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Abstract

The advection equation is studied in a completely general two domain setting
with different wave-speeds and a time-independent jump-condition at the in-
terface separating the domains. Well-posedness and conservation criteria
are derived for the initial-boundary-value problem. The equations are semi-
discretized using a finite difference method on summation-by-parts (SBP)
form. The stability and conservation properties of the approximation are
studied when the boundary and interface conditions are weakly imposed by
the simultaneous approximation term (SAT) procedure. Numerical simula-
tions corroborate the theoretical findings.

1. Introduction

In this paper we study fundamental properties such as well-posedness,
stability and conservation for an advection equation, which changes wave-
speed at an interface separating two spatial domains. The solution satisfies
a time-independent jump-condition, which makes it discontinuous. Stability
and conservation at interfaces have also been studied in [5],[6],[7] for the case
of identical velocities in the two domains. We will extend that analysis by
studying the problem in a completely general setting, where we vary the pa-
rameters related to the wave-speed and the jump condition in a controlled
manner. Applications where this is of interest include acoustic electromag-
netism, seismology and fluid dynamics, [23],[24],[25],[26],[27].

As our numerical approximation we will use high-order finite difference
methods based on the SBP-SAT form [3],[4],[8],[21].

September 25, 2014



The rest of the paper proceeds as follows. In section 2 we study well-
posedness and conservation properties of the continuous problem. Section
3 deals with the semi-discrete case. In section 4 we discuss the relation
between the stability and conservation conditions of the schemes. A spectral
analysis is performed in section 5, numerical calculations and verifications
are presented in section 6. Finally, in section 7, we summarize and draw
conclusions.

2. The discontinuous interface problem

Consider the Cauchy problem for the advection equation with two differ-
ent real positive constant advection velocities

ut + aux = 0, x ≤ 0, t ≥ 0,
ut + bux = 0, x > 0, t ≥ 0,
u(x, 0) = f(x), x ∈ R, t = 0.

(1)

Without loss of generality we assume that both a, b are positive (opposite
signs for the velocities make the domains uncoupled). Continuous solutions
of (1) at the interface point x = 0, require

lim
x→0+

u(x, t) = u+(0, t) = u−(0, t) = lim
x→0−

u(x, t), t ≥ 0.

However this is a specific choice among many possible coupling conditions.
We will consider the more general case

u+(0, t) = cu−(0, t), t ≥ 0

where c is a real constant which makes the solution discontinuous at the
interface when it is different from one.

2.1. Well-posedness

We divide problem (1) into the following two coupled problems

ut + aux = 0, x ≤ 0, t ≥ 0,
u(x, 0) = fl(x), x ≤ 0,

(2)

vt + bvx = 0, x ≥ 0, t ≥ 0,
v(x, 0) = fr(x), x ≥ 0,
v(0, t) = cu(0, t), t ≥ 0.

(3)

Our first result is
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Proposition 1. The coupled problem (2)-(3) are well-posed for any real con-
stant c.

Proof. The problem (2)-(3) is well-posed if a solution exists, is unique and
has a bounded temporal growth, see [1],[19],[20] for more details about well-
posedness. We apply the energy method by multiplying both sides of equa-
tions (2) and (3) with u and v, respectively. By considering only the boundary
terms at the interface, integration by parts leads to

d

dt

(
‖u‖2 + αc‖v‖2

)
= u(0, t)2(−a+ αcbc), (4)

where αc is a positive free weight and ‖·‖ indicate the standard L2−norm.
In order to get an energy estimate we require that

−a+ αcbc ≤ 0. (5)

For c ≤ 0 any positive weight αc verifies (5). For c > 0, we find that
αc ≤ a/bc, satisfies (5). Time-integration of (4) with condition (5) leads to

‖u‖2 + αc‖v‖2 ≤ ‖fl‖2 + αc‖fr‖2. (6)

Uniqueness of the solution can be proved by using the same technique.
Suppose that two solutions of (2)-(3) exist with the same boundary and
initial data, namely (u(1), v(1)) and (u(2), v(2)). By linearity of the problem,
the function (ū, v̄) = (u(1) − u(2), v(1) − v(2)) is also a solution of (2)-(3)
with homogeneous boundary, interface and initial conditions. By using the
energy-estimate (6) with zero data we find (ū, v̄) ≡ (0, 0), i.e. the solution of
(2)-(3) is unique.

Existence can be proved by using the Laplace transform technique for the
initial boundary value problem, see [11],[12],[13] for details.

2.2. Conservation

Consider the coupled problem (2)-(3) with the solution

w(x, t) =

{
u(x, t), x ≤ 0, t ≥ 0
v(x, t), x ≥ 0, t ≥ 0

(7)

of the slightly reformulated equation

wt + ūwx = 0 t > 0 (8)
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where

ū =

{
a x ≤ 0,
b x > 0

.

We multiply (8) by an arbitrary test function φ(x, t) ∈ C∞ with compact
support. By integration with respect to space and time and using the in-
terface condition, we get the following weak form of the original differential
equation:∫ ∞

−∞
[φ w]t0 dx−

∫ ∞
−∞

∫ t

0

[φt + φx ū]w dxdt+

∫ t

0

φu [a− bc]x=0 dt = 0.

Thus, all the terms at the interface vanish, resulting in a conservative problem
if c = a/b. We summarize the result in the following Proposition.

Proposition 2. The interface problem (2)-(3) is conservative if

c =
a

b
. (9)

Corollary 1. The conservation condition (9) leads to well-posedness of (2)-
(3) .

Proof. By using αc = 1 and inserting (9) into (4) we get

d

dt

(
‖u‖2 + ‖v‖2

)
≤ 0.

Similar considerations about uniqueness and existence as in Proposition 1
lead to well-posedness.

Remark 1. Note that the converse of Corollary 1 is not true: well-posedness
does not guarantee conservation.

3. The semi-discrete approximation

The spatial derivative is discretized by using the technique based on
summation-by-parts (SBP) finite difference operators introduced in [8],[9].
In this paper we use the standard SBP operator, even thought more general
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formulations exist, see for instance [28] and references therein. To be con-
sistent with the continuous case in the following analysis we will ignore the
outer boundary terms. The first derivative in space is approximated using

ux ≈ Du = P−1Qu,

where u = (..., ui, ...) is the discrete grid function approximating the solution.
P is a symmetric positive definite matrix, Q is almost skew-symmetric and
satisfies the SBP property Q + QT = diag[−1, 0, ..., 0, 1]. From now on we
indicate the difference operator with P−1

l,r Ql,r, which are related to the left
and right spatial intervals, respectively. We also introduce the grid vectors
xl = [..., xi, ..., xN = 0] and xr = [y0 = 0, ..., yi, ...], that coincide at the
interface point, xN = y0 = 0.

With this notation we can write the approximation of the systems (2)-(3)
together with the SAT procedure [4],[5], for boundary and interface condi-
tions as

ut + aP−1
l Qlu = P−1

l σL(cuN − v0)eN
vt + bP−1

r Qrv = P−1
r σR(v0 − cuN)e0,

(10)

where, with a small abuse of notation, the vectors eN = (0, ..., 0, 1) and
e0 = (1, 0..., 0) have the length of the left and right mesh, respectively. Note
that v0 ≈ cu(0, t).

3.1. Stability of the semi-discrete approximation

Similarly to the continuous case, we define two discrete L2 norms as
follows

‖w‖Pl
= wTPlw ‖w‖Pr = wTPrw. (11)

We multiply both sides of (10) with uTPl, v
TPr, respectively, and add the

corresponding transposes. By using the SBP properties of the discrete oper-
ators, we obtain

d

dt

[
‖u‖2

Pl
+ αd‖v‖2

Pr

]
= IT (12)

where αd is a positive weight (not necessarily the same as in the continuous
case) and

IT = u2
N(−a+ 2cσL) + v2

0αd(b+ 2σR)− 2σLunv0 − 2αdσRcu0vN .

Next, we rewrite IT as a quadratic form given by

IT =

(
uN
v0

)T
H

(
uN
v0

)
, H =

[
(−a+ 2cσL) −(σL + αdcσR)
−(σL + αdcσR) αd(b+ 2σR)

]
. (13)
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We have IT ≤ 0 if H is a negative semi-definite matrix. Hence, we need a
condition on σL and σR to ensure that. The characteristic equation related
to (13) is

det(H − λI) = λ2 − λ(h11 + h22) + (h11h22 − h2
12) = 0,

where hi,j i, j = 1, 2 are the elements of H. By the properties of solutions to
second order equations, we know that

h11 + h22 = λ1 + λ2 (h11h22 − h2
12) = λ1λ2

Then λ1,2 ≤ 0 if h11 + h22 ≤ 0 and (h11h22 − h2
12) ≥ 0. We can summarize

the result as

Proposition 3. The semi-discrete scheme (10) for the coupled advection
equations (2)-(3) has a stable interface treatment when

(−a+ 2cσL) + αd(b+ 2σR) ≤ 0,

(−a+ 2cσL)αd(b+ 2σR)− (σL + αdcσR)2 ≥ 0.
(14)

3.2. Conservation properties of the semi-discrete approximation

We define the vector function

φ = (φl, φr) = (..., φl(xi), ..., φl(xN), φr(y0), ..., φr(yi), ...), (15)

with compact support and such that φl(xN) = φr(y0) = φ(xN). Multiplying
the equations in (10) by the discrete vectors φTl Pl and φTr Pr, respectively, we
obtain

φTl Pl ut + aφTl Qlu = φ(xN)σL(cuN − v0)
φTr Prvt + bφTr Qrv = φ(xN)σR(v0 − cuN).

(16)

From the properties of Ql,r it follows that for any vectors wl = (w0, ..., wN),
wr = (w0, ..., wM) and φ with compact support we have

φTl (Ql +QT
l )wl = φ(xN)(wN)l

φTr (Qr +QT
r )wr = −φ(xN)(w0)r.

and hence (16) can be rewritten as

φTl Pl ut − auTQlφl = −aφ(xN)uN + φ(xN)σL(cuN − v0)
φTr Prvt − bvTQrφr = +bφ(xN)v0 + φ(xN)σR(v0 − cuN).

(17)
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We integrate (17) with respect to time and add the equations to obtain

φTl Pl u
∣∣t
0

+ φTr Prv
∣∣t
0

=∫ t
0

[
uTPlφl,t + vTPrφr,t + auTPl

(
P−1
l Qlφl

)
+ bvTPr (P−1

r Qrφr)
]
dt+∫ t

0
φ(xN) [uN(−a+ cσL − cσR) + v0(b+ σR − σL)] dt.

We have a conservative scheme if the interface terms at xN vanish, which
require

−a+ cσL − cσR = 0, b+ σR − σL = 0. (18)

We have proved

Proposition 4. The semi-discretization (10) with the continuous conserva-
tion condition (9) is a conservative approximation if

σR = σL − b. (19)

Remark 2. Semi-discrete conservation for our problem requires a conser-
vative continuous problem, since otherwise the system (18) has no solution.
This is natural since any other result would have meant that an order one
error had been committed.

4. The relation between stability and conservation

In section 2 we have shown well-posedness and derived the conservation
condition for the interface problem (2)-(3) in the continuous case. In section
3 we derived stability and conservation conditions for the semi-discrete ap-
proximation of the same problem. All conditions are summarized below:
The continuous case:

• well-posedness ∀c ∈ R (A1),

• conservation c = a/b (A2),

The semi-discrete case:
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• stability

(−a+ 2cσL) + αd(b+ 2σR) ≤ 0 (B1.a),

(−a+ 2cσL)αd(b+ 2σR)− (σL + αdcσR)2 ≥ 0 (B1.b),

• conservation σR − σL + b = 0 (B2).

Our problem is well-posed since (A1) always holds. We also demand stability
by requiring that (B1.a,b) always holds.

4.1. The non-conservative interface problem

We start by considering the most general well-posed interface problem
and investigate stability without conservation. To have (B1.a) valid at the
same time as (B1.b), (−a+ 2cσL) ≤ 0 and (b+ 2σR) ≤ 0 are required. This
leads to

σL ≤
a

2c
(a) and σR ≤

−b
2

(b). (20)

Remark 3. (B1.a) is also satisfied for |(−a+ 2cσL)| ≤ − |αd(b+ 2σR)| but
then (B1.b) cannot hold.

By adopting the variable θ = 1/(αdc), (B1.b) can be rewritten as the
following second order inequality

−θ2σ2
L + 2θ(b+ σR)σL +

[
−θab

c
− 2θ

a

c
σR − σ2

R

]
≥ 0. (21)

The inequality (21) can be associated to a second order equation for σL which
is well-defined when the discriminant (b + 2σR) (b− θa/c) is non-negative.
According to (20), this is true when (b− θa/c) ≤ 0. Since the weight αd is a
positive free parameter we can always make the choice αd ≤ a/bc2 such that
θ ≥ bc/a holds. Then, the inequality (21) is valid for

b+ σR −
√

(b+ 2σR)(b− θ
(
a
c

)
)

θ
≤ σL ≤

b+ σR +
√

(b+ 2σR)
(
b− θ

(
a
c

))
θ

.

(22)
Next, we must compare (20.a) and (22) by letting σR = −b/2 − k/2 with
k ≥ 0, we find

a

2c
−
b+ σR +

√
(b+ 2σR)(b− θ(a

c
))

θ
=

(
θ
a

c
− b
)

+ k − 2

√
k
(
θ
a

c
− b
)

2θ
≥ 0,
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where we used that x+ y ≥ 2
√
xy for any x, y ≥ 0.

We can conclude that conditions (20.b) and (22) are the relevant condi-
tions and summarize the result in

Proposition 5. The semi-discrete approximation (10) is stable for all pa-
rameters a, b, c when the penalty coefficients σL, σR satisfy (20.b) and (22).

4.2. The conservative continuous and non-conservative semi-discrete prob-
lem

Consider now the stability analysis for a conservative continuous interface
problem by assuming that also condition (A2) is valid. Then, by letting
c→ a/b, (20.b) remains unchanged while (22) becomes

b+ σR −
√
b(b+ 2σR)(1− θ)
θ

≤ σL ≤
b+ σR +

√
b(b+ 2σR)(1− θ)
θ

.

(23)
In (23) we have used θ = b/(aαd). As in section 4.1, we can always choose
αd ≤ b/a such that θ ≥ 1 holds. In particular if αd = b/a then θ = 1 and
(23) becomes identical to (B2), i.e. the discrete conservation condition.

We have proved.

Proposition 6. The continuous conservation condition (A2) leads to a stable
semi-discrete approximation if the penalty parameters σL, σR satisfy (20.b)
and (23).

Remark 4. Note that conservation and stability are two independent prop-
erties of the approximation (10). We have a stable and non-conservative
semi-discretization if the assumptions of Proposition 6 are satisfied.

Remark 5. Note also that for one norm, the stability requirements in Propo-
sition 6 also lead to conservation. That norm is given by αd = b/a.

4.3. The conservative continuous and semi-discrete problem

Consider the fully conservative case by assuming that (A2) and (B2) are
both valid. Then (B1.a) leads to

σL ≤
b

2
. (24)
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By substituting (A2),(B2) and (24) into (B1.b) and following the same tech-
niques as in the previous section, we obtain

b

1−
√
θ
≤ σL ≤

b

1 +
√
θ
, (25)

where θ = b/aαd. We can again choose αd ≤ b/a such that θ ≥ 1 holds. Note
that as θ → 1+, (25) converges from below to (24). Again (25) is more strict
than (24). We have proved

Proposition 7. The conditions (A2), (B2) and (25) leads to a stable and
conservative scheme.

Remark 6. The choice θ = 1 makes (25) identical to (24).

4.4. The special case with continuous velocities

The result for a continuous advection velocity follows directly by going
to the limit b→ a in (20.b) and (22). Thus, we get

σR ≤
−a
2
. (26)

and

a+ σR −
√
a(a+ 2σR)(1− θ

c
)

θ
≤ σL ≤

a+ σR +
√
a(a+ 2σR)(1− θ

c
)

θ
,

(27)
respectively, with θ = 1/(αdc) and αd ≤ 1/c2. Furthermore, when c = 1 then
αd = θ = 1 and (27) converges to σL = σR + a, which is the conservation
condition (B2) for a constant advection velocity derived in [4],[5],[6].

5. Spectrum analysis for stability at the interface

In this section we study the effect of the interface treatment on the con-
tinuous and semi-discrete spectrum.
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5.1. Continuous and semi-discrete periodic boundary conditions.

Consider the discontinuous interface problem (2)-(3). To calculate the
spectra of the problem we must restrict ourselves to a finite spatial domain,
we choose [−1, 1]. To isolate the effect of the interface treatment, we intro-
duce a periodic closure of the domains that removes the dissipative effect of
the outer boundary terms. We use

u(−1, t) = dv(1, t) t ≥ 0. (28)

By applying the energy method and using condition (28), we get

d

dt
[‖u‖2 + αc‖v‖2] = v(1, t)2(ad2 − αcb)︸ ︷︷ ︸

(BT)

+ u(0, t)2(−a+ αcbc)︸ ︷︷ ︸
(IT)

.

Then, for any αc which makes IT ≤ 0, the choice d =
√
αcb/a removes the

dissipative effect of the outer boundaries. In the rest of this section we always
make this choice.

Consider the SBP-SAT approximation of (2)-(3), including condition (28)

ut + aP−1
l Qlu = P−1

l [σBL(u0 − dvN)e0 + σL(cuN − v0)eN ]

vt + bP−1
r Qrv = P−1

r [σBR(dvN − u0)eN + σR(v0 − cuN)e0] .
(29)

Now the discrete energy method leads to

d

dt

[
‖u‖2

Pl
+ αd‖v‖2

Pr

]
= IT + BT ,

where IT is equal to the previously analyzed (13) and

BT = u2
0(a+ 2σBL)− 2u0vN (dσBL + αdσBR) + v2

Nαd(−b+ 2dσBR).

By the choice

σBL = −a
2
, σBR =

1

2

b

d
and d =

√
αd

(
b

a

)
(30)

we obtain BT=0 also for the semi-discrete energy estimate.
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5.2. The continuous and semi-discrete spectrum.

To determine the continuous spectrum of (2)-(3), we use the Laplace
transform technique [11],[12],[13]. The initial conditions are omitted since
they do not contribute to the spectral analysis and we obtain

sû+ aûx = 0, −1 ≤ x ≤ 0 and sv̂ + bv̂x = 0, 0 < x ≤ 1,

which have the general solutions

û = cle
− s

a
x and v̂ = cre

− s
b
x.

The boundary and interface conditions lead to

E(s)c =

[
e

s
a −de− s

b

c −1

] [
cl
cr

]
= 0. (31)

The system of equations (31) has a non-trivial solution when the determinant
of E(s) is zero, i.e. when det(E(s)) = −es/a + cde−s/b = 0. For cd 6= 0 we get

s =
ab

a+ b
[log(|cd|) + 2iπk] , k ∈ Z. (32)

The infinite sequence (32) define the spectrum of (2)-(3) in combination with
(28). Note that

• if |cd| = 1 then we have purely imaginary spectrum,

• if |cd| > 1 we have eigenvalues in the right half plane,

• if |cd| < 1 we have eigenvalues in the left half plane.

To determine the corresponding semi-discrete spectrum we rewrite (29)
in matrix form as (

u
v

)
t

= P−1Q̃

(
u
v

)
(33)

where

P =

[
Pl 0
0 Pr

]
, Q̃ = −QΛ + Σ, and QΛ =

[
aQl 0
0 bQr

]
.
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The penalty matrix Σ which is zero everywhere except at the boundary and
interface points is given by

Σ =



σBL −dσBL
. . .

cσL −σL
−cσR σR

. . .

−σBR dσBR


.

The semi-discrete spectrum is given by the eigenvalues of P−1Q̃.
By multiplying both sides of (33) with P̄ = diag(Pl, αdPr) and adding

the transpose we have

d

dt

(
‖u‖2

Pl
+ αd‖v‖2

Pr

)
=

(
u
v

)T [
¯̃Q+ ¯̃QT

](u
v

)
,

where ¯̃Q = P̄P−1Q̃. By (30), the matrix ¯̃Q + ¯̃QT is non zero only at the
interface block, which is the 2× 2 matrix given in (13). We can prove

Proposition 8. The conditions (B1.a,b) implies that P−1Q̃ defined in (33)
has eigenvalues with negative semi-definite real parts.

Proof. Let x be a complex eigenvector of the spatial operator P−1Q̃. Then

x∗ ¯̃Qx = x∗P̄P−1Q̃x = x∗P̄ λx = λx∗P̄x, (34)

where λ is the corresponding eigenvalue relative to x. By applying the same

procedure to ¯̃QT we get

x∗ ¯̃QTx = λ̄x∗P̄x. (35)

Summing (34) and (35) and recalling that P̄ > 0 and diagonal, it follows
that

x∗
[

¯̃Q+ ¯̃QT
]
x =

(
λ+ λ̄

)
x∗P̄x = 2Re(λ)x∗P̄x. (36)

Hence, Re(λ) ≤ 0 since ¯̃Q+ ¯̃QT ≤ 0.
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6. Numerical results

Figure 1 show a few of the frames of the time-evolution between the initial
time T = 0 and T = 1.5 of a conservative solution of (2)-(3). The initial
data is zero in both domains. The boundary data is given by the function
sin(4π(−1 + 3t)) and the wave is propagating with velocity a=2 in the left
domain and b=1 in right domain. The jump condition satisfying (9) is c=2.
The computations are done by using RK4 in time and SBP84, with CFL=0.1
and 300 grid points in each domain. The penalty σL,R satisfy the conservative
assumptions of Proposition 7.

6.1. Accuracy

Next, we will establish the order of accuracy of our scheme. Consider the
semi-discrete approximation (29). We choose

ul(x, t) = sin(2π(x− t))
ur(x, t) = cos(3π(x− 3t))

−1 ≤ x ≤ 0, t ≥ 0
0 ≤ x ≤ 1, t ≥ 0

(37)

as manufactured solutions. They satisfy the forced equations

(ul)t + a(ul)x = Fl,
(ur)t + b(ur)x = Fr,

−1 ≤ x ≤ 0, t ≥ 0
0 ≤ x ≤ 1, t ≥ 0

(38)

The solutions (37) are connected by the jump condition

u(0, t)− cv(0, t) = sin(−2πt)− c cos(−9πt) (39)

and the periodic boundary conditions

u(−1, t)− dv(1, t) = sin(2π(−1 + t))− d cos(3π(1 + t)). (40)

In Table 6.1 we present the accuracy of SBP21, SPB42, SBP63 and SBP84
operators for a non-conservative problem and approximation (stability con-
ditions from Proposition 5).

The rate of convergence p is computed by first calculating the error in the
L2 and L∞ norm of two approximations performed with N and 2N points,
respectively. Next we assume that the error is proportional to the spatial step
to the power of p, which leads to p = log2(Error[N ]/Error[2N ]). Table 6.1
shows that the solutions computed with the considered SBP operators con-
verge with 2nd, 3th, 4th and 5th order, respectively. We obtain analogous re-
sults for a conservative problem with both conservative and non-conservative
approximation.
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Figure 1: Time-evolution of a conservative solution of (2)-(3) between the initial time
T = 0 and T = 1.5 with a conservative approximation (Proposition 7). The boundary
condition is sin(4π(-1+3t)). The parameters are: a=2, b=1 and c=2.
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L2 SBP21 SBP42 SBP63 SBP84
N ul ur ul ur ul ur ul ur
40 1.9830 2.0915 3.2524 2.9650 5.2463 4.4964 5.8235 5.1834
80 2.0124 2.0267 3.0397 3.0096 3.6801 3.8770 4.5847 5.0897
160 2.0086 2.0102 3.0713 3.0083 3.8480 4.0149 4.7510 5.0624
320 2.0059 2.0044 3.0359 3.0068 3.9590 4.0052 4.9033 5.0176

L∞ SBP21 SBP42 SBP63 SBP84
N ul ur ul ur ul ur ul ur
40 1.9201 1.9203 3.3609 3.1873 5.3065 4.0257 5.2865 5.3296
80 1.9856 2.0137 2.7951 3.0009 3.6586 3.7306 4.8152 4.8680
160 2.0349 2.0086 3.1082 3.0208 3.8312 4.2597 4.3987 5.0232
320 1.9931 2.0423 3.1472 3.0002 3.9057 4.1312 5.4902 4.9732

Table 1: Convergence rate as a function of grid N points for the non-conservative interface
problem (38) and semi-discretization (29). Parameters setting: a=3, b=2, c=3. Interface
penalties σL,R satisfying the stability conditions of Proposition 5.

6.2. The spectrum

Given that our numerical scheme is accurate, we now return to the analy-
sis of the spectrum. We are interested in showing that the interface treatment
produces a negative semi-definite spectrum for P−1Q̃, which converges to the
continuous spectrum. We are also interested in to what extent the conserva-
tion conditions derived earlier influence the spectrum.

Table 2 show the order of convergence for the semi-discrete spectra for
SBP21, SPB42 and SBP63 operators. The convergence rate is computed by
measuring the distance between the eigenvalues λi(N) from the semi-discrete
spectrum of N of grid-points and the eigenvalues λci from the continuous
spectrum. The index i refers to the magnitude of the imaginary part such
that Imag(λi(N)) < Imag(λi+1(N)). We choose i small enough such that
the numerical eigenvalue converge to the continuous one and we compute

Error(N) = |λ(N)i − λci | for i = 1, ..., N,N = 40, 80, 160, and 320.

The order of convergence is given by p = log2(Error(2N)/Error(N)).
Note that Table 2 show that the convergence is the same as the order of the
internal approximation.
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N SBP21 SBP42 SBP63 SBP84
40 2.4430 5.2086 6.1259 10.1153
80 2.0485 4.2217 6.9556 8.9885
160 2.0197 4.0813 5.9620 8.8797
320 2.0093 4.0369 6.0843 —

Table 2: Rate of convergence of semi-discrete eigenvalues of SBP21, SPB42, SBP63 and
SBP84 operators. N indicates the number of grid points for each domain. The convergence
is the same as the order of the internal approximation. The last N = 320 result for SBP84
hit machine precision.

Figures 2.a-c show a number of comparisons between a semi-discrete and
continuous spectrum. In Figures 2.a we have a non-conservative problem
with a=2, b=1 and c=0.5. The penalty coefficients satisfy the stability con-
ditions of Proposition 5. In Figure 2.b-c we have a conservative continuous
problem with a=2, b=1 and c=a/b. In particular in Figures 2.b the penalty
coefficients satisfy the non-conservative stability conditions of Proposition 6,
i.e. the scheme is stable but non-conservative, while in Figures 2.c, they sat-
isfy the conditions of Proposition 7, i.e. the scheme is stable and conservative.
In all cases we use a 4th−order accurate scheme. We can see that the spectra
have eigenvalues with negative real parts, which implies well-posedness and
a stable semi-discretization as stated in Proposition 8.

6.2.1. Strict stability and artificial dissipation

All the plots in Figures 2.a-c show that all the eigenvalues of the discrete
spectra are located in the left half plane, which was guaranteed by the en-
ergy stability formulated in Proposition 8. On the other hand, a few discrete
eigenvalues are located to the right of the continuous spectrum. According
to the definition of strictly stability, [1],[11],[12],[13], the time growth rate of
a strictly stable approximation is bounded by the growth rate of the corre-
sponding continuous problem. Hence, we prefer that the eigenvalues of the
semi-discrete spectrum lies on the left side of the continuous spectrum. By
adding suitable artificial dissipation terms to the semi-discretization (29), we
can move the discrete spectrum to the left side of the continuous one without
loosing accuracy.

Figure 3 show the spectrum of the conservative approximation (29) using
the SBP63 operator vs the continuous spectrum, with and without artificial
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Figure 2: Continuous and semi-discrete spectrum of 4th order SBP-SAT approximation.
Penalty coefficients σL, σR as in Proposition 5, (a), Proposition 6, (b), Proposition 7, (c).
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N SBP21 SBP42 SBP63 SBP84
40 2.0831 4.0950 6.1852 8.2203
80 2.0384 4.0542 6.1113 8.1961
160 2.0186 4.0288 6.0520 8.0825
320 2.0091 4.0148 6.0240 8.0325

Table 3: Rate of convergence of semi-discrete eigenvalues of SBP21, SPB42, SBP63 and
SBP84 operators with artificial dissipation. N indicates the number of grid points for each
domain. The order of convergence is not changed by introducing the artificial dissipation

dissipation. The semi-discrete eigenvalues in Figure 3.b converge from the left
side implying strict stability. We get similar results for SBP21 and SBP42
operators and also for the non-conservative approximations. The rate of
convergence is not changed by introducing the artificial dissipation, as can
be seen in Table 3. For a discussion on how to build artificial dissipation
operators for SBP operators without loosing accuracy and stability, see [10].
The benefit of such operators on the spectrum has been also shown in [11].
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Figure 3: Close-up of the continuous and the semi-discrete spectrum of 4th order SBP-
SAT approximation without dissipation, (a), and with dissipation, (b). Penalty coefficients
σL, σR satisfy a conservative interface treatment as in Proposition 7. Parameter setting:
a = 2, b = 1, and c = 2
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6.2.2. The dissipative effect a conservative scheme for a conservative contin-
uous problem

Figures 4.(a)-(f) show the spectra of conservative schemes vs spectra of
a non-conservative type. In Figures 4.(a),(c) and (e) the scheme is stable
and conservative, while in Figures 4.(b)-(d)-(f) the scheme is stable and non-
conservative. In each row we have the same value of θ, i.e. the same norm αd.
In all cases we use a 4th−order accurate scheme. For θ = 1, Figures 4(a-b),
the spectra are identical since the stability conditions imply conservation,
see (23) and (25). Note that in this case the scheme is automatically strictly
stable since the discrete spectrum is completely located on the left side of the
continuous one. In all the other examples we note that the non-conservative
approximation has a few more eigenvalues on the right side of the continuous
spectrum compared with the conservative approximation. This observation
suggests that a non-conservative approximation is less dissipative than the
conservative one.

We can check how dissipative the interface treatment is by considering
the energy estimate (12). We recall that IT represents the effect of the
interface treatment on the energy growth. We can measure how the interface
treatment contributes to the estimate by computing the eigenvalues of the
H in (13) which define the quadratic form IT.

In Figure 5 we show the eigenvalues h1 and h2 for different values of θ
for a non-conservative scheme (pink line) and a conservative scheme (green
line). Note that the eigenvalues for the latter is always below the first one.
This indicates that the conservative approximation is more dissipative than
the non-conservative one.

7. Conclusions

We have presented a complete analysis of the discontinuous interface
problem. We have shown that a such problem is always well-posed and
we investigated when it is conservative.

We have derived a stable SBP-SAT scheme for a conservative and non-
conservative continuous problem. In particular we have shown that for a
conservative continuous problem we can choose between a conservative or
non-conservative scheme with respect to a modified L2 norm.

We have also proved that a unique norm exists for which stability lead
to conservation. Furthermore we have shown that the approximations can
be made strictly stable by adding artificial dissipation without reducing the
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Figure 4: Comparison between conservative, (a),(c),(e), and non conservative, (b),(d),(f),
semi-discrete spectra for a conservative continuous problem.
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Figure 5: Trend of the eigenvalues h1, (a), and h2, (b), of H in (13) for different values
of θ. The pink pattern correspond to the non-conservative scheme, while the green one
the conservative one. This latter is always below the first one which indicates that the
conservative approximation is more dissipative than the non-conservative one.

accuracy. The schemes have been tested for accuracy and stability using nu-
merical simulations with the method of manufactured solutions and a spectral
analysis.
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[20] Jan Nordström, Magnus Svärd, Well-posed boundary conditions for the
Navier-Stokes equation, SIAM J. Numer. Anal. Vol. 43, No. 3, pp. 1231-
1255. (2005)
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