MoD ELI"CA

Fritzson P., Gunnarsson J., Jirstrand M.:

MathModelica - An Extensible Modeling and Simulation Environment with
Integrated Graphics and Literate Programming

2" International Modelica Conference, Proceedings, pp. 41-54

Paper presented at the 2" International Modelica Conference, March 18-19, 2002,
Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen, Germany.

All papers of this workshop can be downloaded from
http://’www. Modelica.org/Conference2002/papers.shtml

Program Committee:

e Martin Otter, Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Institut fiir
Robotik und Mechatronik, Oberpfaffenhofen, Germany (chairman of the program
committee).

e Hilding Elmqvist, Dynasim AB, Lund, Sweden.

e Peter Fritzson, PELAB, Department of Computer and Information Science, Linkoping
University, Sweden.

Local organizers:

Martin Otter, Astrid Jaschinski, Christian Schweiger, Erika Woeller, Johann Bals,
Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Institut fiir Robotik und
Mechatronik, Oberpfaffenhofen, Germany

Fritzson P., Gunnarsson J., Jirstrand M.

MathModelica — An Extensible Modeling and Simulation Environment ...

MathModelica
An Extensible Modeling and Simulation Environment

with Integrated Graphics and Literate Programming
(Abridged Version®)

Peter Fritzson', Johan Gunnarsson?, Mats Jirstrand?

1) PELAB, Programming Environment Laboratory, Department of Computer and Information
Science, Linkoping University, SE-581 83, Linkoping, Sweden
petfr@ida.liu.se
2) MathCore AB, Wallenbergs gata 4, SE-583 35 Link&ping, Sweden
{iohan,mats}@mathcore.se

Abstract

MathModelica is an integrated interactive development
environment for advanced system modeling and simulation.
The environment integrates Modelica-based modeling and
simulation with graphic design, advanced scripting
facilities, integration of program code, test cases, graphics,
documentation, mathematical type setting, and symbolic
formula manipulation provided via Mathematica. The user
interface consists of a graphical Model Editor and
Notebooks. The Model Editor is a graphical user interface
in which models can be assembled using components from
a number of standard libraries representing different
physical domains or disciplines, such as electrical,
mechanics, block-diagram and multi-body systems.
Notebooks are interactive documents that combine
technical computations with text, graphics, tables, code,
and other elements. The accessible MathModelica internal
form allows the user to extend the system with new
functionality, as well as performing queries on the model
representation and write scripts for automatic model
generation. Furthermore, extensibility of syntax and
semantics provides additional flexibility in adapting to
unforeseen user needs.

1 Background

Traditionally, simulation and accompanying activities

[Fritzson-92a] have been expressed using heterogeneous

media and tools, with a mixture of manual and comp uter-

supported activities:

e A simulation model is traditionally designed on paper
using traditional mathematical notation.

e Simulation programs are written in a low-level
programming language and stored on text files.

e Input and output data, if stored at all, are saved in
proprietary formats needed for particular applications
and numerical libraries.

e Documentation is written on paper or in separate files
that are not integrated with the program files.

e The graphical results are printed on paper or saved
using proprietary formats.

When the result of the research and experiments, such as a
scientific paper, is written, the user normally gathers
together input data, algorithms, output data and its

visualizations as well as notes and descriptions. One of the
major problems in simulation development environments is
that gathering and maintaining correct versions of all these
components from various files and formats is difficult and
error-prone.

Our vision of a solution to this set of problems is to
provide integrated computer-supported modeling and
simulation environments that enable the user to work
effectively and flexibly with simulations. Users would then be
able to prepare and run simulations as well as investigate
simulation results. Several auxiliary activities accompany
simulation experiments: requirements are specified, models are
designed, documentation is associated with appropriate places
in the models, input and output data as well as possible
constraints on such data are documented and stored together
with the simulation model. The user should be able to
reproduce experimental results. Therefore input data and parts
of output data as well as the experimenter's notes should be
stored for future analysis.

1.1 Integrated Interactive Programming
Environments

An integrated interactive modeling and simulation
environment is a special case of programming environments
with applications in modeling and simulation. Thus, it should
fulfill the requirements both from general integrated
environments and from the application area of modeling and
simulation mentioned in the previous section.

The main idea of an integrated programming environment
in general is that a number of programming support functions
should be available within the same tool in a well-integrated
way. These means that the functions should operate on the
same data and program representations, exchange information
when necessary, resulting in an environment that is both
powerful and easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g. without
recomputing everything from scratch, and maintains a dialogue
with the user, including preserving the state of previous
interactions with the user. Interactive environments are
typically both more productive and more fun to use.

There are many things that one wants a programming
environment to do for the programmer, particularly if it is
interactive. What functionality should be included?
Comprehensive software development environments are

* The complete version of the paper can be found at http://www.mathcore.com and http://www.ida.liu.se/~pelab/modelica/

The Modelica Association

41 Modelica 2002, March 18-19, 2002

MathModelica — An Extensible Modeling and Simulation Environment ...

Fritzson P., Gunnarsson J., Jirstrand M.

expected to provide support for the major development
phases, such as:

e requirements analysis,

e design,

e implementation,

e maintenance.

A programming environment can be somewhat more
restrictive and need not necessarily support early phases
such as requirements analysis, but it is an advantage if such
facilities are also included. The main point is to provide as
much computer support as possible for different aspects of
software development, to free the developer from mundane
tasks so that more time and effort can be spent on the
essential issues. The following is a partial list of integrated
programming environment facilities, some of which are
already mentioned in [Sandewall-78], that should be
provided for the programmer:

e Administration and configuration management of
program modules and classes, and different versions
of these.

e Administration and maintenance of test examples and
their correct results.

e Administration and maintenance of formal or informal
documentation of program parts, and automatic
generation of documentation from programs.

e Support for a given programming methodology, e.g.
top-down or bottomrup. For example, if a top-down
approach should be encouraged, it is natural for the
interactive environment to maintain successive
composition steps and mutual references between
those.

e Support for the interactive session. For example,
previous interactions should be saved in an
appropriate way so that the user can refer to previous
commands or results, go back and edit those, and
possibly re-execute.

e Enhanced editing support, performed by an editor that
knows about the syntactic structure of the language. It
is an advantage if the system allows editing of the
program in different views. For example, editing of
the overall system structure can be done in the
graphical view, whereas editing of detailed properties
can be done in the textual view.

e Cross-referencing and query facilities, to help the user
understand interdependences between parts of large
systems.

e Flexibility and extensibility, e.g. mechanisms to
extend the syntax and semantics of the programming
language representation and the functionality built into
the environment.

e Accessible internal representation of programs. This is
often a prerequisite to the extensibility requirement.
An accessible internal representation means that there
is a well-defined representation of programs that are
represented in data structures of the programming
language itself, so that user-written programs may
inspect the structure and generate new programs. This
property is also known as the principle of program-
data equivalence.

1.2 Vision of Integrated Interactive
Environment for Modeling and
Simulation.

Our vision for the MathModelica integrated interactive

environment is to fulfill essentially all the requirements for

general integrated interactive environments combined with the
specific needs for modeling and simulation environments, e.g.:

e Specification of requirements, expressed as
documentation and/or mathematics;

e Design of the mathematical model;

e symbolic transformations of the mathematical model;

e A uniform general language for model design,

mathematics, and transformations;
e Automatic generation of efficient simulation code;
e Execution of simulations;
e Evaluation and documentation of numerical experiments;
e Graphical presentation.

The design and vision of MathModelica is to a large extent
based on our earlier experience in research and development of
integrated incremental programming environments, e.g. the
DICE system [Fritzson-83] and the ObjectMath environment
[Fritzson-92b,Fritzson-95], and many years of intensive use of
advanced integrated interactive environments such as the
InterLisp system [Sandewall-78], [Teitelman-69,Teitelman-
74], and Mathematica [Wolfram-88,Wolfram-97]. The
InterLisp system was actually one of the first really powerful
integrated environments, and still beats most current
programming environments in terms of powerful facilities
available to the programmer. It was also the first environment
that used graphical window systems in an effective way
[Teitelman77], e.g. before the Smalltalk environment
[Goldberg 89] and the Macintosh window system appeared.

Mathematica is a more recently developed integrated
interactive programming environment with many similarities
to InterLisp, containing comprehensive programming and
documentation facilities, accessible intermediate representation
with programrdata equivalence, graphics, and support for
mathematics and computer algebra. Mathematica is more
developed than InterLisp in several areas, e.g. syntax,
documentation, and pattern-matching, but less developed in
programming support facilities.

1.3 Mathematica and Modelica

It turns out that the Mathematica is an integrated programming
environment that fulfils many of our requirements. However, it
lacks object-oriented modeling and structuring facilities as
well as generation of efficient simulation code needed for
effective modeling and simulation of large systems. These
modeling and simulation facilities are provided by the object-
oriented modeling language Modelica [MA-02a,MA-02b],
[Tiller-01], [EImqvist-99], [Fritzson-98].

Our solution to the problem of a comprehensive modeling
and simulation environment is to combine Mathematica and
Modelica into an integrated interactive environment called
MathModelica. This environment provides an internal
representation of Modelica that builds on and extends the
standard Mathematica representation, which makes it a well
integrated with the rest of the Mathematica system.

The realization of the general goal of a uniform general
language for model design, mathematics, and symbolic
transformations is based on an integration of the two languages
Mathematica and Modelica. Mathematica provides
representation of mathematics and facilities for programming
symbolic transformations, whereas Modelica provides

Modelica 2002, March 18-19, 2002

42 The Modelica Association

Fritzson P., Gunnarsson J., Jirstrand M.

MathModelica — An Extensible Modeling and Simulation Environment ...

language elements and structuring facilities for object-
oriented component based modeling, including a strong
type system for efficient code and engineering safety.
However, this language integration is not yet realized to its
full potential in the current release of MathModelica, even
though the current level of integration provides many
impressive capabilities.

The current MathModelica system builds on
experience from the design of the ObjectMath [Fritzson
92b,Fritzsonr95] modeling language and environment,
early prototypes [Fritzson-98b], [Jirstrand-99], as well as
on results from object-oriented modeling languages and
systems such as Dymola [Elmqvist-78,Elmqvist-96] and
Omola [Mattsson-93], [Andersson-94], which together
with ObjectMath and a few other object-oriented modeling
languages, have provided the basis for the design of
Modelica.

ObjectMath was originally designed as an object-
oriented extension of Mathematica augmented with
efficient code generation and a graphic class browser. The
ObjectMath effort was initiated 1989 and concluded in the
fall of 1996 when the Modelica Design Group was started,
later renamed to Modelica Association. At that time,
instead of developing a fifth version of ObjectMath, we
decided to join forces with the originators of a number of
other object-oriented mathematical modeling languages in
creating the Modelica language, with the ambition of
eventually making it an international standard. In many
ways the MathModelica product can be seen as a logical
successor to the ObjectMath research prototype.

2 The MathModelica Integrated
Interactive Environment.
The MathModelica system consists of three major

subsystems that are used during different phases of the
modeling and simulation process, as depicted in

Figure 1 below:

MathModelica
Modeling and Simulation|

Environment ~~~__ | 3D Graphics
"9 and CAD
Model Simulation Notebooks
Editor Center

Figure 1. The MathModelica system architecture.

These subsystems are the following:

e The graphic Model Editor used for design of models
from library components.

e The interactive Notebook facility, for literate
programming, documentation, running simulations,
scripting, graphics, and symbolic mathematics with
Mathematica.

e The Simulation center, for specifying parameters,
running simulations and plotting curves.

Additionally, MathModelica is loosely coupled to two
optional subsystems for 3D graphics visualization and
automatic translation of CAD models to Modelica. [Bunus-
00], [Engelson-99]. [Engelson-00]. In order to provide the
best possible facilities available on the market for the user,
MathModelica integrates and extends several professional
software products that are included in the three subsystems.
For example, the model editor is a customization and
extension of the diagram and visualization tool Visio

[Visio] from Microsoft, the simulation center includes
simulation algorithms from Dynasim [Elmqvist-96], and the
Notebook facility includes the technical computing system
Mathematica [Wolfram-97] from Wolfram Research.

A key aspect of MathModelica is that the modeling and
simulation is done within an environment that also provides a
variety of technical computations. This can be utilized both in
a preprocessing stage in the development of models for
subsystems as well as for postprocessing of simulation results
such as signal processing and further analysis of simulated
data.

2.1 Graphic Model Editor.

The MathModelica Model Editor is a graphical user interface
for model diagram construction by "drag-and-drop" of model
classes from the Modelica Standard Library or from user
defined component libraries, visually represented as graphic
icons in the editor. A screen shot of the Model Editor is shown
in Figure 2. In the left part of the window three library
packages have been opened, visually represented as
overlapping windows containing graphic icons. The user can
drag models from these windows (called stencils in Visio
terminology) and drop them on the drawing area in the middle
of the tool.

The Model Editor is an extension of the Microsoft Visio
software for diagram design and schematics. This means that
the user has access not only to a well developed and user
friendly graph drawing application, but also to a vast array of
professional design features to make graphical representations
of developed models visually attractive. Since Modelica
classes often represent physical objects it is of great value to
have a sufficiently rich graphical description of these classes.

The Model Editor can be viewed as a user interface for
graphical programming in Modelica. Its basic functionality
consists of selection of components from libraries, connection
of components in model diagrams, and entering parameter
values for different components

For large and complex models it is important to be able to
intuitively navigate quickly through component hierarchies.
The Model Editor supports such navigation in several ways. A
model diagram can be browsed and zoomed. The Model Editor
is well integrated with Notebooks. A model diagram stored in a
notebook is a tree-structured graphical representation of the
Modelica code of the model, which can be converted into
textual form by a command.

2.2 Simulation Center.

The simulation center is a subsystem for running simulations,

setting initial values and model parameters, plot results, etc.

These facilities are accessible via a graphic user interface

accessible through the simulation window, e.g. see Figure 3

below. However, remember that it is also possible to run

simulations from the textual user interface available in the
notebooks. The simulation window consists of five aeas or
subwindows with different functionality:

e The uppermost part of the simulation window is a control
panel for starting and running simulations. It contains two
fields for setting start and stop time for simulation,
followed by Build, Run Simulation, Plot,
and Stop buttons.

e The left subwindow in the middle section shows a tree-
structure view of the model selected and compiled for
simulation, including all its submodels and variables.
Here, variables can be selected for plotting.

The Modelica Association

43 Modelica 2002, March 18-19, 2002

MathModelica — An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

e The center subwindow & used for diagrams of plotted variables.

60 k= amdelicn - [Mecet! vuctbaded] I (=1 1|
|25 Bt Bew et Famet Tack Shps Mahoddcs Bindoa bee 2180
0 @@ B @AY LMBT <-c [k F-A-D-/- G- A% ow - | 7]
| Piere R e P = X R e |
| B Modedn.a Ebeckial nsopl ik | =| T D e
Bl Modakea i AT & Helblight

Woceka Mecharc: Finlaung l e
= 4 4 5 Ao F res
ram bl Gawr el M g ml
= I s Gt vongal ﬁ'gﬂ'.m"
el g Oenper £} Coratarivekagal
ﬁlr\-e-l:-al.
Corrar iCarat sk Vol L g5 Py
= A 5 _L o2 CoeverliFassi deiorT)
Spinglin . Bonaks . Saongfr.. = o Corvectilnducton] n E0F 1, pi
ourafl & ConracHEWPLn Grend].p)
g 4 o Cznrect Cometant Vriegal ry Brours
T CornecHEWFL Aarge_b dnetiad, Ay
Dok Ol iy
= = | [e sl | lrJ
Tartii.. Camr PForian
HF‘u.l'rrh: J
e T Eocamter | b [Dtk ke | e Voo Ltaene [Dvmition. 11
hoadermd Rl Taes Fi 1 o [Fr
el
Pglginsg® _.
E | JLIp T | 3
| Wikh= O+in Heghi= GA0, Al w [P [Pee il S| Remdy i

Figure 2. The Graphic Model Editor showing an electrical motor with the Inertia parameter J modified.

e The right subwindow in the middle section contains
the legend for the plotted diagram, i.e. the names of

the plotted variables.
e The subwindow at the bottom is

divided into three

sections: Parameters, Variables, and
Messages, of which only one at a time is visible.
The Parameters section, shown in Figure 3,
allows changing parameter values, whereas the
Variables section allows modifying intial (start)
values, and the Message section to view possible
messages from the simulation process.

If a model parameter or initial value has been changed, it
is possible to rerun the simulation without rebuilding the
executable code if no parameter influencing the equation
structure has been changed. Such parameters are

sometimes called structural parameters.

2.3 Interactive Notebooks with Literate
Programming.

In addition to purely graphical programming of models using
the Model Editor MathModelica also provides a text based
programming environment for building textual models using
Modelica. This is done using Notebooks, which is documents
that may contain technical computations, text, and graphics.
Hence, these documents are suitable to be used both as
simulation scripting tools, model documentation and storage,
model analysis and control system design, etc. In fact, this
article is written as such a notebook and in the live version the
examples can be run interactively. A sample notebooks is
shown in Figure 4.

+taithtdelics Srnudabio - [Poteindow] |-
= |
F ==
-3 Podall 1.2 | = T biad Plarae_a ot
ui- £ Corgrantyokage] | " = Y tiad
5 evFL i N et - —
A5 % Broand | | o
Db [rabrctiri o |
=i 3 [rewtia] ; |
@ darphi) |
= flarga_s A7
O & o % |
B« 2 o
B Merge b '| Il'.
O&c fo.2 1
R i Y
a1 £ Faminior] '|' i
& Variakima | [Potian b | \ s 0 s B
ﬁ' Faramatis 1 ok | Dhacaription 1
Dkt | AL L Akrarce[Ohn]
[rehpctorl L I Irahrience [H]
T 1 Traslomesion CosY icsnd (1 mb]
B | Corstartvokegel.t | ek of conatent vl tage [V]
o IIr\-lmml. 1 0.5 Mowend of inevtia kgt]
(L0 Paramaters. {Siorubis Wesonges 7 LT £
T

Figure 3. The Simulate window with plots of the signals Inertial.flange_a.tau and Inertial.w .

Modelica 2002, March 18-19, 2002

44 The Modelica Association

Fritzson P., Gunnarsson J., Jirstrand M.

MathModelica — An Extensible Modeling and Simulation Environment ...

Code Generation, and.__ B[] B3 i

E Evaluated Modeling.

-l
£« WyRwgulmtaczalne |
=x |, phpxlcaluslurx,
DimgonmlMetclx [{1, 5., 1, 5., @, 0, 0, 03],
0.1Id4entltpHatclx 2] |:
e
Tht ronowd Iwe m b uscd 18 o] e = v, wher v U necamrtricno of do smoe This pvee o
Pl cmn £lcacd |oop macn o e Y= f b= 0 vl
W Zirnu beien and O de Cunaration
i
T mmw e ERTE L L VIO
: 2
e e e =
| 50z~ 4] 4
7

Figure 4. Examples of MathModelica notebooks..

The MathModelica Notebook facility is actually an
interactive WYSIWYG (What-You-See-Is-What-You-Get)
realization of Literate Programming, a form of programming
where programs are integrated with documentation in the
same document, originally proposed in [Knuth84]. A
noninteractive prototype implementations of Literate
Programming in combination with the document processing
system LaTex has been realized [Knuthr94]. However,
MathModelica is one of very few interactive WYSIWYG
systems so far realized for Literate Programming, and to our
knowledge the only one yet for Literate Programming in
Modeling.

Integrating Mathematica with MathModelica does not
only give access to the Notebook interface but also to
thousands of available functions and many application
packages, as well as the ability of communicating with other
programs and import and export of different data formats.
These capabilities make MathModelica more of a complete
workbench for the innovative engineer than just a modeling
and simulation tool. Once a model has been developed there
is often a need for further analysis such as linearization,
sensitivity analysis, transfer functions computations, control
system design, parametric studies, Monte Carlo simulations,
etc.

In fact, the combination of the ability of making user
defined libraries of reusable components in Modelica and the
Notebook concept of living technical documents provides an
integrated approach to model and documentation
management for the evolution of models of large systems
2.3.1 Tree Structured Hierarchical Document
Representation.

Traditional documents, e.g. books and reports, essentially
always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document
itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in
MathModelica notebooks. Every notebook corresponds to
one document (one file) and contains a tree structure of cells.
A cell can have different kinds of contents, and can even

contain other cells. The notebook hierarchy of cells thus
reflects the hierarchy of sections and subsections in a
traditional document.

N = 1=]
e ST ez EE
P [0t Pd Thored B e o ot e { ST Fror ot B
= =
MyPackage |
1
Modelica package |
1 Introductan 1|
1.1 Nolws il
1 Fackage MyFatkags !:
|
2.1 Begin pedge flyPadage |j|
2.7 Clossd 1l
2.0 Clissz I
2.4 Elaed 1|
2.3 Package MysubPackage ||i
251 Beon peckaps MySabPodkege JI:
253 Clarel il
1
253 Erdl pathete HS b Packs g nl|
1
|
2.0 Covd psckage MyPacksoe il
L e |.|'I-'-I

Figure 5. The package Mypackage in a notebook

In the MathModelica system, Modelica packages including
documentation and test cases are primarily stored as
notebooks, e.g. as in Figure 4. Those cells that contain
Modelica model classes intended to be used from other
models, e.g. library components or certain application
models, should be marked as exports cells. This means that
when the notebook is saved, such cells are automatically
exported into a Modelica package file in the standard
Modelica textual representation (.mo file) that can be
processed by any Modelica compiler and imported into other
models. For example, when saving the notebook
MyPackage.nb of Figure 5, a file MyPackage.mo
would be created with the following contents:

package MyPackage
model class3

end class3;

model class2

model classl

package MySubPackage
model classl

end classl;
end MySubPackage;
end MyPackage;

2.3.2 Program Cells, Documentation Cells, and
Graphic Cells.

A notebook cell can include other cells and/or arbitrary text
or graphics. In particular a cell can include a code fragment
or a graph with computational results.

The contents of cells can for example be one of the
following forms:

e Model classes and parts of models, i.e. formal
descriptions that can be wused for verification,
compilation and execution of simulation models.

o Mathematical formulas in the traditional mathematical
two dimensional syntax.

e Text/documentation, e.g. used as
executable formal model specifications.

comments to

The Modelica Association 45

Modelica 2002, March 18-19, 2002

MathModelica — An Extensible Modeling and Simulation Environment ...

Fritzson P., Gunnarsson J., Jirstrand M.

e Dialogue forms for specification and modification of
input data.

e Result tables. The results can be automatically
represented in (live) tables, which can even be
automatically updated after recomputation.

e QGraphical result representation, e.g. with 2D vector and
raster graphics as well as 3D vector and surface
graphics.

e 2D structure graphs, that for example are used for
various model structure visualizations such as
connection diagrams and data structure diagrams.

A number of examples of these different forms of cells are
available throughout this paper.

2.3.3 Mathematics with 2D-syntax, Greek
letters, and Equations

MathModelica uses the syntactic facilities of Mathematica to

allow writing formulas in the standard mathematical notation

well-known, e.g. from textbooks in mathematics and physics.

Certain parts of the Mathematica language syntax are

however a bit unusual compared to many common

programming languages. The reason for this design choice is
to make it possible to use traditional mathematical syntax.

The following three syntactic features are unusual:

e Implied multiplication is allowed, i.e. a space between
two expressions, e.g x and f(x), means
multiplication just as in mathematics. A multiplication
operator * can be used if desired, but is optional.

e Square brackets are used around the arguments at
function calls. Round parentheses are only used for
grouping of expressions. The exception is
Traditional Form, see below.

e Support for two-dimensional mathematical syntactic
notation such as integrals, division bars, square roots,
matrices, etc.

The reason for the unusual choice of square brackets around
function arguments is that the implied multiplication makes
the interpretation of round parenthesis ambiguous. For
example, £ (x+1) can be interpreted either as a function call
to £ with the argument x+1, or f multiplied by (x+1) .
The integral in the cell below contains examples of both
implied multiplication and two-dimensional integral syntax.
The cell style is called MathModelica input form (called
standard form in Mathematica) and is used for mathematics
and Modelica code in Mathematica syntax:

x f[x
J#d‘x
1+x2+x3

There is also a purely textual input form using a linear
sequence of characters. This is for example used for entering
Modelica models in the standard Modelica syntax, and is
currently the only cell format in MathModelica that can
interpret standard Modelica syntax. However, all
mathematics can also be represented in this syntax. The
above example in this textual format appears as follows:

Integrate[(x*£[x])/(1 + x*2 + x"3), x]

Finally, there is also a cell format called traditionalform
which is very close to traditional mathematical syntax,
avoiding the square brackets. The above-mentioned syntactic
ambiguities can be avoided if the formula is first entered
using one of the above input forms, and then converted to
traditional form.

j A A M x

B0 201

The MathModelica environment allows easy conversion
between these forms using keyboard or menu commands.
Below we show a small example of a Modelica model class
SimpleDAE represented in the Mathematica style syntax of
Modelica that allows greek characters and two dimensional
syntax. The apostrophe (') is used for the derivatives just as

in traditional mathematics, corresponding to the Modelica
der () operator.

Model[SimpleDAE,
Real f31;
Real x;5;
Equation[
B sin[x,"
: + ;] +B1xy+fB1=1;
1+ (B1")2 1+ (B")?
, x2'
sin[By'] - ————— -2B1x2+B1==0;
1+ (B1')2

]]

We simulate the model for ten seconds by
Simulate command:

giving a
Simulate [SimpleDAE, {t,0,10}];

We use the command PlotSimulation for plotting the
solutions for the two state variables, which of course both are
functions of time, here denoted by t in Mathematica syntax:

PlotSimulation[{B;[t], x,[t]}, {t, 0, 10}];

-6t

—x t
0.6
0.5
0.4
0.3
0.2
0.1

2 4 6 8 10t
2.4 Environment and Language

Extensibility

Programming environments need to be flexible to adapt to
changing user needs. Without flexibility, a programming tool
will become too hard to use for practical needs, and stopped
to be used. Adaptability and flexibility is especially
important for integrated environments, since they need to
interact with a number of external tools and data formats,
contain many different functions, and usually need to add
new ones.
There are two major ways to extend a programming
environment
e Extension of functionality, e.g. through user-defined
commands, user-extensible menus, and a scripting
languages for programmability.
e Extension of language and notation, e.g. by facilities to
add new syntactic constructs and new notation, or
extend the meaning of existing ones.

Modelica 2002, March 18-19, 2002 46

The Modelica Association

Fritzson P., Gunnarsson J., Jirstrand M.

MathModelica — An Extensible Modeling and Simulation Environment ...

Mathematica has been designed from the start to be an
inherently extensible environment, which is what is used in
MathModelica. Almost anything can be redefined, extended,
or added.

2.41

An interactive scripting language is a common way of
providing extensibility of flexibility in functionality. The
MathModelica environment primarily uses the Mathematica
language and its interpreter as a scripting language, as can be
seen from a number of examples in this paper. Another
possibility would be to use the Modelica language itself as a
scripting language, e.g. by providing an interpreter for the
algorithmic and expression parts of the language. This can
easily be realized in MathModelica since the intermediate
form has been designed to be compatible with Mathematica,
and we already have Modelica input cells: just use Modelica
input cells also for commands, which are sent to the
Mathematica interpreter instead of the simulator.

Scripting for Extension of Functionality

2.4.2 Extensible Syntax and Semantics

As was already apparent in the section on mathematical
syntax, MathModelica provides a Mathematica-like input
syntax for Modelica in addition to the usual Modelica syntax.
One reason is to give support for mathematical notation, as
explained previously. Another reason is to provide user
extensible syntax.

This is easy since syntactic constructs in Mathematica
apart from the operators use a simple prefix syntax: a
keyword followed by square brackets surrounding the
contents of the construct, i.e. the same syntax as for function
calls. If there is a need to add a new construct no changes are
needed in the parser, and no reserved words need to be
added. Just define a Mathematica function to do the desired
symbolic or numeric processing.

The other major class of syntactic constructs are
operators. There are special facilities in Mathematica to add
new operators by defining their priority, operator syntax, and
internal representation. It is also possibke to extend the
meaning of existing operators like +, *, -, etc.

2.4.3 Mathematica vs Modelica syntax.

In order to to show the difference between the standard
Modelica textual syntax and the extensible Mathematica-like
syntax, we first show a simple model in a Modelica-style
input cell:

model secondordersystem
Real x(start=0);
Real xdot (start=0) ;
parameter Real a=1;
equation
xdot=der (x) ;
der (xdot) +a*der (x) +x=1;
end secondordersystem;

The same model in the Mathematica-like Modelica
syntax appears below. Note the use of the simple prefix
syntax: a keyword followed by square brackets surrounding
the contents of the construct. All reserved words, predefined
functions, and types in MathModelica start with an upper-
case letter just as in Mathematica. Equation equality is
represented by the == operators since = is the assignment
operator in Mathematica. The derivative operator is the
mathematical apostrophe (') notation rather than der(). The

semicolon (;) is a sequencing operator to group more than
one declaration, statement, or expression together.

Model [secondordersystem,
Real x[{Start == 0}];
Real xdot[{Start == 0}];
Parameter Real a == 1;

Equation|
xdot ==
xdot'

]

]

x';

+ a*x' + X ==

3 Application Examples

This section gives a number of application examples of the
use of the Mathmodelica environment. The intent is to
demonstrate the power of integration and interactivity - the
interplay between the object-oriented modeling and
simulation capabilities of Modelica integrated with the
powerful scripting facilities of Mathematica within
MathModelica. This includes the representation of
simulation results as 1D and 2D interpolating functions of
time being combined with arithmetic operations and
functions in expressions, advanced plotting facilities, and
computational capabilities such as design optimization,
fourier analysis, and solution of time-dependent PDEs. For
the PDEs see the long version of the paper.

3.1 Advanced Plotting and Interpolating
Functions

This section illustrates the flexible usage of simulation
results represented as interpolating functions, both for further
computations that may include simulation results in
expressions, and for both simple and advanced plotting. The
simple bouncing ball model below from [MA-02a] is used in
the simulation and plotting examples.

3.1.1 Interpolating Function Representation of
Simulation Results

The following simulation of the above BouncingBall
model is done for a short time period using very few points:

resl=Simulate [BouncingBall, {t,0,0.5},
NumberOfIntervals->10]

<SimulationData: BouncingBall: 2002-2-26
10:48:10 {o., 0.5} 15 data points : 1
events 7 variables>

{c, g, height, radius, velocity, height'
velocity'}

The results returned by Simulate are represented by an
access descriptor or handle. Some of the contents of such
descriptor is shown as the result of the above call to
Simulate. At this stage the simulation data is stored on
disk and referenced by res1 which acts as a handle to the
simulation data. When one of the variables from the last
simulation is referenced, e.g. height, radius, etc., the
data for that variable is loaded into the system in an load-by-
need manner, and represented as an
InterPolatingFunction.

The Modelica Association 47

Modelica 2002, March 18-19, 2002

MathModelica — An Extensible Modeling and Simulation Environment ...

Fritzson P., Gunnarsson J., Jirstrand M.

3.1.2 PlotSimulation

First we simulate the bouncing ball for eight seconds and
store the results in the variable resl for subsequent use in
the plotting examples.

resl=Simulate [BouncingBall, {t,0,8}];

The command PlotSimulation is used for simple
standard plots. If nothing else is specified, i.e. by the optional
SimulationResult parameter, the command refers to
the results from the last simulation.

Plotting several arbitrary functions can be done using a list of
function expressions instead of a single expression:

PlotSimulation[{height[t] + V3,
Abs [velocity[t]]}, {t, 0, 8}];

—+/3 +height[t]

— Abs([velocityt]]

Figure 6. Plotting arbitrary functions in the same diagram.

3.1.3 ParametricPlotSimulation

Parametric plots can be done using

ParametricPlotSimulation.

ParametricPlotSimulation|[
{height[t], velocity[t]},
{t, 0, 8}];

Figure 7. A parametric plot.

3.1.4 ParametricPlotSimulation3D

In this example we are going to use the Rossler attractor to
show the ParametricPlotSimula-tion3D command.
The Rossler attractor is named after Otto Rossler from his
work in chemical kinetics. The system is described by three
coupled nonlinear differential equations:

dx _y

dt Y

dy

— =x+a

dt Y

dz

— =B +(x-?)z
” ()

Here &,B and ? are constants. The attractor never forms
limit circles nor does it ever reach a steady state. The model
is shown in Mathematica syntax, enabling the use of greek
characters:

Model[Rossler, "Rossler attractor",
=0.2;

=0.2;

Parameter Real y == 8;

Parameter Real a

Parameter Real f3

Real x[{Start ==1}];
Real y[{Start ==3}];
Real z[{Start ==0}];
Equation][

X' =-y-2;
y'=x+avy;

z' =f+Xz-Y2z

1

1
The model is simulated using different initial values.
Changing these can considerably influence the appearance of
the attractor.
Simulate [Rossler, {t, 0, 40},

InitialvValues » {x =2, y==2.5, z=0},

NumberOfIntervals -» 1000];

The Rossler attractor is easy
ParametricPlotSimulation3D:

to plot using

ParametricPlotSimulation3D [
{x[t], y[t], z[t]},
{t, 0, 40},

AxesLabel -» {X, Y, Z}];

v 10-10

40

30

20

10

Figure 8. 3-D parametric plot of curve with many data points
from the Rossler attractor simulation.

3.2 Design Optimization

This is an example of how the powerful scripting language of
MathModelica can be utilized to solve non-trivial
optimization problems that contain dynamic simulations.

Modelica 2002, March 18-19, 2002 48

The Modelica Association

Fritzson P., Gunnarsson J., Jirstrand M.

MathModelica — An Extensible Modeling and Simulation Environment ...

First we will define a Modelica model of a linear actuator
with spring damped stopping and then a first order system.
Using MathModelica scripting we will then find a damping
for the translational spring-damper such that the step
response is as "close" as possible to the step response from a
first order system.

Consider the following model of a linear actuator with a
spring damped connection to an anchoring point:

Q—S——{Z—,

IdealGearR2T1 SlidingMass1 SpringDamper1 Fixed1

:I Inertia1

SpringDamper2

:| Inertia2

il

Torque1

Step1

Figure 9. A LinearActuator model containing a spring
damped connection to an achoring point.

Assume that we have some freedom in choosing the damping
in the translational spring-damper. A number of simulation
runs show what kind of behavior we have for different values
of the dampingparameter d. The Mathematica Table []
function is used in Simulate [] to collect the results into
an array res. This array then contains the results from
simulations of LinearActuator with a damping of 2 to
14 with a step size of 2, i.e. seven simulations are performed.
res = Table [Sim