Flytande våtmark för dagvattenhantering i Rönningesjön, Täby kommun

Reningseffekt och framtidsutsikter

Veronica Dunér
Therese Myhrberg

Handledare: Gunno Renman

MJ153x Examensarbete i Energi och miljö, grundnivå

Stockholm 2014
Sammanfattning

Täby kommun har sommaren 2013 infört en för Sverige ny dagvattenreningsteknik i form av en flytande våtmark, som har anlagts i Rönningesjön. Tekniken kan förklaras som en hybrid, där de biologiska reningsprocesserna liknar en naturlig våtmark, medan anläggningen hydrologiskt fungerar mer som en sedimentationsdamm.

En ytterligare förklaring kan vara att det i denna begränsade studie har behövt göras ett antal förenklingar och antaganden, vilket innebär osäkerheter i resultatet. Reningseffekten bör därmed snarare ses som en riktlinje än ett absolut värde. För en mer komplet alt bild av våtmarkens reningskapacitet bör ytterligare analyser göras, och även på parametrar som denna undersökning ej tar hänsyn till, som exempelvis rening av kväve och tungmetaller.

Vad gäller teknikens framtidsutsikter i Sverige finns det flera fördelar som talar för en fortsatt etablering. Tekniken är billig och i princip underhållsfri. Dessutom lämpar den sig väl att använda som complement till redan befintliga anläggningar. Å andra sidan är det Svenska klimatet inte optimalt i och med långa vintrar med låg biologisk aktivitet vilket skulle kunna göra att effektiviteten i Sverige blir lägre än i varmare länder där tekniken använts tidigare.
Abstract

The municipality of Täby has in the summer of 2013 introduced a storm water treatment technology, new to Sweden, in the lake Rönningesjön. The technology, which is called floating treatment wetlands (FTWs), can be explained as a hybrid system, where the biological treatment mechanisms are similar to the ones of a natural wetland, while the facility hydrologically behaves like a retention pond.

This report is the result of a first examination of the water purification capacity, where the removal capacity of phosphorus has been of particular importance. Furthermore, the technology and its future prospects is being discussed in a wider perspective.

To evaluate the removal capacity, a series of flow measurements and collection of water samples has been executed in a period between week 15-24 in the year of 2014. The analysis has subsequently been done in regard to the parameters total phosphorus, pH, conductivity and turbidity. The results show a reduction of mean total phosphorus between inflow and outflow by 9.4%. This relatively low efficiency may depend on the overall low concentrations of phosphorus, while the wetland reaches its maximum capacity at higher concentrations. Furthermore, the wetland may not be fully developed due to the youth of the facility why an improvement of efficiency could be expected over time.

A further explanation could be that in this limited study, some simplifications and assumptions has been neceessary to do, and these provides some incertainty in the results. The removal efficiency should thereby rather be seen as a guideline. To provide a complementary view of the FTW removal capacity, further analysis should be executed, and also in parameters such as nitrogen and metal removal, which this study has not taken into account.

Regarding the future prospects of the technology in Sweden there a several advantages proposing a continued establishment. The technology is inexpensive and requires a low maintenance. It is also suitable to use as a complement to existing facilities. On the other hand long winters in Sweden with low bioactivity may reduce the efficiency compared to other countries where the technology previously has been used.
Innehållsförteckning

1. Inledning .. 6
 1.1 Om dagvatten .. 6
 1.2 Flytande våtmarker ... 6
 1.2.1 Användningsområden för flytande våtmarker ... 7
 1.2.2 Utformning av flytande våtmarker ... 8
 1.3 Reningsprocesserna i en flytande våtmark ... 8
 1.3.1 Mikroorganismer .. 8
 1.3.2 Växtupptag ... 9
 1.3.3 Sedimentering av partiklar ... 9
 1.4 Rönningesjön ... 10
 1.4.1 Projektet med flytande våtmark .. 10
 1.4.2 Bassängernas utformning ... 11
 1.4.3 Växterna ... 12
 1.4.4 Flytbäddarna ... 12
 1.5 Syfte och mål ... 12

2. Metod .. 12
 2.1 Metodik för provtagningen ... 12
 2.2 Metodik för analyserna ... 13
 2.3 Beräkningsmetodik .. 13
 2.3.1 Momentanflöden ... 13
 2.3.2 Genomsnittsflöden ... 14
 2.3.3 Fosforkoncentration ... 14
 2.3.4 Uppehållstid i bassängerna .. 14

3. Resultat och diskussion ... 14
 3.1 Totalfosfor ... 14
 3.2 pH .. 16
 3.3 Turbiditet ... 17
 3.4 Konduktivitet ... 18
 3.5 Uppehållstid i bassängerna ... 19
 3.6 Osäkerheter och felkällor: ... 20
 3.7 Framtidsutsikter i Sverige: ... 21

4. Slutsats .. 21
1. Inledning

I Rönningesjön i Täby har nyligen en för Sverige ny teknik för dagvattenrening tillämpats, nämligen en flytande våtmark. Denna rapport är ett resultat av en första undersökning av denna våtmark. Som en introduktion till ämnet ges en kort beskrivning av dagvattenrening och flytande våtmarker i ett bredare perspektiv.

1.1 Om dagvatten

Dagvatten definieras som regn- och smältvatten som avleds från tak, vägar, parkeringsplatser och gröna ytor och alltså tillfälligt rinner ovanpå marken, till skillnad från grundvatten som leds i marken (Täby kommun, 2013). Traditionellt brukar dagvattnet ledas orenat via brunnar och ledningar till närliggande recipienter som, i Stockholms fall, i slutändan oftast mynnar i Mälaren och Östersjön.

Orenat dagvatten innehåller näringsämnen som fosfor och kväve, och kan dessutom innehålla olika tungmetaller och organiska föreningar som klassas som miljögifter. Orenade utsläpp av dessa ämnen är en av de största faktorerna till negativ miljöpåverkan på sjöar och vattendrag, då det bidrar till övergödning och kan skada vattenlevande organismer. Allt fler inser därför värden i att ställa reningskrav och på så vis begränsa dagvattens miljöpåverkan.

Dagvattenrening är numera ett prioriterat åtgärdsområde för att kunna uppnå Stockholms mål om grundvattenkvalitet och vattenkvalitet i Mälaren, och i det arbetet är Stockholms närkommuner delaktiga. (Oxunda vattensamverkan, 2007)

1.2 Flytande våtmarker

Flytande våtmarker är en teknik för vattenrening som grundar sig på samma biologiska reningsprocesser som sker i naturliga våtmarker. Det förekommer även naturliga flytande våtmarker, även om dessa inte är särskilt vanliga. De konstgjorda flytande våtmarksanläggningarna är till stora delar inspirerade av hur de naturliga flytande våtmarkerna fungerar. Grunden till tekniken är en porös flytanordning där vattenlevande växter kan planteras, vilken anläggs i en damm. Se principskiss nedan:

Figur 1. Principskiss över en flytande våtmark. Illustration av Therese Myhrberg.
Tekniken med en flytande våtmark kan ses som en hybrid mellan en sedimentationsdamm och en traditionell våtmark. Medan sedimentationsdammar har många fördelar i och med att de är bra på att utjämna vattenflöden och ta hand stora partikelaggregat är de däremot sämre på att behandla finare partiklar och lösta föroreningar. Samtidigt är de lösta föroreningarna och näringsämnen de mest bioaktiva varför det är av stor vikt att bli av med dessa (Headley & Tanner, 2011). Av den anledningen anläggs sedimentationsdammar ofta tillsammans med våtmarkssystem.

Borne (2013) kom vid en studie fram till att halten totalfosfor i utloppet tack vare våtmarken minskade med 27 % jämfört med en kontrolldamm utan flytöar. Problemet med traditionella våtmarkssystem brukar dock vara att de klarar relativt låga vattendjup (ca 30 cm) och att plantorna stressas och dör om de översvämmas alltför frekvent. (Headley & Tanner, 2008)

Flytande våtmarker är skapade för att överbrygga båda dessa problem och dra störst nytta av båda teknikerna. Vattnet beter sig hydrologiskt som i en sedimentationsdamm för dagvatten, medan själva reningsprocesserna är liknande de som sker i en våtmark (Headley & Tanner, 2008).

1.2.1 Användningsområden för flytande våtmarker

Flytande våtmarker kan användas i flera olika typer av anläggningar och i olika syften. Förbättring av vattenkvalitet är ett huvudsyfte, men förutom det kan även främjandet av biologiska habitat för exempelvis fåglar vara ett viktigt syfte med våtmarken. När det kommer till vattenrening har flytande våtmarker tidigare använts både för rening av dagvatten och avloppsvatten. (Headley & Tanner, 2008)

Det har gjorts försök med att använda tekniken i områden med brist på rent vatten. Hybrider mellan olika dammar och konstruerade våtmarker har konstruerats för avloppsrening i dessa områden och har bedömts som en billig och hållbar vattenreningsmetod. (Zhang et al., 2014; Saeed et al, 2014)

För dagvattenrening har exempelvis flytöar anlagts för att förbättra befintliga dagvattendammar, vilket har visat sig öka reningsförmågan av lösta partiklar, zink, och koppar med omkring 40 % (Borne et al., 2013). Komplement med flytöar till
sedimentationsdammar har enligt en annan studie förbättrat reningsförmågan av fosfor och kväve betydligt. (Wang & Sample, 2014)

Metodens flexibilitet gör den anpassningsbar och lämplig att använda i olika typer av miljöer. Exempelvis går det att anlägga flytöar i dammar, sjöar eller liknande för att förbättra vattenkvaliteten vid redan befintliga anläggningar. Tekniken bedöms av denna anledning ha goda framtidsutsikter som komplement eller som en alternativ lösning till traditionella reningsverk och dammsystem. (Veg Tech, se bilaga 3)

1.2.2 Utformning av flytande våtmarker

Vilka växtarter som används i anlagda flytande våtmarker varierar kraftigt beroende på lokala förhållanden, men har gemensamt att de är makrofyter som växer delvis ovan vattenytan. T.R. Headley och C.C. Tanner (2008) framhåller att vid flytande våtmarkssystem väljs ofta större makrofyter, exempelvis vass (Phragmites australis) eller olika arter av halvgräs (Cyperaceae) och tågväxter (Juncaceae). Detta skiljer ut flytande våtmarker från mindre sammansatta flytande växtsystem av små växtkolonier som flyter av egen kraft och alltså inte kräver någon särskild flytbädd. Förutom dessa kriterier är valet av växter mycket varierande. Ofta väljs lokalt förekommande arter som tillväxter kraftigt i förorenade vatten och dessutom trivs bra i de rådande klimatförhållandena. (Headley & Tanner, 2006)

1.3 Reningsprocesserna i en flytande våtmark
Tekniken med flytande våtmarker grundar sig i några olika processer som alla spelar en viktig roll för reningen. Bortförsel av näringsämnen från vattenmassan sker dels genom nedbrytning med hjälp av mikroorganismer, dels genom fysiskt infångande och sedimentering av partiklar och slutligen till liten del växtupptag. Nedan beskrivs varje process mer ingående.

1.3.1 Mikroorganismer
Den största bortförseln av näringsämnen i en flytande våtmark sker med hjälp av mikroorganismer som bakterier, svampar och alger. Dessa finns framförallt i växternas rotgardin men även i ett tunt lager längs flytstommens underreder som är i kontakt med vattenmassan. Mikroorganismerna bildar en så kallad mikrofilm, en biologiskt aktiv yta, och det är på denna som de biokemiska reningsprocesserna sker. (Headley & Tanner, 2006)
För kvävebortförsel är det framförallt denitrifikationsprocessen som är central, men vad gäller fosfor är adsorption av löst fosfor till partikelytor på mikrofilmen den viktigaste biologiska reningsprocessen. (Chang et al., 2012; Borne, 2013)

Utöver de rent biologiska reningseffekterna där näringsämnen förbvikas av mikroorganismerna, bidrar mikrofilmen till de mekaniska reningsprocesserna. Mikrofilmen tillsammans med växtrotterna och flytöarna blir som ett filter som fängar upp små partiklar i vattnet, och däribland de näringsämnen och föroreningar som är partikelbundna. En del av dessa partiklar sedimenterar, medan andra kan fastna vid mikrofilmen och genomgå liknande biologiska processer som de lösta näringsämnen. Detta kan bidra till att stärka den biologiska mångfalden i området vilket får ses som en bonusseffekt av reningsanläggningen. (Headley & Tanner, 2006)

1.3.2 Växtupptag
En viss reningseffekt har växterna genom sitt behov av näringsämnen kväve och fosfor. I rötterna sker upptag av näringsämnen som genom biosyntes blir en del av rotvävnaden (Chang et al., 2012). I och med att växterna inte är rotade i bottensedimenten tvingas de göra hela sitt näringsupptag från den fria vattenmassan, vilket möjligtvis ökar det direkta växtupptaget i jämförelse med våtmarker som är rotade i bottensedimenten (Headley & Tanner, 2006).

Växterna kan klippas ned med jämna mellanrum och därmed sker en nettbortförsel av näringsämnen från sjön. Beroende på val av växter varierar omfattningen av denna effekt men den är generellt inte särskilt betydande i jämförelse med den renings som växtrötterna står för genom infångande av partiklar och adsorptionsprocesser. (Borne, 2013)

1.3.3 Sedimentering av partiklar
En del av näringsämnen är inte lösta fritt i vattnet utan bundna i partiklar. Då strömningshastigheten i systemet blir tillräckligt låg möjliggörs sedimentering av dessa och på så sätt stannar näringsämnen i större utsträckning kvar i bassängerna istället för att fortsätta ut i sjön. Bassängerna bör därför utformas på ett sådant sätt att vattnet tar långsamma möjliga väg genom systemet så att hastigheten blir låg. Själva våtmarksöarna bidrar även de till att sänka partikelhastigheten genom att stommarna och rotgardinerna bromsar upp partiklarna. (Headley & Tanner, 2006)
Sedimenteringen av partikulärbunden fosfor till bassängbotten är en viktig process och blir slutdestinationen för det fosfor som fångas upp av våtmarken och sedimentationsbassängen. Det är därför önskvärt att gräva ur bassängbotten då och då för att helt bortföra en del fosfor från systemet, och minska risken för återläckage (Headley & Tanner, 2006).

För att sedimenteringen ska fungera effektivt är det även viktigt att pH-förhållandena i vattnet är sådana att inte fosfor i kan frisläppas från sedimenten och därigenom återföras till vattenmassan. Den flytande våtmarken kan hjälpa till att hålla pH inom ett neutralt intervall och förutom det är närvaron av organiskt material och/eller lermineral viktig för att utgöra ytor som frisläppt fosfor åter kan adsorberas till. (Borne, 2013)

1.4 Rönningesjön

Rönningesjön är en recipient i Täby som mynnar ut i Stora Värtan som är en inre del av Östersjön. Sjön är avlång och relativt grund med en total yta av 0,62 km² och ett medeldjup av 2,9 m. Vattenmassan i sjön uppgår alltså till närmare 1,8 miljoner m³. Halterna av tillförda näringsämnen beräknas uppgå till 22 kg/år fosfor och 280 kg/år kväve (se bilaga 3). Medelhalten av totalfosfor i sjön i augusti månad under perioden 2007-2012 var 51 μg/l (Länsstyrelsen i Stockholms län, 2014).

Med tanke på att sjön med dess omkringliggande markområden räknas som synnerligen attraktiva friluftsområden i kommunen, är dess vattenkvalitet idag otillfredsställande. Rönningesjön bedöms på grund av dess belastning av næringsämnen ha ett eutroft tillstånd, vilket innebär en kraftig algblomning under sommarmånaderna med en grumlig vattenkvalitet till följd. (Lindqvist, 2009)

1.4.1 Projektet med flytande våtmark

På grund av dess tillstånd har åtgärder för rening av inkommande dagvatten i Rönningesjön använts sedan lång tid tillbaka. Redan 1979 byggdes en anläggning i sjöns norra ände som använde sedimentationstekniker och kemisk utfällning för att få bukt med de förhöjda halterna av näringsämnen i dagvattenet vid inloppet till sjön. Då anläggningen är år 2013 behövde
bytas ut efter mer än 30 år i drift ville kommunen hitta ett alternativ till den gamla konventionella metoden, som både var dyr i drift och inte särskilt modern längre. En utredning visade att en för Sverige ny teknik i form av flytande våtmark kunde göra reningsarbetet både billigare och mer effektivt än den gamla anläggningen. Sommaren 2013 byttes de gamla skärbassänger ut mot nya, och i den största skärbassängen anlades flytöarna. (Täby kommun, 2013)

1.4.2 Bassängernas utformning
I Rönningesjön finns det tre stycken skärbassänger som vattnet passerar en i taget. Våtmarken är placerad i den sista bassängen som vattnet passerar precis innan det förs vidare ut i sjön. På så vis hinner de större partiklarna sedimentera redan i de första bassängerna, medan i huvudsak löst fosfor i vattenmassan når våtmarken. (Adielsson, 2013)

Skärbassängernas utformning är framförallt betydande eftersom det är de som avgör vilken uppehållstid vattnet kommer att få i bassängerna. Ju längre väg vattnet behöver färdas för att nå utloppet desto längre uppehållstid. För att vattnet ska hinna renas i tillräcklig utsträckning krävs att bassängen är tillräckligt stor. Enligt VISS bör en sedimentationsdamm, vilket är den teknik anläggningen grundar sig i, utgöra mellan 0,1 % till 1 % av avrinningsområdets areal (Länsstyrelsen i Stockholms län, 2014). Rönningesjön avrinningsområde har en areal på 211 ha (2 110 000 m²) (Se bilaga 3) och bassängerna drygt 5 000 m² (Se bilaga 1) vilket innebär att bassängen utgör 0,24 % av avrinningsområdet.
1.4.3 Växterna
Växterna som används i våtmarkerna i Sverige är växter som finns naturligt i det nordiska klimatet. I Rönningsjön har följande arter planterats i flytöarna: gul svärdslilja, vasstarr, vattenmynta, knappåg, veketåg, sjöranunkel, stor igelknopp, älgört, fackelblomster. (Veg Tech, 2013)

1.4.4 Flytbäddarna
Våtmarkerna i Rönningsjön består av 28 stycken öar i tre olika storlekar, med en sammanlagd yta på drygt 150 kvadratmeter. Flytöarna består av en porös stomme av återvunnen PET-plast med en mycket stor specifik yta. Varje kvadratmeter av flytstommen motsvarar en yta på 180 m². Utifrån undersökningar av liknande anläggningar i Montana, USA beräknas 80 % av reningen utföras av mikroorganismerna, medan växtupptaget endast står för 20 %. (Floating Island International, 2014)

Med grund i samma undersökningar antas våtmarkerna i Rönningsjön kunna rena 12 kg fosfor per år. Detta är 30 % högre än reningseffekten av den gamla anläggningen. Till det tillkommer dessutom att skärmbassängerna i sig renar vattnet med drygt 9 kg fosfor så att totalt 18 kg fosfor per år bortförs tack vare anläggningen. (Adielsson, 2013)

1.5 Syfte och mål
Förväntningarna på den nya anläggningen är än så länge rent teoretiska och den har under sin hittills unga ålder inte utvärderats. Syftet med denna studie är därför att undersöka reningseffekten utifrån några olika parametrar, med speciell tonvikt på det begränsande näringsämnet fosfor. Några parametrar som i en djupare studie hade varit av intresse men inte omfattas här är kväve, metaller och organiska miljögifter.

Våtmarkstekniken och dess framtidsutsikter i Sverige kommer även att bedömas på ett mer generellt plan. Till grund för bedömningen kommer dels resultaten från undersökningen av Rönningsjön och dels tidigare genomförda internationella studier att användas.

2. Metod
Till grund för rapporten ligger en praktisk undersökning av vattenkvaliteten i olika punkter i anläggningen.
Litteraturstudien baseras på vetenskapliga artiklar om flytande våtmarker i projekt utanför Sverige, samt tekniska fakta om det specifika projektet i Rönningsjön och även det föregående reningsverket.

2.1 Metodik för provtagningen
För den kemiska undersökningen har vattenprover inhämtats vid sju tillfällen under perioden april-juni. Vattenproverna har tagits i fyra olika punkter i anläggningen enligt nedan:
1. Löttingediket (vid överfallsvärnet)
2. Vassvägsdiket (vid överfallsvärnet i brunn vid utloppet till sjön)
3. Vid öppningen mellan skärbassäng 2 och 3
4. Vid utloppet från skärbassäng 3
(Se bilaga för detaljerad karta över provtagningsplats 3 och 4)

Vid varje tillfälle har minst 50 ml vatten hämtats i varje provpunkt. Proven har därefter förvarats nedfrysta fram till analysen.

2.2 Metodik för analyserna

2.3 Beräkningsmetodik

Utöver de kemiska analyserna av vattenprover har en del beräkningar gjorts för att kunna tolka resultaten. Vattenflöden, och därmed uppehållstiden i bassängerna, har beräknats med två olika metoder. Dels momentanflöden vid provtagningstillfällena och dels medelflöden under perioden utifrån nederbördsdatal. Därefter har en medelkoncentration av fosfor i inloppsvattnet räknats ut för att kunna jämföra fosforkoncentrationen i in- och utgående vatten. Slutligen har en ungefärlig uppehållstid i bassängerna tagits fram.

2.3.1 Momentanflöden

Överfallshöjden i vardera dike, vid punkt 1 och punkt 2, har mätts med linjal vid varje provtagningstillfälle. Flödesberäkningen har sedan beräknats med hjälp av avbördningsformeln för triangulärt överfall enligt (Häggström, 2009):

\[
Q = C \times 8 \times \tan \left(\frac{\theta}{2} \right) \times h^{2.5} \times \sqrt{2 \times g}
\]

(Ekv. 1)

där \(Q \) = flödet i m³/s
\(C \) = en avbördningskoefficient som genom diagram i Häggström (2009) bestämts till 0,58
\(\theta \) = överfallsinklination i grader
\(h \) = höjdskillnaden mellan värnets krön och den uppströms opåverkade vattenytan i meter
\(g \) = tyngdaccelerationen (9,82 m/s²)
2.3.2 Genomsnittsflöden

2.3.3 Fosforkoncentration

För att kunna jämföra koncentrationen i inkommande vatten med det som lämnar bassängen har en genomsnittskoncentration mellan de två inloppsdikena vid varje provtagningstillfälle beräknats enligt formeln:

\[
\frac{Q_1 \times C_1 + Q_2 \times C_2}{Q_1 + Q_2} = C_{medel} \tag{Ekv. 2}
\]

där \(Q_1\) och \(Q_2\) är flödet i respektive provpunkt och \(C_1\) och \(C_2\) är motsvarande koncentration.

Skillnaden mellan fosforkoncentrationen i ingående vatten och utgående vatten ger då en indikation av anläggningens reningseffekt enligt nedan.

\[
\frac{C_{in} - C_{ut}}{C_{in}} \times 100 \% \tag{Ekv. 3}
\]

2.3.4 Uppehållstid i bassängerna

Inledningsvis har en uppskattning av anläggningens totala volym gjorts. Utifrån tidigare uppmätta djup vid vissa punkter i sjön, (se Bilaga 1), har ett rutnät över sjön kunnat tas fram. Medeldjupet för varje ruta har interpolerats fram från de uppmätta djupen i bassängen så att en ungefärlig totalvolym har kunnat beräknas.

Värdena på bassängvolymen och den genomsnittliga beräknade flödeshastigheten har tillsammans gett uppehållstiden. Denna är dock endast ungefärlig och bör främst betraktas som en riktlinje för storleksordningen än ett absolut värde.

\[
\frac{Bassängvolym}{Flöde} = Uppehållstid \tag{Ekv. 4}
\]

3. Resultat och diskussion

3.1 Totalfosfor

De uppmätta halterna totalfosfor i de olika provpunkterna är som följer i tabell 1. Generellt kan anses att koncentrationerna vid både inlopp och utlopp var låga. Enligt Lindqvist (2008) uppmättes medelkoncentrationen mitt ute i sjön till 34 µg/L och 58 µg/L i mars respektive augusti. Mätningar gjordes även i de båda inloppsdikena under det föregående reningssverkets driftsperiod, då medelkoncentrationen var 78 µg/L och 26 µg/L i Löttingediket respektive
Vassvägsdiket (Fejes & Lindgren, 2003). Värdena i tabell 1 är alltså lägre än vid båda dessa tidigare mätningar vilket tyder på ett överlag renare vattentillflöde till Rönningesjön, och därmed en positiv trend gällande dess ekologiska balans.

De viktade medelvärdena för inflödet till våtmarken har beräknats med hjälp av flödesdata, (se metodik i avsnitt 2.3.1-2.3.3 samt bilaga 5). Skillnaden mellan medelkoncentrationen vid inlopp och utlopp är 1,6132 µg/L, vilket enligt undersökningen ger att utloppskoncentrationen av totalfosfor i genomsnitt är 9,4 % lägre än inloppskoncentrationen. Det är ett positivt resultat, men kan anses lågt i jämförelse med exempelvis Borne (2013) där motsvarande siffra var 27 %. Orsakerna till detta kan vara många, och till stor del sannolikt bero på de osäkerheter som finns i denna studie (se avsnitt 3.6). Detta innebär att värdet snarast bör ses som en riktlinje.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Löttingediket</th>
<th>Vassvägsdiket</th>
<th>Viktat medelvärde in Bassäng 2</th>
<th>Utloppspunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/4</td>
<td>28,6361</td>
<td>18,5625</td>
<td>24,5447</td>
<td>19,2911</td>
</tr>
<tr>
<td>15/4</td>
<td>19,8012</td>
<td>15,6297</td>
<td>18,2675</td>
<td>18,2893</td>
</tr>
<tr>
<td>30/4</td>
<td>11,0756</td>
<td>10,2013</td>
<td>10,7995</td>
<td>11,0939</td>
</tr>
<tr>
<td>9/5</td>
<td>14,7735</td>
<td>11,5675</td>
<td>13,972</td>
<td>13,8263</td>
</tr>
<tr>
<td>30/5</td>
<td>23,9363</td>
<td>15,6479</td>
<td>21,6498</td>
<td>10,7295</td>
</tr>
<tr>
<td>4/6</td>
<td>21,8050</td>
<td>11,6950</td>
<td>16,75</td>
<td>25,7579</td>
</tr>
<tr>
<td>10/6</td>
<td>18,4168</td>
<td>7,3231</td>
<td>14,7189</td>
<td>3,0241</td>
</tr>
<tr>
<td>medel:</td>
<td>19,78</td>
<td>12,95</td>
<td>17,2432</td>
<td>14,57</td>
</tr>
</tbody>
</table>

Tabell 1. Koncentration av Totalfosfor, [µg/L]

Två värden avviker kraftigt från de övriga i tabellen, och det är mätvärdena från den 7/4 och den 10/6 i utloppspunkten. Det höga värdet från den 7/4 skulle kunna förklaras som en följd av att den inre bassängen grävdes ur i januari samma år som provtagningarna. Eftersom
utgrävningen fört tillbaka tidigare sedimenterade partiklar till vattenmassan, och en del av dessa troligtvis inte hade hunnit sedimentera igen, kan det förklara det höga fosforvärdet i utloppspunkten. En annan viktig aspekt är att våtmarkerna knappast har utvecklat sin fulla reningspotential i början av växtsäsongen, då de första proverna togs, och det skulle kunna vara ännu en förklaring till de höga utloppsvärdena i början av mätperioden.

Det å andra sidan mycket låga värden den 10/6 skulle kunna tolkas som ett resultat av att våtmarken då hade nått en oerhört hög reningseffektivitet, men mer troligt är att avvikelsen beror på ett mätfel eller liknande.

Ingen åtskillnad görs i denna studie på löst reaktivt fosfor och partikelbundet fosfor. Enligt tidigare studier finns det dock en undre gräns för vilken inloppskoncentration av det lösta fosforet som våtmarkerna kan ta hand om, och det är 20 mikrogram/L (Borne, 2013; Winston et al., 2013) Eftersom inloppskoncentrationerna av totalfosfor ofta låg under det värdet i denna studie, skulle alltså kunna antas att våtmarkernas effekt på andelen löst fosfor i detta fall är liten till obeväxlad.

En annan observation enligt Borne (2013) är att våtmarkernas reningseffekt ökar med ökade inloppskoncentrationer av fosfor. Då koncentrationen i dikena var relativt låg kan därför inte en hög reningseffekt väntas vilket även skulle kunna vara en förklaring till att skillnaden mellan inlopps- och utloppskoncentration inte var mer än runt 9 %.

3.2 pH

<table>
<thead>
<tr>
<th>Datum</th>
<th>Löttingediket</th>
<th>Vassvägsdiket</th>
<th>Bassäng 2</th>
<th>Utloppspunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/4</td>
<td>7,790</td>
<td>8,446</td>
<td>8,510</td>
<td>8,787</td>
</tr>
<tr>
<td>15/4</td>
<td>8,913</td>
<td>7,807</td>
<td>8,941</td>
<td>8,017</td>
</tr>
<tr>
<td>30/4</td>
<td>7,828</td>
<td>7,938</td>
<td>7,889</td>
<td>7,738</td>
</tr>
<tr>
<td>9/5</td>
<td>8,190</td>
<td>8,071</td>
<td>8,663</td>
<td>8,512</td>
</tr>
<tr>
<td>30/5</td>
<td>7,346</td>
<td>7,877</td>
<td>8,455</td>
<td>7,837</td>
</tr>
<tr>
<td>4/6</td>
<td>7,611</td>
<td>7,903</td>
<td>7,394</td>
<td>7,913</td>
</tr>
<tr>
<td>10/6</td>
<td>7,813</td>
<td>8,030</td>
<td>9,051</td>
<td>8,120</td>
</tr>
<tr>
<td>medel:</td>
<td>7,927</td>
<td>8,01</td>
<td>8,48</td>
<td>8,13</td>
</tr>
</tbody>
</table>

Tabell 2. pH-värden vid de olika provpunkterna.

3.3 Turbiditet

Turbiditeten i de fyra provpunkterna var under mätperioden i regel låg och utan större variation. Toppvärdena i inloppsflödena uppmättes den 9/5 till 36 NTU i Löttingediket respektive 47 NTU i Vassvägsdiket. Medelvärdet för hela mätperioden varierade mellan 12,1-14,9 NTU vid de olika mätpunkterna. En jämförelse kan göras med livsmedelsverkets gränsvärde för tjänligt dricksvatten, vilket ligger på 1,5 NTU (SLV, 2006). Med tanke på att Rönningesjön är en övergödd sjö med lågt siktdjup kunde turbiditeten väntas vara högre.

Det är rimligt att anta att adsorptionsprocesserna och sedimenteringen vid de flytande våtmarkerna bortför en del av de fina partiklarna och lösta näringsämnen och därmed minskar grumligheten i vattenmassan vid utloppet till sjön. Endast en mycket vag korrelation enligt detta kan dock urskiljas enligt mätvärdena, vilket kan bero på tillfälligheter lika väl som våtmarkernas aktivitet.
Datum	Löttingediket	Vassvägsdiket	Bassäng 2	Utloppspunkt
7/4 | 15 | 19 | 12 | 11
15/4 | 11 | 10 | 25 | 18
30/4 | 4 | 5 | 16 | 13
9/5 | 36 | 47 | 13 | 21
30/5 | 23 | 6 | 7 | 14
4/6 | 7 | 2 | 15 | 5
10/6 | 8 | 1 | 6 | 3
medel: | 14,9 | 12,9 | 13,4 | 12,1

Tabell 3. Mätvärden över Turbiditet, [NTU]

3.4 Konduktivitet

Lindqvist (2009) uppmätte konduktiviteten i Rönningesjön år 2008 till omkring 50 mS/m vilket ungefär motsvarar de uppmätta värdena i denna undersökning. En svag minskning kan urskiljas mellan konduktiviteten i dikena och i utloppspunkten, vilket skulle kunna förklaras som en effekt av att de kemiska processerna i våtmarkerna. Dessa påverkar jonkonzentrationen genom att joner adsorberas till ytor på rotgardinen, bildar partikelkomplex och sedimenterar innan de når utloppspunkten. Detta skulle alltså kunna påvisa våtmarkernas aktivitet.

Datum	Löttingediket	Vassvägsdiket	Bassäng 2	Utloppspunkt
7/4 | 581 | 416 | 484 | 525
15/4 | 397 | 511 | 426 | 443
30/4 | 506 | 642 | 516 | 403
9/5 | 497 | 452 | 519 | 378
30/5 | 1027 | 649 | 550 | 428
4/6 | 519 | 661 | 520 | 528
10/6 | 529 | 825 | 512 | 518
medel: | 579 | 594 | 504 | 460

Tabell 4. Mätvärden över Konduktivitet, [μS/cm]

3.5 Uppehållstid i bassängerna

Ju längre uppehållstiden i bassängerna är desto längre hinner renings- och sedimentosprocesserna fortgå, med ett renare vatten som resultat. Den är alltså av väsentlig betydelse för anläggningens kapacitet. Anläggningens totala bassängvolym uppskattades till 9000 m³, (se bilaga 5). Veckonederbörden varierade från 0 till 48 000 m³ per vecka, och den maximala dygnsnederbörden under perioden var 17 935 m³. Detta extremvärde skulle, i en mycket förenklad modell utan beaktande av basflödesnivån och koncentrationstiden, ge en uppehållstid i bassängen på 12 timmar. Den genomsnittliga nederbörden under perioden har varit 2033 m³ vilket istället ger en uppehållstid på 106 timmar, eller 4,4 dygn. Vid längre nederbördsfria perioder blir uppehållstiden mycket lång då det endast är ett visst basflöde som tillförs bassängerna.

Det är rimligt att anta att våtmarkernas reningseffekt över lag är som bäst vid en viss koncentration av näringsämnen (se 3.1) då växterna och mikroorganismerna trivs och konsumerar en maximal mängd fosfor. Vid låga flöden och lång uppehållstid hinner vattnet renas i större utsträckning, men med minskad halt av näringsämnen minskar också våtmarkens effektivitet. Vid höga flöden däremot blir själva våtmarken förvisso effektivare på
grund av den höga koncentrationen näringsämnen, i och med att uppehållstiden även blir kortare hinner dock någon stör mängd fosför ändå inte bortföras från vattenmassan. Utifrån detta resonemang kan det antas att det finns en optimal uppehållstid där våtmarkens reningseffekt är hög och uppehållstiden ändå relativt lång. Stora variationer i nederbörd blir alltså ogynnsamt för systemets reningsförmåga. Det optimala skulle istället vara ett relativt jämt flöde där extremfallen med mycket låga och mycket höga flöden jämnas ut.

3.6 Osäkerheter och felkällor:
Ett antal felkällor har identifierats under projektets gång, vilka kommer att presenteras nedan.

Vidare är proverna under våren inte tagna vid regelbundna tillfällen. Väder- och temperaturförhållanden har varierat och det är inte säkert att de specifika förhållandena vid provtillfällena ger en korrekt bild av medelvärdet under tidsperioden. Koncentrationerna av näringsämnen kan variera även inom bassängerna. Det 50 ml-prov som tagits vid de olika tillfällena är därför inte garanterat representativt för medelvärdet.

3.7 Framtidsutsikter i Sverige:
Både Andreas Jacobs och Wladimir Givovich tror att flytande våtmarker kommer att gå en ljus framtid till mötes i Sverige, (se bilaga 3 och 4). Flexibiliteten vad gäller användningsområden samt det faktum att de är både billiga att införskaffa och har låga driftkostnader kan göra dem attraktiva att satsa på som komplement i såväl nya som befintliga dagvattenanläggningar.

Samtidigt är det viktigt att tänka på att vi i Sverige inte kan förvänta oss lika hög reningseffekt av våtmarkerna som i varmare länder där tekniken är mer välbeprövat. Precis som för andra naturliga vattenreningstekniker är reningseffekten av flytande våtmarker beroende av många yttre faktorer som styr den biologiska aktiviteten, och detta kan göra reningseffekten oförutsägbar och föränderlig. Under vårfloden i Sverige exempelvis kan flödena vara höga innan den biologiska aktiviteten kommit igång under sommaren, vilket ställer högre krav på anläggningen. Vid anläggning bör man därför alltid se till det specifika reningsbehovet av vattnet som ska renas för att bedöma om reningseffekten är tillräcklig i det specifika fallet.

4. Slutsats
Utifrån denna studie har det konstaterats att den flytande våtmarken i Rönningesjön har en reningseffekt med avseende på näringsämnet fosfor, kvantifierad till en minskning av totalfosforhalten med 9,4 % mellan inlopp och utlopp. Den låga siffran kan förklaras dels genom att fosforhalterna överlag har varit relativt låga under provperioden vilket skulle kunna medföra en minskad effektivitet, samt att anläggningen är ung utan fullt utvecklade rotgardiner. Vidare har metoden vissa osäkerheter varför denna siffra främst bör ses som en riktlinje och inte som ett absolut värde.

Enligt tidigare studier kan en flytande våtmark bidra till att neutralisera pH-värdet i vattnet och därmed förbättra fosforadsorptionen. pH-värdena har dock varierat under provperioden med endast en låg antydning till neutralisering vid våtmarken.

Turbiditet och konduktivitet har varierat ganska kraftigt mellan provtillfällena. Medelvärdet är dock lägre vid utloppspunkten, vilket rimligtvis kan antas bero på sedimentation av partiklar och adsorption av joner i våtmarksbassängen.

Det är svårt att utifrån denna undersökning dra någon absolut slutsats angående reningsteknikens framtidsutsikter i Sverige. Tekniken med flytande våtmarker har dock många fördelar som talar för dess fortsatta etablering i Sverige, och detta är framförallt de faktum att tekniken är billig, kräver minimalt med underhåll och är enkel att införa som komplement i redan befintliga anläggningar. Att reningseffekten kan väntas vara lägre i Sverige än i varmare länder kanske därmed är mindre viktigt, då all dagvattenrenings är positiv och bör uppmuntras.
4.1 Förslag på vidare studier

Denna studie har tittat på reningseffekten av de flytande våtmarkerna i Rönningesjön vid ett tidigt skede, men det vore av stort intresse att följa hur reningseffekten utvecklas då våtmarkerna nått full mognad. Dessutom finns mycket att utreda angående våtmarkernas reningseffekt med avseende på andra ämnen som kväve, tungmetaller och organiska miljögifter, vilket skulle ge en kompletterande och mer nyanserad bild av reningseffekten.
Litteraturförteckning

Bilagor

Bilaga 1.
Karta över skärmbassängerna med lodpunkter och mätpunkter utmarkerade.
Bilaga 2.

Beräkning av momentanvattenflöden utifrån uppmätta överfallshöjder vid Löttinge-respektive Vassvägsdiket.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Höjd [m] (Löttinge)</th>
<th>Flöde [m^3/s] (Löttinge, med v=120°)</th>
<th>Höjd [m] (Vassväg)</th>
<th>Flöde [m^3/s] (Vassväg, med v=90°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/4</td>
<td>0,14</td>
<td>0,0174</td>
<td>0,15</td>
<td>0,0119</td>
</tr>
<tr>
<td>15/4</td>
<td>0,08</td>
<td>0,0043</td>
<td>0,08</td>
<td>0,0025</td>
</tr>
<tr>
<td>30/4</td>
<td>0,065</td>
<td>0,0026</td>
<td>0,06</td>
<td>0,0012</td>
</tr>
<tr>
<td>9/5</td>
<td>0,10</td>
<td>0,0075</td>
<td>0,08</td>
<td>0,0025</td>
</tr>
<tr>
<td>30/5</td>
<td>0,06</td>
<td>0,0021</td>
<td>0,05</td>
<td>0,0008</td>
</tr>
<tr>
<td>4/6</td>
<td>0,04</td>
<td>0,0008</td>
<td>0,05</td>
<td>0,0008</td>
</tr>
<tr>
<td>10/6</td>
<td>0,03</td>
<td>0,0044</td>
<td>0,03</td>
<td>0,0002</td>
</tr>
</tbody>
</table>

Tabell. nr Momentanflöden

Bilaga 3.

Mail från Wladimir Givowich, ansvarig från Veg Tech för utförandet av våtmarksprojektet i Rönningesjön.

Date: Thu, 3 Apr 2014 12:56:22 +0000
Hej Veronica och Therese,
Vad roligt att ni vill göra er ex jobb om flytande våtmark.

Angående dina frågor:
"När vi tittar på er hemsida verkar det utifrån bilderna som att ni har anlagt flytande våtmarker tidigare, och att därmed de i Rönningesjön inte är först i Sverige. Så vi undrar i vilket sammanhang ni har använt tekniken tidigare? Var detta endast en testanläggning eller har det gjorts i större skala? Gjordes någon utvärdering av resultaten (dvs. reningskapaciteten) då, och vad visade den i så fall?"

”Under själva driften av våtmarkerna undrar vi även hur ofta och hur mycket det är lämpligt att klippa ner växterna för att bibehålla våtmarkens reningskapacitet?“

Svar: Växterna är ju viktiga för att nå en bra reningseffekt. Fast är mikroorganismar som sitter i en rotgardin i form sk. biofilm ansvariga för största andel av reningsprocess. (Enligt information från vår leverantör i USA står mikroorganismer för ca 80% av reningseffekten). Då att rekommendera klippning av växterna för att behålla reningskapacitet kan vara en bra åtgärd som kan bidra att ha friska plantor som ger möjlighet till att ha en frisk biofilm enligt ovanstående men inte avgörande.

”Slutligen undrar vi om ni har några särskilda förväntningar på våtmarkerna i Rönningesjön? Det skulle vara intressant att veta lite närmare hur de förväntade resultaten har beräknats“

Svar: Vi har en modell för att beräkna reningseffekt för Nitrat, TN, fosfat, TP och ammoniak. Vi räknade då att 150m² flytande våtmark skulle ta bort ca 12kilo fosfor per år. Denna modell är baseras på studier i America i likvärdigt klimat (Montana). Det skulle vara mycket intressant att få några data i Sverige.

Vi undrar också vad du tror om teknikens framtidsutsikter just i Sverige. Tidigare verkar den mest ha använts i varmare länder, men tror du att det kan vara lika effektivt i Sverige med rätt val av växter?

Svar: Vi är helt övertygad att flytande våtmarks koncept kommer att ta mer och mer plats inom alternativa lösningar/ komplement. Ni får inte glömma att reningseffekt av flytande våtmark baseras på biologisk aktivitet som är reglerad av temperaturen/ ljus m.m. Då får vi inte förvänta oss att flytande våtmark i Sverige ska ha samma reningseffekt än varmare länder.

Jag hoppas att mina svar är hjälpsamma. Vi tycker att det är väldigt spännande att någon vill forska om flytande våtmark i Sverige och om ni har ytterligare några tekniska frågor är ni jätte välkomna att kontakta mig. Också vill jag hänvisa Lina Pettersson som sitter som Veg Techs kontaktperson vid exjobb. Linas kontaktuppgifter är: telefonnummer 0472-36314 e-mj: lp@vegetch.se

Med vänliga hälsningar,
Wladimir

Wladimir Givovich
Teknisk Säljare,
Agronom M.Sc. Vattenvård

Veg Tech AB
Fagerås
342 52 Vislanda
Bilaga 4.
Mail från Andreas Jacobs, VA-handläggare på Täby kommun, den 30/1-14.

Hej igen!
Jag har plockat fram lite material (22 filer!) som ni kan botanisera lite i. Ett tips är att ni börjar med att läsa alla pdf:er, resten är mest siffror.
Avrinningsområdet till bassänganläggningen är 211 ha stort och tillflödena sker genom två diken: Vassvägsdiket och Löttingediket. Båda mynnar i anläggningens inre bassäng. Avrinningsområdet utgörs av:
Småhus 49 ha
Skog 91 ha
Jordbruk 57 ha
Gräs/Äng 15 ha
Flödet beräknas till 167 000 m3/år
Föröreningstillförseln beräknas uppgå till:

<table>
<thead>
<tr>
<th>UPPSKATTAD BELASTNING (kg/år)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>N</td>
<td>Pb</td>
<td>Cu</td>
<td>Zn</td>
<td>Cd</td>
<td>Cr</td>
<td>Ni</td>
<td>Hg</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>0.9</td>
<td>2.1</td>
<td>6.3</td>
<td>0.0</td>
<td>0.4</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UPPSKATTAD FLÖDESBEROEN DE ÅRSMEDELHALT</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>N</td>
<td>Pb</td>
<td>Cu</td>
<td>Zn</td>
<td>Cd</td>
<td>Cr</td>
<td>Ni</td>
<td>Hg</td>
</tr>
<tr>
<td>0.13</td>
<td>1.6</td>
<td>5.2</td>
<td>6.1239</td>
<td>37.8</td>
<td>4</td>
<td>0.2</td>
<td>5</td>
<td>2.26</td>
</tr>
</tbody>
</table>

Vid frågor om Rönningesjön i sig, hänvisas till miljöplanerare Sören Edfjäll med mejl adress: soren.edfjall@taby.se.
Hoppas ni får ut något av detta material!
Hälsningar!
Andreas

Andreas Jacobs
VA-projektör
Bilaga 5.
Data över dygnsnederbörd från SMHI och beräkning av medelvattenflöde.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Dygnsnederbörd vid Observatoriekullen i Stockholm (mm)</th>
<th>Volym [m³] (avrinningsområdet 211 ha, beräknat värde)</th>
<th>Veckomedelvärde</th>
<th>Månadsmedelvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-04-01</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-02</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-03</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-04</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-05</td>
<td>0,8</td>
<td>1688,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-06</td>
<td>2,7</td>
<td>5697,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-07</td>
<td>8,2</td>
<td>17302,0</td>
<td>3526,714286</td>
<td></td>
</tr>
<tr>
<td>2014-04-08</td>
<td>6,1</td>
<td>12871,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-09</td>
<td>0,6</td>
<td>1266,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-10</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-11</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-12</td>
<td>1,6</td>
<td>3376,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-13</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-14</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-15</td>
<td>0,0</td>
<td>0,0</td>
<td>2501,857143</td>
<td></td>
</tr>
<tr>
<td>2014-04-16</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-17</td>
<td>1,2</td>
<td>2532,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-18</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-19</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-20</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-21</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-22</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-23</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-24</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-25</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-26</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-27</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-28</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-29</td>
<td>0,3</td>
<td>633,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-04-30</td>
<td>3,1</td>
<td>6541,0</td>
<td>1730,2</td>
<td></td>
</tr>
<tr>
<td>2014-05-01</td>
<td>0,4</td>
<td>844,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-02</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-03</td>
<td>1,8</td>
<td>3798,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-04</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-05</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-06</td>
<td>0,8</td>
<td>1688,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-07</td>
<td>4,0</td>
<td>8440,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-08</td>
<td>1,7</td>
<td>3587,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Value</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-09</td>
<td>6,4</td>
<td>13504,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-10</td>
<td>2,7</td>
<td>5697,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-11</td>
<td>3,9</td>
<td>8229,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-12</td>
<td>0,3</td>
<td>633,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-13</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-14</td>
<td>0,1</td>
<td>211,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-15</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-16</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-17</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-18</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-19</td>
<td>7,8</td>
<td>16458,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-20</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-21</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-22</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-23</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-24</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-25</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-26</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-27</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-28</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-29</td>
<td>0,3</td>
<td>633,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-30</td>
<td>4,6</td>
<td>9706,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-05-31</td>
<td>0,4</td>
<td>844,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-01</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-02</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-03</td>
<td>1,7</td>
<td>3587,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-04</td>
<td>0,2</td>
<td>422,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-05</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-06</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-07</td>
<td>0,2</td>
<td>422,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-08</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-09</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-10</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-11</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-12</td>
<td>0,4</td>
<td>844,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-13</td>
<td>0,1</td>
<td>211,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-14</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-15</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-16</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-17</td>
<td>0,3</td>
<td>633,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-18</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-19</td>
<td>6,4</td>
<td>13504,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-20</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-21</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-22</td>
<td>3,3</td>
<td>6963,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>Avrinningsvolym [m³]</td>
<td>Bassängvolym [m³]</td>
<td>Medelvärde [m³]</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>2014-06-23</td>
<td>6,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-24</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-25</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-26</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-27</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-28</td>
<td>8,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-29</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-06-30</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maanedsmitt:</td>
<td>2033,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avrinningsområde [m²]: 2110000,0
Bassängvolym [m³]: 9000,0

Medelvärde: 2033,5