Designförslag på framdrivning i nytt hybridfordon

Design solution for propulsion in new hybrid vehicle

Merdan Özkayalar
Sammanfattning

Uppdragsgivaren Precer Group erbjuder tekniska lösningar för produktion av el genom ren förbränning av olika typer av fasta bränslen. Tekniken är anpassningsbar för att användas som återladdningskälla i olika typer av hybridfordon samt för produktion av el till bostäder och fritidshus.

Precer Group har i samarbete med European Space Agency (ESA) tagit fram nya typer av bränslen och drivlinor och håller på med framtagning av dessa för att skapa ett miljövänligt koncept i form av hybridfordon.

Examensarbetet har som syfte att utifrån önskade kriterier ge designförslag för alla tre typerna av framdrivning, framhjulsdrift, bakhjulsdrift och fyrrhjulsdrift för Precers nya konceptfordon, G2. Målet är att jämföra existerande lösningar med hänsyn till problemområden, styrkor gällande framdrivning av hybridfordon i motsvarande storlek, göra en prestandajämförelse för ovan nämnda framdrivningar, göra en prestanda analys av Precers konceptfordon (G2), göra beräkningar för de tre mest använda materialen d.v.s. stål, aluminium och kolfiber för drivaxlar och att göra beräkningar för maximum och minimum utväxlingar. Studien fokuserar på att belysa för- och nackdelarna med framdrivningar för ett hybridfordon i motsvarande storlek (Precers konceptfordon) och komma med lämpliga lösningar för konceptfordonet.

Resultatet från studien visar att det finns olika designförslag för framdrivning av Precers konceptfordon och resultatet presenteras i form av figurer, tabeller samt textbaserade analytiska inslag. Det visar att bland de tre mest använda framdrivningarna ger fyrrhjulsdrift bäst prestanda och är det lämpligaste alternativet för Precers konceptfordon. Resultatet visar också att av de tre mest använda materialen är det är kolfiber som ger störst viktbesparing, störst egenfrekvens och varvtal.
Abstract

The employer Precer Autotech offers technical solutions for the production of electricity through clean combustion of various types of solid fuels. The technology is adaptable for use as a recharge source in different types of hybrid vehicles as well as for production of electricity for homes and second homes.

Precer Autotech has in collaboration with the European Space Agency (ESA), developed new types of fuels and powertrains and is currently in the process of bringing these into an environmentally friendly concept hybrid vehicle.

The aim of this exam paper is to, based on some criteria, propose design suggestions for all three kinds of propulsion: front-wheel drive, back-wheel drive and 4WD for Precer’s new concept vehicle G2. The aim is to compare existing solutions in terms of some problem areas, strengths in other similar hybrid vehicles, conduct a performance comparison of the above mentioned propulsion types, conduct a performance analysis of Precer’s concept vehicle (G2), calculate the use of the three most common materials, i.e. steel, aluminium and carbon fibre, for drive shafts as well as calculating maximum and minimum gear. The study focuses on discussing advantages and disadvantages with propulsion for a similar sized hybrid vehicle and on presenting solutions for Precer’s hybrid vehicle.

The results show that there are several design solutions for Precer’s vehicle and the results are presented in figures, tables and analyses. It shows that of the three most common propulsions 4WD gives the best performance and that it therefore is the most suitable solution for Precer’s concept vehicle. It also shows that carbon fibre is the most suitable material as it is the lightest, gives the most natural frequency and rotational speed.
Innehållsförteckning

Sammanfattning ... ii
Abstract ... iii
1. Inledning .. 1
 1.1 Bakgrund .. 1
 1.1.1 Precer Group .. 1
 1.2 Syfte och mål ... 2
 1.3 Avgränsning ... 2
 1.4 Frågeställningar .. 2
 1.5 Metod .. 2
2. Teori ... 3
 2.1 Framdrivning ... 3
 2.1.1 Framdrivning komponenter .. 4
 2.2 Framhjulsdrift .. 12
 2.3 Bakhjulsdrift ... 14
 2.4 Fyrhjulsdrift ... 16
 2.4.1 4WD system ... 17
 2.4.2 AWD system .. 18
 2.4.3 Fyrhjulsdrivna komponenter .. 19
 2.4.4 Några exempel från olika fordonstillverkare ... 23
 2.5 Definition av Hybridfordon ... 27
 2.5.1 Hybriddrivlinan .. 28
 2.5.2 Precers hybrider och fasta bränslen .. 31
 2.5.3 Konceptfordon 2 .. 31
 2.6 Material till drivaxlar .. 32
 2.6.1 Stål ... 33
 2.6.2 Aluminium .. 34
 2.6.3 Kolfiber ... 35
 2.7 Prestanda jämförelse för framdrivningar .. 35
 2.8 Utväxling .. 38
3. Analys och resultat .. 39
 3.1 Framdrivning och förutsättningar .. 39
 3.1.1 Framdrivningarnas styrkor och problemområden .. 40
 3.2 Den valda framdrivningslayout ... 42
1. Inledning

Detta inledande kapitel har för avsikt att ge läsaren en grundförståelse av valet av ämnesområde och vilka frågeställningar som det har för avsikt att besvara. Kapitlet beskriver bakgrunden och syftet med studien samt hur olika typer av information har samlats in. Arbetets begränsningar presenterar också.

1.1 Bakgrund

Idag måste de stora industrierna anpassa och konfigurera sina produkter för att möta nuvarande krav på hållbar utveckling och miljö. Fordonstillverkningsindustrin är kanske den största och mest signifikanta bland dessa industrier. Det är inte bara hållbar utveckling och miljö som är påverkande faktorer, det faktum att fossila bränslen är en ändlig energikälla är också en viktig faktor, något som motiverar till att framställa nya fordon. För att uppnå dessa nya krav fokuserar fordonstillverkningsindustrin på att förbättra framdrivningssystem, kraftomvandlingsteknik och på att framställa mer miljövänliga bränslen.

Utvecklingen inom elektronik och datorteknik ledde till el- och hybrid fordon som ett nytt och miljövänligt alternativ till fordonstillverkningsindustrin. Faktorer som höga produktionskostnader, batteri-livstid och uppladdning av batterier är de faktorer som gör att produktionen av dessa fordon fortfarande är begränsad. Därför är varje ny utveckling inom dessa områden ett steg framåt.

Ett exempel på ett företag som bidrar till teknikframstegen är Precer Group som utvecklar en unik teknik för småskalig elproduktion genom förbränning av fasta biobränslen. De har i samarbete med European Space Agency (ESA) tagit fram nya typer av bränslen och drivlinor och genom sin framtagning av koncept-hybrid-fordon har de redan visat att den nya tekniken är miljövänlig och hållbar. Denna uppsats kommer att undersöka lämpliga lösningar för framdrivning av koncept fordon (G2) som kommer att presenteras 2017.

1.1.1 Precer Group

Företaget Precer Group arbetar inom fem olika affärsområden

- **Precer Autotech** Arbetar med små- och mellanklassfordon
- **Precer Transport** Arbetar med tyngre fordon
- **Precer Machines** Arbetar med arbetsfordon
- **Precer Marine** Fokuserar på marina applikationer
- **Precer Power Plants** Arbetar med teknik för kraftvärmeverk
Precer Group utvecklar tekniska lösningar för småskalig el generering via förbränning av fasta biobränslen. Grunden för Precers fordonsteknik är en brännare med specialanpassad förbränningszon som driver en värmemotor som i sin tur laddar batterierna. Dessa kan sedan ge el åt exempelvis en bygggnad eller driva en elmotor i ett hybridfordon. Bränslet kan variera, men är vanligtvis pellets, flis eller andra typer av fasta biobränslen.

1.2 Syfte och mål

I detta arbete ges designförslag för alla tre typerna av framdrivning, FWD (framhjulsdrift), RWD (bakhjulsdrift) och AWD (allhjulsdrift) för det nya konceptfordon (G2) som kommer att presenteras 2017. Syftet med projektet är att jämföra existerande lösningar gällande framdrivning av hybridfordon i motsvarande storlek och ge förslag på lämpliga lösningar för FWD, RWD och AWD, samt göra beräkningar för drivaxlar och utväxling.

1.3 Avgränsning

Arbetet omfattar både en teoretisk granskning och beräkningar för olika framdrivningskomponenter. I detta projekt har bara huvudkomponenterna, vilka är växellåda, drivaxlar, differential, slirkoppling och differentialväxel, undersöks. Det finns ingen möjlighet och tid att testa de olika designförslagen som har getts i projektet så utgångspunkten är enbart teoretisk.

1.4 Frågeställningar

- Vilka är för- och nackdelarna med olika framdrivningar och vilka typer är mer lämpliga för konceptfordon (G2)?
- Vilka komponenter används för den valda framhjulsdrift-, bakhjulsdrift- och fyrhjulsdriftlayouten?
- Vilka maximum- och minimumutväxlingar behövs för G2?
- Vilket material ger störst viktbesparing?

1.5 Metod

2. Teori

I detta kapitel presenteras den teori som ligger till grund för arbetet och denna ger läsaren nödvändig förståelse för ämnet. Kapitlet ger en beskrivning av vilka olika framdrivningar som redan finns eller förväntas bli betydande i framtiden.

2.1 Framdrivning

Framdrivning av ett motorfordon kan definieras som en grupp av komponenter som levererar kraften från motorn utgående axel till drivhjulen. Trots att det inte är så tydligt i många källor vad skillnaden är mellan drivlinan och framdrivning, accepteras i princip att motorn också ingår i drivlinan. De exakta komponenterna som behövs för ett fordonss framdrivning beror på om fordonet är utrustat med bakhjulsdrift, framhjulsdrift, fyrhjulsdrift och vilken typ av drivлина som används. I princip finns tre huvudtyper av framdrivning: traditionell framdrivning, elektrisk framdrivning och hybridframdrivning.

![Diagram](image-url)

Figur 2.1. Fyrhjulsdrift med fyra hjulmotorer och ett batteripaket som energikälla.

2.1.1 Framdrivningskomponenter

De typiska komponenterna för alla typer av framdrivning är växellåda, differential, drivaxlar och drivknutar. De extra delarna som används för fyrhjulsdrift kommer att förklaras i avsnittet fyrhjulsdrift.

Växellåda

De två huvudgrupperna av växellådor är den manuella växellådan och den automatiska växellådan. Den manuella växellådan, se figur 2.2, består av ett kugghjulspar per växel, där utväxlingsförhållandena är fördelade i lämpliga steg för att motorns effektkurva skall kunna utnyttjas effektivt genom hela fartregistret.

Figur 2.2. Manuell växellåda, består av olika kugghjulspar för att ge olika utväxlingar [2].

![Figur 2.3. Kugghjulspar [4].](image)

I konventionella automatiska växellådor, används ett antal planetväxlar och en momentomvandlare för att skicka rätt effekt till drivhjulen. Istället för en koppling använder den en momentomvandlare för att överföra kraft från motorns svänghjul till växellådans ingångsaxel.

Momentomvandlaren, se figur 2.4, har tre delar: pump, turbin och stator och de delarna sitter i ett gemensamt hus som är fyllt med olja.

![Figur 2.4. Momentomvandlare som består av pump, turbin och stator [5].](image)

![Diagram av planetväxel](image)

Figur 2.5. Planetväxel, i den här bilden ser man att solhjulet är drivande, ringhjulet är utgången och planethjulet är statiskt [6].
Figur 2.6. Konventionell automatisk växellåda som består av momentomvandlare och planetväxlar [7].

Förutom den konventionella automatiska växellådan finns det ett annat alternativ som kallas variomatic eller CVT (Continuously Variable Transmission), se figur 2.7.

Figur 2.7. CVT, variomatic-växellådan med plattkedja [8]

Differential

Differentialen, se figur 2.8, är en typ av kugghjulsväxel som är konstruerad för att dela upp ett drivande moment på två, eller flera axlar av vilka var och en kan rotera med olika varvtal på sådant sätt att summan av vinkelhastigheterna är konstant [9].

När ett fordon körs i en kurva kommer innerhjulet att gå kortare väg än ytterhjulet. Detta är möjligt genom att drivningen till hjulen är delad i två delar som drivs var för sig genom differentialen. Dess uppgift är att göra det möjligt för det ena drivhjulet att rotera snabbare än det andra samtidigt som båda hjulen driver med samma kraft.

Drivaxlar och drivknutar

![Figur 2.9. Kardanaxel [2]. Kopplar ihop växellådan och differentialen genom användning av kardanknutar i båda ändar.](image)

Designen är rörformad, men har ett metalhölje som skyddar en inre metalleyylinder och roterar med en frekvens som styrs av motorns uteffekt. De andra drivaxlarna som ligger mellan differentialen och drivhjulen kallas solidaxlar eller halvaxlar.

9
Beroende på motorns konfiguration och framdrivningstyp kan två eller flera drivaxlar samarbeta för att förvandla motoreffekten till rörelse. Framhjulsdriftsfordon använder mest bara de halva drivaxlarna. Se figur 2.10.

När det gäller den dominerande bakhjulsdriftsconfigurationen används kardanaxeln med de halva bakaxlarna, se figur 2.9. I fyrhjulsdrift används två kardanaxlar mellan fördelningslådan och fram- och bakdifferentialen och totalt fyra halva axlar för att koppla bak- och framdifferentialen till drivhjulen, se figur 2.11.

Figur 2.11. Fyrhjulsdrift [2]. Kardanaxlar används för att koppla ihop fördelningslådan med fram- och bakdifferentialen.
För att drivaxlarna ska kunna överföra vridmomentet mellan olika plan, vid olika vinklar mellan drivaxlar och drivhjul och när avstånden mellan axlarna förändras används universalknutar och/eller CV-knutar (constant velocity) [11].

Eftersom drivhjulen samtidigt är styrhjul på framhjulsdrivna fordon blir kraven mycket stora på de drivaxlar och knutar som för över vridmomentet till drivhjulen. Det blir stora vinkelförändringar när fordonets fjädring ändras och när fordonet styrs måste vridmomentet överföras utan att ändras, därför används mest CV-knutar för framhjulsdrift.

Sedan 1900-talet används universalknutar, se figur 2.13, för att överföra kraft mellan de lutande axlarna i fordonens framdrivningssystem.

Tack vare dessa kan drivaxlarna fungera i olika vinklar. Den u-formade fogen är i princip en dubbelhängd fog som består av två y-formade ok, en på den drivande eller ingående axeln och den andra på den utgående axeln, plus en korsformad del som kallas kors, se mitten delen i figur 2.13. För att kardanaxeln skall kunna förlängas och förkortas under ojämna vägförhållanden används “slip joints” som en länk till universalknutarna.

2.2 Framhjulsdrift

Figur 2.14. Framhjulsdrift [16]. Den dominerande framhjulsdriften som består av motor, transaxel och halva drivaxlar.

Figur 2.15a. Olika arrangemang av motor och växellåda för framhjulsdrift [17]. I första bilden ligger den längsgående motorn framför axeln, med längsgående växellåda, i andra bilden ligger den längsgående motorn bakom axeln, med längsgående växellåda, i tredje bilden ligger den längsgående motorn ovanför axeln, med längsgående växellåda, i fjärde bilden ligger den tvärgående motorn bredvid växellådan, i femte bilden ligger den tvärgående motorn ovanför växellådan och, i den sjätte bilden ligger den tvärgående motorn bakom växellåda.

Figur 2.15b. Illustrering av symboler i figur 2.15a.
Det är inte lätt att nämna för- och nackdelar för olika motor- och växellådekombinationer för framhjulsdrift i figur 2.15a, men allmänt kan man säga att bild nummer 6 har bäst viktfördelning eftersom man har placerat motor och växellåda nära tyngdpunkten. Bild nummer 5 kan dra mest höger och vänster under hård acceleration eftersom man placerat mycket vikt på fordonets framdel och med en konstruktion som i bild nummer 4 och 5 fås mest utrymme inne i bilen.

2.3 Bakhjulsdrift

Bakhjulsdrift var den dominerande framdrivningstypen bland biltillverkare fram till 80-talet. Efter 80-talet började bilköpere att intressera sig för bilar med lägre bränsleförbrukning och lägre utsläpp. Den nya trenden är framhjulsdrift som ger lägre tillverkningskostnader för biltillverkare, men mer servicekostnader för bilköpere [17].

I en typisk bakhjulsdrift, se figur 2.16, överförs motoreffekten till bakhjulen och den överföringen sker genom växellådan, drivaxeln (kardanaxeln), differentialen och bakaxlarna. Den här typen kallas frammotor med bakhjulsdrift och den här typen var dominerande fram till 80-talet. Den valdes mest p.g.a. den enkla designen och goda köregenskaper. Trots att frammotor layouten är dominerande bland bakhjulsdriftfordonen finns det versioner där motorn placerats i mitten av bilen eller i bakre delen.

Bakhjulsdrift har en del för- och nackdelar jämfört med framhjulsdrift. Vid kraftig acceleration är den största tyngden placerad på bakdelen eller bakdrivhjulen vilket i sin tur förbättrar dragkraften. Det är lättare att styrta när det är låg dragkraft, till exempel vid is eller grusväg jämfört med framhjulsdrift eftersom styrhjulen behåller dragkraften och det finns möjlighet att påverka fordonets rörelse. Den dominerande bakhjulsdriften är mindre kostsam och enklare när det gäller underhåll. Det är lättare att montera och demontera komponenter och tar mindre tid jämfört med framhjulsdrift [18].
Kombinationen av vikten mellan de främre och bakre hjulen har en betydande inverkan på bilens hantering och det är mycket lättare att få en 50/50 viktfördelning i en bakhjulsdriven bil än i en framhjulsdriven bil eftersom bakhjulsdrift ger mer möjlighet att ändra placeringen av komponenter. Det krävs ingen användning av komplicerade drivknutar som CV-knutar vid framhjulen, vilket gör att det går att vrida dem mer jämfört med framhjulsdrift och resultat blir en mindre styrradie för en given hjulbas för en bil med bakhjulsdrift. I bakhjulsdriften behöver inte framdäcken både styra och dra bilen och resultatet blir mindre slitage.

Att köra en bil med bakhjulsdrift är svårare på låga greppytor (våt väg, is, snö, grus osv.), vilket gör att den oftast ger sämre framkomlighet jämfört med framhjulsdriften, men om fordonet har elektronisk stabilitetskontroll och antispinssystem kan denna nackdel kompenseras. Bakhjulsdrivna bilar har ofta mindre innerutrymme jämfört med framhjulsdrivna bilar p.g.a. kardanaxeln. Vikten blir större jämfört med framhjulsdriften p.g.a. samma orsak som nämndes ovan. Extra material och komponenter gör att bakhjulsdrivna bilar är lite dyrare jämfört framhjulsdrivna i samma storlek och klass.

Förutom den dominerande eller klassiska bakhjulsdriftslayouten som nämndes ovan finns flera konfigurationer baserat på hur framdrivningskomponenterna placerats. Se figurer 2.17 och 2.18a.

![Figur 2.17. Olika arrangemang av motor och växellåda för bakhjulsdrift [17]. I första bilden ligger den längsgående motorn bakom axeln, i andra bilden ligger den längsgående motorn framför axeln, i tredje bilden ligger motorn och växellådan framför axeln, i fjärde bilden ligger den längsgående motorn framför axeln och växellådan ligger parallellt med axeln, i femte bilden ligger motorn och växellådan tvärgående framför axeln och i sjätte bilden ligger motorn och växellådan tvärgående bakom axeln.](image-url)
Figur 2.18a. Olika arrangemang av motor och växellåda för bakhjulsdrift [17]. I första bilden ligger den längsgående motorn och växellådan nära framaxeln, i andra bilden ligger den längsgående motorn i främre delen av bilen, men växellådan ligger framför bakaxeln, i tredje bilden ligger den längsgående motorn i främre delen, men växellådan ligger bakom bakaxeln.

Figur 2.18b. Illustrering av symboler i figur 2.17 och 2.18a.

Den viktigaste fördelen med olika kombinationer i figur 2.18a är minskade servicekostnader och den första bilden i figur 2.18a är den dominerande bakhjulsdriftskonfigurationen bland fordonstillverkare. Kombinationerna i figur 2.17 är inte så vanliga, den största nackdelen med dem är att det ger mindre bagageutrymme, fördelen är bättre acceleration jämfört med kombinationerna i figur 2.18a.

2.4 Fyrhjulsdriftsystem

Fyrhjulsdrift är inget nytt, den har funnits sedan 1920-talet. Det har främst gällt terränggående militärfordon, men under 90-talet blev fyrhjulsdrift på personvagnar mer populärt och trenden
har hållit sig sedan dess. Enligt Trafikverket stod fyrhjulsdrivna fordon för 30 % antalet sålda personvagnar 2013[19].

Avsikten med fyrhjulsdriften är att öka framkomligheten när man kör i terräng och på dåliga sliriga vägar. Drivkraften blir fördelad på fyra hjul istället för två och det ger bättre väggrepp samtidigt som fordonet blir lättare att hålla kvar på vägen[12].

När det gäller fyrhjulsdriftsystem kan man dela in dem två grupper; 4WD (4-wheel drive) och AWD (all-wheel drive). Den första kallas manuellt inkopplingsbar fyrhjulsdrift, d.v.s. föraren väljer om kraften delas till fyra hjul eller två hjul, medan den senare inte ger denna möjlighet eftersom den är permanent inkopplad och alla fyra hjul har drivkraft[15]. Det finns ett antal olika konfigurationer för 4WD och AWD och det beror på placeringen av framdrivningskomponenterna.

2.4.1 4WD system

![Figur 2.19. 4WD-system [20]. En manuellt inkopplingsbar fyrhjulsdrift som består av växellåda, fördelningslåda, kardanaxel, främre- och bakre differential, halva framdrivaxlar, halva bakdrivaxlar och drivknutar.](image)

Det här systemet ger föraren möjlighet att välja tvåhjulsdrift, 4WD HI, och 4WD LO-lägen under körning, vilket inte var möjligt att göra i gamla bilar eftersom, man var tvungen att stanna för att välja ett av de tre alternativen.
I det första läget överförs vridmomentet till fordonets bakhjul, men inget vridmoment överförs till framhjulen. Typiska förutsättningar för detta läge skulle vara normal körning på torr asfalt, vid normala väg- och stadshastigheter. Det är det mest bränsleeffektiva läget bland de tre lägena för ett fordon med 4WD [21].

I läge 4WD HI överförs det reducerade vridmomentet till både bak- och framhjulen vid en ökad hastighet. Det kan användas när man kör på halt väglag med normala hastigheter. Under isiga och snöiga förutsättningar är det läget mycket effektivt [21].

Läge 4WD LO är i princip samma som 4WD HI när det gäller uppdelning av vridmoment fast i det läget är fordonets hastighet mindre och vridmomentet är större. Bränsleförbrukningen är större än 4WD HI [15].

2.4.2 AWD-system

Komponenter för en AWD visas i figur 2.20.

![Figur 2.20. AWD-system som består av kardanaxel, viskokoppling, växellåda och främre- och bakredifferential, halva framdrivaxlar, halva bakdrivaxlar och drivknutar [22].](image)
2.4.3 Fyrhjulsdrivna komponenter

I den här delen förklaras de delarna som bara används i fyrhjulsdrivna bilar, de andra allmänna komponenterna för alla framdrivningar har förklarats i avsnitt 2.1.1 Framdrivningskomponenter.

Fördelningslåda (Transfer Case)

Fördelningslåda är en komponent i drivlinan på ett fordon och är en förutsättning för allhjuldrift på fordon med konventionell motor och växellåda. Fördelningslådan fördelar via kardanaxlar motorns kraft mellan de olika hjulaxlarna, vilket ger ökad framkomlighet jämfört med om fordonet bara driver på en axel. Se figur 2.21.

En fördelningslåda är av antingen kugg- eller kedjetyp, den senare är vanligast i personbilar. Den har en ingående och två utgående axlar. Beroende på fordonstyp kan fördelningslådan vara antingen helt integrerad i den vanliga växellådan utan någon separat spak eller strömbrytare för att välja driftläge, eller så kan den vara en separat enhet fäst bakom växellådan [15].

I likhet med en vanlig axeldifferential har fördelningslådan också en differential som tillåter fram- och bakaxeln att rotera med olika hastighet, t ex i terräng eller vid kurvtagning. På lådor avsedda för terrängkörning brukar denna differential kunna låsas i spärrat läge så att framkomligheten ökar.

![Figur 2.21. Fördelningsväxellåda används i fyrhjulsdrift för att fördela motorns vridmoment mellan främre- och bakredifferential [23].](image)

![Figur 2.22. I en framaxelkoppling används en vakuummotor för att förflytta den splinesförsedda kragen åt höger eller vänster [24].](image)

Viskokoppling

tjockare vätskan ökar i sin tur friktionen mellan lamellgrupperna. Resultatet är att vridmomentet mellan fram- och bakaxlarna delas upp beroende på de faktiska behoven hos fordonet vilket gör att fordonet anpassar sig bättre vid svåra körförhållanden. I figur 2.23 visas en typisk viskokoppling.

Figur 2.23. Viskokoppling används i fyrrhjulsdrift för att fördela kraften mellan de främre och bakre axlarna [25].

Haldexkoppling

En Haldexkoppling har tre huvuddelar: hydraul pumpen drives av slip mellan axlarna eller hjulen, en våt flerlamellkoppling och en elektroniskt styrd ventil. Kopplingen är ungefär som en hydraulisk pump i vilken huset och en kolv är kopplade till ena axeln och en kolvdrivanordning är ansluten till den andra [3].

pumpen strömmar till kopplingskolven och komprimerar kopplingspaketet. Oljan återgår till behållaren via en reglerbar ventil som justerar oljetrycket och kraften på kopplingspaketet. En elektronisk styrenhet styr ventilen [3].

Vid halkiga förhållanden levereras ett högt tryck till kopplingspaketet medan ett mycket lägre tryck erhålls i snäva kurvor eller vid höga hastigheter. När det inte finns någon skillnad i hastighet mellan de främre och bakre axlarna, betyder det att pumpen inte levererar tryck till kopplingspaketet. Se figur 2.24 för generation 5 Haldexkopplingar.

Elektroniskt styrd 4WD och AWD

2.4.4 Några exempel från olika fordonstillverkare

I den här delen förklaras kort fyrhjulsdriftssystem hos olika fordonstillverkare.

Volkswagen 4Motion Haldex System

Diagram

Figur 2.25. Elektroniskt styrd enhet [15]. Med hjälp av information från inputsensorerna kan den elektroniskt styrda enheten kontrollera ”Multiple plate clutch assembly” och bestämma hur stort vridmoment som skall skickas till fram- och bakhjulen.

Saab XWD

Saabs aktiva AWD system, se figur 2.27, kallas tvärs fyrhjulsdrift (XWD) eftersom den kan skicka kraften till det diagonalt placerade hjulet från hjulet som har förlorat dragkraft. Det bygger på datorstyrda center och bakre differentialer som kontrollerar fordonets stabilitet. Den är helt automatisk och vid behov kan systemet sända upp till 100 % av motorns vridmoment till fram- eller bakhjulen [3]. Den kan också variera mängden av vridmoment som anbringas vart och ett av de bakre hjulen.

![Figur 2.27. Saab XWD](image)

BMW xDrive

BMW har ett smart permanent fyrhjulsdriftsystem som kallas xDrive, se figur 2.28. Systemet är beroende av elektronik för att variera fördelning av motoreffekten mellan fram-och bakaxel
och till varje hjul på bakaxeln. Driftsystemet är kopplat till det aktiva styrsystemet, ABS, och stabiliteten i styrsystemet. Den hjälper till att styra bilen genom att skicka vridmomentet till något av de bakre hjulen, men eliminerar även överstyrning och understyrning.

Systemet är utformat för att förutse slirning och hanteringsproblem genom att det övervakar många ingångar på CAN-bussen (controller area network). CAN-bussen är en standardutformad fordonsbuss som låter mikroprocessor och anordningar att kommunicera med varandra i ett fordon utan en vårdator [3].

Vanligtvis erbjuder det här systemet en uppdelning av 40/40 procent till främre och bakre drivaxlarna, men systemet har kapacitet att skicka 100 % av motoreffekten till antingen fram- eller bakaxeln [3]. Systemet är mycket snabbare jämfört med traditionella AWD-system p.g.a. den avancerade elektroniken.

![BMW xDrive](image)

*_Figur 2.28. BMW xDrive [29]. BMWs permanenta fyrhjulsdrift har växellåda, fördelningslåda, elektroniskt styrd enhet, kardanaxel, främre- och bakre differential, halva framdrivaxlar, halva bakdrivaxlar och drivknutar._

Ford

Ford använder ett system som kallas Control Trac II, se figur 2.29. Detta system använder ett enkelt kraftuttag som ligger på framsidan av transaxeln för att överföra vridmoment genom en tvådelad drivaxel till en koppling vid bakaxeln. Kopplingen har en roterande blad pump som

Figur 2.29. Ford [30]. En manuellt inkopplingsbar fyrhjulsdrift som består av växellåda, viskokoppling, kardanaxel, främre- och bakre differential, halva framdrivaxlar, halva bakdrivaxlar och drivknutar.

GM

Honda

Honda Acura MDX har en elektroniskt styrd bakre drivaxel. I den bakre axeln finns två elekromagnetiska flerlamellskopplingspaket, en vid varje bakre drivaxel. Dessa kopplingspaket styrs av en styrenhet som kontrollerar drivlinan och ABS. Verkan av kopplingspaketen styrs genom att variera strömmen som skickas till dem. Systemet reglerar
hjulspinn och kan överföra vridmoment till bakhjulen under acceleration eller användas för att minska styrvridmomentet. Detta system har en strömbrytare som engagerar båda kopplingspaketens och läser systemet om bilen kör fast [3].

Mitsubishi S-AWC

Mitsubishi Super All Wheel Control (S-AWC) är ett ständigt 4WD-system som används i Lancer Evolution. Systemet är integrerat med bilens aktiva mellandifferential (ACD), antisladd (AYC), aktiv stabilitetskontroll (ASC), och ABS-komponenter. Detta ger reglering av vridmoment och bromskraft vid varje hjul [3].

Toyota

2.5 Definition av Hybridfordon

När miljöfrågorna kom mer i fokus i mitten av 80-talet blev hybridfordon alltmer populära. Bortsett från inköpskostnaderna är hybridfordon både miljövänliga och ekonomiska på grund av korsningen mellan en konventionell och elektrisk drivlinna [31]. Resultatet är att ett hybridfordon drar mindre bränsle och ger mindre utsläpp av skadliga gaser.
Hybridfordontekniken är mycket komplex och involverar många olika tekniker. Nedan beskrivs bara några utvecklingar från olika tekniker för att få en inblick i hur många vetenskapsområden som påverkar utvecklingen av hybridfordonstekniken. Några aspekter som man arbetar med är: förbättra effektiviteten i krafttransistorer, förbättra datorer och mikrokontroller, särskilt när det gäller kostnader, förbättra motoreffekt och generatoreffekt, utveckling av komplexa algoritmer och system för kontroll, simuleringsverktyg, minskning av materialkostnader och utveckling av nya lätta material, utveckling och användning av biobränsle, utveckling av nya batterier, superkondensatorer och bränsleceller [32].

2.5.1 Hybriddrivlinan

Seriehybrid

I seriehybriddrivlinan, som visas i figur 2.30, omvandlas mekanisk energi från förbränningsmotorn till elektrisk energi med hjälp av en generator, medan den elektriska energin används antingen för att ladda batteriet, eller så förbikopplas den från batteriet till den elektriska dragmotorn som driver hjulen.

![Figur 2.30. Seriehybriddrivlina. Framdrivningskraften tillföras bara från elmotor.](image_url)

Det finns inte med någon kontrollenhet eller effektomvandlare i figur 2.30 eftersom den bara visar energiflödet.

Seri hybriddrivlinan har flera fördelar:

- Förbränningsmotorn kan arbeta helt oberoende av drivhjulen, vilket gör att motorn alltid kan drivas inom sitt maximala effektråde.
• Ingen/enkel mekanisk transmission eftersom sambandet mellan vridmoment och hastighet för elmotorn är mycket nära till den idealiska för dragning.
• Kontrollstrategin för drivlinan kan vara enkel jämfört med andra konfigurationer p.g.a. sin helt mekaniska frikoppling mellan motor och hjul.

Nackdelar med seriehybriddrivlinna:

• Dålig verkningsgrad mellan förbränningsmotorn och de drivande hjulen p.g.a. dubbel energi omvandling: först mekanisk energi till elektrisk energi och sedan elektrisk energi till mekanisk energi.
• Två elmaskiner behövs (en motor och, en generator)
• Elmaskinen som driver hjulen måste vara överdimensionerad för att tillverka tillräckligt med effekt för att ge en optimal drivkraft till fordonet.

Parallellhybrid

Figur 2.31. Parallell hybriddrivlina. Framdrivningskraften kan tillföras från förbränningsmotorn eller från elmotorn, eller så kan de båda motorerna användas.

Fördelarna med parallell hybriddrivlina är:

• Både förbränningsmotorn och den elektriska motorn levererar vridmoment direkt till drivhjulen. Det sker ingen energiomvandling, alltså är energiförlusten mindre än för seriehybriddrivlinan.
- Elmaskinen som driver hjulen behöver inte vara stark eftersom förbränningsmotorn också driver hjulen.
- Lägre driftkostnad jämfört med seriehybriddrivlinna.

Även om parallellhybriddrivlinnan har fördelar, har den nackdelar också. Den behöver ett mycket komplext kontrollsystem på grund av sin form.

Serie-Parallel hybriddrivlinna

I en serie-parallelhybriddrivlinna finns det en planetväxel som har uppgiften att dela upp effekten från förbränningsmotorn i två grenar. Det kallas ibland splithybriddrivlinna eftersom "split" betyder dela på engelska[31].

![Diagram av serie-parallelhybriddrivlinna](image)

Figur 2.32. Serie-parallel hybriddrivlinna. Det är en kombination av serie- och parallel hybriddrivlinna. Effekten från förbränningsmotorn överförs till hjulen på två sätt: serie eller parallell.

Serie-parallelhybriddrivlinnan är en kombination av de båda drivlinorna som nämnts ovan och har fördelarna som gäller både för serie- och parallellhybriddrivlinna, och den har mycket bra verkningsgrad vid höga hastigheter. De nackdelar som kan nämnas är att det behövs två elmaskiner, en motor och en generator och kontroll systemet är mycket komplicerat[33].
2.5.2 Precers hybrider och fasta bränslen

Precers biobränslehybridteknik bygger på en effektiv förbränning av fasta biobränslen. Tekniken har redan visat sig vara ett mycket miljövänligt och bränsleeffektivt alternativ och deras första koncepthybrid, generation 1, blev mycket uppmärksammad när den stod färdig år 2007. För tillfället pågår framtagning av nästa generations fordonsplattform, generation 2 (G2), som kommer att finnas tillgänglig med två olika bränslealternativ:

- Fasta biobränslen
- Metallbränslen

Den fasta biobränslen är pellets och metallbränslen är metallpulver och är i nuläget under utveckling.

2.5.3 Konceptfordon 2 (G2)

Detta pelletsdrivna seriehybridfordon består av en pelletsbrännare med en specialanpassad förbränningszon som driver en värmemotor/generator som i sin tur laddar ett batteripaket. Kraft hämtas sedan av elmotorn från batteripaket för drift av hjulen. En förenklad översiktsbild på drivlinan av konceptfordon 2 visas i figur 2.33 och tekniska specifikationer i tabell 2.1.

![Gamla diagrambild](image)

Figur 2.33. En förenklad bild av Precers pelletsanpassade seriehybriddrivlina.
Tabell 2.1. Tekniska specifikationer för Koncepfordon 2 (G2) [34].

<table>
<thead>
<tr>
<th>Mått</th>
<th>L=4285, B= 1800 och H= 1750 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hjulbas</td>
<td>2600 mm</td>
</tr>
<tr>
<td>Fordons vikt</td>
<td>550 kg **</td>
</tr>
<tr>
<td>Motorer</td>
<td>Hybrid pellet värmemotor</td>
</tr>
<tr>
<td>Plattform</td>
<td>Precer G2</td>
</tr>
<tr>
<td>Karosseriform</td>
<td>2-dörrars halvkombi</td>
</tr>
<tr>
<td>Elmotor</td>
<td>15 kW *, torque 125 Nm *</td>
</tr>
<tr>
<td>Växellåda</td>
<td>Variabel utväxlingsförhållande</td>
</tr>
<tr>
<td>Externa elektriska system</td>
<td>230 V- 12/24 V (tillval)</td>
</tr>
<tr>
<td>Batterikonfiguration</td>
<td>10kWh-22kWh *</td>
</tr>
<tr>
<td>Alternativt laddningssystem</td>
<td>230 V, 10 A</td>
</tr>
<tr>
<td>Bränsle</td>
<td>Pellets</td>
</tr>
<tr>
<td>Bränsleförbrukning ***</td>
<td>Ungefär 0,34 kg/10 km *</td>
</tr>
</tbody>
</table>

* Beroende på kundens konfiguration
** Beroende på kundens batterikonfiguration
*** Körcykel: Nya europeiska körcyckeln (NEDC)

Elmotorn, batteripaketets storlek och värmemotors typ är beroende på vilka kundkonfigurationer som görs eftersom Precers teknik inte är låst till någon specifik typ.

2.6 Material till drivaxlar

Det material som mest används i bilar är stål, inte bara på grund av stålets goda mekaniska egenskaper, utan också på grund av inköpskostnaden. De eventuella material som ska ersätta
stålet måste vara lättare än stål, men samtidigt strukturellt motsvara stål d.v.s. klara de olika kraven som bilen ställer.

När det gäller drivaxlar finns det ett antal material som används hos fordonstillverkare, men de vanligaste är stållegeringar, aluminiumlegeringar och kolfiberlegeringar. De egenskaper som är viktiga för en drivaxel är lätt vikt, styvhet, hållfasthet, dämpning och vibration. Formlerna nedan används för att dimensionera drivaxlar.

\[m = \rho \cdot L \cdot A \]

Ekv.1

\[\sigma_{till} = \frac{R_{el}}{s} \]

Ekv.2 [36]

\[\tau_{till} = 0,6 \cdot \sigma_{till} \]

Ekv.3 [36]

\[M_{cr} = \tau_{cr} \cdot 2 \cdot \pi \cdot r^2 \cdot t \]

Ekv.4 [36]

\[f_n = \left(\frac{\pi}{2} \right) \cdot \sqrt{\frac{E \cdot l}{m \cdot L^4}} \]

Ekv.5 [37]

\[M_{\text{max}} = \frac{\tau_{till} \pi (d_i^4 - d_o^4)}{16 \cdot d_o} \]

Ekv.6 [36]

\[N = 94,251 \cdot \sqrt{\frac{E \cdot l}{m \cdot L^3}} \]

Ekv.7 [38]

m: massa (kg), \(\rho \): densitet (kg/m\(^3\)), A: area (m\(^2\)), \(\sigma_{till} \): tillåten dragspänning (Mpa), E: elasticitetsmodul (GPa), I: vridtröghetsmoment (m\(^4\)), \(d_i \): innerdiameter (m), \(d_o \): ytterdiameter (m), \(\tau_{till} \): tillåten skruvspänning (MPa), \(R_{el} \): Sträckgräns (MPa), Wv: vridmotstånd, s: säkerhetsfaktor, t: axelens tjocklek, \(M_{\text{max}} \): maximum tillåtet vridmoment (N.m), \(f_n \): egenfrekvens (Hz), r: medelradie (m), L: axellängd (m), N: varvtal (rpm)

2.6.1 Stål

Stål är det vanligaste materialet som används för drivaxlar, eftersom det inte bara är starkt och pålitligt utan också mycket kostnadseffektivt att tillverka. Det går att hävda att stål fortfarande är det hårdaste materialet och ofta det mest kostnadseffektiva [39]. Trots sina många goda egenskaper har stålet en uppenbar nackdel och det är vikten. Stålet gör inte bara att bilens vikt ökar, utan det påverkar också bränsleförbrukningen såväl som att den ger ökad roterande vikt i axlarna samtidigt som den minskar egenfrekvensen och minskar fordonsprestandan.

Jämfört med drivaxlarna gjorda av kolfiber har drivaxlar i stål sämre korrosionsmotstånd och lägre dämpningsförmåga. Trots att stål har många bra mekaniska egenskaper, är det tyngsta argumentet för att använda stål tillverkningskostnaderna som är relativt låga.
Fördelarna med att använda stål i en drivaxel:

- Hög hållfasthet
- Mer duktil och formbar än aluminium och kolfiber
- Lägre tillverkningskostnader jämfört med aluminium och kolfiber
- Högre utmattningshållfasthet jämfört med aluminium och kolfiber
- Enkel omarbetning och reparation

Nackdelarna med att använda stål:

- P.g.a. viktökning, ökad bränsleförbrukning
- Lägre egenfrekvens
- Sämre korrosionmotstånd jämfört med kolfiber
- Sämre dämpningsförmåga än kolfiber och aluminium
- Mer vibrationer som ger högre servicekostnader

2.6.2 Aluminium

Aluminium och dess legeringar kännetecknas av en relativt låg densitet (2,7 g/cm³ jämfört med 7,9 g/cm³ för stål), hög elektrisk och termisk ledningsförmåga och en korrosionsbeständighet i några vanliga miljöer. [39]. Något som talar till aluminiumets fördel är dess förmåga att minska bränsleförbrukningen eftersom dess vikt är låg. Detta gör att det är ett intressant material för den nuvarande trenden där bränslesnålhet är viktigt.

En viktig egenskap hos dessa material är specifik styrka, som i sin tur förstärks av förhållandet mellan draghållfastheten och vikten. Även om draghållfastheten hos en legering av dessa metaller är sämre än den hos ett tätare material som stål kommer det ändå att tåla en större last i förhållande till vikten.

Fördelarna med att använda aluminium i en drivaxel jämfört med konventionella material är:

- P.g.a. viktminskning, reducerad bränsleförbrukning
- Högre egenfrekvens
- Mindre tröghetsmoment som ger bättre prestanda
- Mindre vibrationer som i sin tur ger lägre service kostnader
- Kan tåla större last i förhållande till vikten

Nackdelarna med att använda aluminium:

- Höga tillverkningskostnader
- Mindre duktilt jämfört med stål
2.6.3 Kolfiber

Egentligen kallas det material som används i bilar kolfiberarmerad polymer, men man brukar bara säga kolfiber. Kolfiber är ett kompositmaterial, det vill säga att det består av två eller flera material som kombinerade ger bättre egenskaper än om de skulle användas ensamma. Till skillnad från metallegeringar behåller varje material sina speciella kemiska, fysikaliska och mekaniska egenskaper.

Fördelarna med att använda kolfiber i en drivaxel jämfört med konventionella material är:

- Hög hållfasthet i förhållande till vikten
- Hög styvhet i förhållande till vikten
- Hög slagseghet
- Bättre utmattningshållfasthet
- Förbättrat korrosionsmotstånd
- God värmeförmåga
- Hög dämpningsförmåga
- Låg värmeutvidgningskoefficient
- P.g.a. viktminskning, reducerad bränsleförbrukning
- Högre egenfrekvens

Nackdelarna med att använda kolfiber:

- De mekaniska egenskaperna hos en kompositstruktur är mer komplicerade än den är för en metallkonstruktion
- Jämfört med en metallstruktur är utformningen av en fiberarmerad struktur mer komplicerad, huvudsakligen på grund av skillnaden i egenskaper i riktningarna.
- Höga tillverkningskostnader
- Omäleenhet och reparation är svårt
- De har inte metallens goda kombination av hållfasthet och brottseghet.

2.7 Prestandajämförelse av framdrivningar

I det här avsnittet presenteras formlerna och de tekniska specifikationerna för fordonet och, sedan kommer en jämförelse mellan olika framdrivningar. En del av siffrorna är bara antagna, och målet med siffrorna är bara att ge en grov jämförelse. Figur 2.34 har använts för att göra en prestandajämförelse.
Figur 2.34. Ett accelererande fordon på en rak väg.

Tabell 2.2. Tekniska data för fordonet.

<table>
<thead>
<tr>
<th></th>
<th>Tekniska data för fordonet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Längd (mm)</td>
<td>4285</td>
</tr>
<tr>
<td>Bredd (mm)</td>
<td>1800</td>
</tr>
<tr>
<td>Höjd (mm)</td>
<td>1750</td>
</tr>
<tr>
<td>Hjulbas, l (mm)</td>
<td>2600</td>
</tr>
<tr>
<td>Avstånd mellan framhjul (mm)</td>
<td>1570</td>
</tr>
<tr>
<td>Avstånd mellan bakhjul (mm)</td>
<td>1575</td>
</tr>
<tr>
<td>Massa (full last, kg)</td>
<td>1000</td>
</tr>
<tr>
<td>Avstånd från marken till masscentrum (mm)(antas)</td>
<td>580</td>
</tr>
<tr>
<td>Avstånd från bakhjul till masscentrum (mm)</td>
<td>1300</td>
</tr>
<tr>
<td>Avstånd från framhjul till masscentrum (mm)</td>
<td>1300</td>
</tr>
<tr>
<td>Friktionstal, μ (antas)</td>
<td>1</td>
</tr>
<tr>
<td>Hastighet, v (m/s)</td>
<td>27,78</td>
</tr>
<tr>
<td>Tyngdacceleration, g (m/s^2)</td>
<td>9,81</td>
</tr>
</tbody>
</table>

\[F_{Z1} = \left(\frac{1}{2} \right) \cdot \left(\frac{mg \cdot a_2}{l} \right) - \left(\frac{1}{2} \right) \cdot \left(\frac{mg \cdot h}{l} \cdot \frac{a_1}{g} \right) \]

Ekv. 8 [40]
\[F_{Z2} = \left(\frac{1}{2} \right) \cdot \left(\frac{mg \cdot a_1}{l} \right) + \left(\frac{1}{2} \right) \cdot \left(\frac{mg \cdot h}{l} \right) \left(\frac{a}{g} \right) \]

Ekv. 9 [40]

FZ1 och FZ2 är normalkräfter som påverkar fram- och bakhjul.

\[\Sigma F_X = m \cdot a \]

Ekv. 10 [40]

\[\Sigma F_Z = 0 \]

Ekv. 11 [40]

Fx1 och Fx2 är dragkrafter.

\[F_{x1} = \pm \mu \cdot F_{Z1} \]

Ekv. 12 [40]

\[F_{x2} = \pm \mu \cdot F_{Z2} \]

Ekv. 13 [40]

Om det är framhjulsdrift då Fx2 = 0 och vid bakhjulsdrift Fx1 = 0, från ekvation 8, 9, 10, 11, 12, 13

För framhjulsdrift blir accelerationen:

\[a = g \cdot a_2 \cdot \left(\frac{\mu}{l+\mu h} \right) \]

Ekv. 14 [40]

För bakhjulsdrift blir accelerationen:

\[a = g \cdot a_1 \cdot \left(\frac{\mu}{l-\mu h} \right) \]

Ekv. 15 [40]

För fyrhjulsdrift blir acceleration och retardation;

\[a = \pm \mu \cdot g \]

Ekv. 16 [40]

På samma sätt blir retardationen för framhjulsdrift;

\[a = -(g \cdot \frac{\mu}{l-h\mu} (l - a_1)) \]

Ekv. 17 [40]

för bakhjulsdrift blir retardationen;

\[a = -(g \cdot \frac{\mu}{l+\mu h} (a_1)) \]

Ekv. 18 [40]

\[v = a \cdot t \]

Ekv. 19
2.8 Utväxling

Syftet med utväxling är att ge tillräcklig drivkraft till drivhjulen för olika typer av belastningar. Formlerna nedan och i tabell 2.3 har använts för att bestämma fordonens utväxlingar. Flera antaganden gjordes med hänsyn till liknande fordon.

\[F_D - F_S - F_L - F_R = m \cdot a \] \hspace{1cm} \text{Ekv.20}

\[F_R = F_N \cdot f_r \] \hspace{1cm} \text{Ekv.21}

\[F_S = G \cdot \sin \alpha \] \hspace{1cm} \text{Ekv.22}

\[F_L = \left(\frac{1}{2} \right) \cdot \rho_L \cdot c_w \cdot A \cdot v^2 \] \hspace{1cm} \text{Ekv.23}

\[F_D = \frac{p}{v} \] \hspace{1cm} \text{Ekv.24}

Tabell 2.3. Teknisk specifikation och antagna värden.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beskrivning</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_r)</td>
<td>Rullmotståndskoefficient</td>
<td>0,014 (antas)</td>
</tr>
<tr>
<td>(m)</td>
<td>Fordonsvikt (kg)</td>
<td>1100 (full last)</td>
</tr>
<tr>
<td>(g)</td>
<td>Tyngdacceleration (m/s(^2))</td>
<td>9,81</td>
</tr>
<tr>
<td>(G)</td>
<td>Tyngdkraft (N)</td>
<td>10791</td>
</tr>
<tr>
<td>(A)</td>
<td>Front Area (m(^2))</td>
<td>2 (antas)</td>
</tr>
<tr>
<td>(P_L)</td>
<td>Luftdensitet (kg/m(^3))</td>
<td>1,199 (vid 60 °C och 60 % fukt.)</td>
</tr>
<tr>
<td>(c_w)</td>
<td>Luftmotståndskoefficient</td>
<td>0,35 (antas)</td>
</tr>
<tr>
<td>(P)</td>
<td>Total nettoeffekt (W)</td>
<td>15000</td>
</tr>
<tr>
<td>(M)</td>
<td>Motorn max. vridmoment (Nm)</td>
<td>70 (antas att vid 1800 rpm)</td>
</tr>
<tr>
<td>(r_d)</td>
<td>Drivhjulsradie (m)</td>
<td>0,3</td>
</tr>
<tr>
<td>(V_{\text{max}})</td>
<td>Fordons max. hastighet (m/s)</td>
<td>29</td>
</tr>
<tr>
<td>(F_R)</td>
<td>Rullmotstånd</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Lutning (grader)</td>
<td></td>
</tr>
<tr>
<td>(F_N)</td>
<td>Normalkraft (N)</td>
<td></td>
</tr>
<tr>
<td>(F_L)</td>
<td>Luftmotstånd (N)</td>
<td></td>
</tr>
<tr>
<td>(v)</td>
<td>Fordonshastighet (m/s)</td>
<td></td>
</tr>
<tr>
<td>(F_S)</td>
<td>Gradientmotstånd (N)</td>
<td></td>
</tr>
<tr>
<td>(F_A)</td>
<td>Accelerationsmotstånd (N)</td>
<td></td>
</tr>
<tr>
<td>(F_D)</td>
<td>Total drivkraft (N)</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Fordonsacceleration (m/s(^2))</td>
<td></td>
</tr>
<tr>
<td>(U_S)</td>
<td>Slutväxel utväxling</td>
<td>3,55:1 (antas)</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Verkningsgrad</td>
<td>1 (ingen förlust antas)</td>
</tr>
</tbody>
</table>
3. Analys och resultat

I detta kapitel jämförs arbetets behandlade framdrivning utifrån ett tekniskt och ekonomiskt perspektiv. Delar av analysen innehåller uppskattade värden.

3.1 Framdrivning och förutsättningar

Framdrivningarna delas in i sina respektive grupper och fyrhjulsdriften är i sin tur indelad i arbetets behandlade underkategorier, se figur 3.1.

Figur 3.1. Alla typer av framdrivningar.
3.1.1 Framdrivningarnas styrkor och problemområden

För att göra en rättvis jämförelse och välja de lämpliga layouterna kommer först en kort sammanfattning för bakhjulsdrift, framhjulsdrift och fyrehjulsdrift.

Figur 3.2. För- och nackdelar med framhjulsdrift.

Framhjulsdrift har blivit den populäraste framdrivningstypen på grund av den är mest bränsleeffektiv och tillverkningskostnaderna är lägre eftersom färre komponenter behövs. En del positiva och negativa egenskaper som gäller allmänt nämndes ovan, men när det gäller hybridfordon är det lättare att få en bra viktfördelning (50/50) genom placering av batteripaketet.
Figur 3.3. För- och nackdelar med bakhjulsdrift.

Figur 3.4. För- och nackdelar med fyrhjulsdrift.

Den här typen framdrivning blir mer och mer populär trots att det ger högst bränsleförbrukning och det är dyraste, det används flest komponenter och ger extra kostnad för konsumenterna. Den ökande populariteten betyder att de som köper den här typen av bil bara tar hänsyn till de starka sidorna av fyrhjulsdriften.

3.2 Den valda framdrivningslayouten

Ovan presenterades allmänna för- och nackdelar för framhjulsdrift, bakhjulsdrift och fyrhjulsdrift, nu kommer presenteras de valda layouterna med sina för- och nackdelar, samt varför de valdes som lösningsförslag.
3.2.1 Framhjulsdrift

Den valda layouten har blivit den populäraste framdrivningstypen på grund av den är mest bränsle effektiv. De komponenterna som används för framhjulsdriften som valdes för konceptfordon (G2) är valda med hänsyn till fordonsvikt, det vill säga den enda utgångspunkten är att fordonet ska vara så lätt som möjligt, se figur 3.5 för den valda layouten. En del av komponenttyperna kan inte nämnas på grund av sekretess avtal, men i allmänt består komponenterna av en växellåda, halva framdrivaxlar som är gjorda av kolfiber (se materialjämförelse avsnitt), differential med vinkelväxel samt fyra drivknutar.

De ovan nämnda för- och nackdelarna kommer att gälla för den valda layouten. Mest bränsleeffektiva, mer utrymme inne i bilen, bättre grepp på snö och isiga vägar jämfört bakhjulsdrift, färre komponenter och lägre vikt, lägsta pris och det blir lättare att få en jämn viktfördelning. Den ovan nämnda nackdelen att fordonet kommer att dra åt höger eller vänster kommer inte gälla för det här fordonet men service kostnader och komplexitet med upphängningssystemet kan nämnas som viktiga nackdelar.

![Diagram](image)

Figur 3.5. Den valda framhjulsdriftlayouten för G2.
3.2.2 Bakhjulsdrift

Bakhjulsdriftsconfiguration, se figur 3.6, består av en växellåda, en differential med vinkelväxel, CV-knutar och halva bakdrivaxlar. Alla drivaxlar är tillverkade av kolfiber. Den enda utgångspunkten för den valda layouten som nämndes ovan är låg vikt, annars när det gäller bakhjulsdrift används mest den dominerande typen som nämndes i teoridelen.

![Diagram](image)

3.2.3 Fyrhjulsdrift

Det är inte lätt att bestämma vilken fyrhjulsdriftlayout som är lämplig för konceptfordon (G2) för att det finns olika lösningar (se avsnitt fyrhjulsdrift) hos olika tillverkare och det är inte möjligt att ta reda på hur mycket en sådan lösning väger. Efter samråd med Martin Larsson (VD Precer Group) bestämdes att ett Haldexkopplingssystem är lättare att använda med en främre- och bakre differential. De andra komponenterna är en transaxel, kardanaxel, kardanknutar, halva bak- och framaxlar och CV-knutar, se figur 3.7.

Systemet kommer att styras av en ECU (Elektronisk styrd enhet), förklarad i fyrhjulsdriftavsnittet. De ovan nämnda för- och nackdelarna kommer att gälla för den valda layouten och till och med fördelarna med framhjulsdrift, utom utrymme inne i bilen, kommer att gälla. Ökad framkomlighet, bättre väggrepp, ökad prestanda i uppförbacke, ökad lastkapacitet, ökad släpvagnslast, ökad lastkapacitet och släpvagnslast, ökad prestanda genom fullt utnyttjande av statisk friktion är fördelarna, men trots att bränsleförbrukningen minskar kommer det ändå dra mest bränsle på grund av vikten, men det är inte en signifikant skillnad jämfört med tvåhjulsdriften. Den största nackdelen är priset, det blir i alla fall dyrast jämfört med framhjulsdrift och bakhjulsdrift.

Figur 3.7. Den valda fyrhjulsdriftlayouten för G2.
3.3 Utväxling

Syftet med utväxling är att ge tillräckligt med drivkraft till drivhjulen för olika typer av belastningar. I beräkningarna ingick bara maximum- och minimumutväxlingar. Den maximale utväxlingen beräknades för maxlutning (30°) med full last (fordonsvikt 1100 kg) och minimumutväxlingen beräknades för fordonets maximumhastighet (antas 115 km/h) med en förare (fordonsvikt 600 kg), och front area ändrades till 1,80 m² på raka vägar. Resten antagna uppgifter visas i tabell 2.3 (se avsnitt 2.9) för att beräkna utväxlingarna som visas i tabell 3.1. I beräkningarna ingick också kraftbehov för olika lutningsgrader och dessa visas i figur 3.8 och tabell 3.2.

Tabell 3.1. Beräknade utväxlingsvärden.

<table>
<thead>
<tr>
<th>Utväxling för max.hastighet (115 km/h)</th>
<th>0,57:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total utväxling för max.hastighet</td>
<td>2,02:1</td>
</tr>
<tr>
<td>Utväxling för maxlutning (30°)</td>
<td>6,67:1</td>
</tr>
<tr>
<td>Total utväxling för maxlutning</td>
<td>23,67:1</td>
</tr>
</tbody>
</table>

Tabell 3.2. Kraftbehov med en förare för olika lutningsgrader och hastigheter.

<table>
<thead>
<tr>
<th>Kraftbehov för olika lutningar (N)</th>
<th>Lutning (grader)</th>
<th>Hastighet (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3139</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>2674</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>2192</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>1699</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>1211</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>776</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>484</td>
<td>0</td>
<td>110</td>
</tr>
</tbody>
</table>

3.4 Prestandajämförelse för olika framdrivningar

För att göra en rättvis jämförelse bland de olika framdrivningarna gjordes först en tabell som visar tekniska data för fordonet, se tabell 2.2, sedan användes de ekvationer som står i prestandajämförelse avsnittet i teoridelen för beräkningar.

Hänsyn tas inte till förluster i beräkningarna, inte heller finns faktorer som luftmotstånd, rullmotstånd, etc., eftersom beräkningarna antar att motorn ger tillräcklig dragkraft för att fordonet skall accelerera. Målet med beräkningarna är att få jämförelsetal, inte siffror som är korrekta för varje fordon, något som är inte görligt eftersom det är så många antaganden. Se tabell 3.3 och 3.4 för resultatet.

Tabell 3.3. Acceleration jämförelse för framdrivningar (0-100 km/h).

<table>
<thead>
<tr>
<th>Framhjulsdrift acceleration</th>
<th>Bakhjulsdrift acceleration</th>
<th>Fyrhjulsdrift acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (m/s²)</td>
<td>t (s)</td>
<td>a (m/s²)</td>
</tr>
<tr>
<td>4,01</td>
<td>6,92</td>
<td>6,3</td>
</tr>
<tr>
<td>9,81</td>
<td>2,83</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 3.4. Retardationsjämförelse för framdrivningar.

<table>
<thead>
<tr>
<th>Framhjulsdrift retardation</th>
<th>Bakhjulsdrift retardation</th>
<th>Fyrhjulsdrift retardation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (m/s²)</td>
<td>t (s)</td>
<td>a (m/s²)</td>
</tr>
<tr>
<td>-6,3</td>
<td>4,4</td>
<td>-4,01</td>
</tr>
<tr>
<td>-9,81</td>
<td>2,83</td>
<td></td>
</tr>
</tbody>
</table>
Trots att en del siffror bara är antagande är det tydligt att bakhjulsdrivna bilar är mer effektiva än framhjulsdrivna när det gäller acceleration, och att framhjulsdrivna bilar är bättre än bakhjulsdrivna när det gäller retardation. Men fyrehjulsdrivna är mer effektiva än framhjulsdrivna och bakhjulsdrivna när det gäller acceleration och retardation.

3.5 Konceptfordon (G2), prestanda

För att göra en prestandatabell för konceptfordon (G2) gjordes ett antal antaganden, se tabell 2.3, och fordonets vikt har ändrats från full last till en med en förare (625 kg). Först används ekvationerna som ligger i utväxlingsteoriavsnittet, sedan togs en integral fram för att beräkna tiden. Den accelerationen som finns i tabellen är bara ett medelvärde och beräknades som kvoten av hastigheten och den beräknade tiden. Dessutom antas inga förluster i drivlinan. Se tabell 3.5 och figur 3.9 för det beräknade resultatet, siffrorna representerar inte det exakta värdet (p.g.a. de antaganden som gjorts), målet är att ge en uppfattning om fordonets prestanda.

Tabell 3.5. Beräknade tider för konceptfordon (G2) med medelacceleration.

<table>
<thead>
<tr>
<th>V (km/h)</th>
<th>a (m/s²)</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(från 0 till 30 km/h)</td>
<td>5,55</td>
<td>1,50</td>
</tr>
<tr>
<td>(från 0 till 50 km/h)</td>
<td>3,17</td>
<td>4,377</td>
</tr>
<tr>
<td>(från 0 till 70 km/h)</td>
<td>2,06</td>
<td>9,416</td>
</tr>
<tr>
<td>(från 0 till 90 km/h)</td>
<td>1,328</td>
<td>18,82</td>
</tr>
</tbody>
</table>

Figur 3.9. Hastighet-acceleration samband för konceptfordon (G2).
3.6 Material för drivaxlar

Det finns många materialalternativ som kan väljas för att dimensionera drivaxlar men på grund av tidsbrist och eftersom det bara är en liten del av denna undersökning togs bara tre material: stål, aluminium och kolfiber för att det är de som används oftast för drivaxlar. Syftet med beräkningarna är att ge en ungefärlig jämförelse mellan de tre materialen och se viktskillnaden eftersom den viktigaste faktorn för fordonet är en så låg vikt som möjligt. Se tabell 3.6 för de använda materialens egenskaper och tabell 3.7 för det beräknade resultatet.

Tabell 3.6. Material som valdes för dimensioneringen av drivaxlar.

<table>
<thead>
<tr>
<th>Egenskaper</th>
<th>Symbol</th>
<th>Enheter</th>
<th>Stål (AISI 1080)</th>
<th>Aluminium (6061-T6)</th>
<th>Kolfiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticitetsmodul</td>
<td>E</td>
<td>GPA</td>
<td>215</td>
<td>74</td>
<td>150</td>
</tr>
<tr>
<td>Böjmodul</td>
<td>E₁</td>
<td>GPA</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Skjuvmodul</td>
<td>G</td>
<td>GPA</td>
<td>84</td>
<td>27</td>
<td>60.5</td>
</tr>
<tr>
<td>Poissons konstant</td>
<td>ν</td>
<td></td>
<td>0,295</td>
<td>0,335</td>
<td>0,266</td>
</tr>
<tr>
<td>Densitet</td>
<td>ρ</td>
<td>kg/m³</td>
<td>7900</td>
<td>2730</td>
<td>1700</td>
</tr>
<tr>
<td>Skjuvhållfasthet</td>
<td>τ</td>
<td>MPa</td>
<td>680</td>
<td>320</td>
<td>345</td>
</tr>
<tr>
<td>Sträckgräns</td>
<td>R</td>
<td>MPa</td>
<td>415</td>
<td>290</td>
<td>276</td>
</tr>
<tr>
<td>Pris per vikt i förhållande till stål</td>
<td></td>
<td></td>
<td>1</td>
<td>4,98</td>
<td>40,7</td>
</tr>
</tbody>
</table>

Tabell 3.7. Resultat för valda material.

<table>
<thead>
<tr>
<th>Material</th>
<th>Vikt (kg)</th>
<th>D_in (m)</th>
<th>D_out (m)</th>
<th>f_c (Hz)</th>
<th>N(rpm)</th>
<th>L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 1080</td>
<td>7,445</td>
<td>0,020</td>
<td>0,032</td>
<td>315,3</td>
<td>13377</td>
<td>0,5</td>
</tr>
<tr>
<td>6061-T6</td>
<td>4,17</td>
<td>0,025</td>
<td>0,040</td>
<td>386</td>
<td>16375</td>
<td>0,5</td>
</tr>
<tr>
<td>Kolfiber</td>
<td>2,6</td>
<td>0,025</td>
<td>0,040</td>
<td>696</td>
<td>29526</td>
<td>0,5</td>
</tr>
</tbody>
</table>

I resultatet i tabell 3.7 ser man att det går att spara mycket vikt om man använder kolfiber för att tillverka drivaxlarna, fast den ger höga tillverkningskostnader till fordonstillverkarna, vilket förklarar varför kolfiber fortfarande är ett ovanligt material. Resultatet visar också att drivaxlar gjorda av kolfiber har högsta egenfrekvens vilket medför den bästa prestandan.
4. Slutsats och reflektioner

I detta avslutande kapitel presenteras svar på arbetets frågeställningar samt slutsatser och reflektioner från arbetet i stort.

Inledningsvis i rapporten önskade jag att lyfta upp ämnet och skapa intresse kring hur viktigt hybridfordonsalternativet är för miljö och hållbarutveckling. I teoridelen presenterade jag information som skulle ligga till grund för att göra en teoretisk analys och jämförelse av framdrivningar. I resultat/analysdelen tog jag fram lämpliga lösningar för Precers nya konceptfordon (G2), dessutom gjorde jag en prestandajämförelse för framdrivningar, en prestandaanalys för Precers nya konceptfordon (G2), jämförde tre material, stål, aluminium och kolfiber, för drivaxlar och beräknade maximum- och minimumutväxlingar.

I detta arbete har jag försökt ta fram alla möjliga motor- och växellådarearrangemang för framdrivningar, d.v.s. framhjulsdrift, bakhjulsdrift och fyrrhjulsdrift. Sedan försökte jag ta fram för- och nackdelar för kombinationerna. I sista steget valdes det bästa alternativet för varje typ av framdrivning med hänsyn till låg vikt för Precers konceptfordon, G2.

För bakhjulsdriftsalternativet valde jag samma komponentkombination som för framhjulsdriftsalternativet. Bakhjulsdriftslayouten för G2 har fördelar som lägre servicekostnader, färre komponenter och lägre vikt och nackdelarna är att den har det sämsta greppet på snö och isiga vägar.

Eftersom konceptfordonet är en seriehybrid som har pellets/metallbränsle som bränslealternativ och pelletsalternativet drar 0,34 kg/10 km (tabell 2.1) blir fördelarna med bakhjulsdrift och framhjulsdrift inte så viktiga när det gäller att bestämma vilken framdrivning som är bäst, emellertid är pellets ett miljövänligt bränsle. Eftersom konceptfordonet har en liten motor är fyrrhjulsdriftens fördelar som nämnades ovan mer signifikanta och nackdelen som är högre bränsleförbrukning är också obetydlig för det valda
fyrhjulsdriftalternativet möjliggör också ett tvåhjulsdriftalternativ. Trots att fyrhjulsdriften är den dyraste lösningen, är det den lämpligaste lösningen för Precers konceptfordon för att få den högsta prestandan.

Eftersom det är mycket viktigt att spara så mycket vikt som möjligt när man väljer framdrivningsalternativ är kolfiber det bästa alternativet bland de tre ovan nämnda materialen för drivaxlarna i konceptfordonet (G2). Resultatet visar att om man använder kolfiber i fram- eller bakhjulsdrift för halva drivaxlar kommer man spara totalt ungefär 9,69 kg. Från samma resultat kan man säga att man för en fyrhjulsdrift kommer spara ungefär 12,11 kg med en kardanaxel (längden är 1,25 m) och 19,38 kg för halva bak- och framdrivaxlar. Total viktbesparing för fyrhjulsdrift blir ungefär 31,49 kg. Resultatet visar också att kolfiberdrivaxlar kommer att ge högsta egenfrekvens vilket medför den bästa prestandan. En annan slutsats är att kolfiber är det dyraste av de undersökta materialen vilket förklarar varför användning av kolfiber fortfarande är ovanligare jämfört med aluminium och stål. Att spara vikt är inte den enda viktiga parametern för fordonstillverkare och många tillverkare prioriterar fortfarande lägre tillverkningskostnader, men för Precer Group är den viktigaste prioriteringen att utveckla miljövänliga lösningar och därför väljer jag det miljövänligaste materialalternativet för drivaxlarna.

De faktorer som påverkar maximumutväxlingen är maximumlast (1100 kg) och den högsta lutningen (30°), det är alltså med dessa som utgångspunkt som man gör beräkningarna. Det beräknades att maximumutväxlingen är 6,67:1 och att totalutväxlingen i så fall är 23,67:1. Minimumutväxlingen beräknades för fordonets maximum hastighet (115 km/h) med 600 kg fordonsvikt. Resultatet för minimumutväxlingen är 0,57:1 och totalutväxlingen är i så fall 2,02:1.

Sammanfattningsvis visar det sig att det är möjligt att både ha prestanda och miljövänliga lösningsalternativ för Precers konceptfordon för att Precers hybridteknik möjliggör en sådan lösning. Det vore inte en överraskning att se hjulsmotoralternativet på marknaden inom kort trots att det ännu inte är en mogen teknik (mycket forskning krävs för att lösa utväxlingsproblemet för detta alternativ). Jag hoppas se många fordon med en sådan teknik inom kort eftersom det ger störst viktbesparing för hybrid- och elbilar och det skulle bli ett mycket stor steg för minskning av koldioxidutsläppen.
5. Tackord

Denna rapport är en del av examensarbetet som är det sista momentet i min utbildning för att bli högskoleingenjör inom Maskinteknik vid Karlstads Universitet. Arbetet har utförts under våren 2014 på uppdrag av Precer Autotech i Karlstad och motsvarar 22,5 högskolepoäng.

Jag vill passa på att tacka Martin Larsson som har varit min handledare på Precer Autotech. Han har varit till stor hjälp under projektets gång med värdefull information och infallsvinklar. Jag vill även tacka min handledare på Karlstads universitet, Mikael Åsberg, för den hjälp jag har fått under projektet.

Merdan Özkayalar

Karlstad, Juni 2014
Referenslista

 Tillgänglig: http://www.popularmechanics.com/cars/how-to/repair-questions/1302716
 [2014-04-15].

 Clifton Park, NY 12065-2919, USA: Delmar Publishers.

 http://www.engineerstudent.co.uk/understanding_gears.html [2014-04-15].

 [2014-04-10].

 Tillgänglig: http://mechanicalmania.blogspot.se/2011/07/planetary-or-epicyclic-gear-train-gear.html
 [2014-04-10].

 http://www.caranddriver.com/features/zfs-8-speed-automatic-transmission
 [2014-04-15].

 http://www.worldcarfans.com/10503249294/500000-multitronic-for-audi/lowphotos
 [2014-04-10].

 http://sv.wikipedia.org/wiki/Differentialv%C3%A4xel
 [2014-04-10].

http://en.wikipedia.org/wiki/Four-wheel_drive#Early_1900s [2014-04-10].

http://www.4wds.co.nz/ [2014-04-15].

[36] Björk, K. *Formler och tabeller för mekanisk konstruktion.* Spånga: Karl Björks Förlag HB

