Semantics Guided Filtering of Combinatorial Graph Transformations in
Declarative Equation-Based Languages.

Peter Bunus, Peter Fritzson
Department of Computer and Information Science, Linkoping University,
SE-581-32 Linkoping, Sweden
{petbu,petfr}@ida.liu.se

Abstract

This paper concerns the use of static analysis for
debugging purposes of declarative object-oriented
equation-based modeling languages. We propose a
framework where over- and under-constraining
situations present in simulation models specified in such
languages are detected by combinatorial graph
transformations performed on the flattened intermediate
code and filtered by the semantic transformation rules
derived from the original language. This is powerful
enough to statically detect a broad range of errors
without having to execute the simulation model.
Debuggers associated with simulation environments for
such languages can provide efficient error-fixing
strategies based on the graph-based representation of
the intermediate code. The emphasis, in this paper, is on
detecting and debugging over-constraining equations,
which are present in some simulation model
specifications. We discuss various ways in which we have
extended our approach to allow static global analysis of
the original modeling source code.

1. Introduction

Sophisticated engineering systems are inherently
complex. In order to support mathematical modeling and
simulation of such systems, a number of object-oriented
and/or declarative acausal modeling languages have
emerged. The advantage of such a modeling language is
that the user can concentrate on the logic of the problem
rather than on a detailed algorithmic implementation of
the simulation model. On the other hand, the high level
of abstraction of such models presents new challenges to
modeling and simulation tools, since there is a wider gap
down to the executable machine code. The process of
translating models to efficient code becomes considerably
more involved. The large abstraction gap between the
high-level models and the executing code also leads to
difficulties in finding and correcting model
inconsistencies and errors, not uncommon in complex
physical system models. Currently there are essentially
no tools that can handle debugging of equation-based
languages in an efficient manner and provide error-fixing
information at the original source code level.

A typical problem that appears in physical system
modeling and simulation is when too many equations are
specified in the system inevitably leading to an
inconsistent state of the simulation model. In such
situations numerical solvers fail to find correct solutions
to the underlying system of equations. The user should
deal with over-determined systems of equations by
identifying the minimal set of equations that should be
removed from the system in order to make the remaining
set of equations solvable. For example, consider a
physical system simulation model specified in a
declarative object-oriented equation-based modeling
language that consist of several hundreds of classes
resulting in several thousands of flattened equations.
However one of these equations over-constrain the
overall system making it impossible to simulate. It can be
easily imagined that, for example, a small subset of over-
constraining equations provided, by a static debugger,
which need to be eliminated from the overall model in
order to form a structurally well posed simulation
problem can greatly reduce the amount of time required
to get the simulation working.

The paper is organized as follows: Section 2
introduces Modelica, a new equation-based declarative
language. Some specific Modelica language constructs
necessary to understand the paper are given in Section 3.
Then Section 4 presents a simple simulation model
specified using Modelica. Section 5 gives some
preliminary definitions related to the concept of bipartite
graphs. In the next section, the simple electrical circuit
model from Section 4 is modified by introducing an over-
constraining equation. Then, we show how the
simulation model is transformed into intermediate code
and how this code is mapped into bipartite graphs. In
Section 7, the combinatorial graph algorithm is presented
for the case of debugging over-constrained systems.
Section 8 presents how the combinatorial explosion of
error fixing solutions obtained by the debugger are
substantially filtered by semantics constraints of the
Modelica language. Finally, Section 9 concludes and
summarizes the work.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

2. Modelica - A Declarative Object Oriented
Equation Based Modeling Language.

Modelica is a new multi-paradigm language for
hierarchical object-oriented modeling and computational
applications, which is developed through an international
effort[4][5][3]. The language is one of the rare examples
of a programming language that combines declarative
functional programming with object-oriented
programming. Modelica integrates several programming
paradigms:

e Declarative functional programming using equations
and functions without side effects.

e Object-oriented programming.
Constraint programming based on equations.
Architectural system specification with connectors
and components.

e Concurrency and discrete event programming, based
on the synchronous data flow principle.

e Visual programming based on connecting icons with
ports, and hierarchical decomposition.

Additionally, the multi-domain capability of Modelica
gives the user the possibility to combine model
components from different application domains within
the same application model, e.g. combining electrical,
mechanical, hydraulic, thermodynamic, control,
algorithmic components. Modelica is primarily a
modeling language, sometimes called hardware
description language, that allows the user to specify
mathematical models of complex systems, e.g. for the
purpose of computer simulation of dynamic systems
where behavior evolves as a function of time. Modelica is
also a declarative object-oriented equation based
programming language, oriented towards computational
applications with high complexity requiring high
performance.

e Modelica is primarily based on equations instead of
assignment statements. This permits acausal
modeling that gives better reuse of classes since
equations do not specify a certain data flow direction.
Thus a Modelica class can adapt to more than one
data flow context. Algorithmic constructs including
assignments are also available in a way that does not
destroy the declarative properties of the language.

e Modelica has multi-domain modeling capability,
meaning that model components corresponding to
physical objects from several different domains such
as e.g. electrical, mechanical, thermodynamic,
hydraulic, biological and control applications can be
described and connected.

e Modelica is an object-oriented language with a
general class concept that unifies classes, generics —

known as templates in C++, and general subtyping
into a single language construct. This facilitates
reuse of components and evolution of models.

e Modelica has a strong software component model,
with constructs for creating and connecting
components. Thus the language is ideally suited as
an architectural description language for complex
systems.

The reader of the paper is referred to [8][7] and [9][5] for
a complete description of the language and its
functionality from the perspective of the motivations and
design goals of the researchers who developed it.

3. Declarative Object-Oriented Equation
Based Language Constructs

In this section, we briefly survey some important
language structures and constructs that are present in
Modelica. Only those language constructs are presented
that are necessary for the understanding of the paper.

3.1 Modelica Classes

Modelica, like any object-oriented computer language,
provides the notions of classes and objects, also called
instances, as a tool for solving modeling and
programming problems. Every object in Modelica has a
class that defines its data and behavior. A class has three
kinds of members:

e Fields are data variables associated with a class and
its instances. Fields store results of computations
caused by solving the equations of a class together
with equations from other classes.

e FEquations specify the behavior of a class. The way in
which the equations interact with equations from
other classes determines the solution process, i.e.
program execution.

e (lasses including functions can be members of other
classes.

Here is the declaration of a simple class that might
represent a point in a three-dimensional space:

class Point "point in a three-dimensional

space"
public Real x;
Real y, z;

end Point;
3.2 Inheritance

The Modelica view on object-orientation is different
since the Modelica language emphasizes structured
mathematical modeling. Object-orientation is viewed as a
structuring concept that is used to handle the complexity
of large system descriptions. A Modelica model is
primarily a declarative mathematical description, which

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

simplifies further analysis. The natural inheritance
mechanism in Modelica and in most of the existing
declarative equation based modeling languages is seen as
the extension of existing objects with new equations and
variables as it is illustrated in Figure 1. Such an
inheritance is called embedding inheritance according to
[1]. This is in fact the most common inheritance
mechanism for object-oriented equation based languages
and the one from which we derive, later on, the rules for
the graph transformations associated to the intermediate
form. The embedding inheritance presents some
important benefits, especially from the modeling
languages point of view, such as: better support for
concrete visual programming systems and any objects
can be given individualized behavior.

object parent : Parent is
var pVariables;

equations egq ;

object child : Child extends Parent is
var cVariables;

end;

Figure 1. Embedding Inheritance
3.3 Equations in Modelica

As we already stated, Modelica is primarily an equation-
based language in contrast to ordinary programming
languages where assignment statements proliferate.
Equations are more flexible than assignments since they
do not prescribe a certain data flow direction. This is the
key to the physical modeling capabilities and increased
reuse potential of Modelica classes.

Thinking in equations is a bit unusual for most
programmers. In Modelica the following holds:

e Assignment statements in conventional languages
are usually represented as equations in Modelica.

e Attribute assignments are represented as equations.

e Connections between objects generate equations.

Equations are more powerful than assignment
statements. For example, consider a resistor equation
where the resistance R multiplied by the current i is
equal to the voltage v:

R*1i = v;

This equation can be used in three ways
corresponding to three possible assignment statements:
computing the current from the voltage and the
resistance, computing the voltage from the resistance and
the current, or computing the resistance from the voltage
and the current. This is expressed in the following three
assignment statements:

i :=v/R; v := R*i; R := v/i;

3.4 Connectors and Connector Classes

Modelica connectors are instances of connector classes,
i.e. classes with the keyword connector or classes with
the class keyword that fulfill the constraints of
connector restricted classes. Such connectors declare
variables that are part of the communication interface of
a component defined by the connectors of that
component. Thus, connectors specify the interface for
interaction between a component and its surroundings.
For example, class Pin is a connector class that can
be used to specify the external interface for electrical
components that have pins as interaction points.

connector Pin

Voltage Vi
flow Current 1;
end Pin;

Pin pin; // An instance pin of class Pin
3.5 Connections

Connections between components can be established
between connectors of equivalent type. Modelica supports
equation-based acausal connections, which means that
connections are realized as equations. For acausal
connections, the direction of data flow in the connection
need not be known. Additionally, causal connections can
be established by connecting a connector with an input
attribute to a connector declared as output.

Two types of coupling can be established by
connections depending on whether the variables in the
connected connectors are non-flow (default), or declared
using the prefix £low:

e Equality coupling, for non-flow variables,
e Sum-to-zero coupling, for flow variables.

For example, the keyword £1low for the variable i of type
Current in the Pin connector class indicates that all
currents in connected pins are summed to zero, according
to Kirchhoff’s current law.

Connection statements are used to connect instances
of connection classes. A connection statement
connect (pinl,pin2)with pinl and pin2 of
connector class Pin, connects the two pins so that they
form one node. This produces two equations, namely:

pinl.v = pin2.v
pinl.i + pin2.i = 0

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

4. Simple Electrical Circuit Model

As a motivational example, we can easily construct a
simple electrical circuit model by connecting two
resistors components in parallel with a voltage source as
is shown on the left part of Figure 2.

model TwoPin
Pin p,n;
Real v,i;

equation
v=p.v-n.v;
O=p.i+n.1i;
i=p L1
i=10;

end TwoPin

Figure 2. Electrical circuit with two resistors in parallel
with an additional equation introduced in the TwoPin
component

The corresponding Modelica source code is given below:

conector Pin
Real v;
flow Real 1i;
end Pin.

model TwoPin

Pin p,n;

Real v,i;
equation

v =p.v -n.v; 0=p.1+n.i; 1 =p.1i;
end TwoPin

model Resistor extends TwoPin;
parameter Real R;

equation
R * 1 = v;

end Resistor;

model VcourceAC extends TwoPin;

parameter Real VA=220;

parameter Real f£=50;

protected constant Real PI=3.14;
equation

v = VA * (sin(2 * PI * £ * time));
end VsourceAC;

model Ground
Pin p;

equation
p.v = 0;

end Ground;

model Circuit
Resistor R1(R=10),R2(R=20) ;
VsourceAC AC; Ground G;

equation
connect (AC.p,R1.p) ;connect (R1.n,AC.n) ;
connect (R1.p,R2.p) ;connect (R1.n,R2.n) ;
connect (AC.n ,G.p);

end Circuit;

The model described above constitutes a valid simulation
model, which can be compiled, linked together to a
numerical solver, and executed. Now we are introducing
an error in the source code by adding an additional over-
constraining equation (1=10) in the model definition of
the TwoPin component as is shown on the right part of
Figure 2. This extra equation will be inherited by all the

components that extend the TwoPin component.
Therefore each instance of the Resistor and
VsourceAC models will contribute to one extra over-
constraining equation to the final flattened system of
equations.

5. Bipartite Graph Representation of the
Intermediate Code

Definition 1: A bipartite graph is an ordered
tripleG = (V,,V,,E) such that V|, and V, are sets,
VinV,=@ and Ec{{x,y};xeV,,yeV,}. The
vertices of G are elements of V, UV,. The edges of
G are elements of E .

The associated bipartite graph to the flattened
intermediate code is obtained by associating to V; the set
of equations and toV, the sets of unknown variables. An
edge between egeV, and vareV, means that
variable var appears in the corresponding equation eq .

Definition 2: We call a matching a set of edges from
graph G if no two edges have a common end vertex. A
matching M of a graph G is called maximum matching if
it is a matching with the largest possible number of
edges.

Definition 3: A vertex v is saturated or covered by a
matching M if some edge of M is incident with v. An
unsaturated vertex is called a free vertex.

Definition 4: A perfect matching P is a matching in
graph G that covers all its vertices.

Definition 5: A path P={v,,v,,---,v, }in a graph G is
called an alternating path of M if contains alternating
free and covered edges. We use the following notation
u——v for an alternating path from vertex u to vertex
v. The notation used to represent an alternating path can
be extended to the following notation
P={(u,v)),(v;,uy),(uy,v3) (v i)} A simple
path from vertex u to vertex v is denoted with the help of
the following notation U——v.

Let us consider a system of linear equations and the
associated bipartite graph presented in Figure 3. A
possible maximum matching M is represented by the
thicker edges.

eql eq2 eq3 et eqS eq6 eq7 Fvany=0
f (var,, vary) =0
f (var,, vary) =0

Fvar,

f (var,, vars) = 0

ry, var) =0

f (var,, var,, vars) = 0
f (vars, varg, var;) = 0

varl var2 var3 vard varS var6 var7

Figure 3. A simple equation system and the associated
bipartite graph.

At the next step in our analysis, we are exchanging all
the edges that are included in the matching M with bi-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

directional edges and orienting all other edges from 6. Over-Constrained Subgraph
equation nodes to the variable nodes. The following

graph, depicted in Figure 4, is obtained:

During the model translation the corresponding flattened
set of equations to the simulation model from Figure 2 is

fvan) =0 derived from the original source code (shown in Table 1)
f(vary, vary) =0

eql eq2 eq3 egd eqS eq6 eq7

and the associated bipartite graph G is constructed.

J Table 1. The flat form of the equations corresponding to
the over-constrained electrical circuit model.

f(vary, var,, varg) =0

O f(varg, varg, var;) = 0
varl var2 var3 vur4. vars wr(). var7 eql R1.v==-R1.n.V+Rl.p.v varl R1.p.v
Figure 4. Oriented bipartite graph eq2 0==R1.n.i+R1.p.i var2 Rl.p.i
eq3 [var3 Rl.n.v
Starting from the equation nodes that are not covered by eq4) vard Rl.n.1
. eq5 R1.i R1.R==R1.VvV var§ R1.v
the matching we compute the set of all nodes that are eq6 R2.v==-R2.n.V+R2.p.V var6 R1.i
reachable from the free nodes and isolate the obtained eq; g;#lgéiﬂ%ni var7 iz.p.y
. e .i==R2.p.1 var8 -p.1
subgraph. For the free variable nodes we compute the set egg R2.i2210 var9 R2.n.v
of all ancestors that sinks into the free node and isolate eql0 R2.1*R2.R==R2.v varl0 R2.n.i
. . eqll AC.v==-AC.n.v+AC.p.Vv 11 R2.v
the graph. Performing these steps we obtain the graph egn 0mcAC.n. 1+AC.p. 1 Vo2 Red
decomposition shown in Figure 5. eql3 AC.i==AC.p.d varl3 AC.p.v
eql4 AC.1i==10 varl4 AC.p.1
over ' 1l ained | der. eql5 AC.v==AC.VA* varl5 AC.n.v
wl e e 1 gt w5 egh 1 7 sin[2*time*AC.f*AC.PI]
- \ ' Fvar) =0 eql6 G.p.v==0 varl6 AC.n.i
! ! f(var, va eql7 AC.p.v==R1.p.v varl7 AC.v
! ! J(var,v eql8 R1.p.v==R2.p.v varl8 AC.i
A \ eql9 AC.p.1+R1.p.1+R2.p.1==0 varl9 G.p.v
1 H eq20 Rl.n.v==R2.n.v var20 G.p.1i
: : O eq21 R2.n.v==AC.n.v
varl vai2 b ovard vard vars b ovare var7 ‘ eq22 AC.n.v==G.p.v
: : eq23 AC.n.1:+G.p.if
Rl1.n.i+R2.n.1i==0

Figure 5. Canonical bipartite graph decomposition
Choosing an arbitrary maximum cardinality matching

and performing a D&M canonical decomposition the
over-constrained subgraph is isolated and represented
graphically in Figure 6. The maximum cardinality
matching for the corresponding bipartite graph will let

The over-constrained part: the number of equations in three vertices uncovered corresponding to the equations
the system is greater than the number of variables. The eq9, eql8 and eql7.

additional equations are either redundant or contradictory RLp.v = R2.p.v ACDY = RLpY
and thus yield no solution. We refer to the over- qis @ (eq170
constrained graph using the notation 05* where k
represents the number of free vertices in the graph

The under-constrained part. the number of variables
in the system is greater than the number of equations. A
possible error fixing strategy would be to initialize some
of the variables in order to obtain a well-constrained part
or add additional equations to the system.

The well-constrained part: the number of equations in
the system is equal to the number of variables and
therefore the mathematical system is structurally sound
having a finite number of solutions. This part can be
further decomposed in smaller solution subsets. A failure
in decomposing the well-constrained part in smaller
subsets means that this part cannot be decomposed and
has to be solved as it is. A failure in numerically solving

The algorithm is due to Dulmage and Mendelsohn [2]
and canonically decompose any maximum matching of a
bipartite graph in three distinct parts: over-constrained,
under-constrained and well-constrained part.

ieqls):
AC.v = AC.VA*
sin[2*time*AC.f*AC.PI]

the well-constrained part means that no valid solution Figure 6. The over constrained directed graph Og+ .
exists and there is somewhere a numerical redundancy in . . .
the system. Following the sets of the D&M canonical decomposition,
by starting from the free vertices, all of the descendants
Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02) Cgﬁ/ITER
0-7695-1793-5/02 $17.00 © 2002 IEEE SOCIETY

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

are computed. Each free vertex induces an over-
constrained subgraph. Three equations need to be
eliminated from the over-constrained subgraph in order
to make the systems well-constrained. One equation
needs to be eliminated from each over-constraining
component O[7;,0,t:,0,5 (see Figure 7). Only those
equations can be removed from O that are not covered
by an associated maximum matching. But the maximum
matching associated to the graph G is not unique and a
new matching with the same cardinality can be obtained

varg Q)
'

eql9

var2 varl4 var2

o
T R1pad R

varl8

14
AC.1 : 10

by exchanging matching edges with non-matching edges
along alternating paths. An alternating path is a path
where matching edges and non-matching edges are
alternating. For example, we can obtain a new maximum
cardinality matching exchanging the edges along the
path

{eq9,vari2,eq8,var8,eql9,var2,eq3} or denoted shortly

eq9———eq3. We use the notation ——> to denote an
alternating path. In that way eq3 can be made into a free
vertex and can be considered for elimination.

2.p.v

Figure 7. The 0/},05%, 05t components of the 02 over-constrained subgraph

The following equations are included in each over-
constrained subcomponent:

{eq9,eq8,eql9,eq3,eql3,eql4} e V(Ollg)
{eq18,eq6,eq10,eq9,eq8,eql9,eq3,eql3,eql4,eql,eq20,
eq21,eq22,eql6,eq5,eq4}e V(O;{;)
{eqlT7,eql,eq20,eq21,eq22,eql6,eq5,eq4,eqll,eql5} e V(O;:;)
Analyzing some of the equation nodes from the previous
lists, we can see that by eliminating those, the remaining
graph becomes disconnected, containing two independent
components, which are not linked together by edges. This
situation is not very common from the modeling point of
view. Those nodes, which by elimination disconnect the
underlying bipartite graph, can be safely removed from
the lists. We obtain the following reduced equation lists
called the safe equations lists:

{eq9,eq3,eql4}e V(Ollg)
{eq18,eq9,eq3,eql4,eq20,eq21,eql6,eq4} e V(O;&)
{eql7,eq20,eq21 ,eql6,eq4,eql5} € 1(03%)

Without any premises, all the possible combinations that
can be scheduled for elimination are represented by the
following graph (see Figure 8) where on the top we have

the equations which are included in O, in the middle

equation nodes from 0;&, and at the bottom equations
from O, . If three nodes (one from each subset) are
linked together with edges, this means that it constitutes

a valid set that can be considered for elimination.
eq9 eq3 eqld

=) o
€20 eq2l eql6 eq4 eql5

3

eql
Figure 8. The possible elimination combinations

It should be noted that some equations appear in more
than one equation list. For example, eq3 appears in the
safe equation list associated to the subcomponent 0115
and O,, . This means that eg3 can be made a free vertex
by exchanging matching edges with non-matching edges
along the path eq9——eq3e O}, or
eql8———eq3e 0,;,. If eq3 is scheduled for
elimination in the subgraph O3 it cannot be scheduled
again for elimination in the subgraph 0;&, even it is
present in the list of equations associated to the subgraph.
Moreover, if eql3 is scheduled for elimination in
subgraph 0115 it will also affect the scheduling for
elimination of the node eql4 in subgraph 0;& The
operation of exchanging the non-matching edges with

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

matching edges along the path eq9——eq3e O} will
affect the path eql8——eglde O, isolating eql4.
For this reason eql4 cannot be selected any more for
elimination in 0;& even if previously had a valid path to
the free node eq!8.

Therefore a mechanism to quickly check if certain
equation subsets can constitute a safe removal set is
needed. The next section introduces a special graph
structure, which captures the dependencies among the
equations and also gives an algorithm that quickly checks
the validity of certain equation subsets

7. The Alternating Paths Dependency
Graphs

In order to illustrate the path selection algorithm and to
show the dependencies among the over-constraining
variables the list of safe over-constraining equations
associated to each over-constrained subgraph is expanded
to list of paths where each equation element is replaced
by the path from the free variable to itself. The safe over-
constraining equation lists are transformed into:

{eg9—— eq9,eq9 eq3,eq9—— eql4} for 0115

{eq18— > eq18,eq18—>eq3,eql 83— eql4,
eql8—=¢q20,eq18——>eq21,eql8——>eqle, for 0;&
eql8——>eq4)

{eqlT— > eql7,eqlT—=>¢¢20,eql7T——>eq21, for O;E

eqlT—— eq216,eqlT—— eq4,eql T——> eql5)

Each path can be further extended by including the cut
variable node in the path. A cut variable node is the first
shared variable node along two considered paths. For
example, considering the paths eq9——eg3e O, and
eql8———eqlde O, the first common variable node
which is included in both paths is varl2. Including the
cut variable node the path eq9———>eg3 becomes
eq9—— varl2 eql3. The list of all cut variables
nodes {varl2,varl,var9,var5} associated to Oé+ can be
easily computed and used to expand the path lists.

The graphical representation of the paths with the cut
variable nodes is given in Figure 9 where we have
inverted all the edges. An edge starting from a free
equation and pointing to itself denotes a free variable.

Any further computations involving the equation node
elimination can now be performed on the shortened
representation of the alternating paths. Let us illustrate
the reasoning performed on the above mentioned graph
representation by choosing, for example, equation node
eq3 from the set of safe nodes included in O, . In order
to safely eliminate eq3, the matching edges need to be
exchanged with non-matching edges along the path
eq9——eq3e O,

Free uqll‘\[mn

e

T

eq3 O4C/e(]20 J eq21 O/eqm?}O eq}o

Safe equation
nodes

Cut variables

Figure 9. Shortened representation of the alternating
paths.

By performing the exchange of edges, all the paths that
have common edges with the modified path are affected,
making the safe nodes unreachable from the free
equation node. Therefore all the edges adjacent to eg3
can be eliminated. Then, we follow the chosen path and
reach the cutting variable vari2. All the associated edges
adjacent to node varl2 will also be eliminated from the
path graph. We are moving forward on the chosen path,
one more time, and reach the free equation node. All the
adjacent edges of the free equation node are also
removed. An edge starting from eg3 and pointing to itself
can be drawn, indicating in that way that equation node
eq3 has been made into a free node instead of equation
node eq9, as is shown in Figure 10 a). It should be noted
that the safe equation node eql/4 becomes isolated and
cannot reach a free nodes.

o RB
A varl$ a)

eqd eq}S\O

eq3 g eq14o quO qul eql6

eq9 @ eql8 @ eql

varl/@/ b)
sq3® eql4 © €q20 C/ eq2l 5 eql6 eq4 eqls
eq9 @ eql8@ eql7@
c)
eq3® eql4 e €q20 @ eq2l ; eql6] eq4® eqls e
Figure 10. Transformation of the shortened

alternating path graph by choosing a) eq3 b) eq3 and
eq21 ¢) eq3, eq21 and eqg4 for elimination

In the next step another equation node need to be selected
from the safe equation lists associated to the second over
constrained subgraph 0;& . We can pick any of the
equations present in the list
{eql8,eq9,eq3,eql4,eq20,eq21,eql6} e V(Ollg), with a
few restrictions introduced by the previous equation node
choice. Equation node eg/3 has already been selected for

TEEE .2

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

elimination in subgraph 0,'5 and eql4 cannot reach a
free node anymore. Let us choose eg2] along the path
eql8——var9———eq21. All the adjacent edges to
equation eg21 var9 and eql8 are now removed from the
graph together with the cut variable node var9, and eq21
is marked as a free node.

Moving to the next over-constrained subgraph Oy
we may choose eq4 for elimination which is available
along the path eql7———varl——>eq4 as is depicted
in Figure 10 b). Following the alternate path and
eliminating the extra edges and the cut variable node, we
obtain finally the graph shown in Figure 10 c). The above
chosen equation nodes can be safely removed from the
underlying system of equations because any of them have
a valid path to a free equation node. By exchanging the
matching edges with non-matching edges along those
paths each of the chosen equation can be made into a free
equation node.

The shortened alternating path graph is useful to
quickly check if a given subset of equations, chosen by
the user or automatically chosen by the debugger, is
eliminated from the overall system of equation will lead
to a remaining well-constrained system of equations. In
conclusion the recursive algorithm Algorithm 1
(CHKOC) can be given to automatically check the
validity of an equation subset.

The optimize function called in the chhoc procedure
will eliminate all the paths from the graph that are not
terminated with a free equation node. The DFSm
function performs a depth first search on an input graph
starting from a given node and return the list of traversed
paths.

The lists of equations are traversed and each equation
is checked if has a valid path to a free node. If a valid
path for an equation is found the belonging nodes of the
path are eliminated from the graph and the procedure
chhoc is called recursively having as parameters the
reduced graph and the list free equations from where the
already checked equation was eliminated. If the next
equation node does not have a valid path to a free node,
then the search returns to the equation node checked just
before and a new path is considered. The general step is
repeated until every path associated to that equation node
has been checked. At each general step, if a valid path is
found the equation node is automatically added to a
global list L. At the end of the procedure the list L
contains the maximum number of equation nodes that
have a valid path to a free equation node. If the list L is
the same as the input list then the combination of
equations nodes from the input list constitutes a valid set
and can be safely removed from the over-constrained
system of equations in order to make the system
consistent.

Algorithm 1 CHKOC(SOL" , {eq,,eq; ...eq, })
Checks if a subset of equation constitutes a valid
elimination set from the flattened set of equations
Input Data: The shortened alternating path graph SOé*
and subset of equations {eq,,eq, ...eq; }
Result: a Boolean value: true if the subset of equations
constitutes a valid elimination set, false otherwise.
begin:
Procedure chkoc(G, eqList)
begin
if (size(eqList) != 0) then
eq, = pop_last(egList);
pathList := DFSm(G, eq,,);
optimize(pathlList);
for all p’e pathList do
for all nodesve p’ do
delete_nod e_and_adj_edges(G,v);
end for;
if eq, ¢ Lthen L :=append(L, { eq, });
chkoc (G,eqList);
restore_nodes_and_adj_edges(G) ;
end for;
push_back(eqgList ,eqk);
endif
end procedure.
L=0;
chkoc(SOL" ,{eq, eq, ...eq; })
if (L == {eq,,eq,...eq, }) then return true;
else return false;
end.

By checking each possible combination using Algorithm
1 the graph from Figure 8 can be reduced to the graph
depicted in Figure 11 that still has a high complexity.

eq9 eq3 eql4

Figure 11. Reduced safe nodes combinations graph

8. Guided Filtering by Semantic Rules

Applying Algorithm 1 and taking into account the
structural information regarding the over-constrained
subgraph the number of possible combinations of safe
nodes have been reduced. There are still too many
combinations of safe equations. Presenting them to the
user at this stage is not very useful. These combinations
represent the error fixing solutions at the flattened
intermediate code level. However the user has only the
possibility of making modifications at the source code

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

level. Therefore a mechanism to validate the
combinatorial solutions from the modeling language
point of view is needed.

Let us consider the mapping between the original
Modelica source code of the simple electrical circuit
model and the generated intermediate form of the
flattened equation shown in Figure 12. Only those
statements, from the original Modelica code, that directly
generate the intermediate form are shown. Model
definitions, variable declaration and other irrelevant
language construct were intentionally eliminated. The
correspondence graph between the original code
statement and the flattened intermediate form can be
constructed during the translation phase.

V=p.vV-n.v; egql R1l.v==-Rl.n.v+Rl.p.v
eq2
0=p.i+n.i; eq3
eq4
i=p.i; egs
egé
i=10; eq7
eqg8
R*i=v; eq9d
eql0 R2.1*R2.R==R2.V

v=VA* (sin (2*PI*f*time)

p.v=0; . .p.i
\ egl4 AC.i==10
connect (AC.p,R1.p) ; eql5 AC.v==AC.VA*sin[2*time...
eql6 G.p.v==0

connect (R1.n,AC.n);

eqll AC.v==-AC.n.v+AC.p.v

eql7 AC.p.v==R1.p.v
egl8 R1.p.v==R2.p.v
connect (R1.p,R2.p); eql9 AC.p.i+R1.p.i+R2.p.i==0

eg20 R1.n.v==R2.n.v

eg21 R2.n.v==AC.n.v

eg22 AC.n.v==G.p.v

eg23 AC.n.i+G.p.i+R1.n.i+R2.n.1==0

connect (R1.n,R2.n);

connect (AC.n,G.p) ;

Figure 12. Correspondence between the Modelica source
code statements and the corresponding flattened
equations

The safe equations which are also present in the
shortened alternating path graph are indicated in Figure
12 by bold letters. The correspondence graph from Figure
12 can be simplified by removing those original code
statements that generates intermediate equations that are
outside the set of safe equations and we obtain the
correspondence graph from Figure 13. We have kept only
those original source code statements that generate at
least one equation that can be found among the
component equation nodes of the shortened alternating

graph.
eq3
i-p.i o/j eqd
\.

V=VA* (sin (2#PI*f*time)) RN @ cql4

p.v=0 NN@ cqls Safe equation
O\.\‘ nodes
connect (AC.p,R1.p) \\\ @ eql6
\,
connect (R1.1,AC.n) O\ N eql7

connect (R1.p,R2.p)

connect (R1.m,R2.1)

Figure 13. Reduced correspondence graph between the
Modelica code and the corresponding flattened equations.

Let us analyze the equations: eg4, eq9, and eql4. They
were generated by inheritance from the original equation
i=10, in the TwoPin component. By eliminating the
original source code statement all the three equations will
be removed from the flattened intermediate form. Any
attempt at eliminating only one of the equations from the
intermediate form by removing a statement from the
original source code, will fail. In conclusion, all the
adjacent edges of nodes that represent eg3, eq9, or eql4
in the graph from Figure 11 that includes a node, which
is not among these nodes, can be safely removed.

Equation i=p.i will generate three equations eg3,
eq8 and eql3 in the intermediate code. Only eql3 is
among the equation nodes that need to be eliminated. It
should be noted that the elimination of eg3 is only
possible by removing i=p.i. However, the removal of
i=p.i will trigger the elimination of two additional
equations which are not members of the safe equation
list. Therefore eg3 cannot be considered for elimination
and all the adjacent edges representing eg3 in the graph
from Figure 11 can be removed. For the same reason all
the adjacent edges to eql7, eql8, eq20, eq21 can also be
removed from the graph.

After performing all the simplifications we obtain the
graph from Figure 14 that contains only edges linking
the eq4, eq9, and eql4 equation nodes. It means that the
user can eliminate the statement i=10 from the TwoPin
component in the original source code. This statement
was exactly the additional statement introduced at
beginning of this analysis in order to over-constrain the

simulation model.
eq@ g3 eqld
(<] 5]

eql80 3@ eqldd_cq200 cq2l® eql6® eq4 ©

(6] (6] <] (&) (%)
eql7 eq20 eq2l eql6 eqd eqlS
Figure 14. The simplified graph denoting the possible
equation node combinations that can be scheduled for
elimination.

The same over-constraining final effect, and the same
form of the flattened intermediate code can be achieved
by over-constraining each class derived from the TwoPin
instead of over-constraining the parent component itself
with an extra equation. In conclusion the classes
Resistor, VsourceAC will get an extra equation
i=10, each. The generated flattened form of the
equations will be the same. Reasoning based on the
semantic transformation rules, we obtain the following
combination graph, depicted in Figure 15, with the
additional constraint that eq9 and eg4 should be selected
together (they cannot appear independently in the
selection set).

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

eq9 eq3 eql4
-] Q

eql8® eq3@ eqldO_eq20@ eq2l® V-

W7 ep0 @l eale egt eqls

Figure 15. Possible combinations of equation nodes

scheduled for elimination when the Resistor and
VsourceAC component are over constrained

The following equation sets can be selected for
elimination and presented to the user for validation:

e [eq9eqldeq4}) by eliminating i=10 from the
Resistor component and i=10 from the
VsourceAC component.

o [eq9eqlb,eq4} by eliminating i=10 from the
Resistor component and p.v=0 from the Ground

component.

o {eq9eq4d,eql5}) by eliminating i=10 from the
Resitor component and
v=VA*sin (2*PI*f*time) from the VsourceAC
component.

o [eqld,eqlb,eql5}) by eliminating i=10 and
v=VA*sin (2*PI*f*time) from the VsourceAC
component, p.v=0 from the Ground component.

9. Conclusions

Determining the cause of errors in models of physical
systems is hampered by the limitations of the current
techniques of debugging declarative equation based
languages. We have presented a new approach for
debugging declarative equation based languages by
employing graph decomposition techniques and have
given several usage examples for debugging over-
constrained models. It has also been demonstrated that it
is possible to create a tool with an enhanced user
interaction capability that explicitly can be used in
debugging and understanding complicated simulation
models.

AMOEBA (Automatic MOdelica Equation Based
Analyzer) is a debugging tool that we have designed,
implemented and attached to existing Modelica based
simulation environment. The tool is able to successfully
detect and provide error-fixing solutions for typical over
and under-constrained situations, which appear during
the modeling stage using Modelica. These kinds of bugs
are usually the most frequent error situations encountered
when programming with declarative equation based
language. Most of the wrong specification at the
equations level will fall into one of these categories. The
debugging process concentrates on finding structural
inconsistencies at the intermediate code level by using
graph decomposition algorithms, similar to those
presented in the paper, and then mapping the error back

to the original source code in order to provide
meaningful error messages to the user. Whenever is
possible the original source code is manipulated in such a
way that the simulation model becomes consistent. Our
prototype debugger shows that static analysis can
considerably enhance the error finding process when
modeling with equation based languages as well as
improving the designer's capability to deal with the
increasing complexity of today's system simulation
models described by such languages.

The merits of the proposed debugging technique are
as follows:

e The user is exposed to the original source code of the
program and is therefore not burdened with
understanding the intermediate code or the
numerical artifacts for solving the underlying system
of equations.

e The user has a greater confidence in the correctness
of the simulation model.

e It statically detects a broad range of errors without
having to execute the simulation model.

References

[1] Abadi M. and L. Cardelli, A Theory of Objects, Springer
Verlag, ISBN 0-387-94775-2, 1996.

[2] Dulmage, A.L., Mendelsohn, N.S. Coverings of bipartite
graphs, Canadian J. Math. 10, 517-534.

[3] Elmqvist, H.; S. E. Mattsson and M. Otter. 1999.
“Modelica - A Language for Physical System Modeling,
Visualization and Interaction.” In Proceedings of the 1999
IEEE Symposium on Computer-Aided Control System
Design (Hawaii, Aug. 22-27).

[4] Fritzson, P.; P. Bunus “Modelica, a general Object-
Oriented Language for Continuous and Discrete-Event
System Modeling and Simulation." In Proceedings of the
35" Annual Simulation Symposium (San Diego, California,
April 14-18, 2002)

[5] Fritzson, P. "Introduction to Modelica". First chapter of
book draft. www.ida.liu.se/~pelab/modelica

[6] Fritzson P and V. Engelson. “Modelica, A Unified Object-
Oriented Language for System Modeling and Simulation.”
In Proceedings the 12th European Conference on Object-
Oriented Programming). (Brussels, Jul. 20-24,1998).

[71 Modelica Association. Modelica — A Unified Object-
Oriented Language for Physical Systems Modeling -
Tutorial and Design Rationale Version 1.4 (December 15,
2000). http://www.modelica.org

[8] Modelica Association. Modelica — A Unified Object-
Oriented Language for Physical Systems Modeling —
Language Specification Version 2.0. (July 10, 2002).
http://www.modelica.org

[9] Tiller M. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’'02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on January 6, 2010 at 11:57 from IEEE Xplore. Restrictions apply.

