

Efficient Debugging of Large Algorithmic Modelica Applications

Adeel Asghar, Adrian Pop, Martin Sjölund and Peter Fritzson
�

Programming Environments Laboratory
Department of Computer and Information Science

Linköping University
{adeel.asghar,adrian.pop,martin.sjolund,peter.fritzson}@liu.se

Abstract: Modelica models often contain functions with algorithmic code. The fraction of algorithmic
code is increasing in Modelica models since Modelica, in addition to equation-based modeling, is also
used for embedded system control code and symbolic model transformations in compilers using the
MetaModelica language extension. For these reasons, debugging of algorithmic Modelica code is
becoming increasingly relevant.

Our earlier work in debuggers for the algorithmic subset of Modelica used trace-based techniques. These
have the advantages of being very portable, but turned out to have too much overhead for very large
applications.

The new debugger is the first Modelica debugger that can operate without trace information. Instead it
communicates with a low-level C-language symbolic debugger, the Gnu debugger GDB, to directly
extract information from a running executable, set and remove breakpoints, etc. This is made possible by
the new bootstrapped OpenModelica compiler which keeps track of a detailed mapping from the high
level Modelica code down to the generated C code compiled to machine code.

The debugger is operational, supports browsing of both standard Modelica data structures and tree/list
data structures, and operates efficiently on large applications such as the OpenModelica compiler with
more than 100 000 lines of code.

Keywords: Modelica, Run-time Debugging, Modeling and Simulation, Algorithmic code, Eclipse.

�

1. INTRODUCTION

Advanced development of today’s complex products requires
integrated environments and modeling languages for
modeling and simulation. Equation-based object-oriented
declarative (EOO) languages such as Modelica (Peter
Fritzson 2004) is the key approach to physical system
modeling and simulation. The increased ease of use, the high
abstraction, and the expressivity of EOO languages are very
attractive properties. However, these attractive properties
come with the drawback that programming and modeling
errors are often hard to find.

This paper presents a new efficient debugger for the
algorithmic subset of Modelica that is applicable to large
applications. To address debugging of full Modelica models,
we plan to integrate this debugger with debugging
mechanisms that support equation-based part of models.

The paper is structured as follows: Section 2 presents the
background and related work, Section 3 presents an overview
of the debugger, whereas Section 4 explains the
implementation details. Conclusions and future work are
given in Section 5 and finally Section 6 presents the
acknowledgements.

2. BACKGROUND AND RELATED WORK

Any mature language implementation supports debugging
facilities to simplify and support developers in the process of
finding bugs in source code. The implementation of such
debugging support can be based on several different
techniques ranging from source code instrumentation to
machine code instrumentation combined with hardware
support.

Previous work by Peter Bunus and Peter Fritzson (2003;
2004) on debugging equation based languages such as
Modelica has mostly targeted the structure of the equations to
determine why a system is not balanced. Debugging the
symbolic transformations performed by the model compiler
for models in equation based languages is addressed by
(Martin Sjölund and Peter Fritzson, 2011b). Previous work
on debugging algorithmic Modelica code (Adrian Pop and
Peter Fritzson, 2005; Adrian Pop, et al., 2006) was based on
code instrumentation. While robust and portable it was too
slow to efficiently use for very large application models. To
our knowledge no other open-source or commercial Modelica
tool currently supports algorithmic code debugging.

3. USING THE NEW EFFICIENT DEBUGGER

The debugger is developed as a debug plugin for the
Modelica Development Tooling (MDT) which is a Modelica
programming perspective for Eclipse. The Eclipse-based user
interface of the new efficient debugger is depicted in Fig. 1.

Fig. 1. The debug view of the new efficient debugger within
the MDT Eclipse plugin.

The debugger provides the following general functionalities:

x Adding/Removing breakpoints.
x Step Over – moves to the next line, skipping the

function calls.
x Step In – steps into the called function.
x Step Return – completes the execution of the function

and comes back to the point from where the function
is called.

x Suspend – interrupts the running program.
x Resume – continues the execution from the most

recent breakpoint.
x Terminate – stops the debugging session.

It has several advantages compared to the old trace-based
debugger:

x It is much faster, partly because it only fetches data
on request, but primarily because the original
compiled machine code of the application can be
executed.

x It supports step over. (the old debugger only does
step in).

x Supports step return. (the old debugger does not have
that feature).

x Preserves stack frames and variables.
The debug view primarily consists of two main views:

x Stack Frames View
x Variables View

The stack frame view, shown in the Fig. 2, shows a list of
frames that indicates how the flow had moved from one

function to another or from one file to another. This allows
backtracing of the code.

It is possible to select the previous frame in the stack and
inspect the values of the variables in that frame. However, it
is not allowed to select any of the previous frames and start
debugging from there.

Each frame is shown as <function_name at
file_name:line_number>.

Fig. 2. The stack frame view of the debugger.

The Variables view shows the list of variables at a certain
point in the program. It contains four columns:

x Name – the variable name.
x Declared Type – the Modelica type of the variable.
x Value – the variable value.
x Actual Type – the mapped C type.

By preserving the stack frames and the variables it is possible
to keep track of the variables values. If the value of any
variable is changed while stepping then that variable will be
highlighted yellow (the standard Eclipse way of showing the
change).

Fig. 3. The variable view of the new debugger.

4. IMPLEMENTATION ASPECTS

In order to keep track of Modelica source code positions, the
Modelica source-code line numbers are inserted into the
transformed C source-code. This information is used by the
Gnu Compiler GCC to create the debugging symbols that can
be read by the Gnu debugger GDB (Richard Stallman,
Roland Pesch, Stan Shebs, et al., 2011).

Through the bootstrapped OpenModelica Compiler by Martin
Sjölund, Peter Fritzson and Adrian Pop (2011a) the line
number information is propagated all the way from the high
level Modelica representation to the low level intermediate
representation and the generated code.

This approach was developed for the symbolic model
transformation debugger described in (Martin Sjölund and
Peter Fritzson, 2011b) and is also used in this debugger.

Fig. 4. Debugger flow.

Consider the following Modelica code shown in Fig. 5.

Fig. 5. Modelica Code.

The OpenModelica Compiler compiles this HelloWorld
function into the C source-code depicted in Fig. 6.

The generated code contains blocks which represent the
Modelica code lines. The blocks are mentioned as comments
in the following format /*#modelicaLine
[modelica_source_file:line_number_info]*/.

This information is now used to generate debug symbols that
are recognized by GDB. The generated C source-code is used

by a small Perl script to create another version of the same
source-code with different line number blocks, see Fig. 7.

Fig. 6. Generated C source-code.

Fig. 7. Converted C source-code.

The converted C source-code contains a line number
mapping between the generated C source-code and the actual
Modelica source-code in the GDB specific format. Examine
the lines starting with #line in Fig. 7.

The executable is created from the converted C source-code
and is debugged at the C code level using GDB, which is
communicating with the Modelica debugger. GDB provides
two kinds of interpreters; the command line interface (CLI)
and the machine interface (MI). If GDB is invoked using the
CLI interpreter then the MI commands cannot be used.
However, the vice versa is not true which means if GDB is
invoked using the MI interpreter both the MI and the CLI
commands can be used. The CLI interpreter is more user

friendly. On the other hand the MI interpreter is more
convenient for detailed control of the execution at the low
level.

By utilizing the capabilities of MI, the MDT (Modelica
Development Tooling) debug plugin for Eclipse has been
enhanced in such a way that the old and the new debugger
can run simultaneously.

The Eclipse interface allows adding/removing breakpoints.
The breakpoints are created by sending the <-break-insert
filename:linenumber> command to GDB. At the moment
only line number based breakpoints are supported. Other
alternatives to set the breakpoints are; <-break-insert
function>, <–break-insert filename:function>.

The program execution is handled by sending asynchronous
commands to GDB via the Eclipse interface. These
commands includes the following:

x <-exec-run> – starts the program.
x <-exec-continue> – continue program execution.
x <-exec-next> – performs step over.
x <-exec-step> – performs step in.
x <-exec-finish> – performs step return.

These program execution commands are asynchronous
because they do not send back any acknowledgement.
However, GDB raises signals;

x as a response to those asynchronous commands.
x for notifying program state.

The debugger uses the following signals to perform specific
actions:

x breakpoint-hit – raised when a breakpoint is reached.
x end-stepping-range – raised when a step into or step

over operations are finished.
x function-finished – raised when a step return

operation is finished.
These signals are utilized by the debugger to extract the line
number information and highlight the line in the source-code
editor. They are also used as notifications for the debugger to
start the routines to fetch the new values of the variables.

The suspend functionality which interrupts the running
program is implemented in the following way. On Windows
GDB interrupts do not work. Therefore a small program
BreakProcess is written to allow interrupts on Windows. The
debugger calls BreakProcess by passing it the process ID of
the debugged program. BreakProcess then sends the
SIGTRAP signal to the debugged program so that it will be
interrupted. (Interrupts on Linux and MAC are still untested).

The debugger is operational and works without performance
degradation on large algorithmic Modelica/MetaModelica
applications such as the OpenModelica compiler, with more
than 100 000 lines of code.

The debugging framework is developed in Eclipse as a plugin
that is integrated into our existing OpenModelica Modelica
Development Tooling (MDT) (for code browsing and
algorithmic code debugging). As mentioned, the

OpenModelica Compiler (Peter Fritzson, et al. 2005; Martin
Sjölund, Peter Fritzson and Adrian Pop, 2011a) has been
adapted to produce the needed line number annotations in the
generated C code and run-time system enhancements for
GDB communication.

The debugger currently supports the standard primitive
Modelica types Integer, Real, Boolean, and String as well as
all the additional MetaModelica data types including ragged
arrays, lists, and tree data types.

It currently does not support the following regular Modelica
data types: arrays, enumerations, and records, which will be
added in the near future.

5. CONCLUSIONS AND FUTURE WORK

The debugger is in operation and is being regularly used to
debug very large applications such as the OpenModelica
compiler with more than 100 000 lines of code. The user
experience is very positive. It has been possible to quickly
find bugs which previously were very difficult and time
consuming to locate. The debugger is very quick even on
very large applications, without noticeable delays compared
to normal execution.

The most important future work involves developing a
suitable integration with run-time debugging of code
generated from equation sections in models. Some
approaches for such integration are described in (Adrian Pop,
David Akhvlediani, and Peter Fritzson, 2007). In such an
integrated debugger the recently developed transformation
debugging mechanisms (Martin Sjölund and Peter Fritzson
2011b) will be helpful since it provides a mapping from the
generated transformed code back to the original equations as
well as explanations of the transformations. Such generated
code can be very different from the original equations. Some
usage experimentation will be needed to determine what run-
time debugging features are useful in that context.

However, it will be rather straight-forward to support
debugging of algorithm sections intermixed with equation
sections in acausal models, since the algorithmic code style
of debugging can be used.

6. ACKNOWLEDGEMENTS

This work has been supported by the Open Source Modelica
Consortium (OSMC), by VINNOVA in the RTSIM and
OPENPROD projects, and by SSF in the ProViking HiPO
project.

7. REFERENCES

Adrian Pop and Peter Fritzson (2005). A Portable Debugger
for Algorithmic Modelica Code. In Proceedings of the
4th International Modelica Conference, Hamburg,
Germany.

Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin,
and David Akhvlediani (2006). OpenModelica
Development Environment with Eclipse Integration for
Browsing, Modeling, and Debugging. In Proc of the
Modelica'2006, Vienna, Austria.

Adrian Pop, David Akhvlediani, and Peter Fritzson (2007).
Towards Run-time Debugging of Equation-based
Object-oriented Languages. In Proceedings of the 48th
Scandinavian Conference on Simulation and Modeling
(SIMS’2007), available at www.scan-sims.org and
http://www.ep.liu.se. Göteborg, Sweden.

Martin Sjölund, Peter Fritzson, and Adrian Pop (2011a).
Bootstrapping a Modelica Compiler aiming at Modelica
4. In Proceedings of the 8th International Modelica
Conference (Modelica'2011), Dresden, Germany.

Martin Sjölund and Peter Fritzson (2011b). Debugging
Symbolic Transformations in Equation Systems. In
Proceedings of the 4th International Workshop on
Equation-Based Object-Oriented Modeling Languages
and Tools, (EOOLT'2011), Zürich, Switzerland.

Peter Bunus and Peter Firtzson (2003). Semi-Automatic Fault
Localization and Behavior Verification for Physical
System Simulation Models. In Proceedings of the 18th
IEEE International Conference on Automated Software
Engineering, Montreal, Canada.

Peter Bunus (2004). Debugging Techniques for Equation-
Based Languages. PhD Thesis. Department of Computer
and Information Science, Linköping University.

Peter Fritzson (2004). Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940 pp.,
ISBN 0-471-471631, Wiley-IEEE Press.

Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David
Broman (2005). The OpenModelica Modeling,
Simulation, and Software Development Environment. In
Simulation News Europe, 44/45.

Richard Stallman, Roland Pesch, Stan Shebs, et al. (2011).
Debugging with GDB. Free Software Foundation.
[online] Available at: <
http://unix.lsa.umich.edu/HPC201/refs/gdb.pdf>
[Accessed 30 October 2011].

