ỹ

is fed to the decoder as shown in Figure 4.1. The decoding continues as shown in
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Figure 4.5: Using GMD decoders instead of list decoders in the algorithm

Figure 4.6 where the output of each function at each stage is shown. At iteration
stage number one, the row decoder will find one candidate for each row in the
matrix. The matrix a1 is constructed from the candidates returned from the row
decoder as shown in Figure 4.6. The value of i(1) is updated using 4.1 from 0 to
7.92. The column decoder ψ in the first iteration stage will decode each column in
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a1 and will find one candidate for each column in this matrix. The matrix b1 is
constructed from the candidates returned from the column decoder ψ. The value
of j(1) is updated using 4.1 from 0 to 7.92 also. In the second iteration stage, the
row decoder tries to find candidates for each row and will find the same candidates
as in a1. However, since the squared Euclidean distance of the BPSK modulated
form of this matrix from y is the same as i(1), then, the second stage is not allowed
to return this matrix due to the conditions in 4.4. Therefore, the row decoder
will try to replace the candidate of at least one row by another candidate for this
specific row and such that it has greater Euclidean distance from the corresponding
row in y. Since the row decoder returns only one candidate per row, the choice
will be the erasure vector for this row. Using 4.10, if the second row is replaced by
the erasure vector, then, the squared Euclidean distance between the new matrix
and y will be greater than that for a1. However, replacing any row other than the
second row by the erasure vector, will increase the squared Euclidean distance to
the received message even more. Therefor, the row decoder in the second iteration
stage will choose the matrix a2. The value of i(2) is updated using 4.1 from 7.92 to
7.98. The column decoder ψ in the second iteration stage decodes the columns of
a2 and returns with candidates for each column similar to those in b1. Since the
column decoder ψ cannot choose the same matrix due to the conditions in 4.4, the
decoder will choose to replace one of the columns with the erasure vector and it will
choose the second column for the same reason as for the row decoder. The value of
j(2) is updated using 4.1 from 7.92 to 7.96. The row decoder in the third iteration
stage will decode the rows and try to find a matrix that has greater Euclidean
distance to y than min(i(2), j(2)). However, choosing to replace the first column
with the erasure vector will have a squared Euclidean distance from y similar to
that for b2. The other alternative would be to replace the third column with the
erasure vector. However, the squared Euclidean distance to y, namely 8.84, will
be greater than that if it chooses to erase both the first and second columns which
has a Euclidean distance from y equal to 8.04. Therefore, the column decoder in
the third iteration stage will choose to return the matrix b3 which has erasures in
its first two columns. The value of j(3) is updated using 4.1 from 7.96 to 8.04. The
matrix b3 is easily decoded to the all zero matrix by function φ at stage 4 and is
returned as the correct solution.
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Chapter 5

Complexity

As mentioned earlier, the most obvious method, and the easiest to understand, to
reach the maximum likelihood solution would be to search the code, one codeword
at a time, in search for the codeword that is closest to the received message. It is,
however, quite obvious that this is a very computationally demanding method. In
practical applications, there exist certain algorithms that have very low complexity
compared to maximum likelihood decoding at the price of a very poor performance.
For a proposed algorithm to be practically feasible, it should have a performance
superior to such algorithms with a comparable complexity. One important feature
that a decoding algorithm should have is that the number of operations needed
in the algorithm for decoding should not increase as an exponential function of
the length of the code or one of its parameters. Therefore, we shall try to prove
that the average number of operations, used by the algorithms presented in this
thesis, needed to perform the decoding is a polynomial function of the length of the
product code. In some cases we try to investigate the worst case and make some
conclusions about the complexity needed to obtain a certain decoding performance.
In investigating the complexity of Algorithm 4.1, we concentrate on the case where
the list decoders used for the rows and the columns are GMD decoders for the row
code and the column code respectively. This is in order to keep the complexity of
the algorithm to a minimum.

5.1 Complexity of Algorithm 3.2

We start by investigating the average complexity of the basic algorithm presented
in Section 3.1 when the channel is a BSC. In all the discussion below, we assume
that the [n, kA, dA] A′ code and the [m, kB , dB ] B′ code are used to construct the

67
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product code C. We also define the code A as the code represented by all m × n
matrices with rows codewords in A′ and define the code B as the code represented
by all m × n matrices with columns codewords in B′. We also assume that the
product code C is used for data transmission on. We denote the sent codeword
by x and the received message by y. It was explained in Chapter 3 that y is
list decoded over the code A in a list A, by list decoding the rows of y as shown
in Figure 3.1. The probability that the sent codeword will be a member of the
list A increases by increasing the decoding radius of the list decoder for the rows.
However, increasing the decoding radius of the list decoder for the rows means
increasing the complexity of the decoder. We call the event that the sent codeword
is not a member of the list A by a list error. We shall investigate the probability
of list error given the transition probability of the channel, p. We should find the
decoding radius of the list decoder for the rows that guarantees a probability of list
error less than a predetermined value. We restate (3.2) which gives the probability
that the sent codeword is not a member of the list A.

Plist = 1 −
[

eA
∑

i=0

(

n
i

)

pi(1 − p)n−i

]m

, (5.1)

where eA is the decoding radius of the list decoder for the rows and p is the
transition probability of the channel. We define ẽA as the least decoding radius for
the list decoder of the rows which ensures that the list error is less than a given
value given the transition probability of the channel.

Example 5.1 Consider the BSC with transition probability equal to 4 · 10−4.
The product code that has the Hamming [31, 26, 3] code as the constituent code
for both the rows and the columns is used for data transmission. The value of ẽA

needed so as the list error is equal to or less than 10−5 is equal to 2. This means
that a list decoder with a decoding radius greater than half the minimum distance
by one is used. If, on the other hand, the BCH [31, 21, 5] code was used, a bounded
half the minimum distance decoder is enough to ensure that the list error does not
exceed 10−5. I.e., ẽA = 2 is enough to guarantee the required maximum list error.

Since the decoder looks at the elements of the list A one at a time beginning
with the member that is closest to the received message, it becomes apparent that
the cardinality of this list is an important factor in determining the complexity of
decoding. Therefore, we study both the maximum size of the list, and its aver-
age size. The first parameter affects the maximum size of the memory needed to
store the list, while the second parameter affects the average number of operations
needed for decoding. The average size of the list also gives some information about
how to decrease the size of storage memory without excessive degradation of the
performance. We should keep in mind that the members of the list A are not
actual m × n binary matrices. Rather, each member of A is a list of pointers to
certain candidates for each row. In [67] Justesen and Høholdt introduced a bound
on the number of codewords returned by a list decoder for MDS codes using design
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theory. We choose instead to restrict the case of study to binary codes and use a
much simpler argument to acquire a similar bound.

Proposition 5.1 Let w be a binary vector of length n and let ξe be a list decoder
on the binary [n, k, d] code U . The cardinality of the list of codewords returned by
decoding w is:

|ξe(w,U)| ≤























1 if e ≤ bd−1
2 c

1 +

(

n
e− bd−1

2 c

)

if bd−1
2 c < e ≤ d− 1

1 +

(

n
bd−1

2 c

)

+
∑e

i=d

(

n
i

)

otherwise

(5.2)

Proof: The first part is obvious. The second part can be proved by counting
the number of error vectors that can be added to the received message to obtain
different codewords in U . There can be, at most, one codeword at a distance equal
to or less than b(d− 1)/2c from w. This accounts for the ’1’ in the second part of
the inequality. For a codeword c ∈ C such that,

⌊

d− 1

2

⌋

< dH(w, c) ≤ e,

there exists a vector v of weight:

wH(v) = e−
⌊

d− 1

2

⌋

,

and such that:

wH(w + v, c) ≤
⌊

d− 1

2

⌋

.

The total number of vectors of Hamming weight e− b(d− 1)/2c is:

(

n
e− bd−1

2 c

)

.

This proves the second part of the inequality. The third part of the inequality
can be proved by first calculating the number of vectors of weight b(d− 1)/2c and
adding to it the total number of all vectors of weight equal to or less than d up to
e. 2

The proposition indicates that when the list decoder for the rows has a decoding
radius greater than dA, the minimum distance of the row code, the size of the list
generated by the list decoder might grow to be quite unmanageable. Therefore,
even though increasing the decoding radius of the list decoder for the rows improves
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the performance of the decoder, the complexity will grow exponentially when the
decoding radius is increased beyond dA. If the decoding radius, on the other hand
is kept below dA, the complexity will be limited.
Even when the decoding radius is kept below dA, the bound on the size of the list
given in (5.2) is rather pessimistic. We show, in the following discussion, that the
average size of the list is lower than this bound and quite acceptable. We start
by defining the density, γ of a binary code U of dimension k and size n in the
Hamming space as being:

γ(U)
4
= 2k−n. (5.3)

We define the volume of a sphere Se in the Hamming space, where e is the radius,
as the number of all the points contained in the sphere:

V (Se)
4
=

e
∑

i=0

(

n
i

)

. (5.4)

We can thus say that, given an [n, k] code U and a random vector w of size n, the
average size of the list returned by a list decoder with decoding radius e is:

E[|ξe(w,U)|] = γ(U)V (Se) = 2k−n
e
∑

i=0

(

n
i

)

. (5.5)

Example 5.2 Consider the product code where the [31, 26, 3] Hamming code
is the constituent code for both the rows and the columns. If a list decoder for
the rows with decoding radius equal to 2 was used, then the maximum number
of candidates for each row will be 32. The average number of candidates for each
row, on the other hand, will be 15.5. If the [31, 21, 5] BCH code was used instead
and the decoding radius of the list decoder for the rows is equal to 3, then the
maximum number of candidates for each row will be 32 but the average number
of the candidates for each row will be 4.875. If the decoding radius was equal to
4, the maximum number of candidates will be 466 while the average number of
candidates for each row will be 35.6.

It should be noted that the average list length in the equation above is true only
in the case that a random vector is received. The actual case is that the received
vector is a codeword added to it a noise vector that has a certain probability
distribution. This is a different, and much harder, problem. To estimate the
average number of codewords returned by the list decoder for the actual case, we
need to know the full weight distribution of the coset leaders of the code in question.
We, therefore, consider (5.5) a good measure from the point of view of practical
design and for comparison with other decoding algorithms.

As mentioned in Chapter 3, the received message y is list decoded by list
decoding its rows and the list A is generated by the decoder. Each member of
A beginning from the member that is closest to y is checked to see if it was a valid
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codeword until such a codeword is found. The probability that the sent codeword
will be a member of the list A increases by increasing the decoding radius of
the list decoder for the rows. If the sent codeword was a member of the list A,
then, the probability that its position in the list is near the top increases when
the transition probability of the channel decreases. This means that when the
transition probability of the channel is small, i.e., the channel is good, there is a
better chance of finding the sent codeword by checking the first few members of
the list A. Otherwise, if the transition probability was high, i.e., a bad channel,
then, the probability that the sent codeword will be one of the first members of the
list A will be small. This also means that if the decoding of the received message
demands more operations than average, then the probability that the error vector
is of large Hamming weight than the average case will also be large. This gives
some indication on when to stop checking the members of the list and return a
decoding failure flag instead.

We have to estimate the average position of the sent codeword in the list A,
which we denote by L, as a function of p. We know that when a BSC is used
with transition probability p, then, the distance of any row in the sent codeword
to the corresponding row in the received matrix will have a binomial distribution.
Without loss of generality, we assume that the situation that the sent codeword
is the all zero codeword. Consider first the case when the number of errors in a
certain row is equal to i where i ≤ e. The all zero codeword will be contained in
the sphere of radius i surrounding the received vector for this specific row. The
number of codewords in the sphere of radius i surrounding the vector will be less
than α2i(A′) where αj is, as defined in Chapter 3, the number of codewords of
weight j or less in the code A′. If all the codewords in the sphere of radius 2i were
ordered according to their distance from the received vector, then, we see that the
order of the all zero row vector will be less than the total number of codewords in
the code A′of weight equal to or less than 2i. If, on the other hand, the number of
errors in the specific row i was greater than the decoding radius of the list decoder,
e, then, the all zero codeword will not be a member of the list of candidates for
this row. The total number of candidates will be, on the average for all codewords,
less than α2e(A′). If we take the average over all error weights up to n we get:

L(p) ≤
[

e
∑

i=0

α2i(A′)P (n, i, p) +

n
∑

i=e+1

α2e(A′)P (n, i, p)

]m

, (5.6)

where p is the transition probability of the channel and P (n, i, p) is:

P (n, i, p) =

(

n
i

)

pi(1 − p)n−i. (5.7)

We explained in Chapter 3 that the basic decoding algorithm is comprised of three
different stages, list decoding the rows of the received message, sorting the resultant
codewords in a list and, last, checking each member of the list to see if it was a valid
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codeword. The complexity of list decoding the rows was explained in the discussion
above. As for sorting the list of matrices, then, it was shown in Chapter 3 that
if we were satisfied with a list of size l, then, the sorting procedure would require
O(ml log l) comparisons. Checking the members of the list of matrices in search
of a valid codeword is simply done by multiplying each matrix by the parity check
matrix of the column code B. If the result was equal to 0, the matrix in question
is a member of both the row code and the column code, i.e., a member of the
product code C. It can then be noticed that the number of operations needed for
sorting is very small in comparison with the number of operations needed for list
decoding the rows or the number of operations needed for checking the different
members of the list A in search for a valid codeword. Therefore, we concentrate
ourselves on the complexities introduced by list decoding the rows and the parity
check operations. It was shown by Sudan in [68] that list decoding of Reed-Solomon
codes can be done in polynomial time as long as the decoding radius was less than a
specific value. This result was developed even more in the work of Guruswami and
Sudan in [69]. Justesen and Hohøldt showed in [67] that the decoding complexity
is actually associated with the number of codewords contained within a sphere of
radius equal to the decoding radius of the decoder. It is quite obvious that these
results can be slightly modified to apply to related codes, e.g., BCH codes. We
choose, however, to follow the following simple explanation that is only correct in
the case of binary codes. The explanation we use is similar to the idea behind
Chase I decoding algorithm, [21].
If the decoding radius of the list decoder for the rows is equal to or less than
b(dA − 1)/2c, then, we need to decode each row using a bounded half the minimum
distance decoder, for example a Berlekamp-Massey decoder, see [70], for decoding
cyclic codes. If, on the other hand:

⌊

dA − 1

2

⌋

< eA ≤ dA − 1, (5.8)

then, it is possible to acquire the list of codewords at a distance eA or less from
the message by deliberately adding error vectors of weight eA − b(dA − 1)/2c to
the received message and decoding the resulting vectors using a bounded half the
minimum distance decoder. Since there exists

(

n

eA − bdA−1
2 c

)

such vectors, list decoding of the rows requires, at most, O(neA−b(dA−1)/2c) decod-
ing operations of the bounded half the minimum distance type. If a Berlekamp-
Massey decoder was implemented as a part of the list decoder, then, the order of
the number of operations needed for list decoding will be
O(neA−b(dA−1)/2c+2) binary operations, since the Berlekamp-Massey decoder re-
quires a number of binary operations of order O(nd), see Nilsson [66] and Youzhi
[71]. Other list decoders on the constituent codes of the product code can also be
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implemented. One possible alternative was suggested by Forney, see [35], where
the Viterbi decoding on the trellis is modified to store a list of best paths instead
of storing only one, thus generating a list of codewords. The Viterbi algorithm
has better performance than the bounded minimum distance decoding due to the
fact that it is maximum likelihood. However, the constituent codes of a product
code are usually chosen to be block codes, for example, BCH codes or Reed-Muller
codes and Viterbi decoding on the trellis of such codes is much more complicated
than bounded minimum distance decoding. Another variant of the list decoder can
be implemented if the constituent codes were binary BCH codes. Using a modified
version of Sudans algorithm for list decoding Reed-Solomon codes, see [68]. This
is due to the fact that BCH codes are strongly related to Reed-Solomon codes,
see MacWilliams and Sloane [8, page 294]. We, however, satisfy ourselves with
the fact that for any list decoding algorithm used, for any linear code, the order
of the complexity of the list decoder cannot exceed O(neA−b(dA−1)/2c) decoding
operations of the bounded minimum distance type.
Checking the members of A in search for a valid codeword can be done, as men-
tioned earlier, by multiplying the member of the list under investigation by the
parity check matrix of the code B′. If the result was the all-zero matrix, then,
this member is a codeword in both the codes A and B, i.e., a codeword in the
product code C. multiplying two binary matrices with dimensions (m − kB) ×m
and m × n, requires mn(m − kB) binary multiplications and (m − 1)n(m − kB)
binary additions. In the binary case, addition and multiplication is of comparable
complexity, since, in the first case it is an XOR function and in the second case it
is an AND function. We, therefore, say that the parity check operation requires at
most 2mn(m − kB) binary additions and binary multiplications for each element
of the list A.

We are now ready to summarize what we know about the complexity of de-
coding a received message using the basic algorithm when used in a BSC with
transition probability p. Given the maximum allowed list error, we find the mini-
mum decoding radius for the list decoder of the rows that satisfy (5.1) as follows:

Plist ≤ 1 −
[

ẽA
∑

i=0

(

n
i

)

pi(1 − p)n−i

]m

. (5.9)

We can therefore use Equation (5.2) to bound the maximum size of storage mem-
ory, Memmax, measured in the number of binary cells, bits, needed to store the
candidates for all the rows as:

Memmax ≤



























mn if ẽA ≤ bdA

2 c
mn

[

1 +

(

n

e− bdA−1
2 c

)]

if bdA

2 c < ẽA ≤ dA − 1

mn

[

1 +

(

n

bdA

2 c

)

+

ẽA
∑

i=dA

(

n
i

)

]

otherwise.

(5.10)
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The average number of bits needed for storing the candidates for all the rows,
Memavg, measured in bits, is estimated to be:

Memavg = mn2kA−n
ẽA
∑

i=0

(

n
i

)

. (5.11)

If ẽA satisfies the following inequality:

⌊

dA − 1

2

⌋

< ẽA ≤ dA − 1,

then, we can write the number of operations needed for list decoding all the rows,
OP(List), written in terms of the number of list decodings, ξẽA

, needed. The
complexity ξẽA

, in its turn is written in terms of the number of operations required
by a bounded half the minimum distance decoder of the constituent code for the
rows, OP(BMD), and will be bounded by:

OP(List) = mOP(ξẽA
) ≤ m

(

n

ẽA − bdA−1
2 c

)

OP(BMD). (5.12)

The number of operations needed for parity check, OP(check), will, on average, be
the number of operations needed for parity check on one matrix times the average
order of the sent codeword in the list A, L, given in (5.6). This means:

OP(check) = 2mn(m− kB)L(p)

≤ 2mn(m− kB)

[

e
∑

i=0

α2i(A′)P (n, i, p) +

e
∑

i=0

α2i(A′)P (n, i, p)

]m

.

(5.13)

Therefore, the average number of operations needed for decoding,
OP(Algorithm 3.2), will be bounded by:

OP(Alg. 3.2) = OP(check) + OP(List)

≤ m

(

n

ẽA − bdA−1
2 c

)

OP(BMD) + 2mn(m− kB)L(p).

(5.14)

Example 5.3 As in the previous examples, the product code C whose constituent
codes are the [31, 21, 5] BCH code is investigated. The channel is BSC with tran-
sition probability 10−3. The maximum list error allowed is 10−6. Using (5.9) we
find that the minimum decoding radius, ẽA, that is required to give a list error
less than 10−6, is equal to 3. By using (5.10), we find that Memmax is less than
31 × 31 × 32 = 30752 bits. Using (5.11), the average size of the storage memory
needed, Memavg will be 31 × 31 × 4.875 = 4685 bits. I.e., the average size of the
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memory needed is, approximately, 15% of the maximum size of the memory needed
for storage, Memmax. The number of operations needed for list decoding, written
as a function of the number of operations needed for bounded minimum distance
decoding of the [31, 21, 5] BCH code, OP(BMD), will be bounded by:

OP(List) ≤ 31

(

31
3 − b 5−1

2 c

)

OP(BMD) = 961 · OP(BMD).

The average position of the sent codeword in the list A, using (5.6), will be the
second member of the list and therefore the average number of operations needed
for parity check will be equal to or less than or equal to 2×31×31×(31 − 21)×2 =
38440 binary operations.

5.2 Complexity of Algorithm 4.1

The main advantage of the iterative algorithm, Algorithm 4.1, over the basic de-
coding algorithm, Algorithm 3.2, is that in the iterative algorithm, the complexity
of the list decoders for the rows and the columns are set to, predetermined, fixed
values. Thus, the complexity of each stage in the iteration does not exceed some
value that is considered acceptable from the point of view of implementation. The
maximum number of iterations is also fixed to a value such that the delay in de-
coding is as small as possible. There exists, however, minimum requirements on
the performance of the list decoders, which means that the complexities of the list
decoders for the rows and for the columns cannot be less than certain values. We
proved in Theorem 4.4, that in order for the iterative decoder to be able to correct
all errors up to half the minimum distance of the product code, the decoding radii
of the list decoder for the rows and the list decoder for the columns, both should
be greater than half the minimum distance of the row code and half the minimum
distance of the column code, respectively. Furthermore, these list decoders should
be able to correct both errors and erasures due to the fact that the previous stage
may not be able to find any solution for some rows/columns and, thus, returns
erasure symbols for the whole row/column to the next stage. We assume, therefore
that the decoding radius for the list decoder for the rows is set to a fixed value,
ẽA, and the decoding radius for the list decoder for the columns is set to a fixed
value, ẽB , greater than b(dA − 1)/2c and b(dB − 1)/2c respectively. We then try to
estimate the complexity of decoding in terms of the number of operations required
by the list decoder for the rows, OP(ξẽA

), and the number of operations needed
by the list decoder for the columns, OP(ξẽB

). We give special interest to the case
when the list decoders for the rows and for the columns are GMD decoders. The
analysis in this section is similar to the one in the previous section and, therefore,
we will use the same notations and concepts. We assume, as we did before, that
the [n, kA, dA] code A′ and [m, kB , dB ] code B′ are the constituent codes of the
product code C. Let A be the set of all m × n matrices with rows codewords in
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A′. Also let B be the set of all m × n matrices with columns codewords in B′.
And, evidently, the product code C can be written as an intersection of A and B,
as was shown in Chapter 3. Let the channel used for transmission be a BSC with
transition probability p and let the received matrix be y. Let us imagine that two
different decoders of the basic algorithm type, Algorithm 3.2, were used to decode
y. The first decoder decodes y on the code A. The second decoder decodes y on
the code B. Let the lists A and B be the lists associated with the first decoder and
the second decoder respectively, as explained in Chapter 3. Let LA(p) and LB(p)
be the average position of maximum likelihood codeword in A and B respectively
as functions of p. We will use these notations frequently in our discussion. Using
the same arguments in the discussion prior to (5.6), we can bound LA(p) and LB(p)
as follows:

LA(p) ≤
[

eA
∑

i=0

α2i(A′)P (n, i, p) +

n
∑

i=eA+1

α2e(A′)P (n, i, p)

]m

,

LB(p) ≤
[

eB
∑

i=0

α2i(B′)P (m, i, p) +

m
∑

i=eB+1

α2e(B′)P (m, i, p)

]n

.

(5.15)

As we did in the previous section, we investigate both the average and maximum
number of operations required for decoding the received message. We also investi-
gate the average and maximum size of storage memory needed. Recall Figure 4.1
and consider stage l in decoding y using Algorithm 4.1. Let Al and Bl be the
lists associated with functions φ and ψ respectively for stage l. As explained in
Chapter 4, Al and Bl are subsets of the lists A and B, respectively. We start by
noticing that, since for the first stage, the decoder checks the first member of the
list only, then the cardinality of both A1 and B1 will not exceed 1. Similarly for
stage two, the decoder only checks the members of the lists which are the second
nearest codewords to y in A2 and B2, respectively. In general, we can write the
following:

|Al| ≤ l ; |Bl| ≤ l , l = 1, 2, . . . . (5.16)

Let the average number of iterations needed to find the maximum likelihood code-
word be Iavg(p). We conclude from (5.16) that the average number of iterations
need not exceed the average order of the maximum likelihood codeword in lists A

and B. I.e.,

Iavg(p) ≤ min [LA(p), LB(p)] . (5.17)

An important reduction in complexity is obtained if the decoding radii of the
list decoder of the rows and the list decoder of the columns are less than dA and
dB , respectively. We present the following two propositions that show this fact
both for the BSC and the Euclidean channel:
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Proposition 5.2 Let the code U with minimum distance d be used for transmission
on a BSC and let the received vector be y. If y ∈ U , then the list of codewords
returned by the list decoder ξe(y,U) will have only one member, that is y, iff e < d.

The proposition above is self explanatory and its proof is a simple matter of observ-
ing that there cannot exist any codewords in a sphere of radius less than d around
any codeword in the code. The following proposition applies for the Euclidean
channel and is less obvious:

Proposition 5.3 Let the code U with minimum distance d be used for transmission
on a Euclidean channel with noise. Let the received vector after demodulation be y.
If y ∈ U , then the list of codewords returned by the the GMD decoder ξgmd(y,U)
will have only one member, that is y.

Proof: The GMD decoder successively erases the least reliable symbols in y up
to d−1 symbols and decodes the resulting vector afterwards. Since y is a codeword
in U , then, erasing any combination of d− 1 or less symbols and decoding using a
Bounded Minimum Distance decoder will result with the same input vector, y. 2

Despite the simplicity of the propositions above, their impact on lowering the de-
coding complexity is great. To explain this matter, assume that the decoding radii
of the list decoders of the rows and the columns are less than dA and dB , respec-
tively. Let us observe a certain row in the received matrix and, without loss of
generality, let this row be the first row. Imagine a situation where the function φ
in stage l decodes the first row to a certain codeword v in A′. If the function ψ in
the same stage does not affect the first row, i.e., the first row in the matrix entering
stage l+ 1 is still v, then the function φ in stage l+ 1 cannot change the first row
because any other solution will have a distance of at least dA which is greater than
the decoding radius of the list decoder of the rows. The same is true if φ does not
affect the result for some columns from the previous stage, then, the function ψ
cannot alter the solution for these columns. This means that, except for the first
stage, only the rows/columns that were altered in the previous iteration need to
be redecoded. Therefore, the decoder can be designed so that φ returns a binary
vector of length n showing which columns that were affected in the process. The
function ψ will use this vector to decide which columns to redecode. The function ψ
in its turn will return a binary vector of length m that shows which rows that were
altered. The function φ in the next stage will in its turn use the vector returned
by ψ to decide which rows to redecode. This will lower the number of redecoded
rows/columns dramatically. The second effect that Propositions 5.2 and 5.3 will
have on the complexity is as follows. Let the matrix a be undergoing processing
by function φ. If one of the rows of a was a codeword of the row code A′, then, the
GMD decoder for the rows will perform only one BMD decoding operation, e.g.,
Berlekamp-Massey decoding, on this row instead of b(dA + 1)/2c BMD decoding
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operations. Thus, the complexity of decoding is lowered if some of the errors are
corrected in some rows by the previous stage. The exact impact on the complexity
of decoding, however, is very hard to estimate and, therefore, we discuss it further
in Chapter 6 as part of the simulations study.

We will try here to bound the complexity of Algorithm 4.1. We begin by noting
that the first limitation on complexity is the maximum number of iterations allowed
by the decoder. We can therefore say that if the total number of iterations was
limited to Imax, then, the maximum number of decoded rows will be bounded by:

mImax, (5.18)

and the maximum number of decoded columns will be bounded by:

nImax. (5.19)

The average number of decoded rows or columns is much harder to compute. It
is possible, however, to bound these entities for the case when the total number of
errors is less than dAdB/2, (the minimum distance of the product code). The worst
case condition in terms of complexity of decoding is when all the errors are located
in a rectangle, up to permutation of the rows and the columns, of dimensions less
than or equal to dB × dA as shown in Figure 5.1 below. Worst case scenario from
the point of view of complexity when the total number of errors is less than half the
minimum distance of the product code. All the errors are contained in a rectangle
of dimensions less than or equal to dB × dA. This is because an error in decoding
the rows contributes to an error in decoding the columns and vice versa. When
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Figure 5.1: Worst case of an error pattern of weight < dAdB

2

decoding such an error pattern, all the rows and all the columns are decoded in
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the first iteration. However, starting from the second iterations, the total number
of decoded rows and decoded columns at each iteration will not exceed dA and dB

respectively. We can therefore say that, if the number of errors is less than half
the minimum distance of the product code, then, the average number of decoded
rows and columns will be less than:

m+ n+ (Imax − 1)(dA + dB). (5.20)

We can therefore say that the maximum number of operations needed to decode
the rows and the columns for all iterations will be less than:

[mOP(ξẽA
) + nOP(ξẽB

)]Imax. (5.21)

where OP(ξẽA
) and OP(ξẽB

) are, respectively, the complexities of list decoding
a row and a column up to ẽA and ẽB . When the number of errors is less than
b((dAdB − 1)/2)c, then, the total number of operations will be less than:

[m+ (Imax − 1)dB ]OP(ξẽA
) + [n+ (Imax − 1)dA]OP(ξẽB

). (5.22)

If GMD decoders were used as list decoders for the rows and for the columns, then,
a similar bound on the complexity can be written by replacing the complexity of
the list decoders for the rows and for the columns by the complexity of the GMD
decoder for the respective case.

We now turn to the problem of the storage memory needed for decoding. In a
way similar to the discussion leading to the result for the average memory needed for
Algorithm 4.1 given in (5.11), the average memory needed to store the candidating
results for each row will be:

MemA
avg ≤ mn2kA−n

ẽA
∑

i=0

(

n
i

)

. (5.23)

For the rows and:

MemB
avg ≤ mn2kB−m

ẽB
∑

i=0

(

m
i

)

. (5.24)

for the columns. Since decoding the rows and the columns occur consecutively,
then, it is possible to reuse the same storage space to store the result for the rows
and then for the columns. Therefore, the average storage memory needed will be :

Memavg ≤ max (MemA
avg,MemB

avg), (5.25)

where ẽA and ẽB are, respectively, the decoding radii of the list decoder for the rows
and the list decoder for the columns. We now consider the case when GMD decoder
for the row code A′ and the column code B′ are used instead of a list decoder. The
GMD decoder for the rows returns a list of length less than or equal to d(dA + 1)/2e
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of candidating codewords from A′ for each row. Similarly, the GMD decoder for the
columns returns a list of length less than or equal to d(dB + 1)/2e of candidating
codewords from B′ for each column. The average memory needed for storing the
intermediate results will, in this case, be:

Memavg ≤ max (m

⌈

dA + 1

2

⌉

, n

⌈

dB + 1

2

⌉

), (5.26)

Even though the number of operations needed for sorting the lists at each stage
of the iteration is very small in comparison to the number of operations needed for
decoding the rows and the columns at each stage as shown in the previous section,
we discuss below the number of operations needed for sorting. Since the size of the
lists Al and Bl is less than or equal to l as shown in (5.16), then, for stage l, the
number of operations needed for sorting one of the two lists will be of the order
l log l. Therefore, the number of operations needed for sorting the lists will be:

OP(list) ≤ 2

Imax
∑

l=1

l log l, (5.27)

which is obviously much less than the number of operations needed for list decoding
the rows and the columns for all the iterations.

We can now give an example that summarizes the complexity of decoding a
product code using Algorithm 4.1.

Example 5.4 We investigate the product code C whose constituent codes are
the [31, 21, 5] BCH code. For a BSC channel, a BMD decoder is used for both
the rows and the columns. The BMD decoder returns an erasure for each row or
column that is at a distance 3 or more from all the codewords in the constituent
code. Such an arrangement will ensure that all error patterns of Hamming weight
equal to or less than 12 are corrected and that all burst errors occupying less than
3 rows or less than 3 columns. This was shown in Theorem 4.4 and Proposition 4.2.
If the maximum number of iterations was limited to Imax, then, the total number
of operations needed to decode the rows and the columns for all the iterations will
be, according to (5.21), less than:

2 × 31 × OP(BMD)Imax.

If the number of errors was less than 12, then, the total number of operations
will be less than:

2[31 + (Imax − 1)5]OP(BMD).
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5.3 Outline and comparison

The previous sections gave an idea or some bounds on the complexity of decoding
when using Algorithm 3.2 or Algorithm 4.1. In order to appreciate these results,
we make two different comparisons.
The first comparison is between Algorithm 3.2 and the maximum likelihood Viterbi
decoding on the trellis of product codes. This seems to be a reasonable comparison
since Algorithm 3.2 has maximum likelihood performance when allowing the list of
candidating codewords to be sufficiently large as shown in Chapter 3. In order to
compare the complexity of Algorithm 3.2 with the complexity of Viterbi decoding
on the trellis of product codes, we compare the size of the list A with the complex-
ity of the trellis of the product code in question defined as the maximum number
of states in the trellis, see [19]. We motivate our choice as follows: Since Viterbi
decoding requires saving the data for all the potential survivor paths in the trellis.
Each of these paths represents a codeword, or a part of a codeword. Therefore,
the amount of data that must be stored at the widest parts of the trellis will be
comparable in size to a list of m×n matrices with a length equal to the maximum
number of states in the trellis. The other motivation for comparing Algorithm 3.2
with Viterbi decoding on the trellis is of practical nature. The performance of Al-
gorithm 3.2 can be made arbitrarily close to that of maximum likelihood decoding
and in fact will be maximum likelihood when removing the restriction on the de-
coding radius of the list decoder for the rows. It is therefore reasonable to compare
the complexity of the two algorithms.

We begin by stating an upper bound and a lower bound on the maximum
number of states in the minimal trellis for block codes. A minimal trellis of a
code is defined as the trellis representing the code in question and such that the
maximum number of states in this trellis are less than or equal to any other trellis
representing the same code.
One of the well known upper bounds on the maximum number of states in the
trellis of codes is the Wolf bound [47], which states the following:

Theorem 5.4 The maximum number of states in the trellis of an [n, k, d] q:ary
linear code C cannot exceed qmin{k,n−k}.

The proof of this proposition is given in [19]. This bound is especially interesting
because of its simplicity. What makes this bound even more interesting, is that
even though it is an upper bound, it is tight in the case of MDS codes and very
close to the actual value in many interesting codes, e.g., BCH codes. Following
the discussion in Section 2.3 and the form of the Wolf bound given in (2.16). It is
reasonable to say that in the case of binary product codes, the maximum number
of states in the trellis will be of order:

2min{kAkB ,kA(m−kB),kB(n−kA),(n−kA)(m−kB)} (5.28)
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Let s(C) be the trellis complexity of the code C, where we mean by trellis complexity
as the base two logarithm of the maximum number of states in the minimal trellis
of the code. In order to establish that Algorithm 3.2 has a lower complexity than
Viterbi decoding, a lower bound on the complexity of the trellis of product codes
is needed. Since the feasibility of Algorithm 3.2 is only noticed when decoding
very large codes, we choose to compare the complexity of this algorithm with the
asymptotic lower bound for codes on the trellis complexity given by Vardy [19]. In
the case of product codes, this lower bound looks as follows:

ζ(C)
4
=
s(C)

mn
≥ dAdBkAkB

m2n2
= δAδBRARB , (5.29)

where:

δA
4
=

dA

n
, δB

4
=
kA

m
, (5.30)

RA
4
=

kA

n
, RB

4
=
kB

m
,

Even though there are better asymptotic bounds on the complexity of the trellis of
codes, we are content with this simple bound. This bound is sufficient to prove the
point we are trying to state, namely, if we can prove that under some conditions the
complexity of Algorithm 3.2 is less than the lower bound given by (5.29), then, it
means that Algorithm 3.2 has lower complexity than Viterbi decoding under these
specific conditions.

We define the binary entropy function as:

h(p)
4
= −p log2 p− (1 − p) log2 1 − p. (5.31)

We need the following simple lemma:

Lemma 5.5 Let the [n, kA, dA] code A′ and the [m, kB , dB ] code B′ be the con-
stituent codes for the product code C. Let Algorithm 3.2 be used for decoding and
let the decoding radius of the list decoder for the rows be:

eA ≤ dA − 1. (5.32)

Then, the length of the list A of matrices generated by the decoder will be less than
the maximum number of states of the minimal trellis of the code C provided that:

h

(

eA − bdA−1
2 c + 1

n

)

≤ s(C)

mn
, (5.33)

where h is the binary entropy function and s is the trellis complexity of a code.
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Proof: Using (5.2), we can say that the total number of candidates for each row
can not exceed:

1 +

(

n

eA − bdA−1
2 c

)

.

Therefore, the length of the list A will be:

|A| ≤
[

1 +

(

n

eA − bdA−1
2 c

)]m

. (5.34)

Taking the logarithm of the expression above and continuing as follows:

log2 |A|
a
≤ m log2

[

1 +

(

n

eA − bdA−1
2 c

)]

b
≤ m log2

(

n

eA − bdA−1
2 c + 1

)

c
≤ m log2



2
nh

(

e−b
dA−1

2
c+1

n

)





= mnh

[

e− bdA−1
2 c + 1

n

]

, (5.35)

where inequality sign (a) follows directly from (5.34) and inequality sign (b) follows
by noticing that:

eA − bdA − 1

2
c < n

2
,

for all values of dA and eA < dA. Inequality sign (c) in (5.35) follows by applying
Stirling’s formula, [8, p. 309]. 2

The following theorem follows directly:

Theorem 5.6 Let the codes A′ and B′ with parameters [m, kA, dA] and [m, kB , dB ]
respectively, be the constituent codes for the product code C. Let Algorithm 3.2 be
used for decoding C with a list decoder for the rows of decoding radius eA. The
length of the list of words, A, to be checked in the algorithm will be less than the
maximum number of states of the trellis of the product code provided that:

h

(

eA − bdA−1
2 c + 1

n

)

≤ δAδBRARB . (5.36)

Proof: The proof follows directly from (5.29) and Lemma 5.5 2
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Example 5.5 Consider the product code C which has the
[65536, 33551, 4000] extended BCH code as the constituent code for both the rows
and the columns. The channel used is BSC with transition probability equal to
0.025. The decoding radius of the list decoder for the rows is chosen to be:

eA = bdA − 1

2
c + 2 = 2001.

With these parameters, the cardinality of the list A will be less than the maximum
number of states of the trellis of the product code C according to Theorem 5.6.
Using (5.1) we find that the probability of one or more of the rows in the received
matrix has more errors than the decoding radius of the decoder is insignificantly
small at the given transition probability. If the decoding radius of the list decoder
of the rows was increased beyond eA, the cardinality of the list A will exceed the
maximum number of states of the trellis of the product code.
If on the other hand, the parameters of the constituent code were [32, 21, 6], then
the cardinality of the list A will always be greater than the maximum number of
states of the trellis of the product code except for the trivial case when the decoding
radius of the list decoder is the BMD decoder.

The previous example signifies two properties of Algorithm 3.2. The first is
that this algorithm will have a complexity less than Viterbi decoding only when
the length of the code is sufficiently large. When the length of the code is small,
the complexity of Algorithm 3.2 will be greater than that for Viterbi decoding on
the trellis for the same code.

The second important feature is that the decoding radius of the list decoder for
the rows should slightly exceed half the minimum distance of the row code. If the
decoding radius was increased much beyond half the minimum distance of the row
code, then, the length of the list A will exceed the maximum number of states of
the trellis of the product code C. The same insight is achieved by considering (5.6)
where we can see that if the transition probability of the channel is sufficiently
small, then, the position of the sent codeword in the list A will be less than the
maximum number of states of the minimal trellis of the product code.

We now turn to Algorithm 4.1 and compare its complexity with GMD decod-
ing of the product code. The reason behind the choice of comparison with GMD
decoding of product codes is that the error correction capability of Algorithm 4.1
is at least as good as GMD decoding as was shown in Proposition 4.2 and Theo-
rem 4.4. The error correction capability of Algorithm 4.1 increases with increasing
the decoding radii of the list decoders for the rows and for the columns. We con-
centrate here on the case where the list decoders for the rows and columns are
GMD decoders of the constituent codes.

Decoding the product code with a GMD decoder requires a GMD decoder of the
constituent code for the rows and a BMD error-erasure decoder the constituent code
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for the columns. A GMD decoder for the product code starts by GMD decoding
the rows of the received matrix. Afterwards, the GMD decoder erases the least
reliable rows, i.e., the rows furthest from the corresponding rows in the received
matrix, two at a time. Each time more of the rows are erased, the columns are
decoded using a BMD error-erasure decoder. This continues until the total number
of erased rows is equal to dB − 1. Also, if the GMD decoder of the product code
finds a codeword that is at a distance less than half the squared Euclidean minimum
distance of the product code, then, it stops and returns the current codeword as
the correct answer.
The description above of the GMD decoder of the product code shows that when
the distance between the received message and the sent codeword exceeds half
the minimum distance of the product code, then, the total number of operations
required will be approximately equal to:

mOP(ξGMD,A) + nOP(ξGMD,A), (5.37)

where OP(ξGMD,A) is the number of operations required by a GMD decoder for the
rows and OP(ξGMD,B) is the number of operations required by a GMD decoder for
the columns. This is due to the fact that the decoder used for the rows is a GMD
decoder and that the columns are redecoded b(dB − 1)/2c + 1 times by a BMD
decoder which is exactly what is required by a GMD decoder for the columns.

We first look at the case where the number of errors is less than half the mini-
mum distance of the product code. From (5.20) we see that if:

(Imax − 1)(dA + dB) � m+ n,

then, the average number of decoded rows and columns will be almost that for
GMD decoding of the product code.

On the other hand, if the number of errors exceed half the minimum distance of
the product code, then, the total number of operations required by Algorithm 4.1
will be less Imax times the operations required by a GMD decoder for the product
code as is obvious from (5.37) and (5.21). This, however, is a very pessimistic
bound on the number of operations required by Algorithm 4.1 since it possible
to find many examples of error patterns such that the total number of operations
required by Algorithm 4.1 is actually less than that required for GMD decoding of
the product code. An example of the case when Algorithm 4.1 requires a number of
operations less than that required for GMD decoding of the product code is when
only few of the rows and the columns require successive erasing of the least reliable
bits and redecoding. The GMD decoder for the product code requires that whole
rows are erased and all the columns are redecoded accordingly. Algorithm 4.1 on the
other hand requires the erasure of certain bits in some of the columns. Figure 5.2
shows such an error pattern. The error pattern shown in the figure is correctable
by both Algorithm 4.1 and GMD decoding. The constituent codes of the product
code have minimum distance equal to 5 in this example. The black circles are errors
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Figure 5.2: Example of a correctable error pattern

added by the transmission channel. In the first iteration, the decoder for the rows
adds further errors to the rows containing errors in the message. These errors are
marked by the doubly shaded region. When the decoder for the columns operates
in the first iteration, only the shaded columns might need several BMD decodings
while decoded by a GMD decoder and the rest of the ccolumns, the non-shaded
columns, undergo only one BMD decoding stage without erasing any of the bits
in the columns and redecoding. GMD decoding, on the other hand, requires that
the rows containing errors are erased two at a time. After each erasure all the
columns, including the non-shaded columns, are redecoded using a BMD decoder.
This clearly shows that for this error pattern both algorithms correct all the errors
and that the total number of operations required by Algorithm 4.1 is less than that
required by GMD decoding of the product code. The difference, however, is very
small and we prefer to state that the discussion above shows that the total number
of operations required by the two algorithms are comparable to each other.

The memory required for storing the intermediate results in Algorithm 4.1 ,
however, is greater than that required for GMD decoding of product codes. The
GMD decoding requires a storage memory not more than one m × n matrix to
store the intermediate decoding result following each erasure of some of the rows.
Another m × n matrix is needed for storing the survivor of the all the results of
decoding. The average memory needed by Algorithm 4.1 for storing the interme-
diate results, on the other hand, requires storing the different candidates for each
row and for each column in each iteration as shown in (5.26).



Chapter 6

Performance

It was shown in the previous chapter that the complexity of Algorithm 3.2 makes
it uninteresting from the practical point of view. The fixed complexity of Algo-
rithm 4.1 at each iteration, on the other hand, makes it possible for use in practical
situations. We, however, were not able to analytically estimate the full error correc-
tion capability of Algorithm 4.1 and the bounds on performance of Algorithm 4.1
given in Chapter 4 are not enough argument for using the new algorithm instead
of other algorithms or for using other codes than product codes. We, therefore, try
to estimate the performance of this algorithm by simulation and, in certain cases,
comparing it with GMD decoding of the product code. We do this comparison
because it was proven in Chapter 5 that the two algorithms have comparable com-
plexities. In all the cases below, we chose square product codes with a BCH code
as a constituent code for both the rows and the columns. The decision for using
the same code as the constituent code for both the rows and the columns in the
product code is because it is more practical to use the same BMD decoder in order
to decrease the hardware complexity. The decision to use BCH codes as constituent
codes is due to the fact that the parameters of BCH codes are very close to optimal
codes in terms of cardinality and minimum distance. Also, BCH codes are very
well studied and have very efficient decoding algorithms, e.g., Berlekamp-Massey
decoder.

In the end of this chapter, we try to obtain more detailed information about
the complexity of Algorithm 4.1 for some of the cases.
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6.1 Bit error probability

We performed two different simulation strategies. The first is to let Algorithm 4.1
run with as little restriction on its complexity as possible. This is done in order to
see the full error correction capability of the algorithm. The drawback, however, is
that for practical reasons we can only do this kind of simulation on rather simple,
small sized product codes on AWGN channel with hard decoding. The reason is
that when removing the restrictions on the complexity of the list decoders, this
would cause the list of matrices that have to be checked at each iteration to be
very long and, therefore, this method of decoding can only be used for relatively
simple codes of small size.

In the other simulation strategy the complexity of Algorithm 4.1 was kept to a
minimum. The most important reasons for trying to minimize the complexity of
Algorithm 4.1 is to have a fair level of comparison with GMD decoding of product
codes and to show the practical value of the new algorithm. We, however, tried
to keep the rest of system as simple as possible. The modulation method used
is coherent Binary Phase Shift Keying (BPSK) and the channel was chosen to
be Additive White Gaussian Noise (AWGN) channel. Since the product codes
under investigation are linear codes and since the function of the decoder is only
dependent on the error pattern and not the sent codeword, the sent codeword used
was always the all zero codeword. The number of samples taken at each point of
simulation was chosen in a way such that a 95% confidence interval is assumed for
the estimated bit error rate.

The list decoders for the rows and for the columns were chosen to be Chase III
decoders. These decoders have almost the same complexity and performance as
GMD decoders. This choice was made after noticing that using GMD decoders for
the rows and for the columns did not change the overall results for the decoder of
the product code in any way. The number of candidates stored for each row and
each column was limited to two candidates at most in order to keep the overall
complexity of Algorithm 4.1 to a minimum.

6.1.1 Small codes with hard decoding and high complexity

list decoding of the rows and columns

As mentioned above, we first investigate the situation when the product codes
used are simple and small in size but with high complexity in the decoder. The
maximum number of iterations was preset to never exceed 14 iterations. The list
decoder for the rows and for the columns is a variant of Chase II decoder, [21]. In
each iteration, for each row or column, the bits that were flipped in the previous
iteration are considered to be the bits with lowest reliability. All possible error
vectors with a support contained by the positions of the lowest reliability bits
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are added to the corresponding row or column and then the resultant vectors are
decoded. The different results of decoding a row or column are taken to be a list
of candidates for this specific row or column.

Example 6.1 The first example we look at is the [225, 121, 9] product code
whose constituent code for both the rows and the columns is the [15, 11, 3] Hamming
code. The channel is chosen to be AWGN channel and hard decoding of the received
symbols is assumed. The simulation results are shown in Figure 6.1. In order
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Figure 6.1: Average bit error rate of [15, 11, 3] × [15, 11, 3] product code.

to appreciate the results, we also show in the same figure the simulation results
for using another code of similar rate and comparable length, namely, the binary
[255, 139, 31] BCH code. The chosen BCH code has a rate equal to 0.545 which is
almost the same as the rate of the product code of 0.537 and thus, the two codes
have the same bandwidth efficiency making the comparison fair. The BCH code is
used to decode the same sequences as the product code using a Berlekamp-Massey
decoder which decodes up to half the minimum distance of the code, namely, up to
15 errors. We see however that, in spite of the fact that the minimum distance of
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the BCH code, namely 31, is much greater than that of the product code, namely
9, the performance of the product code is better than that of the BCH code for
low signal to noise ratios. When the signal to noise ratio in the channel is greater
than 5 dB, the BCH code begins to outperform the product code.

There are many objections to comparing the performance of the product code to
that of the BCH code above. The main objection is that it is very hard to compare
the complexity of the BCH decoder to the complexity of Algorithm 4.1. It would
seem like comparing apples with oranges. We, therefore, give some comments about
these complexities without giving a direct proof that explicitly states the complexity
for decoding the product code used in this example to be less than that for decoding
the BCH code. The decoder for the [255, 139, 31] BCH code is a Berlekamp-Massey
decoder which incorporates polynomial operations in the Galois Field GF (28), see
Clark and Cain [72, pp. 205-214] and Blahut [73, pp. 176-204]. The iterative
decoder for the [15, 11, 3] × [15, 11, 3] product code incorporates list decoders for
the columns and the rows which are simply the same Hamming decoder. There are
many different realizations of Hamming decoders but for the sake of comparison
we mention one where it uses polynomial operations in the Galois Field GF (24).
Even though polynomial operations in GF (28) are much more computationally
demanding than GF (24), list decoding the rows and the columns of the product
code demands repeating the same decoding operation many times for the same row
or column after deliberately adding a certain error pattern each time, as done in
Chase II decoding. However, when the number of errors in each row or column
is small, the number of flipped bits will also be small which means that the error
patterns added to each row or column before decoding will be small. For example,
in the first iteration when decoding the rows, each row will have at most one
flipped bit. This means that, in average, when decoding the columns, there will
be, at most, one flipped bit in each column. Thus, only one more error pattern is
added to each column before decoding.

Another way to evaluate the performance of the product code is to compare it
with the theoretical channel capacity of the equivalent binary symmetrical channel
given in Equation (2.11). We see that a channel with signal to noise ratio equal to
about 1.84 dB with hard decoding is equivalent to a BSC with transition probability
equal to about 0.1. This channel would have a capacity equal to 0.537. Compared
to the performance of the product code in the example, a signal to noise ratio of
about 5 dB is required in order for the bit error ratio not to exceed 10−4.

When a bounded minimum distance decoder for the [15, 11, 3]× [15, 11, 3] prod-
uct code is used with hard decoding to decode the same sequences instead of the
Algorithm 4.1, the results would be much worse. It is estimated that a signal to
noise ratio equal to 8 dB is required in order to have bit error rate equal to or less
than 10−4 after decoding.
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Example 6.2 We now investigate the performance of a somewhat larger code
than the previous one. The product code chosen has the [31, 26, 3] Hamming code
as the constituent code for both the rows and the columns. The rate of this code
is approximately 0.7 and its length is 961 bits. The results of the simulation are
shown in Figure 6.2. The constituent code of the product code for both the rows
and the columns is the [31,26,3] Hamming code. As a method of comparison, the
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Figure 6.2: Average bit error rate for [31, 26, 3] × [31, 26, 3] product code.

same error sequences used in the simulation for the product code, were decoded
using a [127, 89, 39] Reed Solomon decoder over GF (27). Each symbol in the Reed
Solomon code is mapped to a binary sequence using natural mapping. Therefore,
the resulting code would be a binary [127 × 7, 89 × 7, 39] code. which has almost
the same rate as the product code under investigation and comparable length. It
is quite obvious from the simulation results that the product code performs better
than the Reed Solomon code when the signal to noise ratio is less than about 4 dB.
At signal to noise ratio equal to 4 dB, the bit error rate after decoding the product
code is as low as 5 × 10−5
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As we did in the previous example we use (2.11) to find that the lowest possible
signal to noise ratio required for reliable transmission with rate 0.7 is equal to 2.75
dB if AWGN channel with coherent BPSK and hard decoding is used. This can be
compared to a signal to noise ratio of about 3.7 dB required to achieve a bit error
rate of 10−4 using the [31, 26, 3]× [31, 26, 3] product code in the example in combi-
nation with the proposed iterative decoder. This means that using Algorithm 4.1
in combination with a large code performs very well, close to one dB away from
the theoretical limit on the channel capacity, provided that the complexity of the
list decoders for the rows and columns are not restricted.

The performance of a BMD for the product code is not included in Figure 6.2.
The reason for not doing that is similar to that in the previous example which is
that the performance of a BMD decoder for the product code is much worse than
that for the iterative decoder. To give an example, a signal to noise ratio of at least
7.9 dB is required in order to achieve a bit error rate after decoding of about 10−4.
This can be compared with signal to noise ratio of about 3.7 dB that is required
to achieve the same bit error rate when the iterative decoder is incorporated.

6.1.2 Large codes with soft decoding and low complexity list

decoding of the rows and columns

We now turn to the other simulation strategy where we use large codes while
keeping the complexity of the list decoders of the rows and columns to a minimum.
The constituent codes of the product codes under investigation were chosen to be
BCH codes of different rates. The modulation used on the channel is coherent
BPSK and the channel is AWGN. As mentioned earlier, the complexity of the list
decoders for the rows and the columns were kept to a minimum in order to limit
the total complexity of the iterative decoder to a level comparable to that of GMD
decoding of the same product code. Therefore, the list decoders for the rows and
for the columns were chosen to be Chase III decoders which have almost the same
complexity and performance as that of GMD decoders of the BCH codes. Even
more decrease in the complexity of the iterative algorithm is achieved by making a
further restriction on the algorithm where the number of candidates for each row
or column is always limited to at most two instead of b(dA − 1)/2 + 1c for the rows
and b(dB − 1)/2 + 1c for the columns. This way, the length of the list of matrices
that should be checked at each iteration will be much lower than in the non-limited
case. The total number of iterations is also limited to six iterations at most which
was considered comparable to the total number of iterations needed for the GMD
algorithm where it requires decoding the rows and then, at most, b(dB − 1)/2 + 1c
successive erasures of the least reliable rows and re-decoding the columns.

The maximum number of iterations was set to be six iterations at most. If the
decoder cannot find any valid codeword after completing the iterations, the decoder
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chooses from the list of matrices in the last stage, the matrix that is closest to the
received matrix and uses the information symbols in this matrix as the final result
of the decoder.

Example 6.3 The first code considered is the [16129, 14400, 9] product code
which has the [127, 120, 3] Hamming code as the constituent code for both the rows
and the columns. This code has a rate equal to 0.893 and was chosen because of
the simplicity of decoding Hamming codes without being trivial. Product codes
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Figure 6.3: Bit error rate for [127, 120, 3] × [127, 120, 3] code on AWGN.

that have the Hamming code and their extended versions as their constituent codes
are important in applications, see [74] and [22], since decoding Hamming codes is
very simple compared to decoding other codes, e.g., BCH codes of minimum weight
greater than 3. It should be noted that Hamming codes are BCH codes of minimum
distance equal to 3.

The simulation results for the average bit error rate of the system when using
the new algorithm is illustrated in Figure 6.3. Simulation results when using a
GMD decoder for the same code is also included in the figure for comparison.
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We have also indicated in the figure, using (2.14), the Shannon’s limit on the
lowest possible signal to noise ratio required for error free transmission for a code
of rate 0.893 on band-limited channels. Using the new algorithm, a signal to noise
ratio of about 5.4 dB is required in order to achieve an average bit error rate equal
to 10−5, which means that the performance of the product code with the new
algorithm is about 4 dB away from Shannon’s limit at the bit error rate mentioned
above. It is also observed that the new algorithm outperforms the GMD decoder
by about 1.5 dB.

Example 6.4 We now turn to investigate the performance of another product
code, namely the [16129, 12769, 25] which has the [127, 113, 5] BCH code as the
constituent code for both the rows and the columns. This code has a rate equal to
0.79 and the results for the simulation are shown in Figure 6.4. As in the previous
example, the iterative algorithm has a coding gain of about 1.5 dB as compared to
the case of GMD decoding the same product code. The theoretical, least possible
signal to noise ratio that is required for reliable communication with a 0.79 rate
code, by using (2.14), is equal to 1 dB. This means that the performance of the
iterative decoder is about 3.5 dB away from the theoretical limit for a given bit
error rate equal to 10−5.

The previous two codes were chosen to prove the feasibility of the algorithm
for large codes. In data transmission systems, the size of the packets transmitted
each time is much smaller than 16 kbits. For example, the Internet protocol, see
[75], has a recommended packet size ranging between 512 Bytes and 1500 Bytes.
In the case of Internet protocol over the wireless channel where the resources are
limited, see [76], the restriction is more severe so as not to cause high latencies in
transmission. The rates of the codes used in applications are also less than that of
the two codes above. The length of the error correcting code should be comparable
to the size of the packets in order to avoid high latencies in transmission caused by
the extra time needed for decoding. We therefore chose two more product codes
with size 63 × 63 which has a more implementable size of about 4 kbits.

Example 6.5 Let us consider the [3969, 2025, 49] product code which has the
[63, 45, 7] BCH code as the constituent code for both the rows and the columns. The
rate of this code is equal to 0.51 and the simulation results are shown in Figure 6.5.
Simulation results in the case of GMD decoding of the same code are also included
in the figure for comparison. Even though the size of the product code used is
much less than that in Figures 6.3 and 6.4 above, the iterative decoder is still able
to outperform the GMD decoder. We notice here that a coding gain of about 1
dB, as compared to GMD decoding, is obtained. By using (2.14) we find that the
theoretical, least possible signal to noise ratio required for reliable communication
for a code with rate 0.51 is, a little above 0 dB. This means that the performance
of this product code is about 4 dB away from the theoretical limit at a required
bit error rate equal to 10−5. In comparison with the results in Figure 6.4, this is
a degradation of about 0.5 dB which we believe is caused by decreasing the size of
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Figure 6.4: Bit error rate for [127, 113, 5] × [127, 113, 5] code on AWGN.
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Figure 6.5: Average bit error rate for the [63, 45, 7] × [63, 45, 7] product code.
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the code.

Example 6.6 As a fourth code we consider the [3969, 1521, 81] product code
which has the [63, 39, 9] BCH code as the constituent code for both the rows and
the columns. The code has the same block length as in the previous example,
however, with a lower rate of 0.38. The error correction capability for this code is
also higher than that of the code considered in the previous example.

Simulation results for the average bit error rate when using the iterative or GMD
decoding is illustrated in Figure 6.6. As expected, with decoding algorithms, the
coded system outperforms the uncoded system. We also notice that the iterative
decoder outperforms the GMD decoder by about 1.5 dB at a bit error rate of
10−5. By using (2.14) we find that the theoretical, least possible signal to noise
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Figure 6.6: Average bit error rate for the [63, 39, 9] × [63, 39, 9] product code.

ratio required for reliable communication with rate 0.38 is, about −0.39 dB. This
means that the performance of this product code is about 3.5 dB away from the
theoretical limit at bit error rate equal to 10−5 after decoding.
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We can make some general comments regarding the results of the four codes
treated in the previous examples. The first conclusion is that the new algorithm
always performs better than GMD decoding of the same product code for all rates
and block lengths. The difference in coding gain between the new iterative algo-
rithm and GMD decoding is about 1.5 dB. We should remember that both algo-
rithms incorporate a Berlekamp-Massey decoder which means that the hardware
used for the two algorithms is almost the same. The other conclusion we get by
comparing the performance of the larger codes in Examples 6.3 and 6.4 with that
of the smaller codes in Examples 6.5 and 6.6. We find that the larger codes have
a performance closer to Shannon’s limit by about 0.5 dB compared to that of the
smaller codes. This is expected, of course, since large codes perform better than
small codes in terms of error correction capability. It should be kept in mind,
however, that the only modulation technique we use is BPSK. Binary modulation
techniques are especially disadvantageous for high rate transmission. In high rate
transmission, a multilevel modulation technique, e.g., M-ary Phase Shift Keying
(MPSK) is preferred instead of BPSK.

6.2 Measured complexity

We try here to investigate more about the complexity of Algorithm 4.1 when the
list decoders for the rows and for the columns are taken to be Chase III decoders.
No similar investigation of the complexity of the algorithm is done for the case
when the restriction on the complexity of the list decoders is removed.

We investigate mainly two aspects of complexity. The first aspect of complexity
we investigate is the number of iterations needed to perform the decoding of a
received sequence as a function of the signal to noise ratio of the channel. The
second aspect of complexity we look into is the average number of rows or columns
that have to be re-decoded at each iteration as a function of the iteration number
when decoding a received sequence.

6.2.1 Number of iterations needed for decoding

In Section 5.2, we showed that when the quality of the channel improves, in terms
of error probability, the number of iterations required to decode a received sequence
using Algorithm 4.1 decreases. We try here to investigate some practical examples
to support this claim. Two codes were chosen for investigation. One of the codes
has a high rate while the other has a low rate. This was done in order to see if the
rate of the code has any effect on the behavior of the decoder.
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Example 6.7 As a first example for the complexity investigation we consider
the product code of Example 6.4 which has the [127, 113, 5] BCH code as the
constituent code for both the rows and the columns. At each value of the signal
to noise ratio of the channel used under the simulation, the percentage of the
total number of decoded messages that required a certain number of iterations is
determined and plotted in Figure 6.7. In order to be on the safe side, a message
that is decoded at a certain iteration, i but only enters the following iteration,
i + 1, to be checked to see if it is a valid solution, is considered to have required
i + 1 iterations. This explains why the percentage of messages that required only
one iteration is set to zero in the figure. This statistic can in fact be seen as the
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Figure 6.7: Probability of decoding in i iterations for [127, 113, 5] × [127, 113, 5]
code.

probability that a given coded block is decoded in a given number of iterations.
This probability, denoted Psc(l) is defined as:

Psc(l)
4
= Pr{A coded block is decoded in exactly l iterations}. (6.1)
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In Figure 6.7 we see very clearly that when the signal to noise ratio increases, the
probability that the received message require fewer iterations increases. For ex-
ample, at a signal to noise ratio equal to 4.5 dB the probability that the received
message requires two iterations or less is equal to 0.72. The probability that the
received block require 3 or less iterations at the same signal to noise ratio is equal
to 0.94. However, for the case when the signal to noise ratio is equal to 3.9 dB,
the probability that the received message require 3 or less iterations for decoding
is equal to about 0.40. This means that the the algorithm has very good potential
for use in practical situations since it requires persistent and continuing iterations
only when the channel quality degrades. Thus the decoding delay will, in aver-
age, be rather small for good channels. Another important conclusion is that the
average number of iterations seems to be a very good measure of the quality of
the channel. Even more, we can conclude that if a certain message requires much
more iterations than the average at the measured signal to noise ratio, then, we can
say that the received message is unreliable. These indicators are very important
in implementations that require some sort of channel parameter estimation, since
they give an indication on how good the channel estimation is at the time.

It should be noted that in Figure 6.7, it can be seen that, for some signal to noise
ratios, the percentage of number of messages that require 6 iterations is more than
the percentage of messages that require 5 iterations. This is caused by the fact that
we restricted the number of iterations to, at most, six iterations. Therefore, for
many messages the decoding is stopped after six iterations and the best sequence
at the last iteration is returned as the solution even though it may not be a valid
solution.

The estimate on the probability of decoding, Psc, can be used to estimate the
average number of iterations, denoted l̄, as follows:

l̄
4
=
∑

l

Psc(l) · l (6.2)

Figure 6.8 shows the average number of iterations needed as a function of the signal
to noise ratio of the channel. The standard deviation of the number of iterations
required was also estimated and was found to vary between 0.834 when the signal
to noise ratio is equal to 4.5 dB to about 1.07 when the signal to noise ratio is
equal to 3.9 dB.

Example 6.8 The second code we investigate is the product code which has the
[63, 39, 9] BCH code as the constituent code for both the rows and the columns.
The probability of decoding in a given number of iterations is determined and
plotted in Figure 6.9. In a manner similar to that of the [127, 113, 5]× [127, 113, 5]
code in Figure 6.7, we see that for the [63, 39, 9] × [63, 39, 9] code, when the signal
to noise ratio is high, the probability that a message requires fewer iterations is
also high and vice versa. Comparing the results for the two codes show that the
behavior of the decoder in terms of the number of iterations required is similar
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for the two codes if we disregard the difference in the values of the signal to noise
ratios of the channels for the two cases.

Figure 6.10 shows the average number of iterations needed as a function of
the signal to noise ratio of the channel. The standard deviation of the number of

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
2

2.5

3

3.5

4

4.5
Results for [63,39,9]X[63,39,9] product code

Eb/No

A
ve

ra
ge

 n
um

be
r 

of
 it

er
at

io
ns

Figure 6.10: Average number of iterations for the [63, 39, 9] × [63, 39, 9] product
code.

iterations required was also estimated and was found to vary between 0.646 when
the signal to noise ratio is equal to 3.36 dB to about 1.15 when the signal to noise
ratio is equal to 1.77 dB.

A very important remark should be made about the two previous examples.
The codes studied in the examples are codes that have the same BCH code as the
constituent code for the rows and for the columns. Therefore, it is plausible to
say that if the decoder decodes the columns first and then the rows, the average
number of iterations required will be the same. However, if the product code
under study uses different constituent codes, then, the average number of required
iterations might be different if the decoder decodes the columns before the rows.
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However, we believe the trend of decreasing average number of required iterations
with increasing signal to noise ratio will be the same.

6.2.2 Average number of decoded rows and columns at each

iteration

We now consider another claim concerning the average number of decoded rows
and columns at each iteration. In Section 5.2 it was argued that the number of
rows and columns that require re-decoding at each iteration decreases with the
number of iterations. The reason given was that, if the received message was at all
decode-able, then, the row decoder and column decoder will, in average, decrease
the number of errors existing in each row or column. Therefore, at each iteration
there will be certain rows and columns that do not require re-decoding. We try
here to verify this claim by investigating this subject for the same codes studied in
6.2.1.

We start with the product code which has the [127, 113, 3] BCH code as the
constituent code for both the rows and the columns used in Example 6.7. The
results for this code are shown in Figure 6.11 where it shows the average number
of re-decoded rows and columns for the messages that actually reached this iter-
ation, i.e., the messages that require less iterations than the actual number are
not included in the total number of messages. Instead of labeling the x-axis with
the iteration number as an integer, the numbers show at which stage of decoding
the measurement is made. So, for example, 1 in the x-axis means that this is the
number rows decoded at the first iteration, stage φ in Figure 4.1, and 1.5 in the
x-axis means that this is the number of columns decoded at the first iteration.
Likewise, number two in the x-axis means that this is the number rows decoded
at the second iteration and so on. I.e., the labeling in the x-axis of the graph is in
half-iterations. It is assumed that in the first iteration, all rows and all columns
are decoded, therefore, the graph was not drawn for stages one and two. It can
be seen in Figure 6.11 that the average number of decoded rows and columns at
each iteration decreases greatly with the number of iterations for all signal to noise
ratios. When the signal to noise ratio is high, though, the decrease is even more
drastic than for the case when the signal to noise ratio is small. This means that
the demand for computational power is concentrated in the first iteration. For
example, at a signal to noise ratio of 4.5 dB, the decoder decodes all 127 rows and
127 columns of the received message in the first iteration. In the second iteration
the decoder decodes only about 46 rows and 5 columns. For the following iterations
the number of decoded rows and columns is even less. The same argument is true
when the signal to noise ratio is low. However, the number of decoded rows and
columns for low signal to noise ratios tends to be higher than that for high signal
to noise ratio.
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We arrive at the same conclusions when studying product code whose con-
stituent code for the rows and the columns is the [63, 39, 9] BCH code used in
Example 6.8. The results are shown in Figure 6.12. The number of rows and
columns that are decoded at each iteration drop steeply after the first iteration.
For example, at a signal to noise ratio equal to 3.36 dB, the decoder decodes all
63 rows and 63 columns of the received message in the first iteration. In the sec-
ond iteration the decoder decodes only about 47 rows and 4 columns and so on.
Looking at the results for lower signal to noise ratio, the trend is repeated.
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Figure 6.12: Number of re-decoded rows and columns for the [63, 39, 9]× [63, 39, 9]
code.
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6.3 Comments regarding the complexity of Al-

gorithm 4.1 compared to GMD decoding of

product codes

Let us consider the results for the [63, 39, 9] × [63, 39, 9] shown in Figure 6.12 for
two different values of the signal to noise ratio of the channel. Consider the case
when the signal to noise ratio is equal to 3.36 dB. In order for the GMD decoder
to decode a received message, it starts by GMD decoding the rows of the message
which requires 315 decoding operations by a BMD decoder. This is followed by
5 Berlekamp-Massey decoding operations for each of the columns using a BMD
decoder after erasing some of the rows. The total number of BMD decoding oper-
ations required is, thus, equal to 630 decoding operations of the BMD type.

The iterative decoder, on the other hand, starts with GMD decoding of all the
rows and the columns in the first iteration, which was shown in Section 5.3 that it
requires, at most, the same number of BMD decoding operations as that for GMD
decoding of the product code. For the second iteration, the number of rows and
columns that require decoding is equal to 47 and 4 respectively. For the third and
the following iteration the total number of decoded rows and columns is negligible.
Therefore, the iterative decoder requires, at most:

(47 + 5)5 = 260,

BMD decoding operations more than that required for the GMD decoder of the
same product code.

If we consider a lower signal to noise ration, e.g., 2.16 dB, we find, in Figure 6.12
that the total number of rows and columns that are decoded in the second iteration
and above is equal to:

63 + 37 + 16 + 8 + 5 + 4 = 133,

which means that, at most, a total of 133 × 5 = 665 decoding operations of the
BMD type, are required more than that required by the GMD decoder. This is a
doubling in complexity. It is, however, up to the designer of the communication
system to decide if this, possible, increase in complexity is acceptable.

We should, however, keep in mind that the estimations of the increase in com-
plexity are only upper bounds on the possible increase in complexity that the iter-
ative algorithm requires. This is because we make a pessimistic assumption that
the first iteration always requires as many BMD decoding operations as GMD de-
coding of the product code, which is not necessarily true. There are many cases
where the iterative decoder requires less operations than GMD decoding as shown
in Section 5.3.
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We tried to make another comparison between the complexity of the iterative
algorithm and that of GMD decoding for certain codes in the simulations. The
complexity measure used was the total number of operations required for decoding
a single message. The results were that the number of operations required for
decoding was quite similar for the two decoders and high signal to noise ratio
the iterative decoder required less operations than the GMD decoder. However, it
should be noted that this metric does not reflect the true nature of the complexities
of the two algorithms. This is due to the fact that the total number of operations
depends to a large extent on the effectiveness of the program used in simulations.



Chapter 7

Concluding Remarks

7.1 Conclusions

One of the main contributions of this thesis is that shows that product codes are
very good candidates for use in practical communication systems. That prod-
uct codes have very high error correction capability was already known before we
started our study. However, this thesis shows that this high error correcting po-
tential can be tapped with very modest complexity compared to that of GMD
decoding of product codes.

In communication systems design, and especially in the case of wireless systems,
the complexity of the decoder is the main obstacle in the way for using powerful
codes. This is because in most cases, the designed communication system should
be cheap and does not require extensive power consumption. On the other hand,
using a powerful code in transmission will decrease the probability of resending
data when the message is too noisy. Decreasing the number of retransmissions
is an important factor for decreasing the latency and for decreasing the time of
reserving the available bandwidth for each transmission which is, in its turn, very
important when the bandwidth resources are limited.

Thus, for practical problems, a well chosen product code in combination with Al-
gorithm 4.1 will be a very attractive alternative to other coding solutions. Product
codes will then present the possibility of decreasing the probability of uncorrectable
errors presented by the channel with a complexity comparable to that of existing
alternative solutions. Furthermore, it is up to the designer to choose the list de-
coders incorporated in Algorithm 4.1, which means that for implementations that
require very low complexity, Chase III or GMD decoders of the constituent codes
can be incorporated as shown in Chapters 4 and 6. These decoding algorithms
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use a Berlekamp-Massey stage which is very familiar in communication system de-
sign. For implementations that require higher performance, some variant of Chase
II decoder or the ordered statistics decoder presented by Fossorier and Lin [77]
[78]. When, and if, more efficient decoding algorithms of the constituent codes are
presented, they can be incorporated instead of those mentioned above.

As shown in Chapter 5, we see that the main decrease in complexity in Algo-
rithm 4.1 is gained by using a very low complexity list decoder for the rows and
the columns that is much simpler than a maximum likelihood decoder or a MAP
decoder of the same codes. However, further decrease in complexity is gained due
to the construction of the algorithm and the structure of product codes themselves.
First, the algorithm stops its iterations of the received message as soon as it finds
that the intermediate result is a codeword in the product code. This means that
for good channels, only two iterations are required in average to reach an adequate
solution. This is much simpler than the stop criterions that are suggested for turbo
decoding and other iterative algorithms, [17]. The convergence time will be much
shorter for good channels. The convergence time will also work as warning flag to
the channel estimation. When the convergence time becomes longer than expected,
then, this means a degradation in the quality of the channel.

The other degrease in complexity is gained by the fact that not all the rows
and the columns need to be re-decoded at each iteration. This feature is due to
both the algorithm and the structure of product codes. As shown in Chapter 5,
the decrease in complexity compared to not using this feature is huge. For good
channels, the total number of re-decoded rows and columns is only a slight fraction
of the total number of rows and columns in the received message. This feature has
no equivalent in other previous decoding algorithms.

From the theoretical point of view, the basic decoding algorithm for product
codes proposed in Chapter 3 provide us with many results. The bound on the block
error probability in Inequality (3.9) relates the block error probability to, both the
characteristics of the product code under study and the complexity of the decoder.
To explain that further, we point out that one of parameters used in the bound
is the decoding radius of the list decoder of the rows used in the decoder. The
decoding radius of the list decoder was shown in Chapter 5 to have the greatest
effect on the total complexity of the algorithm. Thus, the different graphs for
different decoding radii of the list decoder shown in Figure 3.7 can be considered
to give an indication of the decoding gain when increasing the complexity of the
decoder. Bound (3.9) also depends on the characteristics of the product code
as mentioned above. However, unlike other bounds, this bound does not require
detailed information about the weight distribution of the product code. Rather,
a small part of the weight distribution of the constituent codes is needed and
some information regarding their weight hierarchy. This is a great simplification in
comparison to acquiring the weight distribution of the product code itself especially
for very large product codes.
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The bounds on complexity given in Chapter 5 have a different purpose than that
for the bound on the block error probability in (3.9). The bounds on complexity
give a more substantial measure on the complexity in terms of total number of
operations required to achieve a certain performance. It also gives an indication on
the size of the storage memory needed for storing the intermediate results. Some
of the bounds given in Chapter 5 are bounds on the maximum value and others are
bounds on the average value. These two types of bounds have different practical
values. Bounds on the maximum value help the system designer to have a picture
of the worst case scenario that may occur in decoding while bounds on the average
value help the designer not to exaggerate in dimensioning the decoder.

Finally, the basic decoding algorithm itself has a very practical value. It can be
used to develop other algorithms that are more interesting from a practical point
of view. The iterative suboptimal decoder Algorithm 4.1 is an example.

7.2 Future research

Many parts of the thesis can be extended or improved in the future. We present
here some of these possible future extensions and improvements. For example,
the bound on the error probability of product codes in (3.9) only applies to hard
decision decoding on Euclidean memoryless channels. The bound would be even
more useful in practical applications if it is improved to include the case of soft
decision decoding. Also, very important extensions of the bound are applying it to
fading channels and modulation methods other than BPSK.

The other track of research is to study and develop efficient list decoders for
the constituent codes since this part is the bottle-neck of the algorithm. Important
candidates are Chase II decoding and Fossorier’s decoding by ordered statistics.
However, it is possible that other algorithms can be found that are more suited to
the decoding algorithms presented in the thesis or to develop more efficient, i.e.,
less complex, decoding algorithms, with the price of slight decrease in performance.

A very important part of the future research would be to study the efficiency
of product codes in combination with the new decoding algorithms in wireless
channels. In order to reduce the effect of fading on wireless channels, interleaving
is frequently used. The codewords in product codes have a matrix shape, therefore,
product codes have an advantage over other codes since interleaving is an inherent
property in their structure.

Finally, an obvious next step in the research is to generalize the algorithm to
apply it on other codes especially generalized concatenated codes and multilevel
codes. This is very important in order to pursue a more efficient exploitation of the
resources in Euclidean channels. It was shown, for example, in [79] that multilevel
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codes approach the channel capacity for bandwidth-limited and power-limited Eu-
clidean channels. Low-complexity near-optimal decoding of these codes is, however,
still an open question. We believe that the iterative decoding algorithm proposed
in this thesis can easily be adapted to multilevel codes and that it will perform in
a manner competitive to that of existing decoding algorithms for multilevel codes.
The idea is to propose specific guidelines of constructing multilevel codes such that
they would be decodable by the iterative, suboptimal Algorithm 4.1 and at the
same time, have a satisfactory performance in fading channels.



Appendix A

Proof of Lemma 3.2

We give below the proofs of Lemma 3.2 needed for the proof of the bound given in
Theorem 3.4 on the probability of block error for product codes.

A.1 The concept of constructing rectangles

Let C be a product code as follows:

C = A′ ⊗ B′ (A.1)

Where A′ and B′ are an [n, kA, dA] and an [m, kB , dB ] binary linear codes respec-
tively. We define A to be the binary code represented by all m× n matrices with
rows as codewords in A′. Similarly, we define B to be the binary code represented
by all m× n matrices with columns as codewords in B′. Let t ∈ C such that each
row ti,· in this codeword is either equal to the all-zero vector or equal to a ∈ A′.
I.e., all non-zero rows are similar. Also, each column t·,j in this codeword is either
equal to the all-zero vector or equal to b ∈ B′. It is clear that the shape of the
non-zero positions of this codeword will be that of a rectangle up to permutation
of the rows and the columns. We call codewords with these properties constructing
rectangles and denote them by:

t = (a, b), a ∈ A′, b ∈ B′.

The following example explains this concept:

Example A.1 Let A′ = B′ be the [7, 4, 3] binary Hamming code and let A, B
and C be defined as above. Figure A.1 below, illustrates two different codewords in
this product code. Black dots illustrate non-zero positions. In image (a) to the left
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of the figure, the (0111100, 0111110) constructing rectangle is shown, while image
(b) to the right of the figure shows a codeword that results from adding the two
rectangles, (0111100, 0111110) and (1110000, 1110000).

(a) (b)

Figure A.1: Figure illustrating Example A.1.

We refer to the codewords a and b above, simply by the sides of the constructing
rectangle t. The Hamming weight of the sides will be referred to as the lengths of
the sides. Let wH denote the Hamming Hamming weight of a word and let d be
the Hamming distance between any two words of similar length. The support of a
word is the set of non-zero locations in the word and we denote this set by Supp.
In the case of a word matrix, the support, of a word is the set of pairs of indices
for the rows and columns of non-zero locations in the matrix. The support of a set
of words is simply the union of the supports of it’s members.

Let GA and GB be the generator matrices for the codes A′ and B′ respectively.
Then, any codeword c ∈ C can be written as:

c = GT
BuGA. (A.2)

Where GT
B is the transposition of the matrix GB and u is a kB × kA matrix.

We are now ready for the first lemma.

Lemma A.1 Let the codes A′ and B′ have the generator matrices GA and GB

respectively. Let C = A′ ⊗ B′. Any codeword c ∈ C, can be described as a sum of
rectangles each of which is a codeword in C.

Proof: Let ω = wH(c). The codeword c can be described as in (A.2) and we
continue as follows:

c = GT
BuGA,
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= GT
B(u1 + u2 + . . .+ uω)GA, wH(ui) = 1,

= GT
Bu1GA +GT

Bu2GA + . . .+GT
BuωGA. (A.3)

It can easily be seen that if each of the matrices ui has only one non-zero entry,
then multiplying them by any two matrices from the left and the right will result
with a rectangle, which completes the proof. 2

We call the set of constructing rectangles used to describe a codeword c as in
(A.2) as a constructing set. From (A.2) we see that we can obtain kAkB different
rectangles by replacing the matrix u by matrices that have only one non-zero
element. This set of rectangles forms a basis for the code C. Since the generator
matrices GA and GB for the codes A′ and B′ are not unique, then the constructing
set of rectangles used in the sum describing a certain codeword is also not unique.
We call the set T a minimal constructing set if the horizontal sides of the rectangles
in T are chosen from the rows of the codeword matrix c with least weight. I.e., the
horizontal sides of the rectangles in set T are chosen from the non-zero rows in the
codeword c one by one starting with the row of least weight and then choosing the
second least weight row and adding it to the set as long as long as it is independent
from the chosen set. The rows in the codeword c are checked one by one and adding
them to the set as long as they are independent from the existing members in the
set. This procedure continues until the horizontal sides of the rectangles in set T
will be a basis for the rows in the codeword c.

It is clear that the cardinality of the set of all constructing rectangles is very
large but in the discussion below we will only be interested in constructing rectan-
gles that have certain dimensions, thus, the cardinality of this subset will be much
lower than the total set.

Lemma A.2 Let C = A′⊗B′ where A′ and B′ are, respectively, an [n, kA, dA] and
an [m, kB , dB ] codes. Let c ∈ C and such that:

c =
∑

t∈T

t, t = (a, b), a ∈ A′, b ∈ B′,

where T is a minimal constructing set of the codeword c. If the codeword c has the
following property:

1

m

m
∑

i=1

∑

(a, b)∈T

|{i} ∩ Supp(b)| ≤ 2, (A.4)

then, the support of the codeword can be divided into |T | disjoint subsets such that
the average of their cardinalities is greater than:

1

|T |
∑

(a,b)∈T

|a||b|
2

.
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Proof: What the lemma says in words is that if the ones in each row are shared, in
average, by at most two rectangles of the constructing rectangles for the codeword,
then in average, at least one half of the supports of the constructing rectangles in
the codeword matrix will be non-zero. Figure A.2 below, shows a codeword that
can be described as a sum of four constructing rectangles and each non-zero row in
the codeword matrix is covered by at most two rectangles. Shown in (a) on the left
of the figure is a codeword that is described by four constructing rectangles. Each
non-zero row in the codeword is covered by at most two constructing rectangles.
In (b) to the right of the figure, another codeword is shown. Some of the rows are
covered by more than two constructing rectangles. However, in average the ones
in each row are covered by at most two rectangles. The doubly shaded regions are
the overlap between the two rectangles.

Therefore, to prove the lemma, it is sufficient to first prove it for the case when
the ones in each row belong to exactly two rectangles each of which has dimensions
exactly equal to dB ×dA and then consider the average case which follows directly.
Since:

wH(a) ≥ dA, ∀(a, b) ∈ T,

then, there will be, in average, dA/2 ones in every non-zero row in c contained in
the support of some constructing rectangle t ∈ T . Since there are at least dB rows
covered by each constructing rectangle, then, the average of ones existing in each
rectangle is greater than dAdB/2.

Assume now that each rectangle ti has horizontal, row, side length equal to
|ai| instead of dA. Since these sides are the minimum weight rows in c, then, each
rectangle will contain at least |ai|dB/2 ones. If the vertical sides, columns, of the
rectangles were |bi| instead of dB then, each rectangle will contain at least |ai||bi|/2

If c fulfills (A.4) instead of the condition that each row is shared by at most two
rectangles, then, the result will be the same because for each row shared by more
than three rectangles, there exists a row that is contained by only one rectangle
and each row shared by four rectangles, there exist two rows contained by only one
rectangle each, and so on.

2

Lemma A.3 Let C = A′⊗B′ where A′ and B′ are, respectively, an [n, kA, dA] and
an [m, kB , dB ] codes. Let c ∈ C. Furthermore, let:

kA ≤ 2n

dA
, (A.5)

then, the support of any codeword in C can be divided into disjoint subsets each of
which is contained in the support of a constructing rectangle of this codeword. The
average of the cardinalities of these subsets is greater than dAdB/2.
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Figure A.2: Figure illustrating the proof of Lemma A.2.

Furthermore, if T is the minimal constructing set of the codeword c, then the
support of c can be divided into disjoint subsets. The average of the cardinalities
of these subsets is greater than:

1

|T |
∑

(a,b)∈T

|a||b|
2

.

Proof: We begin by noticing that for any two constructing rectangles to overlap,
it is required that the supports of the two respective sides should overlap. More
formally, let (a1, b1) and (a2, b2), be two different constructing rectangles for the
code C then:

Supp((a1, b1) ∩ (a2, b2)) 6= {} ⇔ Supp(a1) ∩ Supp(a2) 6= {}
∧Supp(b1) ∩ Supp(b2) 6= {}.

Where ∧ is the AND symbol between two events. Therefore, we shall, in the begin-
ning, try to prove that, under some conditions, there will, in average, be at most
two constructing rectangles covering each non-zero row of the codeword matrix.
Let GA and GB be the generator matrices of the codes A′ and B′ respectively and
supposing that these generator matrices are used to define the constructing rect-
angles for the code C as in (A.3). Assuming that each row of GA and GB contains
exactly dA and dB ones respectively. Due to Property (A.5), it is easy to see that
each column in GA will, in average, have at most two ones. If we assume that
each column contains exactly two ones, then, this means that for any codeword in
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C, every non-zero column will be covered by exactly two constructing rectangles.
Let (a1, b1) and (a2, b2), be two different constructing rectangles and let them
cover a certain column. Without loss of generality, let it be the first column in the
codeword matrix. I.e.,

1 ∈ Supp(b1) ∩ Supp(b2).

If a1 6= a2, then, the ones in the first column will be shared by these two rectangles.
Otherwise, if a1 = a2, then, the first column will be void of ones, which contradicts
the assumption that the first row is not the all-zero vector. The same argument
applies for all the non-zero columns in any codeword and, thus, any codeword in
C will have Property (A.4) which proves the lemma by using Lemma A.2. If the
number of ones in each column of GA is not restricted to two but the average
number of ones in each column is less or equal to two, then, if there were three
rectangles covering the same column there has to exist a column that is covered
by only one rectangle and so forth. If the weights of the rows in GA and GB were
greater than dA and dB respectively, then, even though (A.4) might not be fulfilled
anymore, the result will still be correct except that the constructing rectangles will
have dimensions greater than dB × dA. 2

We now need to present the following definition. For any code D with parameters
[n, k, d], the generalized Hamming weights of the code D, see [56], are defined as:

di(D)
4
= min

E
|Supp(E)|, i = 1, 2, . . . , k, (A.6)

where the minimum is taken over all linear sub-code E ⊆ D that have dimension
i. It is clear that d1(D) = d(D), i.e., the minimum distance of the code. Let A′⊥

be the dual code of the code A′. We define the sequence d⊥1 , d
⊥
2 , . . . , d

⊥
kA

to be
the generalized Hamming weights of the dual code. Let A∗ be a [n∗, k∗A, d

∗
A] code

obtained by shortening some of the coordinates of A′, see MacWilliams and Sloane
[8][page 29]. We define r(A∗) as an integer such that:

d⊥r+1 ≥ n− |Supp(A∗)|, d⊥r < n− |Supp(A∗)|, (A.7)

The lemma below follows directly from the previous discussion:

Lemma A.4 Let A′ be a [n, kA, dA] linear code and let A∗ be the [n∗, k∗A, d
∗
A] code

obtained by shortening some of the coordinates in the code A. Let d⊥1 , d
⊥
2 , . . . , d

⊥
kA

be, as defined above, the generalized Hamming weights of the dual code. Then
d∗A ≥ dA and:

n− n∗ ≤ kA − k∗A − r(A∗), (A.8)

Proof: Let HA be the parity check matrix of the code A′. Shortening the
I coordinates in A′ is equivalent to deleting the columns in HA corresponding to
those coordinates. Let us denote the new parity check matrix by H∗

A. If the number
of deleted columns, |I| is less than d⊥1 i.e., the minimum distance of the dual code,



A.1. The concept of constructing rectangles. 119

then, H∗
A will have rank n−kA. However, if the number of deleted columns exceed

d⊥1 , then it is possible that one of the rows in H∗
A will be zero which means that

the rank of H∗
A will be n− kA − 1. This means that the shortened code will have

parameters [n − |I|, kA − |I| + 1, d∗A], where d∗A ≥ dA. In a similar manner, if
the number of deleted columns is greater than d⊥r−1 but less than d⊥r , then the
dimension of the shortened code can be:

kA − |I| ≤ k∗A ≤ kA − |I| + r(A∗).

The lemma is proved by noticing that |I| = n− n∗ and taking the right hand side
of the inequality above. 2

Consider a codeword c ∈ A∗ ⊗ B′ such that the number of independent rows in c

is equal to k∗A. It is clear that:

|Supp(A∗)| ≤ wH(c)

dB
. (A.9)

We are now ready to present the following theorem which, roughly explained, states
that, if the Hamming weight of a codeword is less than a certain value, then, we
can find many rectangles in the codeword with limited length sides such that the
average of their Hamming weights is greater than dAdB/2. Those rectangles cover
all the non-zero locations in the codeword.

Theorem A.5 Let C = A′ ⊗ B′ where A′ and B′ are, respectively, an [n, kA, dA]
and an [m, kB , dB ] codes. Let c ∈ C such that:

c =
∑

t∈T

t, t = (a, b), a ∈ A′, b ∈ B′,

where T is a minimal constructing set of the codeword c. Let A∗ be the code
obtained by shortening A′ in the coordinates where c has all-zero columns. If

wH(c) ≤ ωA
4
=

dAdB

dA − 2
(n− kA − r′), (A.10)

where r′ is an integer such that:

d⊥r′+1 ≥ n− ωA

dB
, d⊥r′ < n− ωA

dB
, (A.11)

then, the support of the codeword c can be divided into disjoint subsets each of
which is contained in the support of a constructing rectangle of this codeword and
such that the average of the cardinalities of these subsets is greater than:

1

|T |
∑

(a,b)∈T

|a||b|
2

.
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Furthermore, if:

wH(ci,.) ≤ 2e < 2dA, ∀i ∈ {1, . . . ,m} (A.12)

where e is a real number, then, each rectangle ti of these rectangles will have di-
mensions less than |bi| × 2e.

Before we present the proof, we should point out that the value of ωA given in
(A.10) is found by iteratively increasing the value of r′ beginning from 0. We
check to see if Inequality (A.11) is satisfied, then we have found ωA, otherwise, we
increase r′ by one and try again.

Proof: We start first by permuting the rows and columns in the codeword c

such that the non-zero rows and columns are gathered in one place as shown in
Figure A.1 below. All non-zero rows and columns are gathered in one region. The
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Figure A.3: Figure used in the proof of Theorem A.5.

non-zero region in the codeword matrix can be regarded as a shortened code, C∗ =
A∗⊗B∗, where A∗ is obtained from A′ by shortening all {n∗+1, . . . , n} coordinates
and B∗ is obtained from B′ by shortening all {m∗ + 1, . . . ,m} coordinates. Let k∗A
and k∗B be the number of independent rows and columns respectively. Also, let the
integer r(A∗) be as defined in (A.7). We first consider the case were the Hamming
weight of the non-zero columns in c is exactly equal to dB . The length of the
shortened code is:

n∗ =
wH(c)

dB
.
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This means that the value of d⊥r will, therefore, be exactly equal to d⊥r′ . which
leads to:

r(A∗) = r′. (A.13)

Let us choose the k∗A least weight independent rows as a basis for the shortened
code A∗ and use these rows as rows in the generator matrix G∗

A for the code A∗.
In a similar manner, Let us choose the k∗B least weight independent columns as a
basis for the shortened code B∗ and use these columns as rows in the generator
matrix G∗

B for the code B∗. Therefore, if we use these two generator matrices to
generate the constructing rectangles for the code C∗, each constructing rectangle
will have horizontal, row, side length less than 2e. Due to Property (A.10), we
have:

n∗ ≤ wH(c)

dB
≤ dAdB

dA − 2

n− kA − r′

dB

⇒ n∗ − 2

dA
n∗ ≤ n− kA − r′

⇒ kA − 2

dA
n∗ ≤ n− n∗ − r′ ≤ kA − k∗A + r(A∗) − r′ (A.14)

⇒ k∗A ≤ 2n∗

dA
,

where the last inequality is due to (A.13). This means, due to Lemma A.3, that
the support of the codeword c can be divided into a finite number of subsets each
of which is contained in a rectangle with row side length less than 2e and such that
the average of their cardinalities is greater than:

1

|T |
∑

(a,b)∈T

|a||b|
2

. (A.15)

For any other codeword c′ that has the same Hamming weight as c except that the
weight of the columns in c′ is greater than dB , then, Lemma A.3 is not satisfied.
However, the number of constructing rectangles of c′ will be, at most, the same as
for the codeword c. Therefore, the average number of ones in each constructing
rectangle will still be greater than that given in (A.15). 2

A.2 The suboptimal decoder

We now consider a suboptimal decoder with respect to a maximum likelihood
decoder and try to estimate its performance.
Let the code used in the transmitter be the product code:

C 4
= A′ ⊗ B′,
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and let the two codes A and B be defined as above. Let y be the received matrix
and let ĉ be the maximum likelihood codeword. Let ξe(·, ·) be a list decoder defined
as follows:

ξe(A,y)
4
= {a ∈ A|dH(y,a) ≤ e}

Maximum likelihood decoding can be performed by list decoding the received ma-
trix y over the code A up to ρ(C), the covering radius of C. We then sort the
set in a list according to their distance from y and checking each member of the
list, beginning from the top, to see if it is a member of the code B. If it was, this
codeword will be returned as the maximum likelihood solution. List decoding of
the code A can be done by list decoding the rows of the matrix y over the code
A′ and taking the direct sum of all the sets. Let us call the maximum likelihood
decoding algorithm by Algorithm 1.
Now, let us restrict the decoder in such a way that the list decoder for the rows
can only decode up to e errors and let the list of such codewords be called A∗.This
way, any error pattern that has dA or more errors in one or more rows cannot be
corrected as shown below:

A∗ =

a1

a2

...

ĉ
...

a(last)

d(ai,y) ≤ d(aj ,y), ∀i < j.

Let us call this decoding algorithm Algorithm 2.

Lemma A.6 (Lemma 3.2) Let the product code C 4
= A ∩ B and the suboptimal

decoder Algorithm 2 above be used for data transmission. Let the decoding radius
for the list decoder of the rows be e, where e is less than dA and let the received
matrix be y. If all the following:

1. The Hamming weight of the error in each row in y is less than e.

2. The Hamming weight of the total error is less than ωA/2, where:

ωA
4
=

dAdB

dA − 2
(n− kA − r′), (A.16)

where r′ is an integer satisfying:

d⊥r′+1 ≥ n− ωA

dB
, d⊥r′ < n− ωA

dB
. (A.17)
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3. The support of every constructing rectangle in y with dimensions f ×g where
g ≤ 2e contains less than fg/4 errors.

then, the decoding will be error-free.

Proof: Let the sent codeword be the all-zero codeword and assume that every
constructing rectangle, (a, b) in y contains less than |a||b|/4 errors. Assume that
their exists in A∗, the list obtained from the Algorithm 2, a codeword c such that:

d(c,y) ≤ d(0,y),

then, we can replace the received matrix y by a matrix y′ that only has 1’s in the
places where both y and c have 1’s and zeroes elsewhere. This matrix will be closer
to both c and 0 than y is. Therefore, if this message was decoded instead of y, the
list of codewords that result from decoding y′ will have both c and 0 as members
with c coming before 0 in the list A∗. Let T be the minimal constructing set for
generating c by using a subset of the rows as a generator matrix for the row code
and a subset of the columns as a generator matrix for the column code.

Let us first prove the lemma for the case that the dimensions of all the con-
structing rectangles for the codeword c are exactly equal to dB × dA.

Due to the conditions imposed by the theorem, the Hamming weight of each
row and each column in c will be less or equal to 2e. Theorem A.5 implies that the
support of c can be divided into finitely many subsets located inside rectangles in
c with horizontal side length not exceeding 2e and the average of the cardinalities
of these subsets is greater than dAdB/2. Let us refer to these subsets by 2i, i ∈
{1, 2, . . . , |T |}. The members of a subset 2i are contained in the support of the
corresponding constructing rectangle ti ∈ T . Let:

2
′
i = Supp(y′) ∩ 2i.

Also, let:

I = Supp(c) =

|T |
⋃

i=1

2i,

and:

I ′ = Supp(y′) =

|T |
⋃

i=1

2
′
i.

Since y is closer to y′ than 0 is, then:

|I ′| ≥ 1

2
|I| ≥ 1

2
|T |dAdB

2
,

|T |
∑

i=1

|2′
i| ≥ |T |dAdB

4
.
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From the last inequality we see that the average of the weights of those rectangles
in y′ that occupy the same supports of the constructing rectangles of the codeword
c, is greater or equal to dAdB/4, which means that the weight of at least one of
those rectangles is greater than dAdB/4.

We now turn to the case where the constructing rectangles of the codeword c

have dimensions greater than dB ×dA. In this case, and in a similar manner to the
above, the average number of errors contained in the supports of all constructing
rectangles should be greater than:

1

|T |
∑

(a,b)∈T

|a||b|
4

.

Therefore, there has to be at least one constructing rectangle that contains errors
in more than one fourth of its support. This completes the proof. 2

It should be noted that even though the method for obtaining ωA as given in
(A.10) is rather tedious and requires the knowledge of the weight hierarchy of the
row code, it is possible to bound the value of ωA. We present here two methods.
The first method is done by bounding the generalized Hamming weights of the
dual code A⊥ of the code A′. This is done by using the very well known Griesmer
Bound, [8, p. 547]:

d⊥r′ ≥ d⊥1 + dd
⊥
1

21
e + dd

⊥
1

22
e + . . .+ d d⊥1

2r′−1
e,

where, d⊥1 is the minimum distance of the dual code as shown in (A.6) and the
discussion that follows.

Using this bound on the generalized Hamming weights of the dual code-to obtain
ωA, instead of the actual values, it is possible to obtain a value, ω′

A that is a lower
bound on ωA.

It is also possible to bound ωA in a different manner using Lemma A.3 and
specifically (A.5). The way to do that is by noticing that a codeword c ∈ C that
has a minimal constructing set T and occupies n∗ non-zero columns, has to be an
element in some linear code with parameters [n∗, k∗A, d

∗
A], where:

k∗A = |T |
d∗A ≥ dA.

However, the value of k∗A cannot exceed:

k∗A ≤ κ
4
= log2 (Best cardinality upper bound(n∗, dA)), (A.18)

where we mean by the above that we take the best known bound on the cardinality
of a binary code with length n∗ and minimum distance dA. Thus, ωA can be
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bounded by looking for the largest n∗ such that κ ≤ 2n∗/dA and thus ωA can be
bounded as follows:

ωA ≥ ω′′
A

4
= n∗dB . (A.19)
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