
Proceedings of the ASME 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2014
August 17-20, 2014, Buffalo, NY, USA

DETC2014-34948

DRAFT: AN APPROACH TOWARDS GENERATING SURROGATE MODELS BY
USING RBFN WITH A PRIORI BIAS

Kaveh Amouzgar

Department of Mechanical Engineering,
School of Engineering, Jönköping University,

P.O. Box 1026, SE-551 11 Jönköping, Sweden,
Tel: +46 (0)36 101627, Fax: +46 (0)36 125331

Email: Kaveh.Amouzgar@jth.hj.se.

Niclas Stromberg

Department of Engineering Science,
University West,

SE-461 86 Trollhättan, Sweden,
Email: niclas.stromberg@hv.se.

ABSTRACT

In this paper, an approach to generate surrogate models
constructed by radial basis function networks (RBFN) with a pri-
ori bias is presented. RBFN as a weighted combination of radial
basis functions only, might become singular and no interpolation
is found. The standard approach to avoid this is to add a poly-
nomial bias, where the bias is defined by imposing orthogonal-
ity conditions between the weights of the radial basis functions
and the polynomial basis functions. Here, in the proposed a pri-
ori approach, the regression coefficients of the polynomial bias
are simply calculated by using the normal equation without any
need of the extra orthogonality prerequisite. In addition to the
simplicity of this approach, the method has also proven to pre-
dict the actual functions more accurately compared to the RBFN
with a posteriori bias. Several test functions, including Rosen-
brock, Branin-Hoo, Goldstein-Price functions and two mathe-
matical functions (one large scale), are used to evaluate the per-
formance of the proposed method by conducting a comparison
study and error analysis between the RBFN with a priori and a
posteriori known biases. Furthermore, the aforementioned ap-
proaches are applied to an engineering design problem, that is
modeling of the material properties of a three phase spherical
graphite iron (SGI) . The corresponding surrogate models are
presented and compared.

1 INTRODUCTION
In result of increasing challenge of developing complex and

successful products and the complexity of engineering applica-
tions, designer are attracted to simulation based designs. De-
signers are eager to predict the behaviour of their product before
producing the cost expensive physical model, also creating an
optimal product or system in sense of different objectives is a
goal of every designer. Computer simulations will aid designers
to fulfill the aforementioned requirements. However, simulation
of physical systems are often computationally expensive, for in-
stance in multidisciplinary design optimization (MDO) applica-
tions. The necessity of developing an inexpensive and accurate
explicit function to represent the relation between input design
variables and the corresponding responses in place of computer
simulations which are often black boxes is essential. Therefore,
metamodels or surrogates approaches are employed to substitute
the original computationally expensive and complex computer
simulations. The general concept of metamodeling is to obtain
a global approximation function of a given set of data points
and the corresponding responses, which adequately represents
the original function over a defined design space.

Several metamodeling techniques have been reported in lit-
eratures; response surface methodology(RSM) or polynomial re-
gression [1], kriging [2], radial basis function networks (RBFN)
[3], support vector regression (SVR) [4] and neural networks [5].
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Furthermore, a recent trend in developing metamodels which has
begun to draw the attention of researchers is to combine differ-
ent techniques in order to acquire the strength of each method,
named as ensemble of metamodels or hybrid metamodeling. The
comparative studies argue the superiority of the hybrid metamod-
eling over other individual techniques.

Despite the numerous studies investigating the accuracy and
effectiveness of variouse surrogate models by performing com-
parison studies, there is no one joint belief in dominance of one
method over others. Jin et al. [6], compared four different meta-
modeling technique: polynomial regression, kriging, multivari-
ate adaptive regression splines and radial basis function networks
using 14 mathematical and engineering test problems. They con-
cluded that in overall RBFN performed the best for both large
and small scale problems with high-order of non-linearity. Back-
lund et al. [7] studied the accuracy of RBFN, kriging and sup-
port vector regression with respect to their capability in approxi-
mating high-dimensional, non-linear and multi-modal functions.
The conclusion of results can be summarized as kriging being
the dominant method in its ability to approximate accurately
with fewer or equivalent number of training points, while RBFN
was the slowest in building the model with increasing number
of training points. In contrast SVR was the fastest in large
scale multi-modal problems. Fang et al. [8], studied RSM and
RBFN to find the best method for modeling highly non-linear
responses found in impact related problems. They also com-
pared the RSM and RBFN models with a highly non-linear test
function. Compromising the computation cost of RBFN, they
concluded dominance of RBFN over RSM in such optimiza-
tion problems. Mullur [9], compared his proposed metamod-
eling method name extended radial basis function (E-RBF) with
three other approaches; RSM, RBFN and kriging. He introduced
E-RBF as the superior method since it resulted in an accurate
metamodel without the need of parameter setting and significant
increase in computation time. Nevertheless, a number of param-
eters influence the choice of an accurate method such as non-
linearity, number of variables, associated sampling technique, in-
ternal parameter setting of each method and number of objectives
in optimization problems [10].

Researchers have been attracted to employ RBFN in engi-
neering applications due to the good performance of this method
in approximating highly non-linear responses with low compu-
tational cost. Several studies with applying RBFN in real world
engineering applications are carried out for example: modelling
the sensor for a space shuttle main engine [11], detection of struc-
tural damage in a helicopter rotor blade [12], optimization of a
micro-electrical packaging system [13], design of turbo machin-
ery and propulsion components [14], fitting the best approxima-
tion of wing weight data of subsonic transports [15], optimiza-
tion of helicopter rotor blades [16], prediction of flank wear in
drilling [17] and multi-objective optimization of a disc brake sys-
tem [18].

In this paper, the focus is on RBFN metamodelling method
which an approach with a bias known a priori is compared to
the approach with a posteriori known bias, commonly used in
literature. First, the theoretical model of the two approaches are
described and performance measures are defined. A set of six
mathematical test functions and an engineering design applica-
tion, followed by the comparison procedure is covered in the
next section. Next, The preliminary results of the comparative
study and the performance of the a priori approach is presented
and discussed. Finally, the conclusion and the potential future
studies are summarized.

2 RADIAL BASIS FUNCTION NETWORKS (RBFN)
Radial basis function networks were originally developed

for solving multi-quadratic equations of topography based on co-
ordinate data with interpolation [3]. Radial basis functions net-
works of a set of sampling points xi can be shown as

f (x) =
n

∑
i=1

λiφi(x)+b, (1)

where f (x) is the approximation function, n is the number of
sampling points, φi = φi(x) is the radial basis function, λi is the
weight for the ith basis function, and b is a bias. Some of the
most commonly used radial basis functions are

Linear: φ(r) = r,

Cubic: φ(r) = r3,

Gaussian: φ(r) = e−γr2
, 0≤ γ ≤ 1,

Quadratic: φ(r) =
√

r2 + γ2, 0≤ γ ≤ 1, (2)

where γ is a positive shape parameter and

r = ||xxx− ccci||, (3)

is the radial distance, where it is expressed in terms of the Eu-
clidean distance of the sampling points xxx from a center point ccci,
which typically is taken to be the design variable x̂xxi at the ith sam-
pling point. Here, the bias in Eq. (1) is a polynomial function,
formulated as

b = b(x) =
m

∑
i=1

βiηi(x), (4)

where ηi = ηi(x) represents the polynomial basis functions and
βi are the unknown regression coefficients of the polynomial bi-
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ases. Therefore, for a specific sampling point x̂j the correspond-
ing approximation function is

f (x̂j) =
n

∑
i=1

λiA ji +
m

∑
i=1

βiB ji, (5)

where A ji = φ(x̂j) and B ji = ηi(x̂j).
Furthermore, by training the radial basis functions networks

for a set of sampling points and their corresponding response
values

[
x̂j, f̂ j

]
the latter equation can be compactly formulated

as

f̂ = Aλλλ +Bβββ , (6)

where λλλ = [λ1,λ2...λn]
T , βββ = [β1,β2...βm]

T , and f̂ =[
f̂1, f̂2... f̂n

]T
.

The bias in Eq. (1) is augmented to the classic form of RBFN
in order to improve the performance of the classic RBFN in linear
problems. Also, the RBFN without any augmented bias might
become singular and no interpolation is found. This bias is con-
sidered to be known either a priori or a posteriori. However, in
literature the bias is regarded as unknown a priori.

Therefore, the unknown parameters are more than the num-
ber of equations in Eq. (6), the equation is undetermined and can
not be solved. This is overcome by imposing the following or-
thogonality condition

n

∑
i=1

λiη j(ci) = 0 for j = 1,2...m. (7)

Combining equations (6) and (7) will lead to the matrix form
of [

A B
BT 0

]{
λλλ

βββ

}
=

{
f̂
0

}
. (8)

The unknown coefficients λλλ and βββ of the RBFN will be ob-
tained by solving Eq. (8).

Here in this paper, an approach based on a priori known bias
is used to solve the RBFN. The a priori known bias can be ex-
pressed as

βββ = β̂ββ , (9)

where in this study β̂ββ the regression coefficient of the bias is
defined a priori by using the optimal regression coefficient

β̂ββ = (BTB)−1(BT f̂), (10)

which is resulted from a parabolic or quadratic response surface
formulated by

f (x) = β0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i ,

f (x) = β0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i +

n−1

∑
i=1

n

∑
j=i+1

βi jxix j.

(11)

The radial basis functions networks is trained to fit the given set
of data

[
x̂j, f̂ j

]
, by minimizing the error

εεε = f− f̂, (12)

in the least square sense, which is done by solving the following
minimization problem

min
1
2

(
Aλλλ − (f̂−Bβ̂ββ )

)T(
Aλλλ − (f̂−Bβ̂ββ )

)
. (13)

The solution to this problem is determined by the normal equa-
tion as

λ̂λλ = (ATA)−1AT(f̂−Bβ̂ββ ). (14)

Further on in the present paper, RBFN the bias known a
posteriori is briefly called a posteriori RBFN and abbreviated by
RBFNpos, and radial basis functions networks with bias known a
priori is called a priori RBFN and abbreviated by RBFNpri. The
proposed a priori RBFN method eliminates any need of imposing
the extra orthogonality condition in Eqn. (7).

The overall performance of the metamodels is evaluated
using the standard statistical error analysis. The two standard
performance metrics are applied to the off-design test points:
(i)Root Mean Squared Error (RMSE), and (ii) Maximum Abso-
lute Error (MAE).

The RMSE is expressed as

RMSE =

√
∑

n
i=1
(

f̂i− fi
)2

n
, (15)

and MAE is given by

MAE = max| f̂i− fi|, (16)
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where n is the number of test points selected to evaluate the
model, f̂i is the exact function value at the ith test point and fi
represents the corresponding predicted function value. RMSE
and MAE are typically on the same order of the actual function
values. These error measure will not indicate the relative perfor-
mance quality of the surrogates across different functions inde-
pendently. Therefore, to compare the performance measures of
the two approaches over test functions the normalized values of
the two errors, NRMSE and NMAE by using the actual function
values are calculated by

NRMSE =

√√√√∑
n
i=1
(

f̂i− fi
)2

∑
n
i=1
(

f̂i
)2 , (17)

NMAE =
max| f̂i− fi|√

1
n ∑

n
i=1
(

f̂i− f̄i
)2
, (18)

where f̄ denotes the mean of the actual function values at the test
points.

In addition, the NRMSE and NMAE of a priori RBFN is
compared to the a posteriori RBFN approach by defining the
corresponding relative differences. The relative difference in
NRMSE (DNRMSE ) of a posteriori RBFN is given by

DNRMSE
RBFpos =

NRMSERBFpos −NRMSERBFpri

NRMSERBFpri

×100%, (19)

and the relative difference in NMAE (DNMAE ) of a posteriori
RBFN is defined by

DNMAE
RBFpos =

NMAERBFpos −NMAERBFpri

NMAERBFpri

×100%, (20)

where NRMSE and NMAE values of the RBFpos approach are re-
ferred by NRMSERBFpos and NMAERBFpos ; and NRMSERBFpri and
NMAERBFpri are the corresponding NRMSE and NMAE values
of the RBFpri approach.

In the following sections, the performance RBFNpos and
RBFNpri approaches are compared by using several test prob-
lems and aforementioned accuracy measures.

3 NUMERICAL EXAMPLES
This section defines the test problems and the approach used

to compare the performance of the a priori RBFN, developed in
this paper, with the a posteriori RBFN. Six test functions and an
engineering design problem are used for the comparison study.

3.1 Test Functions
The comparison is based on the following five analytical

benchmark problems for unconstrained global optimization cho-
sen from literatures:

1. Branin-Hoo Function [19]

f1 = (x2−
5.1x2

1
4π2 +

5x1

π
−6) 2+10(1− 1

8π
)cos(x1)+10.

(21)
2. Goldstein-Price Function [20]

f2 = [1+(x1 + x2 +1)2

×(19−14x1 +3x2
1]−14x2 +6x1x2 +3x2

2)]
×[30+(2∗ x1−3x2)

2

×(18−32x1 +12x2
1 +48x2−36x1x2 +27x2

2)].

(22)

3. Rosenbrock Function [21]

f3, f4 =
N−1

∑
n=1

[100(xn+1− x2
n)

2 +(xn−1)2]. (23)

Two versions of this test function are used based on the num-
ber of design variables, (i) Rosenbrock-2 with two design
variables, and (ii) Rosenbrock-10 with ten input design vari-
ables.

4. Math1 (A 10-variable Mathematical Function) [22]

f5 =
10

∑
m=1

[
3

10
+ sin(

16
15

xm−1)+ sin(
16
15

xm−1)2
]
. (24)

5. Math2 (A 16-variable Mathematical Function) [23]

f6 =
16

∑
m=1

16

∑
n=1

amn(x2
m + xm +1)(x2

n + xn +1), (25)

where a is defined in [23].

3.2 SGI Micro Structural Material Model
In this study the RBFpri approach is used to accurately ap-

proximate the material properties (cauchy stress σ and strain
ε) of Spherical Graphite Iron (SGI) based on the micro struc-
ture of the material. The material behavior is obtained for the
three phases in Pearlitic-Ferritic SGI, i.e. Graphite, Ferrite and
Pearlite by using a micro-mechanical finite element model. The
micro structural image of SGI including the three phases and the
nodule used a a template is shown in Fig. 1. For simplicity the
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FIGURE 1: THE MICRO STRUCTURE AND THE THREE
PHASES OF SGI USED AS A TEMPLATE FOR THE INDI-
VIDUAL NODULES.

(a) Micro Structure

(b) Finite Element Mesh

FIGURE 2: THE MICRO STRUCTURE AND FINITE ELE-
MENT MESH OF THE MICRO STRUCTURE OF SGI.

FIGURE 3: THE STRESS DISTRIBUTION OBTAINED FROM
ONE FINITE ELEMENT ANALYSIS WITH RANDOMLY SE-
LECTED PARAMETERS.

three phases i.e. Graphite, Ferrite and Pearlite, are considered
to be separated by defined boundaries, and both Graphite and
Fearite are assumed to be elastic. A finite element model of
SGI’s meshed micro structure predicts the behaviour of Pearlite
in the material, which is approximated by the Ramberg-Osgood
approximation model expressed by

Eε = σ +α(
|σ |
σy

)n−1
σ , (26)

where E is the Young’s modulus, ε is the strain, σ represents the
Cauchy stress, σy is the Yield stress and α and n are material
constants. Figure 2 illustrates the micro structure of the SGI and
the finite element mesh of the micro structure. Parameters σy, α

and n are to be determined by minimizing the difference between
simulation and experimental data. Consequently, the objective
function is a function of three variables σy, α and n, such that

f (σy,α,n) =
1

Wi

k

∑
i
||σ sim

i −σ
exp
i )||, (27)

where k is the number of data points, ||∗|| denotes the L2−norm,
Wi, σ sim

i and σ
exp
i are weight, simulated homogenized stress for

the top boundary and experimental stress data for ith data point,
respectively. Surrogate models are generated and compared to
approximate the simulated homogenized stress obtained from the
FE simulation, by using RBFpri and RBFpos approaches. The re-
sult of finite element analysis with randomly selected parameters
showing the stress distribution in the SGI micro structure is de-
picted in Fig. 3.
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TABLE 1: NUMERICAL SET-UP FOR TEST PROBLEMS.

Function Function No. of Design No. of No. of

name variables range(s) DoE test points

f1 Branin-Hoo 2 x1 : [−5,10] 36 500

x2 : [0,15] 36 500

f2 Goldstein-Price 2 x1,x2 : [−2,2] 36 500

f3 Rosenbrock-2 2 x1,x2 : [−5,10] 12 500

f4 Rosenbrock-10 10 x1,x2 : [−5,10] 330 500

f5 Math 1 10 x1,x2 : [−1,1] 396 500

f6 Math 2 16 x1,x2 : [−1,1] 459 500

f7 SGI material 3 σy : [5E−3,2E−4] 200 3

model α : [0.05,0.5]n : [3,7]

Table 1 illustrates a summary on the properties of the test
problems including number of design variables, design range,
number of design of experiments and number of off-design test
points.

3.3 Comparison Procedure
The approach for performing the comparison study of the

two surrogate modeling methods, defined in the previous sec-
tions, is described in a six step procedure as follows:

Step 1: The number of design of experiments (DoE) for each
test problem is chosen. The selection is with regards to the
dimension of each function. However, the number of coef-
ficients k = (n+ 1)(n+ 2)/2 in a second order polynomial
with n number of variables is used as a reference. For all the
test functions the number of DoE is chosen as a coefficient
of k.
Step 2: In order to avoid scaling errors because of divers
magnitudes of the design variables, the design domains are
mapped between 0 and 1. The surrogate models are fitted
using the mapped variables, while the performance measure-
ment is carried out in the original space.
Step 3: To avoid any probable sensitivity of metamodels
to a specific DoE, 100 distinctive sample sets are gener-
ated for each sample size of step 1 (except the SGI ma-
terial model problem), using the Iterative Latin hypercube
sampling method. The MATLAB Latin hypercube func-
tion(LHSDESIGN) using maximin (maximize minimum
distance between points) with 20 iterations is employed in
this step.
Step 4: Metamodels are constructed using the two RBFN ap-
proaches (RBFpri and RBFpos) with each of the four different
radial basis functions (linear, cubic, guassian and quadratic)
to be compared for each set of DoE. Therefore, for each test
function 800 (100 set of DoE×2 RBFN approaches×4 radial
basis functions) surrogate models are constructed.

Step 5: 500 sample points are randomly selected within the
design space. The exact function value f̂i and the predicted
function value fi at each test point is calculated. RMSE,
MAE, NRMSE and NMAE are computed for each sample
set and radial basis function using equations 15 to 18. The
average of NMAE and NRMSE (NRMSEmean,NMAEmean)
is calculated across the 100 set of samples. Finally, the rel-
ative difference measures of the computed average errors,
NRMSEmean and NMAEmean for RBFpos are calculated by
using equations 19 and 20.
Step 6: The procedure from step 1 to 5 is repeated for all
test problems. The mean error measures, NRMSEmean and
NMAEmean, are computed for the surrogate approaches and
each radial basis function across all problems.

In the comparison study of the SGI material model, due to com-
putational cost of the FE model there are some modification in
the above steps . First, only one set of DoE with the sample size
mentioned in table 1 (200 design points) is created. Secondly, 3
of the sampling points are randomly chosen as test points. The
surrogate models are fitted at the other 197 remaining DoE, and
the performance measures RMSE, MAE, NRMSE and NMAE is
calculated at the 3 sampling test points. To avoid any probable
sensitivity of metamodel to a specific DoE, the above procedure
is repeated 100 times, for each run 3 different test points, conse-
quently 197 training points are randomly selected and the errors
are calculated. Finally, the average of all 100 sets of errors and
the relative difference in the averaged errors are computed for
comparison.

In result of including step 2 in the comparison procedure,
which is mapping the variables to a unit hypercube, the parame-
ters can be set without considering the magnitude of the design
variables. Therefore, the parameter γ used in the radial basis
functions in Eq. 2 is set to one (γ = 1). Also, in the SGI problem
we have chosen the Young’s modulus E = 90GPa and the Poison
ratio ν = 0.3 as the inputs to the finite element model.

4 RESULTS AND DISCUSSION
In this section, the results obtained from performing the

comparison study of a priori and a posteriori RBFN, by follow-
ing the comparison procedure defined in the previous section, is
presented and discussed.

The average RMSE and MAE of all test problems corre-
sponding to each radial basis function by using the RBFpri and
RBFpos are summarized in Tab 2. The highlighted values illus-
trate the lowest errors of each test problem among the different
radial basis functions. It can be observed that, the cubic basis
function generate the best fitted surrogate model for test prob-
lems f1, f3, f4 and f6. Test function 2 and 5 are best fitted by
using the quadratic radial basis function and the SGI material
model problem ( f7) has the best approximation by using the lin-
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TABLE 2: RMSE AND MAE SUMMARY OF THE A PRIORI AND A POSTERIOR RBFN BY USING DIFFERENT RADIAL BASIS
FUNCTIONS ACROSS THE TEST PROBLEMS.

Test Problems RBF Approach
Linear Cubic Gaussian Quadratic

RMSEmean MAEmean RMSEmean MAEmean RMSEmean MAEmean RMSEmean MAEmean

f1
RBFpri 12.105 78.587 6.789 41.293 26.212 228.123 8.200 60.043

RBFpos 13.341 96.976 6.925 46.228 29.151 263.235 8.077 60.416

f2
RBFpri 53266 407422 39643 310873 24632 204426 23305 173584

RBFpos 56991 459249 40952 326382 25905 225865 23572 175875

f3
RBFpri 69485.3 305412 52358.2 241511 81650.6 329664 66934.7 318879

RBFpos 92006.1 459130 59384.4 318219 145268 547187 85312.8 448168

f4
RBFpri 232155 842508 225503 827567 235359 924701 226385 842481

RBFpos 257040 1076576 226315 873849 252397 1010650 232746 914767

f5
RBFpri 0.2358 0.7845 0.2172 0.7460 0.2217 0.8067 0.2114 0.7566

RBFpos 0.2229 0.7357 0.2152 0.7505 0.1994 0.7063 0.2063 0.7230

f6
RBFpri 2.1602 9.5950 1.9795 7.4934 2.1945 10.0124 2.0637 8.4291

RBFpos 3.7575 22.4872 2.1690 11.2378 3.8974 24.2357 2.6166 15.7370

f7
RBFpri 3.75E-05 5.22E-05 4.74E-05 6.83E-05 1.22E-03 1.98E-03 2.43E-04 3.84E-04

RBFpos 3.97E-05 5.73E-05 4.89E-05 7.12E-05 1.21E-03 1.96E-03 2.59E-04 4.13E-04

TABLE 3: COMPARISON OF THE PERFORMANCE OF THE
TWO APPROACHES BY USING RMSE.

Test RBFpri RBFpos

Problems RMSEmean NRMSEmean RMSEmean NRMSEmean

f1 6.7888 0.0966 6.9249 0.0985

f2 23304.9 0.1679 23572.2 0.1698

f3 52358.2 0.2225 59384.4 0.2643

f4 225503 0.1718 226314 0.1724

f5 0.2114 0.1079 0.2063 0.1053

f6 1.9795 0.0217 2.1690 0.0238

f7 3.74E-05 0.2258 3.97E-05 0.2419

TABLE 4: COMPARISON OF THE PERFORMANCE OF THE
TWO APPROACHES BY USING MAE.

Test RBFpri RBFpos

Problems MAEmean NMAEmean MAEmean NMAEmean

f1 41.2931 0.85590 46.2278 0.95818

f2 173584 1.34564 175875 1.3634

f3 329664 1.54175 547187 2.5591

f4 827567 1.281071 873849 1.35272

f5 0.75659 2.62218 0.72300 2.50576

f6 7.49343 0.34508 11.2377 0.51751

f7 5.22E-05 2.90777 5.73E-05 3.12578

ear basis function. However, by studying the performance mea-
sures of the cubic basis function column in Tab. 2 for all the test
problems, it can be seen that the difference of errors between the
cubic and the best basis function is not considerable. Therefore,

one could conclude that in case of lack of any data on the re-
sponse surface, cubic basis function can be a robust and accurate
choice for generating surrogate models of black boxes. However,
there is a need in a more thorough and detailed comparison study
of selecting the best radial basis function for the RBFpri.

In order to perform the comparison study accurately, the per-
formance measures of the most accurate radial basis function
corresponding to each of the two surrogate approaches are ex-
tracted for all test problems. Table 3 presents the average of
and normalized RMSE for the seven test problems obtained from
RBFpri and RBFpos. As it can be observed from the table, the pro-
posed approach has the lower RMSE and NRMSE compared to
the RBFpos method for all test problems except f5. Similarly, the
average of MAE and normalized MAE values corresponding to
each method for all test problems are shown in Tab. 4. The MAE
and NMAE errors in this table also have the lower values (bold
faced) in the RBFpri column compared to the a posteriori RBFN
for all problems except the Math 1 test function ( f5), which in-
dicate the better performance of our proposed approach. On the
other hand, by focusing on the error values of test function 5 ( f5)
in Tab. 3 and Tab. 4, one could recognize that the superiority of
RBFpos in f5 is minor due to the small differences between the
performance measures of RBFpri and RBFpos.

The comparison of the performance RBFpos and RBFpri by
using NRMSE and NMAE is illustrated through bar diagrams in
Fig.4. The comparison of two approaches are also presented as
the relative differences in NRMSE and NMAE in Tab. 5. The
positive values in the table represent the degree of the superior-
ity of RBFpri in percentage for each test function, and the only
negative percentage value shows the extent which the RBFpos
performed better. The charts and the relative difference table
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FIGURE 4: COMPARISON OF THE PERFORMANCE OF RBFpri AND RBFpos IN EACH TEST FUNCTION.

demonstrate a clear view of the differences between the per-
formance of the two approaches, and again the superior perfor-
mance of a priori approach can be seen. Also, from Tab. 5, we
observe that the RBFpri method yields to a better NMAE, which
is indicative of local deviations, compared to RMSE, which pro-
vides a global error measure. Specially in Math 2 test function,
that is a large scale test function with 16 input variables, the a
posteriori RBFN generates a maximum absolute error of near
50% more than a priori RBFN. Also by looking at the error charts
in Fig. 4c and Fig. 4d corresponding to f3 and f4, which are
the same functions (Rosenbrock) with different number of vari-

ables, we can detect the lower error values obtained from both
approaches in the function with the higher number of variables.
This can be the effect of the sampling size on the performance of
the surrogate models.

5 CONCLUDING REMARKS
The comparative study presented in this paper has indicated

that the RBFN with a priori known bias approach has a better per-
formance than the a posteriori known bias RBFN, which is com-
monly used in literature as the approach to generate radial basis
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TABLE 5: RELATIVE DIFFERENCE OF NRMSE AND
NMAE COMAPRING RBFPri TO THE OTHER SURROGATE
APPROACH RBFPos.

Test Problems
RBFpos

DNRMSE(%) DNMAE(%)

f1 2.00 11.95

f2 1.15 1.32

f3 18.79 31.76

f4 0.36 5.59

f5 -2.39 -4.44

f6 9.57 49.97

f7 7.14 7.50

functions networks surrogates. A set of six test functions with
different degrees of dimensionality, and an engineering design
problem in approximating the material properties of SGI (spher-
ical graphite iron) was used to compare the approaches. The best
radial basis function among the four used in this study (linear, cu-
bic, Gaussian and quadratic) was chosen for each test problem by
performing a separate comparison. The study showed the robust-
ness of cubic radial basis function, although other basis functions
illustrated lower errors. The evaluation of various performance
measures, including RMSE, MAE and their normalized values
also the percentage of relative differences, justified the superior-
ity of RBFpri over RBFpos for most of the test problems, except
one test function which the difference was small.

In future, the proposed approach can be compared to other
metamodeling methods such as RSM, Kriging, SVR, extended
RBF and the recent hybrid methods. Furthermore, the effect of
different modelling criteria i.e. sampling technique, sample size
and problem dimensionality can be investigated for the proposed
approach.
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