Master's thesis
Two years

Datateknik
Computer Science

Enabling communication between Wireless Sensor Networks and
The Internet-of-Things
A CoAP communication stack

Alessandro Aloisi

&0

Mittuniversitetet

MID SWEDEN UNIVERSITY

Campus Hérnosand Universitetsbacken 1, SE-871 88. Campus Sundsvall Holmgatan 10, SE-851 70 Sundsvall
Campus Ostersund Kunskapens vag 8, SE-831 25 Ostersund.
Phone: +46 (0)771 97 50 00, Fax: +46 (0)771 97 50 01.

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Abstract

The growing presence of sensors around us is pushing the development of per-
vasive applications which will enable access sensor data from remote locations
in an Internet-of-Things scenario. Many smart sensing nodes that cooperate to
sense the environment may constitute a Wireless Sensor Network, providing
sensing services to an ever growing application space. Based on this, the thesis
focuses on enabling the communication between Wireless Sensor Networks and
Internet-of-Things applications. In order to achieve this goal, the first step has
been to investigate the concept of the Internet-of-Things and then to understand
how this scenario could be used to interconnect multiple Wireless Sensor Net-
works in order to develop context-aware applications which could handle sen-
sor data coming from this type of network. The architecture of Wireless Sensor
Networks was then analyzed followed by a survey about the operating systems
and communication standards supported by these network. Finally, some Inter-
net-of-Things software platforms have been studied. The second step was to de-
sign and implement a communication stack which enabled Wireless Sensor Net-
works to communicate with an Internet-of-Things platform. The CoAP protocol
has been used as application protocol for the communication with the Wireless
Sensor Networks. The solution has been developed in Java programming lan-
guage and extended the sensor and actuator layer of the Sensible Things plat-
form. The third step of this thesis has been to investigate in which real world
applications the developed solution could have been used. Next a Proof of Con-
cept application has been implemented in order to simulate a simple fire detec-
tion system, where multiple Wireless Sensor Networks collaborate to send their
temperature data to a control center. The last step was to evaluate the whole
system, specifically the responsiveness and the overhead introduced by the de-
veloped communication stack. The results showed that the solution introduced
just a little overhead to the platform and also that the value of the response time
depends on the type of request sent to the Wireless Sensor Network. However,
the performances of the system could be improved further and suggested future
work involves some policies to manage multiple CoAP transactions at the same
time. Also the challenge of implementing some security mechanisms for a safe
communication between the platform and sensor nodes, requires further work.

i

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Acknowledgements

Firstly I would like to express my sincere gratitude to my supervisor Stefan
Forsstrom for his patient guidance and his capacity to answer my numerous
questions. Without his help and our numerous meetings, I could not have
achieved the results that I had. Secondly, I would like to thank my examiner,
Professor Ting Ting Zhang for her interest and helpful comments. Finally I
would also like to thank my Italian exchange coordinator, Prof. Antonio Corradi
and both University of Bologna and Mid Sweden University for giving me the
chance to prepare this thesis as an exchange student. It was a valuable
experience for me and it helped greatly in improving my professional and social
skills. Lastly, I would like to thank my family and my friends for their love and
all the support given me during this period as an exchange student.

i1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Table of Contents

ADSEIFACTccuueiiiriiiiiieiiiieissnteisinnicssntncsssesssseessssesssssnesssssessssssssssesssssesssssssssssssssssssns ii
Acknowledgements i
TerMINOLOZY..cuvieerurersnicssnicssnicssanisssanesssssesssnessssrsssens vi
1 INtrOdUCHION....cceeeeriitictiiiniitennticteiseessecsseesaesssessesssseessssssesssansssssane 1
1.1 Background and problem motivation...........ccccueeveerieeiieenieeiieiee e, 1
1.2 High-level problem statement.............cceevvieviieniieciienieeieeniee e 1
1.3 Concrete and verifiable goals..........ccccovviiniiiiiiiiiiiec 2
1.4 N TeT0) oL USSR RPPPRPR 2
1.5 OULINE. ...eeiieeeiee et e e e e s aae e e aaeeeeaseeennraeaaens 3
1.6 CONETIDULIONS. ..ttt 3
2 1T TR 4
2.1 INternet-0f=ThiINGS......c.ccoviiriieiieii et 4
2.1.1 CONLEXE AWATEIICSS. 1eeeeeevrreeeerirrireeeirreeeeritrreeeessreeeesassseaeesssssssseeneeeees 6
2.1.2 UbIqUitous COMPULING.....ccuvieeriieeiiieeiiieenieeesieeeriveeesereeeeeeeeaneeeeeens 7
2.2 Wireless Sensor Networks OVEIrvVIEW.........cocveeeeuiieeciieeeieeciee e 7
2.2.1 WISN MOES. ...ttt 9
23 WSNS Operating SYStEIMS.......cc.eevueeierieniiienieenieeieneesieeee e 10
23.1 TINY OS .ttt e e e e e e e e e s 11
232 (070] 1131 SRS 12
233 Tiny Os and Contiki evaluation............ccceceeerieeinieeeiieeeieeeiieeenn 14
2.4 WSNs communication standards.............ccccveeveeeeeiieeeeeiiiiee e 15
24.1 TEEE 802.15.4 ...ttt 16
242 ZUBREC....eeiiiie ettt ettt et 17
243 OLOWPAN ... e 18
244 REST and COAP.......cooieieeieeeeeee e 19
2.5 Related WOTK.c..coiuiiiiiieiieeee e 21
25.1 SensibleThiNgS......cc.ceoviriiriiiirieceee e 22
252 ETSTM2M...ooiiiiieee et 23
253 SENSEWEB......oooiiiiieesteeeestet ettt 25
3 Methodology.....uueeenuieiinienininiininnsnencssnensssnesssneesssssessssessssssesssssssassessssns 27
4 IMplementation........coeierreicssnicssanecssnnesssanssssnnsssssssssssssssssssssssssssssssssssns 29
4.1 SensibleThings Platform...........cccccoooieniiiiiiniiiieeee e, 31
4.2 COAP packet StIUCTUTE.ccveeeeiieeiiie et 32
43 CoapSenSOTACIUALOTccovuiieeiiieeiiee ettt ettt 34
4.4 CoapSensSOrGatEWAY.......c.ceeerurieeiieeeiieeeieeerieeeeieeerreeeeeenareeeeeenneneeas 38
5 RESUIES uueeieiuiiiinieisneeisneeiinenisneicsnnecssnesssssessssneessssesssssecsssssscsssssssessssssns 40
5.1 RESPONSE LIME.....ouiieeiieiiieiie ettt e e e eeeneee e 40
5.2 PaCKET S1Z€.....ueeiiiiiiieiie e 45
53 SCALADIIILY ..ottt 46
5.4 Proof of concept application...........cceeeeeeeecieeeiieeniiee e 48

v

Enabling communication between Wireless Sensor Networks and the Internet-

of-Things — A CoAP communication stack

Alessandro Aloisi 2014-07-22
5.4.1 Potential real World SCENATIO.covveeeeeeee e 48
54.2 Implementation and reSults..........cceeviieriierieiiieiie e 49
6 L0111 T 11 1) 11 1 DN 52
6.1 IS CUSSION. ...ttt eaeeeaaaneeenn 53
6.1.1 BHICAl 1S SUCS e e e e e e e eeeeean 54
6.2 FULULE WOTK et e e e e e aaaeaees 55
R T CIEIICES euueeeeereereereeereeeeseeeseereesssssssssssssssesssssssssssessessasssssssssssssssssassssssnsssssansese 56
Appendix A: CoapBlip installation guide .58

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Terminology

6LoWPAN: IPv6 over Low power Wireless Personal Area Networks
AODV: Ad-hoc On Demand Distance Vector Routing
ASCII: American Standard Code for Information Interchange
CoAP: Constrained Application Protocol

FFD: Full Function Device

[oT: Internet of Things

ISM: Industrial, Scientific and Medical Radio Bands
LAN: Local Area Network

LLN: Low Power and Lossy Network

M2M: Machine to Machine

MAC: Media Access Control

NFC: Near Field Communications

PAN: Personal Area Network

PPP: Point to Point Protocol

REST: Representational State Transfer

RFD: Reduced Function Device

RFID: Radio Frequency Identification

TCP: Transmission Control Protocol

TLV: Type Length Format

UCI: Universal Context Identifiers

UDP: User Datagram Protocol

URI: Universal Resource Identifier

WSAN: Wireless Sensor and Actuator Network.

vi

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

WSN: Wireless Sensor Network

vil

1.1

1.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Introduction

This report is a Master's thesis in Computer Science Engineering and it has
been prepared in collaboration with Mid Sweden University in Sundsvall, Swe-
den. I am an exchange student from the University of Bologna (Italy) and I
worked on this thesis within the Erasmus Exchange Program. This thesis deals
with the challenging question of how to interconnect Wireless Sensor Networks
over the Internet and describes a solution that has been developed within this
thesis work.

Background and problem motivation

Historically, humankind has seen the emergence of different kinds of global
data fields. The planet itself has always generated an enormous amount of data,
as human systems and physical objects did too, but until recent years we were
unable to capture it. We now can because we are able to embed sensors in all
sort of things and to use them to retrieve data. A scenario in which objects, ani-
mals or people are provided with sensors and the ability to automatically trans-
fer data over the Internet is called Internet-of-Things (IoT). This kind of net-
work can then be used by applications that utilize information from sensors at-
tached to different things in order to display context-aware behavior. However,
since not all sensors may be directly connected to a device, they could be gath-
ered in local networks such as the Wireless Sensor Networks, which nowadays
are the most used technology in this field. Wireless Sensor Networks are com-
posed of a large number of radio equipped sensor devices that autonomously
form a network, through which sensors are capable of sensing, processing and
communicating with each other. These networks can operate as standalone net-
works or be connected to other networks, but for many applications they do not
work efficiently in full isolation. Therefore, one of the biggest challenges for
the IoT developers is to find resources on how to interconnect several Wireless
Sensor Networks over the Internet.

High-level problem statement

Wireless Sensor Networks rely on the collaborative efforts of many small wire-
less sensor nodes and on their ability to form networks which can be used to
gather sensor information. Most sensor networks are usually deployed over a
wide geographical area and their applications aim at monitoring or detecting
phenomena. For such applications, Wireless Sensor Networks cannot operate
efficiently in complete isolation because there should be a way for a remote
user to gain access to the data produced by the network. By connecting these
networks to an existing network infrastructure, remote access to the sensor data
can be achieved. Since the Internet has the most widespread network infrastruc-
ture in the world, it is logical to look at some efficient methods for interconnect-
ing Wireless Sensor Networks over the Internet; in order to make an Internet-of-
Things. Many Internet-of-Things software platforms have already been devel-

1.3

1.4

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

oped in order to enable remote access to sensor data, but just a small quantity of
these platforms deal with Wireless Sensor Networks. Thus, a communication
stack is required for implementation in order to enable communication between
Internet-of-Things applications and Wireless Sensor Networks. Another big
challenge is the high heterogeneity between Wireless Sensor Networks, since
these networks often are intended to run specialized communication protocols.
As a consequence of this scenario, it is usually impossible to directly connect
Wireless Sensor Networks to the Internet. Therefore, there is also the need to
implement a second stack, which is able to export sensor data from these partic-
ular networks to other devices connected to the Internet. Therefore, this thesis
will attempt to solve the following problem:

Enabling communication between Internet-of-Things and Wireless Sensor
Networks, irregardless of their network connection and then to utilize the
sensor information available in Wireless Sensor Networks for context aware
applications.

Concrete and verifiable goals

In order to solve the problem of this project, the following goals have to be ac-
complished:

1. Find three different solutions of connecting Wireless Sensor Networks
to an Internet-of-Things.

2. Determine the most common operating systems used in Wireless Sensor
Networks.

3. Investigate which communication protocols these operating systems
support.

4. Implement a communication stack which enables communication be-
tween Wireless Sensor Networks and Internet-of-Things platforms.

5. Evaluate the performance and responsiveness of the implemented solu-
tion.

6. Find possible real world applications for the implemented solution in or-
der to put together several Wireless Sensor Networks, defining policies
for system federation and coordination.

Scope

This project is focused on creating a communication stack between IoT applica-
tions and wireless sensors and actuator networks and then to create a Proof of
Concept application in order to evaluate it. However, since there are many dif-
ferent operating systems and communication protocols for Wireless Sensor
Networks, in this thesis I will focus on how to enable communication only with
networks which use the most common ones. The management of the physical
layer below these systems and security issues are out of scope for this project.

1.5

1.6

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Outline

The second chapter will present the general idea of Internet-of-Things and con-
text awareness including the specific devices and protocols which have been de-
veloped in order to spread its diffusion. Next, some of the most popular IoT
platforms are presented. The third chapter is about the methodology we used for
the project. In this section all the goals that have been presented in this thesis
are listed. The fourth chapter explains the approach that has been used in the
project's implementation. In chapter five the tests made and their results are re-
ported. Finally, the sixth chapter presents the conclusions and then discusses fu-
ture work needed for this project.

Contributions

The SensibleThings platform and its source code was contributed by and is
property of Mid Sweden University. My thesis work has contributed by adding
functionalities to the existing framework in order to enable communication be-
tween IoT applications and Wireless Sensor Networks. The developed commu-
nication stack is independent of the platform itself, therefore it is possible to
easily export it to any kind of implementation of the latter.

2.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Theory

A first important step is to categorize the state of art based on current research
literature. The following sections present the background theory and related
work for this thesis. The first section provides a short introduction about the In-
ternet-of-Things concept and also about context awareness and ubiquitous com-
puting. The second section gives an overview of the Wireless Sensor Network
technology and then a list of the most common motes. In the third section, two
of the most used Wireless Sensor Network Operating System are presented and
a comparison between them has been made. The fourth section provides an
overview of the communication standards used in Wireless Sensor Networks.
Finally, in the fifth section, three Internet-of-Things platforms are presented.

Internet-of-Things

The Internet-of-Things (IoT) is a novel paradigm that is rapidly spreading
across the scenario of modern wireless telecommunications. This concept is
based on is the pervasive presence around us of a variety of things or objects
which, through unique addressing schemes, are able to interact and cooperate
with each other in order to reach common goals. As the name suggests, the pur-
pose of this architecture is to interconnect all kinds of objects over the Internet.
It is considered a normal evolution of the Internet, which at the beginning was
meant just to interconnect computers but now is developing into a world wide
network which will be able to interconnect all kinds of devices; as represented
in figure 2.1.

Network The Intemet Mobile-Intemet Mobiles + People + PCs Intemet of Things
People

A ® E;ARF (e

Host Host

Host Web Host Host Host Host Host

L RSB R o B o F’n‘v @
‘il: gl RgE ! 20

Device Device Device

. :: : [Feople I.: Interconnected Objects

Figure 2.1: Evolution of the Internet [1]

However, 10T is a very broad vision, so the IoT research is still in progress.
Therefore, there are many definitions of [oT within the research community but
there are no standard definitions for IoT as of yet. The term ‘Internet-of-Things’
was originally introduced by Kevin Ashton [2] in a presentation in 1999. He
noted that “The Internet-of-Things has the potential to change the world, just as
the Internet did. Maybe even more so”.

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

The very first vision of IoT was presented by The Auto-ID Labs [3], a world-
wide network of academic research laboratories in the field of networked RFID
and emerging sensing technologies. The group perceived things as very simple
items: Radio-Frequency IDentification (RFID) tags having a unique identifier
called Electronic Product Code. Their purpose was to realize a global system
for object visibility (i.e. the traceability of an object and the awareness of its
status).

However, according to the authors of [4], RFID still stands at the forefront of
the technologies driving the vision just because of its maturity, low cost, and
strong support from the business community. The group believes that a wide
range of device, network, and service technologies will eventually build up the
IoT. Near Field Communications (NFC) and Wireless Sensor and Actuator Net-
works (WSAN) together with RFID are recognized as ‘““‘the atomic components
that will link the real world with the digital world”. According to this hetero-
geneity, the following definitions are essential to understand the IoT:

Definition by [5]: “The Internet-of-Things allows people and things to be
connected Anytime, Anyplace, with Anything and Anyone, ideally using Any
path/network and Any service.”

Anything
Any device
A Things /[
,/”
Any place
Anywhere
Any path

Any Network

Anyone

Anybody

7 Internet

of

Figure 2.2: Representation of the first definition of IoT [5]

Definition by [6]: “The semantic origin of the expression is composed by
two words and concepts: Internet and Thing, where Internet can be de-
fined as the world-wide network of interconnected computer networks,
based on a standard communication protocol, the Internet suite
(TCP/IP), while Thing is an object not precisely identifiable. Therefore,
semantically, Internet-of-Things means a world-wide network of inter-
connected objects uniquely addressable, based on standard communica-
tion protocols.”

Many relevant institutions have stressed the concept that the road to full IoT
deployment has to start from the augmentation in the Things’ intelligence. This
is why a concept that emerged in parallel with IoT is the concept of Smart

211

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Items, as a refinement of the general “Things” definition. Smart items are de-
fined as:

objects that can be tracked through space and time throughout their lifetime
and that will be sustainable, enhanceable, and uniquely identifiable[7].
“These are a sort of sensors not only equipped with usual wireless com-
munication, memory, and elaboration capabilities, but also with new poten-
tials. Autonomous and proactive behavior, context awareness, collaborative
communications and elaboration are just some required capabilities [8].

The Internet-of-Things infrastructure allows combinations of different types of
smart items, using different but interoperable communication protocols and re-
alizes a dynamic heterogeneous network that can be deployed also in inacces-
sible, or remote spaces (oil platforms, mines, forests, tunnels, pipes, etc.) or in
cases of emergencies or hazardous situations (earthquakes, fire, floods, radia-
tion areas, etc.). Giving these objects the possibility to communicate with each
other and to elaborate the information retrieved from the surroundings implies
having different areas where a wide range of applications can be deployed.
These can be grouped into the following domains: healthcare, personal and so-
cial, smart environment (such as at home or in the office), futuristic applica-
tions, transportation and logistics; as represented in figure 2.3.

Transpor‘taFlon e ?mart Person.al and Futuristic
and logistics environments social
'8 SR

X ‘
- . Comfortable Social .
— Logistics — Tracking — homes/offices — networking = Robottaxi
- > - » - o - o . .
X
! e . . B City
Assisted Identification, Industrial Historical . .
— drivi — - — -) = information
riving authentication plants queries
model
- o - o’ - o’
3 s 3 r) —
Mob{le | Data collection |_|Smartmuseum | Losses | | Enhanced
ticketing andgym game room
7 . ’ . ’ . 7
A e
- EnVIrqnment — Sensing — Thefts
monitoring
. —
e —
| Augmented
maps

Figure 2.3: ToT application areas [8]

Context awareness

Context awareness plays an important role in the Internet-of-Things to enable
services customization according to the immediate situation with minimal hu-
man intervention. Acquiring, analyzing, and interpreting relevant context infor-
mation regarding the user will be a key ingredient to create a whole new range
of smart applications. The concept of context is commonly understood as the

21.2

2.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

situation or surroundings of an entity. The main definition of context has been
given by Dey and Abowd [9]:”Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a user and an application,
including the user and applications themselves.”. Therefore, context awareness
is the result gained from utilizing context information, such as the ability to
adapt behavior depending on the current situation of the users in context-aware
applications. Dey and Abowd [9] gave this definition of context awareness: 4
system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the users task.”

Ubiquitous computing

The focus on context-aware computing evolved from desktop applications, web
applications, mobile computing, ubiquitous computing to the Internet-of-Things
over the last decade. However, context-aware computing became more popular
with the introduction of the term ‘ubiquitous computing’ by Mark Weiser [10],
in his paper “The Computer for the 21% Century in 1991”. He described a new
era in which computer devices will be embedded in everyday objects, invisible
at work in the environment around us; in which intelligent, intuitive interfaces
will make computer devices simple to use and in which communication net-
works will connect these devices together to facilitate anywhere, anytime, al-
ways-on communication. Ubiquitous computing then, “is the growing trend to-
wards embedding microprocessors in everyday objects and refers to how they
might communicate and process information, creating a world in which things
can interact dynamically”.

Wireless Sensor Networks overview

Wireless Sensor Networks (WSNs) became one of the most interesting and re-
searched areas in the field of electronics in the last decade. WSNs are composed
of a large number of radio equipped sensor devices that autonomously form a
network, through which sensor nodes are capable of sensing, processing and
communicating among each other. The sensor nodes are usually scattered in a
sensor field as shown in Figure 2.4. Each of these sensor nodes has the capabil-
ity to collect data and route data back to the sink and the end users. Data are
routed back to the end user by a multi-hop infrastructureless architecture
through the sink, which may communicate with the end user via the Internet or
any type of wireless network (like WiFi, mesh networks, cellular systems,
WiIMAX, etc.), or without any of these networks where the sink can be directly
connected to the end users [11]. There may be multiple sinks and multiple end
users in the architecture shown in Figure 2.4.

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack

Alessandro Aloisi 2014-07-22
T
(o S N
e B gy
Kf_;‘*’_“" ;h‘. . o o O \Jl
nternet & .) D B o
e Saetie. Y[, B8
LN ..5___.3"-_##{._/ /}It".- % o P A){.'
Task Manager |I e o o o |
Nade L O
. \\ ©
User £ C)‘
| Q =S
AN S
Sensor Field — Sensor Nodes

Figure 2.4: WSN architecture [11].

Typical tasks for sensor nodes are: obtaining environmental data, storing, pro-
cessing and transferring obtained data, receiving data from other nodes, using
and forwarding received data. However, not every node in a sensor network has
to perform all of these tasks. The sensor nodes, which are intended to be physi-
cally small and inexpensive, are equipped with one or more sensors for sensing
operations, a short range radio transceiver in order to enable communication
with other nodes, a small micro controller for computation, and a power supply
in the form of a battery; as represented in figure 2.5.

-
— Communication
V| p
—_—
Computation, - 7
Control and
Ty
Storage g ?
_— . —e
Sensi
Y ng N—
A —
Power Management j

Figure 2.5: General sensor node structure
The main characteristics and challenges of WSNss are:

Dynamic topology: in many applications it is assumed that the topology of the
network is stationary. However, in reality it is not, because WSN topology can
change frequently. The topology of the WSNs can vary from a simple star net-
work to a tree network or even to an advanced multi hop wireless mesh net-
work.

2.2.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Limited data rate and short distance: the sensor nodes electromagnetic range
covers short distances (from one to several tens of meters). This determines the
necessity of application multi-hop topology in WSN.

Different traffic intensity: the highest traffic density in WSN takes place
around the central sensor nodes (that is the sink), because it collects all data
coming from other nodes located in its vicinity. Quite the opposite, very little
traffic takes place around sensor nodes which directly collect data and in the
other direction, from sink to these nodes.

Energy constraints: the constraint most often associated with WSNs design is
that sensor nodes operate with limited energy budgets. Typically, they are pow-
ered through batteries, which must be either replaced or recharged when de-
pleted.

Self management: since many WSNs are required to operate in remote areas
and harsh environments, without infrastructure and the possibility for mainte-
nance or repair, sensor nodes must be able to self-configure and adapt to fail-
ures.

WSNs may consist of many different types of sensors including seismic, mag-
netic, thermal, visual, infrared, acoustic and radar, which are able to monitor a
wide variety of ambient conditions that include: temperature, humidity, pres-
sure, speed, direction, movement, light, soil makeup, noise levels, the presence
or absence of certain kinds of objects, and mechanical stress levels on attached
objects [11]. As a result, a wide range of applications are possible. However, in
order to extend the applicability of these architectures and provide useful infor-
mation anytime and anywhere, their integration with the Internet is very impor-
tant. It is for this reason that during recent years the IoT research community
has focused on WSNs as the upcoming technology for the [oT.

WSN motes

WSNs nodes are called “motes” and currently they range in size from disc
shaped boards having diameters less than 1cm to enclosed systems with typical
dimensions less than Scm square. The term “mote” was coined by researchers in
the Berkeley NEST to refer to these sensor nodes [13]. In figure 2.6 a list of the
most common motes is reported. The values within this table show that all the
motes have approximately the same size but the lightest one is SHIMMER,
which is also one of the most expensive. Regarding memory and CPU power all
the motes are almost identical except for the Sun SPOT which is currently the
most powerful but the most costly.

2.3

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack

Alessandro Aloisi 2014-07-22
Width x Weight (g) Cost Processor | Memory
Length x (with Battery) | (per node) RAM/FLASH/EEPROM
Height(cm)
TelosB 3.2x6.6x0.7 |63.05 139§ 4-8 MHz |10 KB/48 KB/1 MB
Crossbow |3.2x5.7x0.6 | 63.82 99§ 8 MHz 4 KB/128 KB/512 KB
Mica2
SHIMMER | 2x4.4x1.3 10.36 276 $ 4-8§ MHz |10 KB/48 KB/none
Crossbow |3.2x5.7x0.6 | 69.40 115 % 8 MHz 8 KB/640 KB/4 KB
IRIS
Sun SPOT |6.4x3.8x2.5 |58.08 750 $ 180 MHz | 512 KB/4 MB/none

Figure 2.6: WSNs motes characteristics [13]

Each of these WSNs motes is equipped with a different set of sensors:

TelosB: it has a set of on-board sensors such as humidity, temperature and light
intensity. In addition to the on-board sensors, the Tmote Sky provides access to
6 ADC inputs, a UART and 12C bus and several general purpose ports.

Mica2: it is not equipped with on-board sensors. However, Crossbow offers an
extensive set of sensor boards that connect directly to the Mica mote, and are
capable of measuring light, temperature, relative humidity, barometric pressure,
acceleration/seismic activity, acoustics, magnetic fields and GPS position.

Shimmer: it has been designed for mobile health sensing applications. It incor-
porates a 3 axis accelerometer and allows connection of other sensors through
its expansion board.

Iris: like the other mote from the Crossbow technology (Mica2 mote), it is not
equipped with on-board sensors but it can be extended with the same sensor
boards provided for the Mica2 mote.

Sun SPOT: it offers expansion boards with tri-axial accelerometer, temperature
sensor and light sensors. Moreover, custom made sensors can be connected via
five analogue inputs and five general purpose digital ports.

WSNs' Operating Systems

An operating system (OS) in a WSN is a thin software layer that logically re-
sides between the node’s hardware and the application and provides basic pro-
gramming abstractions to application developers. Its main task is to enable ap-
plications to interact with hardware resources, to schedule and prioritize tasks,
and to arbitrate between contending applications and services that try to seize
resources. Other features of a WSNs OS are: memory and file management,
power management, networking, providing programming environments. The
choice of a particular operating system depends on several factors such as: data
types, scheduling, stacks, system calls, handling interrupts, multithreading and
memory allocation [12]. OS for WSNs nodes are typically less complex than

10

2.3.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

general purpose operating systems. They more strongly resemble embedded
systems, for two reasons. First, Wireless Sensor Networks are typically de-
ployed with a particular application in mind, rather than as a general platform.
Second, a need for low costs and low power leads most wireless sensor nodes to
have low power microcontrollers ensuring that mechanisms such as virtual
memory are either unnecessary or too expensive to implement.

TinyOS

TinyOS is the most widely used runtime environment in WSNs and its compact
architecture makes it suitable for supporting many applications. TinyOS has a
component-based programming model, codified by the NesC language, a di-
alect of C and it is also based on an event driven programming model instead of
multithreading. That means that when an external event occurs, such as an in-
coming data packet or a sensor reading, TinyOS signals the appropriate event
handler to handle the event.

The architecture consists of a scheduler and a set of components each of which
encapsulate a specific set of services, specified by interfaces. An application
connects components using a wiring specification that is independent of compo-
nent implementations. This wiring specification defines the complete set of
components that the application uses. Components have three computational
abstractions: commands, events and tasks. Commands and events are mecha-
nisms for inter-component communication, while tasks are used to express in-
tra- component concurrency. A command is typically a request to a component
to perform some service, such as initiating a sensor reading, while an event sig-
nals the completion of that service. Rather than performing a computation im-
mediately, commands and event handlers may post a fask, a function executed
by the TinyOS scheduler at a later time. The standard TinyOS task scheduler
uses a non-preemptive FIFO scheduling policy [14].

TinyOS abstracts all hardware resources as components and it provides a large
number of components to application developers, including abstractions for
sensors, single-hop networking, ad hoc routing, power management, timers, and
non volatile storage. A developer can then compose an application by writing
components and wiring them to TinyOS components that provide implementa-
tions of the required services [14].

A component has two classes of interfaces: those it provides and those it uses.
These interfaces define how the component directly interacts with other compo-
nents. An interface generally models some service (e.g., sending a message) and
is specified by an interface type. Interfaces contain both commands and events
and they are bidirectional which means that the commands have to be imple-
mented by the interface's provider whereas the events have to be implemented
by the interface's user. The provided interfaces are intended to represent the
functionality that the component provides to its user in its specification; the
used interfaces represent the functionality the component needs to perform its
job in its implementation.

11

2.3.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

NesC has two types of components: modules and configurations. Modules pro-
vide code for defining Tiny OS components. Configurations are used to wire
other components together, connecting interfaces used by components to inter-
faces provided by others. They allow multiple components to be aggregated to-
gether into a single “supercomponent” that exposes a single set of interfaces.

Figure 2.7 shows a simplified form of the TimerM component, a part of the
TinyOS timer service, that provides the StdControl and Timer interfaces and
uses a Clock interface.

module TimerM {
provides {

Yy LA interface StdControl;

interface Timer [uintB t id];

StdControl Timer]

TimerM uses interface Clock;

)

HW Clock implementation {
] ... a dialect of T ...

Figure 2.7: Specification and graphical depiction of the TimerM component
[14].

Figure 2.8 illustrates the TinyOS timer service, which is a configuration
(TimerC) that wires the timer module (TimerM) to the hardware clock compo-
nent (HWClock).

h & 2

StdControl | Timer

configuration TimerC {
provides {
interface EtdControl;
interface Timer [uintB t id];
!
!

implementation {
components TimerM, HWClock;

CtdControl = TimerM.EZtdControl;
Timer = TimerM.Timer;
TimerM.Clk - HWClock.Clock;

}

TimerC

Figure 2.8: Example of TinyOS configuration [14].

Contiki

Contiki is a lightweight operating system with support for dynamic loading and
replacement of individual programs and services. Contiki is built around an
event driven kernel but provides optional preemptive multithreading that can be
applied to individual processes. Contiki is implemented in the C language and
has been ported to a number of microcontroller architectures.

12

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

A running Contiki system consists of the kernel, libraries, the program loader,
and a set of processes. A process may be either an application program or a ser-
vice. A service implements functionalities used by more than one application
process. All processes, both application programs and services, can be dynami-
cally replaced at run time.

Communication between processes always goes through the kernel. The kernel
does not provide a hardware abstraction layer, but lets device drivers and appli-
cations communicate directly with the hardware. A process is defined by an
event handler function and an optional poll handler function; interprocess com-
munication is done by posting events [15].

A Contiki system is partitioned into two parts: the core and the loaded programs
as shown in Figure 2.9. The core is made up of the Contiki kernel, the program
loader, the most commonly used parts of the language run time and support li-
braries, and a communication stack with device drivers for the communication
hardware. This part of the operating system cannot be modified dynamically.

ROM

Loasad program
[e -
! Communicabion senice i RAM
1 i
i B8 -1
! LENQUEJE Mn-1ime ! e ——
i Program loader !
' 1 gy ik sk m k kk m k m k -1
i ol Communication service |
: Kemal P '
1 ! 1 Kemal 1
[[1

[1

! [H

Figure 2.9: Contiki system partitioning[15].

The partitioning is made at compile time and is specific to the deployment in
which Contiki is used.

The kernel is the central element of the OS. Its basic assignment is to dispatch
events and to periodically call polling handlers. Subsequently, a program execu-
tion in Contiki is triggered by either events that are dispatched by the kernel or
through the polling mechanism. Event handlers process an event to completion,
unless they are preempted by interrupts or other mechanisms, such as thread
preemption in a multithreading scenario. The kernel supports synchronous and
asynchronous events. Synchronous events are dispatched to the target process
as soon as possible and control is returned to the posting process once the event
is processed to the end. Asynchronous events, on the other hand, are dispatched
at a convenient time. In addition to these events, the kernel provides a polling
mechanism, in which the status of hardware components is sampled periodi-
cally [12].

13

2.3.3

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

One of the interesting features of the Contiki OS is its support of dynamic load-
ing and reconfiguration of services. This is achieved by defining services, ser-
vice interfaces, service stubs, and a service layer. Services are to Contiki what
modules are to TinyOS, that is a process that implements functionality that can
be used by other processes. A Contiki service consists of a service interface and
its implementation, which is also called a process. The service interface consists
of a version number and the list of functions with pointers to the functions that
implement the interface. A service stub enables an application program to dy-
namically communicate with a service through its service interface. A service
layer is similar to a lookup service or a registry service. Active services register
by providing the description of their service interface and ID and version num-
ber. This way, the service layer keeps track of all active services. Figure 2.10 il-
lustrates how application programs interact with Contiki services [12].

Kemel

" Service Layer

Application process e LA
Service |plerace "'.-'._*-ri-_nn M.

gub ol -
Function [per Service process X
- Function 2 per A
Function 11k r b| Fanction | Implementation |
Y

Fanction 20);

b

[Function n pir \!-i Fanction 2 Implementstion |

Fanction ni); R
Fanction n Implementation

Figure 2.10: Contiki service interaction architecture [12].

When a service is called, the service interface stub queries the service layer and
obtains a pointer to the service interface. Upon obtaining a service whose inter-
face description as well as version number matches with the service stub, the in-
terface stub calls the implementation of the requested function.

Tiny Os and Contiki evaluation

Ranking the strength of an operating system, like all ranking assignments, is a
difficult assignment. However, in WSNs, there are several contexts pertaining
to development, deployment, runtime performance, and code evolution. In view
of these aspects, TinyOS is compact in size and efficient in its use of resources,
since the cost of managing separate entities (operation system and application)
is related to a single assignment of managing a single file. But replacement or
reprogramming cost is high.

Contiki provides a flexible support for dynamic reprogramming and hence is
well suited to applications which require intensive updating and upgrading
processes; but this does not come without any costs.

14

24

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Figure 2.11 and 2.12 provide summaries of the functional and nonfunctional as-
pects of both the OSs.

Programming Building Memory System
05 paradigm blocks Scheduling allocation calls
Tiny()5 Eveni-based Components, FIFQ Static Mot availahle
[=split-phase interfaces, and
operation, active tasks
MESSAZes)
Contiki Predominantly Services, service FIFD, poll Dynamic Runtime libraries
event-based, but interface stubs, handlers with
it provides and service priofity
optional layer scheduling
multithreading
support

Figure 2.11: Comparision of functional aspects of the OS [12].

Minimum system Separation of Drynamic
0s overhead CONCET reprogramming Partability
Tiny05 332 byles There is no clean distinction Reguires external High
between the OF and the software support

application. At
compilation time a
particular configuration
prosduces a monolithic,
executable code.

Contiki ca E10 bytes Muodules are compiled to Supported Medium
produce a
reprogrammable and
exccutable code, but there
is no separation of
concern between the
application and the (5.

Figure 2.12: Comparision of non-functional aspects of the OS [12].

WSNs communication standards

In order to achieve interoperability between manufacturer components, a num-
ber of standards have been established in the WSN field. These standards can be
mapped to the ISO-OSI layers. However, some standards cover only the bottom
layers, others cover the full stack. No single standard has been established as
the market winner. The most common standards used in WSN are: WiFi, Blue-
tooth, IEEE 802.15.4, ZigBee, 6LOWPAN. However, WiFi and Bluetooth are
losing ground within the WSNs research community since they were not devel-
oped for low power devices such as WSNs nodes. On the other hand, IEEE
802.15.4 was created just for these kinds of devices and is thus becoming the
most important communication standard for WSNs. Moreover, the ZigBee and
6LoWPAN standards have been developed in order to extend the features of
IEEE 802.15.4.

15

2.4.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

IEEE 802.15.4

The key requirements for Low Rata Personal Area Networks (as the WSNs) are
low complexity, very low power consumption and low cost. The IEEE 802.15.4
standard considers these requirements and provides a framework for the lowest
two layers of the OSI mode. The standard defines two types of devices: a Full
Function Device (FFD) and a Reduced Function Device (RFD). The FFD is ca-
pable of all network functionalities and can operate in three different modes: it
can operate as a PAN coordinator, a coordinator or it can serve simply as a de-
vice. An RFD device is low on resources and memory capacity and is capable
only of very simple applications such as sensing light or temperature [16].
There are two different topologies in which the PAN can operate: star or peer to
peer, as represented in figure 2.13. In the star topology communication can only
take place between the devices and the PAN coordinator, which has to be a
FFD. The PAN coordinator is responsible for inaugurating or terminating com-
munications in the network and is often mains powered. In the peer to peer
topology all FFD devices in the network can communicate with each other
while the RFD devices can only communicate with the PAN coordinator [16].

':J,,_ Slar Topology Pesrio-Pesr Topology
Y ?\‘
1 j'. II| | {:I
_ ? I-I_.-' rIl] -____!.-——'_"
A]
i'f -::f .-"lll
| PA&N
._,./"-’ }1-3"'[.:' N :r / Conrdinain
] ; | \‘h.i

PAN \

= @ Ful Function Device
Coordmator 0

O Reduced Funciion Device
+— [nmmunicaton Flow

Figure 2.13 IEEE 802.15.4 network topology [16].

The physical layer is responsible for the transmission and reception of data. It
defines the radio bands to be used and type of spreading and modulation tech-
niques. The standard provide three different operational frequencies: 16 chan-
nels in the 2.4 GHz band, 10 channels in the 915 MHz band and 1 channel in
the 868 MHz band. The MAC layer which appears just above the physical layer
in the OSI model, is responsible for managing beacon transmission, access to
channel and association/disassociation to the network.

The IEEE 802.15.4 standard defines four basic frame types which are beacon,
used by a coordinator to transmit beacons, a data frame, used for all transfers
of data, an acknowledgment frame, used for confirming successful frame re-
ception and a MAC command frame, used for handling all MAC peer entity
control transfers.

16

2.4.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

ZigBee

ZigBee is a specification for a suite of high level communication protocols used
to create personal area networks; built for small, low power digital radios based
on the IEEE 802.15.4 standard. ZigBee is used in applications that require a low
data rate, long battery life, and secure networking. This standard has a defined
rate of 250 kbit/s, best suited for periodic or intermittent data or a single signal
transmission from a sensor or input device. The transmission distances range
from 10 to 100 meters line of sight, depending on power output and environ-
mental characteristics. The technology defined by the ZigBee specification is
intended to be simpler and less expensive than other WPANSs, such as Bluetooth
or Wi-Fi.

The ZigBee standard defines a stack shown in figure 2.14 which has a layered
structure with four distinct layers, the physical layer, the MAC layer, the net-
work layer and the application layer. The two bottom layers are defined by the
IEEE 802.15.4 standard. The network layer is the bottom layer defined by the
ZigBee standard which provides network configuration, manipulation, and mes-
sage routing. The routing protocol used by the network layer is the Ad hoc On-
Demand Distance Vector Routing Protocol (AODV). In order to find the desti-
nation device, it broadcasts out a route request to all of its neighbors. The
neighbors then broadcast the request to their neighbors, until the destination is
reached. Once the destination is reached, it sends its route reply via unicast
transmission following the lowest cost path back to the source. Once the source
receives the reply, it will update its routing table for the destination address with
the next hop in the path and the path cost. An application layer then provides
the intended function of the device [17].

Application Layer (APL)

Application
Support

Sub-layer Defined in the
> ZigBee Specification

Application | ZigBee Device
Framework Object

Hetwork Layer (NWK)

Security || Message Routing | Metwork
Managem. Broker = Managem.| Managem.

Medium Access Control (MAC)

Beacon mode Hon-beacon mode
Slotted CSMASCA Hon slotted
GTS allecation CSMASCA

Physical Layer (PHY) IEEE 802.15.4 Standard

2.4 GHz/ 915 MHz/ 868 MHz/
250 kbps 40 kbps 20 kbps

Figure 2.14: ZigBee stack architecture.

ZigBee operates in the industrial, scientific and medical (ISM) radio bands: 868
MHz in Europe, 915 MHz in the USA and Australia and 2.4 GHz in most juris-
dictions worldwide. Data transmission rates vary from 20 kilobits/second in the
868 MHz frequency band to 250 kilobits/second in the 2.4 GHz frequency

17

243

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

band. The ZigBee network layer natively supports both star and tree typical
networks, and generic mesh networks; as reported in figure 2.15. Every network
must have one coordinator device, tasked with its creation, the control of its pa-
rameters and basic maintenance. Within star networks, the coordinator must be
the central node. Both trees and meshes allow the use of ZigBee routers to ex-
tend communication at the network level [18].

L_§ i ®
O O [] }
O' O [L
D Figure: Tree
Figure: Star Figure: Mesh

Figure 2.15 ZigBee network topologies

6LoWPAN

6LoWPAN is an acronym of IPv6 over Low power Wireless Personal Area Net-
works (WPAN). 6LoWPAN is the name of a working group in the Internet area
of the Internet Engineering Task Force (IETF). The 6LoWPAN concept origi-
nated from the idea that “the Internet Protocol (IP) could and should be applied
even to the smallest devices" and that low power devices with limited process-
ing capabilities should be able to participate in the Internet-of-Things [19].
6LoWPAN enables the use of IPv6 in Low Power and Lossy Networks (LLNs),
such as those based on the IEEE 802.15.4 standard. Given the limited packet
size and other constraints of this kind of devices, they cannot use the standard
IPv6 directly. Therefore, an adaptation layer to perform header compression,
fragmentation and address auto configuration is needed to use IPv6. The 6LoW-
PAN group thereby has encapsulation and header compression mechanisms that
allow IPv6 packets to be sent to and received from over IEEE 802.15.4 based
networks.

The 6LoWPAN architecture is made up of low-power wireless area networks
(LoWPANSs), which are connected to other IP networks through edge routers,
as is shown in figure 2.16. The edge router plays an important role as it routes
traffic in and out of the LOWPAN, while handling 6LoWPAN compression and
NeighborDiscovery for the LoOWPAN [19].

Each LoWPAN node is identified by a unique IPv6 address, and is capable of
sending and receiving IPv6 packets. Typically LoWPAN nodes support
ICMPv6 traffic and use the User Datagram Protocol (UDP) as a transport proto-
col. The whole 6LoWPAN protocol stack is shown in figure 2.17.

18

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Remote Server

Intemet

=
H=

I
Local Berver

Backhane link

LoWPAN Extended LoOWFAN

@ _ ® BLOWPAN Houter

@ BLOWPAN Node
Ad-hoc LaWPAN

Figure 2.16 6LoWPAN architecture

Application

ubDP ICMP

IPv6 with LOWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Figure 2.17 6LoWPAN protocol stack.

2.4.4 REST and CoAP

One of the major benefits of IP based networking in LLNs is to enable the use
of standard web service architectures without using application gateways. As a
consequence, smart objects will not only be integrated with the Internet but also
with the web. This integration allows smart object applications to be built on

19

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

top of Representational State Transfer (REST) architectures and it is defined as
the Web of Things (WoT) [20].

In a REST architecture a resource is an abstraction controlled by the server and
identified by a Universal Resource Identifier (URI). The resources are accessed
and manipulated by an application protocol based on client/server request/re-
sponses. REST is not tied to a particular application protocol, however, the vast
majority of REST architectures currently use Hypertext Transfer Protocol
(HTTP). HTTP manipulates resources by means of its methods GET, POST,
PUT, DELETE [20].

REST architectures allow IoT applications to be developed on top of web ser-
vices. However, the standard HTTP protocol cannot be used in LLNs since this
protocol is relatively expensive for them, both in implementation code space
and network resource usage. Therefore, the Constrained RESTful environments
(CoRE) working group has defined a REST-based web transfer protocol called
Constrained Application Protocol (CoAP). CoAP includes the HTTP functional-
ities which have been redesigned considering the low processing power and en-
ergy consumption constraints of small embedded devices [20]. CoAP is based
on a REST architecture in which resources are server controlled abstractions
made available by an application process and identified by Universal Resource
Identifiers (URIs) and they can be manipulated by means of the same methods
as the ones used by HTTP.

The first significant difference between HTTP and CoAP is the transport layer.
HTTP relies on the Transmission Control Protocol (TCP). TCP’ flow control
mechanism is not appropriate for LLNs and its overhead is considered too high.
Therefore CoAP has been built on top of the User Datagram Protocol (UDP),
which has significantly lower overhead. As represented in figure 2.18, CoAP is
organized in two layers. The transaction layer handles the single message ex-
change between end points, which can be of four types: Confirmable (it re-
quires an acknowledgment), Non-confirmable (it does not need to be ac-
knowledged), Acknowledgment (it acknowledges a Confirmable message) and
Reset (it indicates that a Confirmable message has been received but context is
missing to be processed). It also provides support for multicast and congestion
control.

Request/Response
Transaction

UDP
6LoWPAN

Figure 2.18 CoAP protocol stack [20]

The Request/Response layer is responsible for the transmission of requests and
responses for the resource manipulation and transmission. A REST request is

20

2.5

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

piggybacked on a Confirmable or Non-confirmable message, while a REST re-
sponse is piggybacked on the related Acknowledgment message. Figure 2.19
shows an example of a typical REST request-response transaction.

CoAP CoAP
client sarver

CON (mid =123y GET Might

ACK (mid =123) 205 "<hghe=_."

Figure 2.19 CoAP request-response example, using a confirmable message.

The dual layer approach allows CoAP to provide reliability mechanisms even
without the use of TCP as transport protocol. In fact, a Confirmable message is
retransmitted using a default timeout and exponential back off between re-
transmissions, until the recipient sends the Acknowledgement message. In ad-
dition, it enables asynchronous communication, because when a CoAP server
receives a request which is not able to handle immediately, it first acknowledges
the reception of the message and sends back the response in an off-line fashion
[20].

One of the major design goals of CoAP has been to keep the message overhead
as small as possible and limit the use of fragmentation. CoAP uses a short fixed
length compact binary header of 4 bytes followed by compact binary options. A
typical request has a total header of about 10-20 bytes.

Since a resource on a CoAP server likely changes over time, the protocol allows
a client to constantly observe the resources. In a GET request, a client can indi-
cate its interest in further updates from a resource by specifying the “Observe”
option. If the server accepts this option, whenever the state of the resource
changes it notifies each client having an observation relationship with the re-
source. The duration of the observation relationship is negotiated during the
registration procedure.

Although CoAP is a work in progress, various open source implementations are
already available. The two most known operating systems for WSNs, Contiki
and Tiny OS, have already released CoAP implementation libraries, named Er-
bium and CoapBlib respectively.

Related work

Applications that utilize information from sensors attached to different things in
order to provide more personalized, automatized, or even intelligent behavior
are commonly referred to as Internet-of-Things applications.[8] The prediction
is that these kinds of applications will be able to interact with an IoT, a world-
wide network of interconnected everyday objects, and thereby be able to dis-
play context-aware behavior. [21] There is also an interesting relationship be-

21

2.5.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

tween the IoT and big data, since all of the connected things will produce and
consume large amounts of data. In order to enable a widespread proliferation of
IoT services there must be a common platform for dissemination of sensor and
actuator information on a global scale. However, there is a large number of
practical difficulties that must be solved to achieve this goal. The main require-
ments that an [oT platform should satisfy are the following:

Scalable: logarithmic or better scaling of communication load in end points;
No central point of failure: fully distributed platform;

Bidirectional: enabling communication between sensors/actuators and the IoT
applications in both ways;

Fast: capable of signaling in real time between end points;
Lightweight: able to run on devices with limited resources;

Seamless: capable of handling heterogeneous infrastructures and different end
user devices;

Stable: all queries into the platform should return an answer;

Extensible: capable of adding new features and modules without complete re-
distribution.

SensibleThings

The SensibleThings platform is an open source architecture for enabling IoT
based applications, developed by Mid Sweden University. An overview of the
platform and its components is presented in figure 2.20. It shows how the plat-
form is distributed over a number of entities connected to the Internet. The fig-
ure shows how an application which is running a client of the SensibleThings
platform (SensibleThinghs instance) communicates with other entities running
the platform. A client can acquire sensor and actuator information of the other
participants. Furthermore, the platform can act as both a producer and consumer
of sensor and actuator information at the same time, enabling bidirectional ex-
change of context information [22].

Entity 1 Entity 2 Entity 3
\‘[Sensors] “ [Application] [Actuators]
e R . . V. gt
isensim.ﬂhingy[BaraiblaTHr-;s] [EeraiblaTHr-;aJ [Eer aihlaTHr-;ﬂ E
i Platform Instance Instance Instance E

I_J": 1F

e

Internet

Figure 2.20: Overview on the function of the SensibleThings platform.

22

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

The SensibleThing platform is a realization and implementation of the Medi-
aSense architecture explained in [22]. The code is based on a fork of the Medi-
aSense platform, but with significant improvement. The focus has been on the
open source aspect and maintaining the commercialization possibilities of ap-
plications that are utilizing the platform. The platform is organized in several
levels, as represented in figure 2.21.

I Direct Sensor and Actuator Access I [Intermet-of-Things Applications]

| sensibleThings Interface] Interface :
| Sensor& Actuator .L
Loyer i Addin |

i [Optimizations]
i : ‘.‘.'.:‘.‘.‘.'.:‘.‘.‘.'.:‘.‘.‘.'.:l I'.'.:‘.‘.‘.'.:‘.‘.‘.'.:‘.‘.‘.'.:" [.::‘.‘.'.'.:‘.‘.‘.'.:‘.‘.‘.'.:‘.‘.‘.'.::‘.‘.'.::‘.‘.i
[Sensor and Actuator Abstraction] Dlssemination Core H
E i - Dissernination :
I l I | H Lookup Service Layer :

. End to End [Gateways Communication

TI I I ; u '"“.‘.'.'.'.'.‘.'.'.'.'.‘.'.'.'.'.‘.'.’.'.'.‘l I‘.'.'.‘.'.'.'.'.‘.'.'.'.'.‘.'.'.'.'.‘.'.'.'.'.‘.'.’.'.'.'.‘.'.'.'.'.‘.'.'.'.'.‘.'.'.'.'.‘.'.’ '.'.':
i Sensor & Actuator Netwaorks IP Netwarking I Metworking
: Physical Sensors and Actuators Physical Metwork Medium Loyt
S PTTTTTT TP T AR T ATV T T VRN TPV RT T VRN T TRRTTURRTTTU 4 & Awaa U vRNUTIRNUTERNTT VNN TUURNTTTRANTPRAT T RAU T NV A VN RN N U RN R RRN 06 RR0 BRaa R AR R ana

Figure 2.21: SensibleThings platform architecture.

Interface Layer: the public interface through which applications interact with
the SensibleThings platform, using its APT's.

Add in Layer: enables developers to add optional functionality and optimiza-
tion algorithms to the platform, which can be loaded and unloaded in runtime
when needed.

Dissemination Layer: it enables dissemination of information between all enti-
ties that participate in the system and are connected to the platform. Therefore,
it enables registration of sensors in the platform, resolving the location of a sen-
sor in order to find it, and the communication to retrieve the actual sensor val-
ues.

Networking Layer: it manages connection of different entities over current In-
ternet Protocol (IP) based infrastructure.

Sensor and Actuator Layer: it enables different sensors and actuators to con-
nect into the platform into two different ways. If they are accessible from the
application code, they can be connected directly. Otherwise, the sensors and ac-
tuators can connect through the sensor and actuator abstraction, which enables
connectivity either directly to Wireless Sensor Networks or via more powerful
gateways.

23

2.5.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

ETSI M2M

The ETSI Machine to Machine (M2M) technical committee was created in Jan-
uary 2009 at the request of many telecom operators to create a standard system-
level architecture for mass scale M2M applications. The ETSI M2M architec-
ture is resource centric and adopts the RESTful style. It aims at integrating all
of the existing standard or proprietary automation protocols into a common ar-
chitecture. The ETSI M2M system architecture, represented in Figure 2.22, sep-
arates the M2M device domain and the network and applications domain.

M2M applicatiana

MZM core network (eg. IGPR TISPAMN]

Figure 2.22 ETSI M2M architecture [23].

M2M Device: this kind of device can connect to the M2M network domain di-
rectly or via M2M gateways acting as a network proxy. A M2M Device is a de-
vice capable of replying to request for data contained within those devices or
capable of transmitting data autonomously.

M2M Gateway: a gateway module runs a M2M application which offers M2M
capabilities and act as a bridge between M2M devices and the M2M Access
Network. Devices without M2M capabilities built-in can go through M2M gate-
way to interconnect and interwork with the M2M access network. M2M gate-
ways can be cascaded or operate in parallel mode.

M2M Area Network: a wired or wireless access network provides connectivity
and transport of M2M data/messages between M2M devices, M2M gateways
and M2M servers. Some M2M area network technologies include: PWLAN,
ZWave, Zigbee, Bluetooth.

M2M Access Network: it manages the communication between the M2M
Gateways and M2M Applications. This layer is also responsible for defining the
transport protocol used for network communication, such as IP transport net-
works.

24

2.5.3

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Core network layer: it provides service and network control functions, net-
work to network interconnect and roaming support. This is the central part of
the M2M communication network that provides various services to service
providers connected via the access network such as WiMAX, DSL, WLAN.

M2M service capabilities layer: this is an abstraction layer of the M2M soft-
ware where common functionalities are implemented to serve the M2M appli-
cation. It provides a set of APIs to expose the M2M service capabilities closest
to the application using them.

M2M Application: this is a software running in the middleware layer designed
to perform specific business processes over the M2M Core network [23].

SENSEWEB

SenseWeb is a IoT platform developed by Microsoft, through which IoT appli-
cations can initiate and access sensor data streams from shared sensors across
the entire Internet. The SenseWeb infrastructure helps ensure optimal sensor se-
lection for each application and efficient sharing of sensor streams among mul-
tiple applications. The SenseWeb layer architecture is shown in figure 2.23.

App 1
Transformer 2 Transformer 2
Transformer 1 archive iconizer

Coordinator
[SensaDB | Tasking module |

Muobile proxy

Figure 2.23: SenseWeb architecture [24].

Coordinator layer: is the central point of access into the system for all applica-
tions and sensor contributors. The functions of the coordinator are internally di-
vided between two components: the tasking module and senseDB. The tasking
module accepts the application's sensing queries and tries to satisfy these from
available sensing resources considering their capabilities. The senseDB man-
ages the overlap among multiple application needs. Specifically, when multiple
applications need data from overlapping space time windows, senseDB at-
tempts to minimize the load on the sensors or the respective sensor gateways by
combining the requests for common data and using a cache for recently ac-
cessed data. SenseDB is also responsible for indexing the sensor characteristics

25

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

and other shared resources in the system to enable applications to discover what
is available for their use.

Sensor gateways. its main task is to hide the complexity regarding the hetero-
geneity of communications interfaces used by sensor nodes. The gateway might
also implement sharing policies defined by the contributor of the sensors which
are using it. For instance, the gateway might maintain all raw data in its local
database, possibly for local applications the sensor owner runs, but only make
certain nonprivate sensitive parts of the data or data at lower sampling rates
available to the rest of SenseWeb.

Mobile proxy: is a special gateway built for mobile sensors, which makes the
mobility of sensing devices transparent to the applications providing location-
based access to sensor readings. Applications simply express their sensing
needs and the mobile proxy returns data from any devices that can satisfy those
needs.

Data transformer: a transformer converts data semantics through processing.
Data transformers can also convert units, fuse data, and provide data visualiza-
tion services. Transformers are indexed at the coordinator and applications
might discover and use them as needed [24].

26

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Methodology

In order to reach the goals described in chapter 1.3, this project will be divided
into three different phases: a study phase, an implementation phase and an eval-
uation phase. During the first phase a survey about different possibilities of con-
necting WSN to an [oT will be made; then the most common operating systems
and communication protocols used in WSN will be analyzed. After these sur-
veys, a solution for the problem statement explained in chapter 1.2 will be de-
signed and then implemented. In the last phase the performance of the devel-
oped solution will be evaluated and finally a Proof of Concept application will
be created. During the whole work process, I will have weekly meetings with
the Professor in order to show my own progress through PowerPoint presenta-
tions. To achieve all the goals the following methods are to be used:

To achieve goal 1 on finding three different solutions of connecting WSNs to an
IoT scenario, documents will be collected regarding existing software platforms
which enable the communication between WSN and loT applications. This will
will be done by searching articles and papers on research databases.

To achieve goal 2 on understanding the most common OS used in WSN, the
most common operating systems for Wireless Sensor Networks will be as-
sessed, by searching the Internet and find out what other people have used.

To achieve goal 3 on investigating which communication protocols these OS
support, documentation about these OS will be scrutinized and some simula-
tions will be executed using the supported communication protocol, in order to
learn how to use it.

To achieve goal 4 on implementing a communication stack which enables com-
munication between Wireless Sensor Networks and IoT applications, the docu-
mentation of the platform will be analyzed and some simulations will be run in
order to discover its features. This platform will be extended by implementing a
communication stack which connects Wireless Sensor Networks with IoT appli-
cations.

To achieve goal 5 on evaluating the performances and responsiveness of my im-
plemented solution, tests will be executed to measure the response time, the
scalability and the overhead introduced by this communication stack.

To achieve goal 6 on finding possible real-world applications for the imple-
mented solution, various scenarios will be investigated in order to understand
which would be the best application for the communication stack that has been
developed. Finally, a Proof of Concept application will be developed in order to
simulate the chosen application, implementing some policies to enable the col-
laboration between multiple Wireless Sensor Networks.

27

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

After having achieved all the goals, the entire thesis work process will be evalu-
ated by investigating other possible approaches. A survey will be then per-
formed in order to understand if I would have had different results using differ-
ent systems, such as a different OS and communication protocol for the WSN.
Finally, possible future work related to my thesis will be proposed.

28

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Implementation

In this chapter the implementation of the CoAP communication stack is de-
scribed. As presented in figure 4.1 the CoAP stack extends the SensibleThings
platform and it is formed by two main classes: CoapSensorActuator and
CoapSensorGateway. The first one allows the communication between the plat-
form and a wireless sensor network which supports the CoAP protocol. The
second one realizes a gateway between the CoapSensorActuator class and sen-
sors which do not support the CoAP protocol. In this chapter the architecture of
the wireless sensor network which has been utilized in this thesis is explained.
Next, the structure of CoAP packets and the extended layers of the Sensi-
bleThings platform are described.

Application

Application .!‘

SensibleThings

Application

Sensor node

Figure 4.1: CoAP communication stack architecture

The architecture of the Wireless Sensor Network used in this work consists of
one mote connected to a computer via a USB cable, which acts as a sink, and
one or more motes that communicate with the sink through the IEEE 802.15.4
medium, which are the actual sensor nodes. The motes that have been used in
this thesis are TelosB motes running Tiny OS as operating system. Figure 4.2
shows an example of a Wireless Sensor Network.

Figure 4.2: TelosB motes wireless sensor network

29

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

In order to use the CoAP protocol on the motes, the CoAPBIib library has been
installed on the sensor nodes. Moreover, to enable the communication between
the motes and the Linux machine the PPPRouter application needs to be in-
stalled on the sink mote. This application is [IPv6 based and basically
receives/forwards packets on a specified IEEE 802.15.4 channel and
forwards/receive the packets to the computer using the Point to Point Protocol.

In appendix A some guidelines on how to install the CoapBlip library and the
PPPRouter application are reported.

Each TelosB mote is equipped with multiple sensors which are identified by
specific URI's, as represented in the following table:

Sensor URI
Led \l
Temperature \st
Humidity \sh
Voltage \sv
Temperature + Humidity + Voltage \r

In order to test the system, within the CoapBlip library an example client appli-
cation is provided (at /support/sdk/c/coap/examples). With this application, it is
possible to send CoAP requests to the motes from the Linux Terminal. For ex-
ample, the request for getting the leds' status would be:”./coap-client coap://
[fec0::3]/1” [25]. In figure 4.3 an output for this request is represented.

[« 1-10

ale@ale-ubuntu: fopt/tinyos-2.1.2/support/sdkfc/coap/fexamples

ale@ale-ubuntu:~$ cd STOSROOT/support/sdk/c/coap/examples
ale@ale-ubuntu: fopt/tinyos-2.1.2/support/sdk/c/coap/examples$./coap-client coap
:f/[fecO::3]/1
\x41\x01\xE6\xBC\x91\x6C
send to [fec®::3]:61616:
pdu (6 bytes) wv:1 t:® oc:1 c:1 1d:59068 o: 9:'1l'
Jun 05 13:22:24 ** recelved from [fec0::3]:61616:
pdu (5 bytes) v:1 t:2 oc:® c:80 id:59068
data: '\x03'
Jun 05 13:22:24 *** removed transaction 59068
** process pdu: pdu (5 bytes) v:1 t:2 oc:0 c:80 1d:59068
data: '\x83'

** led @ (red) ON
** led 1 (green) ON
** led 2 (blue) OFF

ale@ale-ubuntu: fopt/tinyos-2.1.2/support/sdk/c/coap/examples$ I

Figure 4.3: CoAP GET request example

30

4.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

SensibleThings platform

The CoAP communication stack extends the Sensor and Actuator layer of the
SensibleThings platform, which has already been described in paragraph 2.5.1.
This platform enables multiple nodes to communicate and to exchange data
over the Internet. This feature then has been used to connect multiple remote
Wireless Sensor Networks together and to build applications for managing the
retrieved data from various nodes.

A component called SensorActuatorManager has been used in order to bind the
CoAP stack with the SensibleThings platform. This component is included in
the Sensor and Actuator layer and his main task is to manage the requests be-
tween the platform and this layer. It implements six methods:

* connectSensorActuator(): it is for connecting any sensor/actuator in the
network. Basically, after this call, the sensor/actuator will be registered
and available inside the platform.

* disconnectSensorActuator() and disconnectAllSensorActuators(): are
called for disconnecting a specific sensor and all the sensors from the
platform, respectively.

* HandleGetEvent() and HandleSetEvent(): this method is called from the
platform, to forward a getEvent/setEvent to the sensors.

In figure 4.4 the sequence of methods called within a GET request between two
remote nodes is shown.

Sensor Sensor SensibleThings Application
ActuatorManager Flatform
TT T TT TT
Il ConnectSensorActuator!! H H
I /i|Regi5ter(uci,addressh| I
1 I =T I
1 1 I I
1 1 I I
L i i resolveluci) 5
1 1 (= L
1 1 I I
1 1 I I
1 1 u______agdLeES_____;u
1 I I I

I I I N
I
! ! I !
:: :: get{ygi.address) L
|- CoapGet(uci,address) |, :: i
1 1 5 i
I I . ii i
S ”___Dgtﬂ‘hﬁa_“iel_ e s s e sl
I I H i
I I 7 i
I I i N
1 1 it H
I I 5 i
I I ii i

Figure 4.4: GET request

31

4.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

CoAP packet structure

A CoAP packet is formed by a 4 bytes binary header followed by an option
field and a payload. The length of the message payload is implied by the
datagram packet length. The structure of a CoAP packet is shown in figure 4.5.

Figure 4.5: CoAP packet format
The fields within the packet header are:

Ver: Version, 2 bit unsigned integer. This value indicates the version of CoAP
protocol. To set this field correctly for the CoAPBIib library, 1 has to be set as
its value. Other values are reserved for future versions.

T: Transaction type field, 2 bit unsigned integer. This field indicates if this mes-
sage is Confirmable (0), Non-confirmable (1), Acknowledgment (2) or Reset

3).

OC: Option count field, 4 bit unsigned integer. This field indicates how many
option headers follow the base headers. If set to 0 the payload (if any) immedi-
ately follows the base header.

Code: 8 bit unsigned integer. It indicates the Method or the Response Code of a
message. The method codes are reported in the following table:

BCST P
FUT 3
DELETE 4

The CoAPBIip library only allows get and put methods, however. The values
40-225 are used for Response Codes. The CoAP stack developed in this thesis
only uses the values 80 (HTTP code: 200 OK) and 160 (HTTP code: 400 Bad
request).

Transaction ID: 16 bit unsigned integer. This value identifies each CoAP trans-
action since this is a unique ID assigned by the source. The response message
for each request must contain the same transaction ID as the request message.
This value must also be changed for each new request except when retransmit-
ting a request.

32

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

CoAP messages may also include one or more header options in Type Length
Format (TLV) and they have to appear in order of option type. The option types
used in the CoAP stack were: URI path (for specifying the sensor URI within a
sensor node, Type number: 9),Token (for sending the data payload in a PUT
request, Type number: 11) and Content Type (which indicates the Internet me-
dia type of the token, Type number: 1). A delta encoding is used between each
option header, with the Type identifier for each Option calculated as the sum of
its Option Delta field and the Type identifier of the preceding Option in the
message, if any, or zero otherwise. Each option header also includes a Length
field, as represented in figure 4.6.

option delta length

Figure 4.6: Option field format.

Option delta: 4 bit unsigned integer. This field defines the difference between
the option Type of this option and the previous one (or zero for the first option).
In other words, the Type identifier is calculated by simply summing the Option
delta fields of this one and previous options.

Length: 4 bit unsigned integer. This field specifies the length of the option pay-
load.

Figure 4.7 shows a basic request sequence. A client makes a Confirmable GET
request for the resource/temperature to the server with a Transaction ID of
1234. The request includes one URI-Path Option (delta 0 + 9 = 9) "tempera-
ture" of Len = 11. The corresponding Acknowledgment is of Code 200 OK and
includes a Payload of "22.3 C". The Transaction ID is 1234, thus the transac-
tion is successfully completed. The response Content type of 0 (text/plain) is
assumed as there is no Content type Option [26].

33

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack

Alessandro Aloisi 2014-07-22
CLIENT SERVER
————— CON + GET /temperature [TID=1234 —_————
0 1 2 3
0123456785012 34567828901234567T89801
1 0 1 GET = 1 TID=1234
g 11 "temperature™ (11 Octets)
CLIENT SERVER
L ACE + 200 CE [TID=1234] -—-——————-
0 1 z 3
0123 4567853012345 789 0123456788501

Figure 4.7: CoAP get transaction example.

4.3 CoapSensorActuator

CoapSensorActuator is responsible for the communication between the plat-
form and the sink of a wireless sensor network, through the CoAP protocol. Its
main task is to create CoAP packets, send them to a mote and parse the re-
sponse message.

It extends the SensorActuator abstract class and implements its two methods
getValue() and setValue(), as shown in figure 4.8. The constructor gets the IP
address of the mote and the sensor UCI. At the end of the IP address the URI of
the sensor also needs to be specified by the user.

34

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

<<jnterface>>
SensorActuator

CoapSensorActuator
- uri: String
- ip @ String
- ugi @ String
+ getialue()
+ setValue()
- createCoapGetMessage()
- readResult()
- binaryToHex({}
- setvalue()
- createCoapPutMessage()
- fromHexString()

Figure 4.8: CoapSensorActuator UML scheme.

getValue(): this method is called by the SensibleThings platform every time a
CoAP GET request has to be sent to a mote. It is a synchronized method be-
cause only one thread at a time can send a GET request to a mote. According to
the CoAP protocol standard, getValue creates a CoAP packet using the cre-
ateCoapGetMessage() method. Then it uses a DatagramSocket to send the
packet to the mote at the specific IP address set by the user. However, the num-
ber of the port cannot be chosen by the user, since CoAPBlip on TelosB motes
always uses the default port 61616 to receive the requests. If the request has
been sent correctly, a response CoAP packet is received on the same socket. To
parse the received packet, in order to extract the value of the sensor reading, the
method readResult() is called.

Since a response message can never be received from the mote, a timer of 4
seconds is set during the creation of the DatagramSocket. If after that period of
time the response has not been received, the lock on the SensorActuator object
is released and a new GET request can be sent.

createCoapGetMessage(): this method builds a CoAP GET message, accord-
ing to what has been explained in paragraph 4.3.

An example packet built by this method for a GET led request is shown in fig-
ure 4.9.

Figure 4.9: CoAP GET packet.

35

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

The first two bytes are constant for each packet created by the create-
CoapGetMessage method. Each byte has the following meaning:

0x41 (0100 0001): within this byte the first three fields of a CoAP packet are
set. The two initial bits represent the protocol version number, which must be
set to 1. Then the 2 bits Transaction Type is set to 0, which means that the cur-
rent packet is a Confirmable message. The last 4 bits represent the number of
the options that follows the packet header, which is set to 1. Since this request
has to be sent to a specific sensor within the addressed mote, its URI has to be
specified in the packet. Then the only option used for this request is the sensor's
URL

0x01: this byte represents the method code. For a GET request, the value of this
field has to be 1.

0xC3\0x5A: this pair of bytes represent the Transaction ID. These values must
be different every time a new packet is created. The Random Java Object was
used to generate these values.

0x91 (1001 0001): this byte is the option header. The first four bits represent the
option type, expressed in TLV format. Since this is the only option in this
packet, the TLV value corresponds to the option type number (9 for the URI
option). The length (in bytes) of the actual option value is set on the last 4 bits.

0x6C: this is the option payload, which contains the value of the option. Since
the only option set by this method is the URI, this value represents that address
in ASCII code. (6C is the hexadecimal ASCII code for the character 'l', which is
the led URI.)

readResult(): this method parses a CoAP message and if in the response code
field does not contain an error code, it extracts the payload data. Since the data
sent by the motes are in binary format, in order to make them readable the bi-
naryloHex() method is called. However, TelosB motes sensor data need another
conversion to be correctly read. This conversion consists of swapping the order
of bytes and then in dividing the data by 100. However, since readResult() is
meant to read data from a general mote, this conversion needs to be imple-
mented at application level.

Another issue that has been faced in this method was how to determine the end
of the CoAP packet, since its size depends only on the datagram packet length
and no termination characters were set by the CoAP protocol. Thus a packet
was considered terminated if a sequence of five 0x00 bytes were found.

binaryToHex(): this method converts binary data to hexadecimal format. It
uses the StringBuilder java object in order to format each byte to hexadecimal
format.

setValue(): this method is called by the SensibleThings platform every time a
CoAP set request is sent to a mote. As getValue(), this is a synchronized method

36

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

which uses a DatagramSocket to send a set request to a mote. To create a Coap-
Put packet, the method createCoapPutMessage() is called, passing the value to
set as an argument. After having sent the packet to a mote, a response message
is received. It contains a response code which indicates the status of the PUT re-
quest.

createCoapPutMessage(): this method builds a CoAP packet for a PUT re-
quest, setting the specified value as payload of the packet. Since the value to set
needs to be converted in binary format, the method fromHexString() is called.

An example packet created by this method is represented in figure 4.10.

Figure 4.10: CoAP PUT packet.

The first two bytes and the first option field have the same value for every
packet created by this method. These bytes have the following meanings:

0x43 (0100 0011): the only difference between this field and the first one of a
GET request is that a PUT requires 3 options instead of 1.

0x03: this value represents the method code for a CoAP PUT request.

0xCF\0X81: Transaction ID. As for the createGetPacket method, the Random
Java Object is used in order to have different values for each transaction.

0x11: this byte is the header of the first option in this packet. The option type
number is 1 (Content type option) and the length of its payload is set to 1.

0x2A: it is the ASCII code for the Content type option, which corresponds to '*'
(which means 'text/plain').

0x81: this byte is the header of the second option. Since there is another option
before this field, the option type number does not correspond to the actual type
number, but this value is calculated according to the TLV format. Therefore the
actual type number of the current option is calculated by summing the option
delta of the previous option with this one, that is 9 (URI). The length of the cur-
rent URI is set to 1 byte.

0x6C: is the ASCII code of the 'I' character.

0x22: is the header of the third option. The option type number is calculated by
summing this option delta with the option deltas of the two previous options,
that is 11 (Token).

0x33\0x61: when a Token option is used, a constant value ('3a') must be set be-
fore the payload. Then these 2 bytes represent this value in ASCII code format.

37

4.4

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

0x02: is the packet payload. This value represents the led status that the user
wants to set.

fromHexString(): this method converts a hexadecimal string in an array of
bytes. It basically parses two hexadecimal values at a time from the string and it
converts them to binary format using the /nteger.parselnt() function.

CoapSensorGateway

CoapSensorGateway enables the communication between the CoapSensorActu-
ator and sensor nodes which do not support the CoAP protocol. It is responsible
for converting a CoAP request to the specific format used by the sensor node
which is currently connected to the SensibleThings platform.

This class extends the SensorGateway abstract class and realizes a demon Java
thread which is always listening to incoming messages from a Datagram
Socket. Once a packet is received it checks if it is a CoAP packet and then
parses all the single bytes in order to check if it is well formed. Then the type of
the request and the sensor's URI are extracted from the packet.

If it is a GET request the actual request to the sensor node is sent with the call
of the getEvent() method. This method has to be implemented by the developer
within a new class which implements the SensorGatewayListener interface.
This class has to be set as the argument of the CoapSensorGateway constructor.
Then a response CoAP packet is built and, if the GET request was correctly sent
to the sensor node, the sensor data are set as payload. Otherwise an error code is
set in the response code field.

In case the packet received from the socket was for a PUT request, the
setEvent() method is called for sending the actual request to the sensor node. As
the getEvent() method, it also has to be defined by the developer within a new
class which implements the SensorGatewayListener interface.

Eventually the response message is sent back to the address from which the re-
quest was received.

In figure 4.11 a flow chart representing the sequence of the main operations ex-
ecuted by the CoapSensorGateway is represented. Due to space limitations, a
programming language syntax has been used: “packet[i]” represents the i-th
byte of the received packet, while “||” and “&&” represents the conjunctions
“or” and “and”, respectively.

38

Enabling communication between Wireless Sensor Networks and the Internet-

of-Things — A CoAP communication stack
Alessandro Aloisi

2014-07-22

Receiva
packet

packet[(]
==0xd1||Ox43

Mo

No packet[1]

==0x01||0x03

¥ Sel random
Transaction |1D

Set error flag
(0xAD)

Y packet[5]==0x24

Check method

macket[d] ==0x11 &%

Extract sensor
URI

No

packet[4]
=0x90+uriLenglh

{<uri=|0x22|0x33|

k 4

Set error flag
(0xAD)

No

Extract sansor
URI
v
Tall The packet[6]
getEvent() =0xB0-+uriLength
method
Convert the Converl he
result in binary value to set in
format binary format
* [+ I1I'th
all the
Set 0x60 as setEvent()
Response Code methoed

f Send |l'
L reasponsa -+

r 3

packet

[

Figure 4.11: CoapSensorGateway's operations flowchart.

39

5.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Results

This chapter explains all the tests that have been made in order to evaluate the
CoAP communication stack. The first parameter that has been measured is the
response time; which describes how fast a CoAP transaction is completed. The
second paragraph describes measurements of the size of a CoAP packet fol-
lowed by a comparision between CoAP packet and standard UDP packet sent
over the SensibleThings platform. Finally the scalability of the CoAP stack has
been evaluated.

Response time

The first measurement that has been made to evaluate the CoAP stack was to
measure how long a CoAP transaction takes to be completed. The Java API
System.nanoTime() was used to make these measurements. This API returns the
current value of the most precise available system timer, in nanoseconds. The
criteria used in determining the response time was to sample twenty different
response times and then to calculate the average and the standard deviation of
these values.

First, the response time between the CoapSensorActuator component and a
TelosB sink was measured. The measurements are related to the GET and PUT
led requests and also GET temperature requests. To measure the transaction
time, two timers have been used: the first one samples the current time just be-
fore the CoapSensorActuator sends a CoAP request packet and the second one
measures the time after the data payload has been extracted from the response
packet. The difference between these two values represents the duration of a
CoAP transaction.

Within a single transaction, the CoAP request packet building time and CoAP
response parsing time were also measured. In figure 5.1 the scenario of this test
is shown, while in figures 5.2, 5.3 and 5.4 these measurements are reported.

Transaction time
L [|
1 1

Pasket building Pasket pa rsing Messages Exchange

CoapSensorActuator —_—) ﬁ
ﬁ @

®
& ®

WSMN

Figure 5.1: CoapSensorActuator response time test scenario.

40

ms

ms

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

The values reported in figure 5.2 show that building packets for PUT requests
takes a little bit more time than building get packets. This is because CoAP
packets for PUT requests have more fields than GET packets (as explained in
paragraph 4.3) and then more calculations are made to build the packet. How-
ever, building CoAP packets takes very little time, so this difference is insignifi-
cant.

0,15
0,13
0,11
0,09
0,07 W Average
0,05

0,03

0,01

-0,01 Get led Put led Get temperature

Figure 5.2: Packet building time.

85
75

65

55 M Awerage

45

35

25

Get led Get temperature

Figure 5.3: Packet parsing time measurements.

41

ms

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Figure 5.3 shows the time required for parsing a CoAP response packet sent
back from the sink of a WSN. The duration for both the requests is almost
equivalent, however, parsing a GET temperature response packet takes a little
bit more time because the data payload of these packets is always bigger than
the one in the response packet for a led request.

400
350
300
250
200
150

114,55

100

5
50

Get led Put led Get temperature

Figure 5.4: Transaction time measurements.

In figure 5.4 the whole duration of a CoAP request is represented. From this fig-
ure it is clear that GET temperature is the request that takes more time so far.
Comparing this figure with figure 5.3 it can be assumed that for a get led re-
quest almost half of the transaction time is taken for parsing the response packet
and the remaining time is related to the communication delay with the WSN
and for the computation inside the sink. On the other hand, for a GET tempera-
ture request the packet parsing time is just a small part of the transaction time.
This is because for this type of request the sink has to perform more computa-
tions than for a led request. Many of these operations are performed to format
the temperature data, which have to be divided by 100 and sent in reverse order.

Another value that was measured was the overhead introduced by the Sensi-
bleThings platform. Time was measured between a request and a response
packet within a single CoAP transaction to travel between two remote nodes
connected by the platform. The first node was a computer which was running
an application for retrieving sensor data from a remote node, which was a WSN
connected to the SensibleThings platform; as represented in figure 5.5. GET led
and GET temperature requests were measured, as shown in figure 5.6.

42

W Awerage

ms

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Transaction time

CoapSensorActuator -

[Coap response] - b

.
& WSN ®

Figure 5.5: SensibleThings overhead test scenario.

500
450
400
350
300 278,8
250
200
150
100

50

460,77

B Direct communication
B Through SensibleThings

346,8 I

Get led Get temperature

114,55 I

Figure 5.6: Average transaction time.

In order to evaluate the CoAP stack, the CoapSensorGateway was taken into
consideration. To measure the overhead introduced by this component a Rasp-
berry Pi device was used.

The first step was to measure the transaction time between the Raspberry Pi
(which was directly connected to the SensibleThings platform) and a remote
computer which was running a simple application for sending GET requests
through the platform. To connect the Raspberry Pi to the SensibleThings plat-
form, the software of the platform was installed on the Raspberry Pi and then a
simple application was run on it to register its IP address and its sensor UCI in-
side the platform. In this way the Raspberry Pi could directly receive requests
and send responses from and to the platform.

The second step was to use the CoapSensorGateway to connect the Raspberry
Pi to the SensibleThings and then measure the transaction time between this de-

43

ms

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

vice and a remote computer. In this scenario the requests sent by the remote ap-
plication are converted in CoAP requests by the CoapSensorActuator and then
handled by the CoapSensorGateway which is directly connected to the Rasp-
berry Pi through a datagram socket. In figure 5.7 both the scenarios are repre-
sented, while in figure 5.8 the measurements are reported.

Scenario 1

Application SensibleThings

&

Raspberry Pi

Scenario 2

Application SensibleThings

.Q. CoapSensorActuator CoapSensorGateway

Raspberry Pi

Figure 5.7: CoapSensorGateway test scenarios.

390

340

260 288,7

240 212

190 B Average transaction time
140

90

40

-10

Scenario 1 Scenario 2

Figure 5.8: CoapSensorGateway test results.

44

5.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

From the test results it appears that the overhead introduced by the CoapSensor-
Gateway is pretty low, however, the high value of the standard deviation says
that the duration of each transaction is much more variable than the one in the
first scenario.

Packet size

The second parameter used to evaluate the CoAP stack was the size of the pack-
ets. In order to extract packets from the network dataflow a software named
Wireshark was used. Wireshark is a free and open source packet analyzer. It is
used for network troubleshooting, analysis, software and communications pro-
tocol development. This software allows the user to put network interface con-
trollers in order to see all traffic visible on that interface.

The goal was to compare the GET packets sent over the SensibleThings plat-
form with the CoAP GET packets sent from the CoapSensorActuator to the
WSN and then analyze their size. Two computers and a WSN have been used in
this test. The first computer was running a simple application to send GET re-
quests to a remote WSN through the SensibleThings platform, while the second
computer was directly connected to the WSN and had the task of managing the
CoAP communication with the WSN (as represented in figure 5.9).

CoapSensorActuator -

| Coap response | -) b

".-*.-.. :
T~

WSN

Figure 5.9: Packet size test scenario.

No. Time Source Destination Protocol Length Info

193.16.119.42 192.168.1.3 TCP 264 14523 > 46346 [PSH, ACK] Seq=948 Acl

96 5.156854
b Frame 95: 863 bytes on wire (6984 bits), 863 bytes captured (6984 bits)

» Ethernet II, Src: Intel 68:fa:3e (0@:18:de:68:fa:3e), Dst: ©8:bd:43:64:1a:f6 (08:bd:43:64:1a:76)
b Internet Protocol Version 4, Src: 192.168.1.3 (192.168.1.3), Dst: 193.10.119.42 (193.10.119.42)

» Transmission Control Protocol, Src Port: 46346 (46346), Dst Port: 14523 (14523), Seq: 727, Ack: 949
» Data (797 bytes)

Figure 5.10: SensibleThings GET packet.

No. Time Source Destination Protocol Length Info
1 0.000060 fecd::100 feco::3 COAP 71 Confirmable, GET
2 ©.286539 feco::3 feco::100 COAP 78 Acknowledgement, 280 OK

» Frame 1: 71 bytes on wire (568 bits), 71 bytes captured (568 bits)

b Linux cooked capture

» Internet Protocol Version 6, Src: fecB®::100 (fec@::180), Dst: fec::3 (fecd::3)
» User Datagram Protocol, Src Port: 33522 (33522), Dst Port: 61616 (61616)

» Constrained Application Protocol, TID: 57300, Length: 7

Figure 5.11: CoAP GET packet.

45

5.3

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Comparing the packets shown in figures 5.10 and 5.11 it appears clear that
CoAP packets are smaller in size than the packets sent over the platform. The
actual size of a CoAP packet for a GET temperature request (that is the packet
from figure 5.9) is only 7 bytes but the whole size of the packet sent from the
CoapSensorActuator to the WSN is 71 bytes. This is because the CoAP protocol
relies on UDP as transport layer and IPv6 as network layer (as explained in
paragraph 2.4.4), so a packet must include both IPv6 and UDP headers in order
to be sent over the network. On the other hand, packets sent over the Sensi-
bleThings platform are much bigger in size than CoAP packets because they are
serialized before being sent. An increase in the size of serialized data is one of
the consequences in using the serialization. Another difference between these
two types of packets is that SensibleThings packets rely on TCP and IPv4 as
transport protocol and network protocol, respectively.

Scalability

The third test that has been conducted was regarding the scalability of the de-
veloped communication stack. The first idea was to test the scalability of the
CoapSensorActuator component in order to measure how many motes could be
connected to the same sink before the requests coming from this WSN had
caused a drop in the performances of this component (that means a high in-
crease of the response time for each request). However, since each CoapSenso-
rActuator component can be bound to just one mote, this kind of test was then
considered not of interest. Nevertheless, the scalability of the CoapSensorGate-
way was considered of interest. Since this component is implemented as a dae-
mon thread which is continuously listening for incoming CoAP requests, a test
was run to see how many requests it could have managed before having a sig-
nificant drop in the response performance. The idea was to create a simple ap-
plication which created and then run a set of threads, where each one created
and used its own CoapSensorActuator object for sending multiple CoAP GET
requests to the CoapSensorGateway; as shown in figure 5.12. It was then mea-
sured how many requests coming at the same time from different threads could
have been managed by the CoapSensorGateway before having a significant in-
crease in the response time. To not add any further overhead, no sensor nodes
were connected to the CoapSensorGateway; therefore a static value was sent as
a response value for a GET request.

Thread 1 CoapSensorfctuator

11 -EL P CoapSensorActuator

e CoapSensorGatewa
(sget P Y
ILUGECIVE CoapSensorActuator /

Figure 5.12: Scalability test scenario.

46

ms

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Three measurements with different number of threads have been conducted: 10
threads in the first one, 100 in the second one and 1,000 in the last one. The re-
sults of the first two measurements, after 100 iterations, are shown in figure
5.13.

8000
7000 6792
6000
5000
4000

100 iterations
3000 2469

2000
1000
145
0 I

10 Threads 100 Threads 1000 Threads

Figure 5.13: Scalability test results (a).

The results represented in figure 5.13 show an increase in the response time, re-
lated to the number of the running threads as expected. However, in both the
scenarios with 10 and 100 running threads, after the first iteration where the
whole set of threads were created, there was a huge increase in the response
time; for the remaining 99 iterations the value of the response time remained al-
most steady signifying that the CoapSensorGateway was able to manage such a
number of requests without having further drop in the performance. On the
other hand, the results with 1,000 threads running at the same time were differ-
ent, since the response time started to be significant after the first iteration and
then kept increasing during the next 10 iterations as shown in figure 5.14;
where the difference of the response time between the values within the second,
fifth, tenth iterations with that one within the first iteration are reported. This is
an unwanted result which suggests that this number of requests was too high to
be managed by the CoapSensorGateway. One of the main reasons for this be-
havior is caused by the synchronization used in both get and set methods within
the CoapSensorActuator. When the number of requests is high as in this last
scenario, each request sent from the same CoapSensorActuator object has to
wait for the previous one to be terminated, thus there is a huge increase in the
response time for each new request. This result could be improved by modify-
ing the code of both get and set methods in a way that they could manage multi-
ple requests at the same time.

47

B Response time average within

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack

Alessandro Aloisi 2014-07-22
4000
3500
3000
2500
B Increase of the response time
» 2000 average with 1000 running th-
£ reads related to the response
1500 time within the first iteration
1000
500
0

Second iteration Fifth iteration Tenth iteration

Figure 5.14: Scalability test results (b).

5.4 Proof of Concept application

In order to test both the CoapSensorActuator and the CoapSensorGateway, a
Proof of Concept application has been developed. This application simulated a
real-world application that is very common in Sweden: a fire detection system.
This test was an important part of this thesis work since it was helpful to test all
the developed components together and to discover problems which would not
surface if only testing each component individually.

5.4.1 Potential real-world scenario

The forest is considered one of the most important and indispensable resources
as well as the protector of the Earth's ecological balance. Forest fires are a con-
stant threat to these ecological guardians. Recently, with the effect of factors
such as climatic fluctuations, human activities, etc., a tendency of intense in-
crease of forest fires was showed. At present, traditional forest fire prevention
measures have been ground patrolling, watch towers, aerial prevention, long
distance video detection and satellite monitoring and so on. In view of all the
deficiencies of conventional forest fire detection, it is necessary to bring in a
new method for a more efficient ground forest fire detection system.

Compared with the traditional techniques of forest fires detection, WSNs tech-
nology is a very promising green technology for the future in efficiently detect-
ing forest fires; according to the features explained in paragraph 2.2. In this
case, a Wireless Sensor Network could be deployed to detect a forest fire in its
early stages. A number of sensor nodes would need to be pre-deployed in a for-
est. Each sensor node could then gather different types of row data from sen-
sors, such as temperature, humidity, pressure and position. All sensing data
would be sent wirelessly in ad-hoc fashion to a sink station, which in turn

48

5.4.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

would transmit data to the control center via a transport network such as GSM,
UMTS, Satellite, TCP/IP networks. In figure 5.15 a possible scenario of a WSN
deployment for fire detection is shown.

Fire workers are sent to
ke area in case of an alarm is
2
L

The alarm signaled
to the fire
anthorities

triggered

Data are sent to
the monitoring
tocl over the TCP

port
@

Control Center

4 [
>
&

Data are
collected on the
driver application

Precipitation and wind .
speed data are taken from WSN
meteorological service

Figure 5.15: WSN fire detection scenario.

On the control center the sensor data could then be used to detect forest fires. To
detect fires many different techniques could be implemented, however the two
most common solutions are the Canadian system and the South Korean system,
as explained in [27].

Implementation and results

The scenario explained in the previous paragraph was implemented in small
scale in a computer lab of the university. In this test three machines have been
used, which were interconnected by the SensibleThings platform. The first ma-
chine was connected to a Raspberry Pi (equipped with a temperature sensor)
through a Local Area Network (LAN) and was running both the CoapSenso-
rActuator and CoapSensorGateway classes in order to communicate with the
Raspberry Pi. The second node was a notebook which was connected through a
USB cable with two WSNs formed by 2 TelosB motes each (the first one used
as a sink and the other one as a standard WSN mote). In this node two different
instances of the CoapSensorActuator object were created in order to enable the
communication between the SensibleThings node and both the WSNs. The third
machine represented the control center of the system and was running the Proof
of Concept application. In figure 5.16 the before mentioned scenario is repre-
sented.

49

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

TELOS B MOTE

‘ Application

Get temperature
{Control Center)
SINK .=
Coap -
CoapSensorActuator \
—— T

. SensibleThings
CoapSensorActuator / f‘?

;
Coap &
&

I Coap

k"
| :
SINK ﬁ ©

I Set led
TELOS B MOTE
Figure 5.16: Proof of Concept application scenario.

—_—

RASPBERRY PI

This test tried to simulate a scenario where the sensors deployed in a forest
were developed by different manufacturers and the CoAP protocol was not sup-
ported by all of them. For this reason, two different kinds of devices were used:
TelosB motes and a Raspberry Pi, which is a credit card sized single board com-
puter. Since the Raspberry Pi did not support the CoAP protocol, it was neces-
sary to use the CoapSensorGateway in order to enable the communication be-
tween the platform and this device. Moreover, a server application for the Rasp-
berry Pi was implemented. This application realizes a Java daemon thread
which is always listening for incoming requests from the CoapSensorGateway
on a datagram socket and then uses the same socket to send its sensor data
(which are periodically saved in a file on the Raspberry Pi's memory).

On the third node the actual Proof of Concept application has been developed.
The application uses the SensibleThings platform to obtain the actual address of
both the temperature sensors within the Raspberry Pi and the first TelosB mote,
specifying their UCIs (‘alessandro@miun.se/tinyos/temperature' and 'alessan-
dro@miun.se/raspberrypi/temperature', respectively) and then to collect tem-
perature data from them. Once it has received the temperature from both the
sensors, the application checks if the average of both the values is above a cer-
tain threshold (19 °C). If it is, a Set led request is sent to the second TelosB
mote (specifically to its UCI: 'alessandro.aloisi@miun.se/tinyos/led') and then a
led is switched on. This action represents an alarm sent to the nearest fire sta-
tion in the real world scenario. In figure 5.17 the output of the Proof of Concept
application is shown.

50

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

SensikleThings ProoflfConceptipp is running

Eress =zny key to shutdown

ResolveResponse: alessandrof@miun.sefraspberryPi/temperature 133.10.115%.42:51318
BesglveResponse: alessandrofmiun.se/tinyos/temperature 133.10.115%.42:35585
ResolveResponse: alessandrofmiun.sestinyos/Sled 153.10.115.42:355&5

GetResponse: alessandrofimiun.se/tinyos/temperature 19_55 °C 1533.10.115_42:35585
GetRBesponse: alessandrofmiun.sefraspberryPi/temperature 20.3212 °C 193.10.119.42:51318
Ayverage temperature= 13.331 € ,the led have been 3et to status 1

Figure 5.17: Proof of Concept application output.

51

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Conclusion

The problem treated in this thesis is perhaps one of the most challenging for
IoT developers. The thesis investigated enabling communication between Inter-
net-of-Things and Wireless Sensor Networks, irregardless of their network con-
nection and then to utilize the sensors data for context aware applications. In or-
der to solve the problem, the goals described in chapter 3 were achieved using
the following methods:

Goal 1: evaluating three different solutions of connecting Wireless Sensor
Networks to an Internet-of-Things scenario was achieved by searching for
articles and papers in many research databases and then analyizing three
different IoT platforms: SensibleThings, ETSI M2M and SENSEWEB.

Goal 2: understanding the most common operating systems used in Wireless
Sensor Network, resulted in discovering TinyOS and Contiki. I studied the doc-
umentation about these OS in order to assess which was the best to be used in
my thesis. Eventually I concluded that TinyOS was the best option, since Con-
tiki does not work well with TelosB motes because the commands are set for a
type of sky motes that is not valid for TelosB motes new versions.

Goal 3: investigating which communication protocols these operating systems
support, was achieved analyizing the documentation about these OSs. This
research led me to choose the CoAP protocol for its compatibility with TelosB
motes and its lightweight protocol stack.

Goal 4: to implement a communication stack which enables communication
between Wireless Sensor Networks and Internet-of-Things applications, led to
the analysis of the SensibleThings platform and running some simulations to
discover its features. The Sensor and Actuator Layer of the platform was then
extended with the CoapSensorActuator and CoapSensorGateway classes.

Goal 5: to evaluate the performance and responsiveness of the implemented
solution, some tests were run in order to measure the get/set transactions
response time and then compared these values with the response time of the
SensibleThings get/set transactions to measure the overhead introduced by the
CoAP stack. Moreover, a packet sniffer software was used in order to extract
the packets from the network data flow and then, some comparisons between
the packets created by the SensibleThings platform with the ones built by the
CoAP stack, were made. Eventually, the scalability of the CoapSensorGateway
was tested, measuring how many requests could it manage before having a drop
in the performance.

Goal 6: investigating possible real-world applications for the implemented
solution, I concluded that this research could be applied to a fire detection
system, especially introduced in the prevention of fires in forests, a prominent

52

6.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

geographical feature in Sweden. Eventually I developed a Proof of Concept ap-
plication in order to simulate this system in a small scale and to also test the de-
veloped classes.

Discussion

Many choices regarding the tools and the methods that have been used in this
thesis work were forced by the type of motes that I had to use, the TelosB
motes. Since this type of mote supports only Tiny OS and Contiki I could not
test other operating systems, like MantisOS or Nano-RK; which would have
been interesting to install in order to compare the performances of all these IoT
OSs. I did experience some problems using Contiki on the TelosB motes, prob-
ably due to some compatibility issues with the new version of the motes and
thus eventually I decided to use TinyOS. Nevertheless, my choice was consis-
tent with that of most of the IoT developers, since TinyOS is the most used OS
in WSNs at the moment. The choice to use CoAP as application protocol (for
retrieving sensor data) was forced by certain limitations. Indeed, the documen-
tations of TinyOS is quite unspecific and I was not able to figure out if this OS
supported other kinds of application protocols. However, CoAP is supported by
the majority of WSN operating systems, therefore the choice of using this pro-
tocol allowed the use of the communication stack developed in my thesis not
only to communicate with TelosB motes but also with any kind of mote which
supports CoAP.

As a result of my thesis work, the Sensor and Actuator layer of the Sensi-
bleThings platform was extended and as a consequence, the communication be-
tween the platform and the WSNs has been enabled. My work was based on the
SensibleThings platform because it was the IoT platform developed by Mid
Sweden University and to connect the platform with WSNs was one of the main
features which was not implemented yet. However, the CoAP stack that has
been implemented could be easily exported to other Java based IoT platforms,
since the SensibleThings APIs were not used within the code. In the following
tables the values collected during the evaluation phase (explained in paragraphs
5.1 and 5.2) are summarized.

Through Direct communication
SensibleThings to the WSN
GET led transaction time 278,8 ms 114,55 ms
GET temperature 460,77 ms 346,8 ms
transaction time

Table 1: CoapSensorActuator response time measurements.

53

6.1.1

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack

Alessandro Aloisi 2014-07-22
Raspberry Pi connected| Raspberry Pi directly
to the connected to
CoapSensorGateway SensibleThings
GET transaction time 288,7 ms 212 ms

Table 2: CoapSensorGateway response time measurements.

SensibleThings packet CoAP packet
Request packet size 863 bytes 71 bytes
Response packet size 264 bytes 70 bytes

Table 3: Packet size test measurements.

Analyzing these values it appears clear that the CoAP stack added an overhead
in terms of response time to the SensibleThings platform, since the requests
coming from a remote node have to be translated into CoAP requests before be-
ing sent to a WSN. However, the CoAP protocol brings a decrease in the packet
size and makes the developed communication stack 'open', since it can be used
to communicate with several different types of WSN motes.

Ethical issues

There are many ethical issues that may arise from the IoT. The biggest one is re-
lated to individual privacy. Many people today wear sensors when they move
through their daily lives to track their heart rate, miles traveled, or steps taken.
These activity monitor sensors are connected wirelessly to smart phones and to
the Internet to enable users to track metrics over time. By collecting informa-
tion on people and their habits, companies will have the ability to infringe upon
consumers. Therefore, when companies have this information readily available
to them, and they have the possibility to increase their revenue tremendously,
they are more likely to infringe upon our privacy. Another ethical issue of the
IoT is that it can discriminate against certain groups of people that do not have
access to the Internet. There are many countries where lower income families
do not have access to the Internet, so they will not be able to reap the benefits
offered by the Internet-of-Things. In other words, families that do not have the
money to purchase some of these devices will be as well off as other more af-
fluent families. In the end this could cost the lower socioeconomical families
more, and decrease the inefficiencies in higher socioeconomical classes. The
third ethical issue of the IoT is related to security. In this new media, which is
no longer in its infancy, the vulnerabilities and attacks are various, caused by
technological advances and proliferated through lack of user awareness. This
problem is particularly related to the CoAP communication stack which has
been implemented in this thesis work, since no security mechanisms were used.
All the packets sent between a WSN sink and a SensibleThings node could be
intercepted and modified. For example, one threat for a real world fire detection
system could be a fake packet with a high temperature value sent to the control
center in order to simulate a fake fire.

54

6.2

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Future work

Some improvements can be applied to the current work. In relation to the writ-
ten code, firstly the system needs to implement some security mechanism in or-
der to be adapted to real world applications. For instance cryptographic proto-
cols like SSL and RSA could be implemented in order to enable secure commu-
nication channels between WSNs and the SensibleThings platform; specifically
between the WSN sink and the CoapSensorActuator and also between the
CoapSensorGateway and the attached sensor node. Another issue which needs
to be solved is how to handle multiple CoAP transactions. At the moment, both
the GET and PUT methods defined in the CoapSensorActuator class are syn-
chronized methods, which means that when a request comes to this component
it needs to wait until the previous one has received a response from the WSN
sink. In order to improve the performance of the system it would be useful to
improve the before mentioned methods in a way where they could manage mul-
tiple CoAP transactions at the same time.

Related to the motes which have been used in this thesis work it would be inter-
esting to test the implemented communication stack with other types of motes
other than the TelosB mote. Only motes which support CoAP could communi-
cate with the CoapSensorActuator and could then be used instead of TelosB
motes. However, if these different types of motes support CoAP, there should
not be any compatibility issues and they should be able to receive and send
CoAP packets from and to the CoapSensorActuator, respectively.

Other future work that could be interesting would be to export the classes im-
plemented in this work to other IoT platforms, like Senseweb and ETSI M2M,
in order to figure out which platform has the best performance. Therefore, both
the response time and the packet size could be measured using different types of
motes and IoT platforms. A comparison between all these values could be made
in order to investigate which would be the best solution to implement.

55

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

References

[1]

[5]

[6]

[10]

[11]
[12]

[13]

Charith Perera, Arkady Zaslavsky, Peter Christen, Dimitrios
Georgakopoulos, Context Aware Computing for The Internet of Things:
A Survey, IEEE Communications Surveys & Tutorials, Volume xx, Issue
X, Third Quarter 2013.

K. Ashton, “That ’internet of things’ thing in the real world, things
matter more than 1deas,” RFID Journal, June 2009,
http://www.rfidjournal.com/article/print/4986.

D. L. Brock, “The electronic product code (epc) a naming scheme for
physical objects,” Auto-ID Center, White Paper, January 2001,
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf

M. Presser, A. Gluhak, The Internet of Things: Connecting the Real
World with the Digital World, EURESCOM mess@ge — The Magazine
for Telecom Insiders, vol. 2, 2009.

P. Guillemin and P. Friess, “Internet of things strategic research
roadmap,” The Cluster of European Research Projects, Tech. Rep.,
September 2009.

European Commission, “Internet of things in 2020 road map for the
future,” Working Group RFID of the ETP EPOSS, Tech.

Rep., May 2008.

B. Sterling, Shaping Things — Mediawork Pamphlets, The MIT Press.

L. Atzori, A. lera, and G. Morabito.The Internet of Things: A Survey.-
Computer Networks.Vol. 54, No. 15, pp. 2787-2805. October 2010.

A. Dey and G. Abowd, “Towards a Better Understanding of Context and
Context-Awareness,” in CHI 2000 Workshop on The What, Who,
Where, When, and How of Context-Awareness, 2000, pp. 304-307.

M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 6675, July 1991.

Ian F.Akyildiz, Mehmet Can Vuran, Wireless Sensor Networks, ISBN
978-0-470-03601-3, WILEY, 2010.
Fundamentals of Wireless Sensor Networks , Waltenegus Dargieand,
Christian Poellabauer, Wiley, 2010.

M. Johnson, P. Van De Ven, M. Healy, And M. J. Hayes, "A
Comparative Review Of Wireless Sensor Network Mote Technologies",
Proc. IEEE Sensors Conference, Pp 1695-1701, Auckland, New
Zealand, November, 2009.

56

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, D. Culler, “TinyOS: An Operating
System for Sensor Networks”’, Ambient Intelligence 2005, pp 115-148.
Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a
lightweight and flexible operating system for tiny networked sensors. In
Proceedings of the First IEEE Workshop on Embedded Networked
Sensors (Emnets-1), Tampa, Florida, USA, November 2004.

Salman N; Rasool I; Kemp AH “Overview of the IEEE 802.15.4
standards family for low rate wireless personal area networks”
in:”Proceedings of the 2010 7th International Symposium on Wireless
Communication Systems, ISWCS'10,” pp.701-705. 2010.

Prativa P. Saraswala “Survey on upcoming ZigBee technology in future
communication system”, lIJECSE: International Journal of Electronics
and Computer Science engineering Volume 1, Number 3, 2012.
Wikipedia about ZigBee standard 21-02-2014 (Retrieved March 2014)
[www] Available: http://en.wikipedia.org/wiki/ZigBee.

Zach Shelby and Carsten Bormann, "6LoWPAN: The wireless embedded
Internet-Part 1: Why 6LoWPAN?” EE Times, May 23, 2011.

Walter Colitti, Kris Steenhaut, Niccoldo De Caro, “Integrating Wireless
Sensor Networks with the Web”, IPSN 2011 — Extending the Internet to
Low power and Lossy Networks (IP+SN 2011), April 12-14, 2011,
Chicago, Illinois, USA.

Hong, E. Suh, and S. Kim, “Context-aware systems: A literature review
and classification,,” Expert Systems with Applications, vol. 36,no. 4,
2009, pp. 8509-8522.

T. Kanter, S. Forsstrom, V. Kardeby, J. Walters, U. Jennehag, and P.
Osterberg, “Mediasense—an internet of things platform for scalable and
decentralized context sharing and control,” in ICDT 2012, The Seventh
International Conference on Digital Telecommunications, 2012, pp. 27—
32.

Hersent, Olivier; Boswarthick, David; Elloumi, Omar, “The Internet of
Things: key applications and protocols”, Chapter 14, p.237-267, 2011.
Grosky, W.I. ; Kansal, A. ; Nath, S. ; Jie Liu, Jie Liu ; Feng Zhao, Feng
Zhao, “SenseWeb: An Infrastructure for Shared Sensing”, Journal IEEE
MultiMedia, Volume 14 Issue 4, October 2007.

CoapBlip guide 11-07-2013 (Retrieved April 2014) [www] Available:
http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP -13.

Coap draft 26-10-2010 (Retrieved April 2014) [www] Available:
http://tools.ietf.org/html/draft-ietf-core-coap-03.

Kechar Bouabdellah, Houache Noureddine, Sekhri Larbi, “Using Wire-
less Sensor Networks for Reliable Forest Fires Detection”, Procedia
Computer Science, Volume 19, 2013, Pages 794-801, The 4th Interna-
tional Conference on Ambient Systems, Networks and Technologies
(ANT 2013)

57

http://en.wikipedia.org/wiki/ZigBee
http://tools.ietf.org/html/draft-ietf-core-coap-03
http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP_-13

Enabling communication between Wireless Sensor Networks and the Internet-
of-Things — A CoAP communication stack
Alessandro Aloisi 2014-07-22

Appendix A: CoapBlip installation
guide

The first step to install the CoapBlib on the motes has been to install Tiny OS
on Linux Ubuntu 12.04 LTS machine. The main guidelines to install TinyOS
are the following:

1. Add the TinyOS respository link (deb
http://tinyos.stanford.edu/tinyos/dists/ubuntu natty main) at the end of
the file: /etc/apt/sources.list;

2. Run the command: sudo apt-get install tinyos-2.1.2;

3. Configure permission for user: sudo chown user:user -R /opt/tinyos-
2.1.2/ ; sudo chown user -R /opt/tinyos-2.1.2;

4. Add environment variables to bashrc: at the end of that file add the fol-
lowing lines (export TOSROOT=/home/user/tinyos-2.1.2 ; export TOS-
DIR=$TOSROOT/tos; export
CLASSPATH=$TOSROOT/support/sdk/java/tinyos.jar:. SCLASSPATH;
export MAKERULES=$TOSROOT/support/make/Makerules).

Once Tiny OS has been installed on the machine, it is possible to compile the
CoapBlib library. To compile the library, change directory to
/support/sdk/c/coap within the home directory of Tiny OS and run the following
commands: 1- autoconf, 2-./configure, 3-make.

At this point is possible to install the CoapBlib via a USB connection on each
mote, running this command:”make telosb blip coap install,<addr>
bsl,/dev/ttyUSBO0” within the following directory: /apps/CoapBlip. It is possible
to set the last field of the mote's IPv6 address, writing the selected value in the
<addr> field.

Then, to enable the communication between the computer and the motes, the
PPPRouter has to be installed on the sink node. To install this application, con-
nect the sink to the computer with a USB cable and then execute the following
command:”make telosb blip install bsl,/dev/ttyUSB0” within the following di-
rectory: /apps/PppRouter. Next, to enable the actual PPP connection the follow-
ing command needs to be run:’sudo pppd debug passive noauth nodetach
115200 /dev/ttyUSBO nocrtscts nocdtrcts Icp-echo-interval 0 noccp noip
ipv6 ::23, ::24”. Eventually, to make the computer reachable from the sink a
[Pv6 address has to be provided to it. Then, in a new terminal run the following
command: ”sudo ifconfig ppp0 add fec0::100/64”. Now it is possible to send
CoAP requests to the motes.

58

	Abstract
	Acknowledgements
	Terminology
	6LoWPAN: IPv6 over Low power Wireless Personal Area Networks
	AODV: Ad-hoc On Demand Distance Vector Routing
	ASCII: American Standard Code for Information Interchange
	CoAP: Constrained Application Protocol
	FFD: Full Function Device
	IoT: Internet of Things
	ISM: Industrial, Scientific and Medical Radio Bands
	LAN: Local Area Network
	LLN: Low Power and Lossy Network
	M2M: Machine to Machine
	MAC: Media Access Control
	NFC: Near Field Communications
	PAN: Personal Area Network
	PPP: Point to Point Protocol
	REST: Representational State Transfer
	RFD: Reduced Function Device
	RFID: Radio Frequency Identification
	TCP: Transmission Control Protocol
	TLV: Type Length Format
	UCI: Universal Context Identifiers
	UDP: User Datagram Protocol
	URI: Universal Resource Identifier
	WSAN: Wireless Sensor and Actuator Network.
	WSN: Wireless Sensor Network
	1 Introduction
	1.1 Background and problem motivation
	1.2 High-level problem statement
	1.3 Concrete and verifiable goals
	1.4 Scope
	1.5 Outline
	1.6 Contributions

	2 Theory
	2.1 Internet-of-Things
	2.1.1 Context awareness
	2.1.2 Ubiquitous computing

	2.2 Wireless Sensor Networks overview
	2.2.1 WSN motes

	2.3 WSNs' Operating Systems
	2.3.1 TinyOS
	2.3.2 Contiki
	2.3.3 Tiny Os and Contiki evaluation

	2.4 WSNs communication standards
	2.4.1 IEEE 802.15.4
	2.4.2 ZigBee
	2.4.3 6LoWPAN
	2.4.4 REST and CoAP

	2.5 Related work
	2.5.1 SensibleThings
	2.5.2 ETSI M2M
	2.5.3 SENSEWEB

	3 Methodology
	4 Implementation
	4.1 SensibleThings platform
	4.2 CoAP packet structure
	A CoAP packet is formed by a 4 bytes binary header followed by an option field and a payload. The length of the message payload is implied by the datagram packet length. The structure of a CoAP packet is shown in figure 4.5.
	Figure 4.5: CoAP packet format
	The fields within the packet header are:
	4.3 CoapSensorActuator
	4.4 CoapSensorGateway

	5 Results
	5.1 Response time
	5.2 Packet size
	5.3 Scalability
	5.4 Proof of Concept application
	5.4.1 Potential real-world scenario
	5.4.2 Implementation and results

	6 Conclusion
	6.1 Discussion
	6.1.1 Ethical issues

	6.2 Future work

