An Interactive Environment for Debugging Declarative
Equation Based Languages.

Peter Bunus, Peter Fritzson

Department of Computer and Information Science, Linkdping University,
SE-581-32 Link&ping, Sweden
{petbu,petfri@ida.liu.se

Abstract. In this paper we present a general framework for debugging
declarative equation based languages. This paper uses certain existing bipartite
graph based techniques to derive debugging algorithms for the structural
diagnosis of simulation models specified in declarative equation based
modeling languages. An efficient way of annotating the underlying equations of
a simulation model in order to help the user to take error-fixing decisions is also
presented. This also provides means to report the location of the error caught by
the extended static analyzer or by the numeric solver, consistent with the user’'s
perception of the source code and the simulation model. We also present a
unified reasoning process in order to relax over-constrained systems and obtain
a consistent simulation model that supports an enhanced user interaction. The
interactive debugging environment provides to the user a greater confidence in
the correctness of the simulation model and helps them to resolve conflicting
situations when multiple elimination choices are possible. A prototype
debugger is implemented.

1. Introduction

Equation based declarative programming presents new challenges in the design of
programming environments. In order for declarative equation based modeling
languages to achieve widespread acceptance,iassh@rogramming environments

and development tools must become more accessible to the user. A significant part of
the simulation design effort is spent on detecting deviations from the specifications
and subsequently localizing the sources of such errors. Employment of debugging
environments that control the correctness of the developed source code has been an
important factor in reducing the time and cost of software development in classical
programming languages. Currently, few or no tools are available to assist developers
debugging declarative equation based modeling languages.

To begin to address this need, we propose a methodology for implementing an
efficient debugging framework for high level declarative equation based languages,
by adapting graph decomposition techniques for reasoning about the underlying
systems of equations and constraints. Detecting anomalies in the source code without
actually solving the underlying system of equations and constraints provides a
significant advantage: the modeling error can be corrected before embarking on a

computationally expensive numerical solution process provided by a numerical
solver. Also the errors detected by the numerical solvers are not reported in a way
which is consistent with the user perception of the declarative source code.

Traditional static checkers detect type errors and simple anomalies such as
obviously uninitialized variables. These static checkers are frequently used and
usually integrated in the programming language compiler, the static checking being a
distinct phase in the compilation phase. In the case of declarative equation based
languages where underlying constraints expressed by equations give the behavior of
the simulation model, the functionality of the static checkers need to be extended in
order to successfully handlstructural diagnosisproblems of the underlying
equations and constraints.

The rest of the paper is organized as follows: Section 2 provides a very brief
description of a typical declarative equation based simulation environment together
with some explanations regarding the attached experimental debugger
implementation. In Section 3 a simple simulation model together with the underlying
declarative specification and source code written in the Modelica language is
presented. Then we present several graph decomposition techniques and our
algorithmic debugging approach based on those techniques. Section 5 provides some
details about the structures used to annotate the underlying equations of the
simulation model, in order to help the debugger to eliminate the heuristics when
multiple choices are available to fix an error. In Section 6 we explain debugging of an
over-constrained system. Finally, Section 7 concludes and summarizes the work.

2. User-Interaction in the Simulation Environment

In advanced equation based simulation environments users create models through a
graphical user interface (GUI) or by writing custom modeling source code.
The facility of using an integrated GUI in the form oModel Editor(Fig. 1), allows
simulation practitioners and knowledge engineers to express problems in terms which
they are familiar. Therefore when employing Model Editor no knowledge of
programming languages is needed and typing is kept to a minimum. The basic
functionality of a Model Editor is the selection of components from ready-made
libraries, to connect components in model diagrams, and to enter parameter values for
different components.

A prototype debugger was built and attached to MathModelicasimulation
environment as a testbed for evaluating the usability of graph decomposition
techniques for debugging declarative equation based langudgéisModelicais an
integrated problem-solving environment (PSE) for full system modeling and
simulation [13][14]. The environment integrates Modelica-based modeling and
simulation with graphic design, advanced scripting facilities, integration of code and
documentation, and symbolic formula manipulation providedhathematica[20].

Import and export of Modelica code between internal structured and external textual
representation is supported MathModelica The environment extensively supports
the principles of literate programming and integrates most activities needed in

simulation design: modeling, documentation, symbolic processing, transformation
and formula manipulation, input and output data visualization.

The information output by the debugger will lead to a mathematically sound
system of equations, however some of the solutions might not be acceptable from the
modeling language point of view or from the physical system model perspective. The
debugger focuses on those errors whose identification would not require the solution
of the underlying system of equations.

It is also necessary for the compiler to annotate the underlying equations to help
identify the equations and to help eliminating the heuristic involved in choosing the
right solution. Accordingly, we modified the front end of the compiler to annotate the
intermediate representation of the source code where equations are involved. The
annotations are propagated appropriately through the various phases of the compiler.
When an error is detected, the debugger uses them to eliminate some of the heuristics
involved in the error solving process, and, of course, to exactly identify the
problematic equations and to generate error messages consistent with the user’s
perception of the source code of the simulation model. Details about annotation’s
structure are provided later in the paper.

The implemented debugger was ceassfully tested on declarative models
involving several hundreds of algebraic equations and differential algebraic equations.
The compilers and solvers within th®&lathModelica environment handle the
conversion to equations and their solution in a fully automated way, which is
transparent to the user. Therefore the output error fixing messages of the debugger are
presented at two abstraction levels:

— the graphical (iconic) model where the user is never confronted with equations,
constraints or modeling source code. The error messages are outputted by
highlighting different parts of simulation models icons.

— the source code level where the user is asked to manipulate underlying model
equations and eventually modeling source code. This level is extremely useful
for the model library developers.

JIpE PR e el G [P S |
O-#@-Wa #4F BRY - bt -A-C - AR - P
ST . s P RS EE A s
[i e £
ey | vl ey e |
[y ey st S |
[mvman marans Sasara
o & o
e sl T - gl =1 .-E.--_
a - 0 i : J
o ("] . = H
[
g .- =
-
) LN S 11 i e | ﬂﬂ
L1 - L

Fig. 1 Screen shot of th®odel Editorof the MathModelicasimulation environment.

3. Simulation Model Example

Obviously, each simulation problem is associated with a corresponding mathematical
model. In dynamic continuous simulation the mathematical model is usually
represented by a mixed set of algebraic equations and ordinary differential equations.
For some complicated simulation problem the model can be represented by a mixed
set of ordinary differential equations (ODESs), differential algebraic equations (DAES)
and partial differential equations (PDESs). Simulation models can become quite large
and very complex in their structure sometimes involving several thousand equations.
An efficient way of specifying a simulation model is to employ a modeling language.

Modelica is a new language for hierarchical object-oriented physical modeling
which is developed through an international effort [9][6]. The language unifies and
generalizes previous object-oriented modeling languages. The reader of the paper is
referred to [16][17] and [18] for a complete description of the language and its
functionality from the perspective of the motivations and design goals of the
researchers who developed it. Those interested in shorter overviews of the language
may wish to consult [9] or [6].

Modelica programs are built from classes, like in other object oriented languages.
The main difference compared with traditional object-oriented languages is that
instead of functions (methods) equations are used to specify the behavior. A class
declaration contains a list of variable declarations and a list of equatiecsged by
the keywordequation. Equations in Modelica can also be specified by using the
connect statement. The statemermpnnect(vl, v2) expresses coupling
between variables. These variables are called connectors and belong to the connected
objects. Connections specify interaction between components. A connector should
contain all quantities needed to describe the interaction. This gives a flexible way of
specifying topology of physical systems described in an object-oriented way using
Modelica. For exampleRin is a connector class that can be used to specify the
external interfaces for electrical components that have pins. Biacks characterized
by two variables: voltage and current . A connector class is defined as follows:

connector Pin

Voltage v;
flow Current i;
end Pin;
A connection statementonnect(Pinl,Pin2), with Pinl and Pin2 of
connector clas®in , connects the two pins so that they form one node. This implies
two equations, namelinl.v = Pin2.v; Pinl.i + Pin2.i = 0.

The following is an example of @woPin electrical component in Modelica . A
common property of many electrical components is that they have two pins. This
means that it is useful to define a “blueprint” model class, e.g. cdll®dPin , that
captures this common property.

model TwoPin

Pin p, n;

Voltage v; Current i;
equation

v=pv-nv,0=pi+nii=np.i
end TwoPin;

Given the generic partial clasbwoPin, it is now trivial to create the more
specializedResistor class by adding a constitutive equati®ti = v;

model Resistor

extends TwoPin;

parameter Real R;
equation

R *i=yv

end Resistor;

The system of equations describing the overall model is obtained by merging the
equations of all simple models and all binding equations generated loptimect
statements. In Fig.2. the Modelica source code of a simple simulation model
consisting of a resistor connected in parallel to sinusoidal voltage is given. The
intermediate form is also given for explanatory purposes. Theuit model is
represented as an aggregation of Resistor , Source andGround submodels
connected together by means of physical ports.

connector Pin Flat equations
Voltage v; 1. R1.v == -Rl.nv + Rl.p.v
Flow Current i; 2. 0 == Rl.ni + Rlp. i
end Pin; . .
3. R1.i == R1l.p.i
nodel TwoPin 4. RL"MR1.R == Rlv
Pin p, n; —
Voltage V; 5. AC.v == -AC.n.v + AC.p.v
Current i; 5. 0 == AC.ni + ACp.i
equation L .
V=py-ny0=Dpi+nii=npi 7. ACi == ACpi
end TwoPin; 8. AC.v == AC.VASSIn2*time*AC.F*AC.PI]
nodel Resistor 9. G.pv == 0
extends TwoPin; 10. AC.p.v == Rlpv
parameter Real R;))
equation 11. AC.p.i + Rlpi == 0
RY == v; 12. Rl.nwv == AC.n.v
end Resistor;
13. AC.nv == G.p.v
nodel VsourceAC 14. AC.ni + G.pi + RLni == 0

extends TwoPin;
parameter Real =~ VA=220; parameter Real f=50;

protected constant Real PI=3.141592; .
equation Flat Variables
v=VA*(sin(2*PI*f*time)); 1. Rlpv 2. Rl.p.i 3. Rl.nv
end VsourceAC; 4. RLni 5. RLv 6. RLi
nodel Ground 7. AC.p.v 8. AC.p.i 9. AC.n.v
Pin p; 10. ACni 11 ACw 12. ACi
equation
pv == 0 13. G.p.v 14. G.p.i
end Ground;
Flat Parameters
nodel Circuit R1.R -> 10
Resistor R1(R=10); VsourceAC AC; Ground G; AC.VA -> 220
equation AC.f -> 50
connect (AC.p,R1.p); connect (R1.n,AC.n);
connect (AC.n,G.p); Flat Constants
end Circuit; AC.PI -> 3.14159

Fig. 2. Modelica source code of a simple simulation model and the corresponding flattened
systems of equation, variables, parameters and constants.

4. Graph Based Representation of the Underlying Model

Many practical problems form a model of interaction between two different types of
objects and can be phrased in terms of problems on bipartite graphs. The
expressiveness of the bipartite graphs in concrete practical applications has been
demonstrated many times in the literature [4][2]. We will show that the bipartite
graph representations are general enough to efficiently accommodate several numeric
analysis methods in order to reason about the solvability and insolvability of the
flattened system of equations and implicitly about the simulation model behavior.
Another advantage of using the bipartite graphs is that it offers an efficient abstraction
necessary for program transformation visualization when the equation based
declarative specifications are translated to procedural form.

The bipartite graph representation and the associated decomposition techniques are
widely used internally by compilers when generating the procedural form from the
declarative equation based description of the simulation model [7] [15] but none of
the existing simulation systems use them for debugging purposes or expose them
visually for program understanding purposes. Our debugging approach follows the
same philosophy as does the reduction of constraint systems used for geometric
modeling in [1] and [3].

In the remaining of this paragraph it is our intention to give the basic definitions
and some of the notation that we shall use throughout the rest of this paper.

Definition 1: A bipartite graph is an ordered tripke= (V;,V,,E such thatv; and

V, are sets,V; nV, =¢ and EDO{{ x, y}; xOV,,y0OV, }. The vertices ofG are
elements ofv; OV, . The edges of are elements oE .

Definition 2: LetG be a graph with vertex s&f(G) ={v,,V,,...,v,} and edge set
E(G)={e.e,,....e} - The incidence matrix @b is the pxqmatrix M(G) :[mij J
wheremy; is 1 if the edgeg; is incident with vertexv; and 0 otherwise.

We consider the bipartite graph associated to a given system of equations resulting
from the flattening operation of declarative specification. Le¥tbe set of equations
and V,the set of variables representing unknowns. An edge betvesgnV, and
var 0V, means that the variabler appears in the corresponding equatim Based

on this rule the associated bipartite graph of the flattened system of equation from Fig.
2 is presented in Fig. 3.

eql eg2 eg3 egd eg5 eq6 eq7 egd8 eq9 eql0 eqll eql2 eql3 eql4d

varl var2 var3 var4 var5 var6 var7 var8 var9 varl0 varll varl2 varl3 varl4

Fig. 3. The associated bipartite graph of the simple circuit model from Fig. 2

4.1 Bipartite Matching Algorithms.

Definition 3: A matchingis a set of edges from gragghwhere no two edges have
a common end vertex.

Definition 4: A maximum matchingis the matching with the largest possible
number of edges.

Definition 5: A matching M of a graph G is maximal if it is not properly
contained in any other matching.

Definition 6: A vertexv is saturated or coveredby a matchingM if some edge of
M is incident withv. An unsaturated vertex is calledrae vertex.

Definition 7: A perfect matchingP is a matching in a grapke that covers all its
vertices.

Definition 8: A path P ={v,,v,,...,v, } in a graphG is called aralternating path

of M if contains alternating free and covered edges.

In Fig. 4all the possible perfect matchings of a simple bipartite graph are presented.
It should be noted that a maximum matching and the perfect matching of a given
bipartite graph is not unique.

eql varl eqX varl eql varl
eg2 var2 eq2 var2 eg2 var2
eg3 var3 eq var3 eq var3

Fig. 4. An example bipartite graph with all the possible perfect matchings marked by thick lines

The associated equation system to a perfect matching is structurally well-
constrained and therefore can be further decomposed into smaller blocks and sent to a
numerical solverFig. 4 illustrates the maximal matching of the associated bipartite
graph to the simulation model presented in Fig. 2. It worth noting that in that case the
maximal matching is also a perfect matching of the associated bipartite graph.

varl var2 var3 var4 var5 var6 var7 var8 var9 varl0 varll varl2 varl3 varl4

Fig. 5. One possible perfect matching of the simulation model associated bipartite graph

From the computational complexity point of view, the best sequential algorithm for
finding a maximum matching in bipartite graphs is due to Hopcroft and Karp [12].

The algorithm solves the maximum cardinality matching problem im¥) time

and O m) memory storage wheneis the number of vertices andis the number of

edges. Algorithms for enumerating all perfect, maximum and maximal matchings in
bipartite graphs are also proposed in [10][18]. The enumeration algorithm for all
perfect matchings in bipartite graph proposed by Fukuda and Matsui in [10] takes

o(nY?m+ mN,) time where N is the number of perfect matchings in the given

bipartite graph. In [18] improved algorithms for finding and enumerating all perfect,
maximal and maximum matchings are presented and it takes @ytime)per a

matching. We will come back to these algorithms later in the paper when the reduced
list of the equivalent over-constraining equations is constructed for a erroneous
simulation model.

4.2 Dulmage — Mendelsohn’s Canonical Decomposition.

In this section we shall present a structural decomposition of a bipartite graph
associated with a simulation model which relies on the above presented vertex
coverings. The algorithm is due to Dulmage and Mendelsohn [5] and canonically
decompose any maximum matching of a bipartite graph in three distinct parts: over-
constrained, under-constrained, and well-constrained part.

Algorithm 1 : Dulmage and Mendelsohn canonical decomposition

Input Data: A bipartite graphG

Result: Three subgraphs: well-constrain®iG, over-constraine®G and under-

constrainedJG.

begin:
— Compute the maximum matchiddG of G.
— Compute the directed grap” by replacing each edge MG by two

arcs and orienting all other edges from the equations to the variables.

— Let beOG the set of all descendants of sources of the directed ggiph
— Let beUG the set of all ancestors of sink of the directed gréph
— CalculateWG = G- OG - UG.

end.

The over-constrainedpart: the number of equations in the system is greater than
the number of variables. The additional equations are either redundant or
contradictory and thus yield no solution. A possible error fixing strategy is to remove
the additional over-constraining equations from the system in order to make the
system well-constrained. Even if the additional equationssafeconstraintavhich
means that they verify the solution of the equation system and are just redundant
equations, they are reported as errors by the debugger because there is no way to
verify the equation solution during static analysis without explicitly solving them.

The under-constrainegbart: the number of variables in the system is greater than
the number of equations. A possible error fixing strategy would be to initialize some
of the variables in order to obtain a well-constrained part or add additional equations
to the system.

Over and under-constrained situations can coexist in the same model. In the case of
over-constrained model, the user would like to remove the over-constraining

equations in a manner which is consistent to the original source code specifications, in
order to alleviate the model definition.

The well-constrainedpart: the number of equations in the system is equal to the
number of variables. The structural solvability of the underlying system of equation is
equivalent with the existence of a perfect matching on the associated bipartite graph
Therefore the mathematical system of equations corresponding to the well constrained
part is structurally sound having a finite number of solutions. This part can be further
decomposed into smaller solution subsets. A failure in decomposing the well-
constrained part into smaller subsets means that this part cannot be decomposed and
has to be solved as it is. A failure in numerically solving the well-constrained part
means that no valid solution exists and there is somewhere a numerical redundancy in
the system.

The decomposition captures one of the many possible solutions in which the model
can be made consistent. The direct solution proposed by the decomposition
sometimes cannot be acceptable from the restriction imposed by the modeling
language or by the modeling methodology by itself. Therefore a search through the
equivalent solution space needs to be done and, check whether the equivalent
solutions are acceptable.

5. Equation Annotations

For annotating the equations we use a structure which resembles the one developed in
[8]. We define an annotated equation as a record with the following structure:
<Equations, Name, Description, No. of associated egs.,

Class name, Flexibility level, Connector generated> . The

values defined by annotations are later incorporated in the error repair strategies,
when heuristics involved in choosing the right option from a series of repair strategies
need to be eliminated.

Table 1. The structure of the annotated equation

Attribute Value

Equation R1.i * R1.R == R1l.v

Name ‘eq4

Description ‘Ohm’s Law for the resistor componént
No. of associated egs. 1

Class Name Resistot

Flexibility Level 3

Connector generated no

The Class Nameells from which class the equation is coming. This annotation is
extremely useful in exactly locating the associated class of the equation and therefore
providing concise error messages to the user.

The No. of associated eqgparameter specify the number of equations which are
specified together with the annotated equation. In the above exampldahef
associated eqgsis equal to one since there are no additional equations specified in the

Resistor component. In the case of thBwoPin component the number of
associated equations is equal to 3. If one associated equation of the component need
to be eliminated the value is decremented by 1. If, during debugging, the equation
RLi * RL.R == RLv is diagnosed to be an over-constraining equation and therefore
need to be eliminated, the elimination is not possible because the model will be
invalidated in that way (th®lo. of associated egsannot be equal to 0) and therefore
other solutions need to be taken into account.

The flexibility level in a similar way as it is defined in [8], allows the ranking of
the relative importance of the constraint in the overall flattened system of equations.
The value can be in the range of 1 to 3, with 1 representing the most rigid equation
and 3 being the most flexible equation. Equations, which are coming from a partial
model and therefore are inherited by the final model, have a greater rigidity compared
to the equations defined in the final model. For example, in practice, it turns out that
the equations generated by connections are more rigid from the constraint relaxation
point of view than the equations specified inside the model. Taking into account these
formal rules, for an equation defined inside a Modelica class, a maximal flexibility
level will be assigned. In conclusion a maximum flexibility level will be defined for
the equations in the final model, followed by equations defined in partial classes and
equations generated by thennect statements.

The Connector generateid a Boolean attribute which tells whether the equation is
generated or not by eonnect statement. Usually these equations have a very low
flexibility level.

It is worth nothing that the annotation attributes are automatically initialized by the
static analyzer, incorporated in the front end of the compiler, by using several graph
representations [10] of the declarative program code.

6. Debugging of an Over-Constrained System

Let us again examine the simple simulation example presented in Fig.1. where an
additional equation i£23) was intentionally introduced inside thResistor
component in order to obtain a generally over-constrained system. The D&M
canonical decomposition will lead to two parts: a well-constrained part and an over-
constrained part (see Fig. 6.). Equatioeql? is a non-saturated vertex of the
equation set so it is a source for the over-constrained part. Starting &g “the
directed graph can be redrawn as is illustrated in Fig.7 a. An immediate solution of
fixing the over-constrained part is to eliminatedll which will lead to a well
constrained part and therefore the equation system becomes structurally sound.
However, examining the associated annotations to the “eq11” :

<AC.p.v == Rl.pv, “eqll”, “ * 2, “Circuit”, 1, yes>
one can note that the equation is generated Igomnect statement from the
Circuit model and the only way to remove the equation is to remove the
connect(AC.p, R1.p) statement. But removing the above-mentioned statement
will remove two equations from the flattened model, which is indicated byNieof
associated eqs= 2 parameter. One should also note fitexibility level of the
equation is equal to 1, which is extremely low, indicating that the equation is
extremely rigid. Therefore an another solution need to be found, namely another

equation need to be eliminated from the equation system instead of removing the
equationAC.p.v == R1.pv.

"eql” R1l.v == -Rlnv + Rlpv "varl" Rl.pv
"eq2" 0 == RLn.i + Rlpi "var2" RLpi
"eq3" RLl.i == RLlp.i "var3" Rl.nv
"eq4" RLi R1R == R1lv "var4" RL.n.i
"eq5" RL1.i == 23 "var5" R1.v
"eq6" AC.v == -AC.n.v + AC.p.v "var6" RL.i
"eq7" 0 == AC.ni + AC.p.i "var7" AC.p.v
"eq8" AC.i == AC.p.i "var8" AC.p.i
"eq9" AC.v == AC.VA*sin[2*time*AC.f*AC.PI] "var9" AC.n.v
"eql0" G.pv =0 "varl0" AC.n.i
"eqll" AC.pv == Rlpv "varll" AC.v
"eql2" AC.p.i + Rlp.i == 0 "varl2" AC.
"eql3" Rl.nv == AC.nv "varl3" G.p.v

"eqld" AC.nv == G.p.v "varld" G.p.i
"eql5" AC.ni + G.pi + Rlni =0

well-constrained part

over-constrainegart

Fig. 6. The decomposition of an over-constrained system

6.1 Calculating the Set of Over-Constraining Equations.

In the next step of the debugging procedure for the over-constrained system of
equations we need to introduce several definitions regarding the some particular
equation subsets which have special properties from the structural analysis point of
view.

Definition 9: We call theequivalent over-constraining equation lisissociated to
a system of equations the list of equatio{mh,eqz,---e%}from where eliminating

any of the component equations will lead to a well constrained system of equations.

Definition 10: We call thereduced equivalent over-constraining equation lite
subset of equations obtained from the equivalent over-constraining equations after the
language constraints have been applied.

When the size of the reduced equivalent over-constraining equation list exceeds 1,
the automatic debugging is no longer available, and then the list should be presented
by the debugger to the user in order to solve the conflicting situation.

From the over-constrained part resulting from the D&M decomposition we can
construct an algorithm to find the equivalent over-constraining list based on the
associated directed graph of the over-constrained part:

varll varll
eq9 : eqo9
AC.v == AC.VA*
J var9 varé sin[2*time*AC.f*AC.PI|
eqld i eqs eqld
R1.i == 23
varl3 varl3
: eq10 eq10

G.pv =0

Fig. 7. a) An associated directed graph to the over-constrained part starting from
“eqlZl. b) The fixed well-constrained directed graph by eliminating equaten8".

We describe the algorithm as follows:

Algorithm 2 : Finding the equivalent over-constraining equations list
Input Data: An over-constrained grap®G resulting after D&M decomposition
applied toG.
Result: the reduced equivalent over-constraining equation list
begin:
— Compute the directed grap®G~ of OG by replacing each edge MG
by two arcs and orienting all other edges from the equations to the
variables.
— Find a depth-first search tréin OG~ with the root vertex being one of
the sources of the directed gra@GG".
— Apply a strongly connected component decomposition algorithm for the
graph obtained by removing the last visited equation vertex.
— If the number of strongly connected components is equatherl
add the last visited equation vertex to the reduced list.
— Output the equivalent over-constraining equations list.
end.

The basic idea behind the algorithms for enumerating all the perfect matchings in a
bipartite graph, presented in [10] and [18], is the exchange of matching edges with
other edges along an alternating cycle or a feasible path. Enumerating all of the
maximal matching which include the source vertex (in out case “eqll”) is not
interesting, since they are equivalent from the solution relaxation point of view. All of
the obtained maximal matchings will include a perfect matching plus the source node.
Therefore we are interested in finding other maximal matchings which include the
source vertex leaving other equation vertexes free. One important property of the
over-constrained bipartite graph is that it only contains alternating paths because it is
constructed from perfect matching and a supplementary free edge. We can easily

obtain all the maximal matchings in the over-constrained graph by exchanging
matching edges with other edges along an alternating path. An algorithm for
computing the reduced equivalent over-constraining equation list is given below:

Algorithm 3: Annotation based equation set reduction
Input Data: A reduced equation set taken from the outpulwforithm 2.
Result: the final reduced equivalent over-constraining equation list
begin:

— Eliminate from the list all of the equations generated bygcamnect
statement and for which thdo. of associated egparameter exceeds the
system degree of freedom.

— Eliminate all the equations for which tido. of associated eqgparameter
is equal to 1. Add that equation to the history list.

— Sort the remaining equations in decreasing order of flexibility level

— Output the sorted list of equations.

end.

If the length of the reduced equivalent over-constraining list is equal to 1 automatic
debugging of the model is possible by eliminating the equation from the simulation
model without any supplementary user-intervention. Of course the history list
together with the elimination is output to the user. If the length of the list is greater
than 1, this means that several error fixing strategies are possible and therefore user
intervention is required. The reduced list is output to the user starting with the
equation which has the higher flexibility level.

In our case the set of equivalent over-constraining equationil{l”, "eql3”,
"eql0”, "egb”, "eq9” }. “Eqll” was already analyzed and therefore can be
eliminated from the set.Eql3” is eliminated too for the same reasons as equation
“eqlI. Analyzing the remaining equationsgql10”, "eq5”, "eq9” } one should note
that they have the same flexibility level and therefore they are candidates for
elimination with an equal chance. But analyzing the value ofiloe of associated
egs. parameter, equationej10 and “eq9 have that attribute equal to one, which
means that they are singular equations defined inside the model. Eliminating one of
these equations will invalidate the corresponding model, which is probably not the
intention of the modeler. Examining the annotations corresponding to equatigh “
one can see that it can be safely eliminated because the flexibility level is high and
eliminating the equation will not invalidate the model since there is another equation
defined inside the model. After choosing the right equation for elimination the
debugger tries to identify the associated class of that equation based Giatse
nameparameter defined in the annotation structure. Having the class name and the
intermediate equation formR(L.i=23) the original equation can be reconstructed
(i=23) indicating exactly to the user which equations need to be removed in order to
make the simulation model mathematically sound. In that case the debugger correctly
located the faulty equation previously introduced by us in the simulation model.

By examining the annotations corresponding to the set of equations which need to
be eliminated, the implemented debugger can automatically determine the possible
error fixing solutions and of course prioritize them. For example, by examining the

1 Consult Fig.6 for the correspondence between the label “eq” and the real form of the equation

flexibility level of the associated equation compared to the flexibility level of another
equation the debugger can prioritize the proposed error fixing schemes. When
multiple valid error fixing solutions are possible and the debugger cannot decide
which one to chose, a prioritized list of error fixes is presented to the user for further
analysis and decision. In those cases, the final decision must be taken by the user, as
the debugger cannot know or doesn’t have sufficient information to decide which
equation is over-constraining. The advantage of this approach is that the debugger
automatically identifies and solves several anomalies in the declarative simulation
model specification without having to execute the system.

7. Summary and Conclusions

Determining the cause of errors in models of physical systems is hampered by the
limitations of the current techniques of debugging declarative equation based
languages. We have presented a new approach for debugging declarative equation
based languages by employing graph decomposition techniques and have given a
usage example for debugging an over-constrained simulation model. It has also been
demonstrated that it is possible to create a tool with an enhanced user interaction
capability that explicitly can be used in understanding complicated simulation models.
The merits of the proposed debugging technique are as follows:

— The user is exposed to the original source code of the program and is therefore not
burdened with understanding the intermediate code or the numerical artifacts for
solving the underlying system of equations.

— The user has a greater confidence in the correctness of the simulation model.

— When a simulation model fails to compile we report the error consistent with the
user’s perception of the simulation model or source code, and also several possible
repair strategies are presented. The error fixing strategies are also prioritized by the
compiler, which benefits the user in choosing the right error fixing solution.

— The implemented debugger helps to statically detect a broad range of errors
without having to execute the simulation model. Since the simulation system
execution is expensive the implemented debugger helps to greatly reduce the
number of test cases used to validate the simulation model.

One extended case study illustrates the main points and potential applications of
the graph theory related to the proposed method for debugging of declarative equation
based languages.

Acknowledgements

We thank the entire MathModelica team from MathCore AB, without which this work
would not have been possible. The work has been supported by MathCore AB, by KK
Industrial Research School and by the ECSEL Graduate School supported by the
Swedish Strategic Research Foundation.

References

[1] Ait-Aoudia, S.; Jegou, R. and Michelucci, D. “Reduction of Constraint Systems.” In
Compugraphicpages 83--92, Alvor, Portugal, 1993.

[2] Asratian A.S.; Denley T. and Haggkvist RBipartite Graphs and their Applications
Cambridge University Press 1998.

[3] Bliek, C.; Neveu, B. and Trombettoni G. “Using Graph Decomposition for Solving
Continuous CSPs'Priciples and Practice of Constraint ProgramminGP’98, Springer
LNCS 1520, pages 102-116, Pisa, Italy, November 1998.

[4] Dolan A. and Aldous JNetworks and algorithms — An introductory approadbhn Wiley
& Sons 1993 England.

[5] Dulmage, A.L., Mendelsohn, N.&overings of bipartite graphsZanadian J. Math., 10,
517-534.

[6] Elmgqyist, H.; Mattsson S.E and Otter, M. “Modelica - A Language for Physical System
Modeling, Visualization and Interaction.” Rroceedings of the 1999 IEEE Symposium on
Computer-Aided Control System Des{gtawaii, Aug. 22-27) 1999.

[7] Elmgqvist, H. A Structured Model Language for Large Continuous Systé&h® thesis
TFRT-1015, Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden. 1978.

[8] Flannery, L. M. and Gonzalez, A. Detecting Anomalies in Constraint-based Systems
Engineering Applications of Artificial Intelligence, Vol. 10, No. 3, June 1997, pages. 257-
268.

[9] Fritzson, P. and Engelson, V. “Modelica A Unified Object-Oriented Language for
System Modeling and Simulation.” IRroceedings of the 12th European Conference on
Object-Oriented ProgrammingECOOP'98 , Brussels, Belgium, Jul. 20-24), 1998.

[10] Fukuda, K.; Matsui, T. “Finding All The Perfect Matchings in Bipartit&ppl. Math. Lett.
Vol. 7, No. 1 (1994), pages 15-18.

[11] Harrold, M.J and Rothermel, G. “A Coherent Family of Analyzable Graphical
Representations for Object-Oriented Softwar&@gchnical ReportOSU-CISRC-11/96-
TR60, November, 1996, Department of Computer and Information Science Ohio State
University.

[12] Hopcroft, J.E. and Karp, R.MAn n®?2 algorithm for maximum matchings in bipartite
graphs.SIAM Journal of Computing, 2(4):225--231, December 1973.

[13] Jirstrand, M. “MathModelica — A Full System Simulation Tool"”. In Proceedings of
Modelica Workshop 200Q.und, Sweden, Oct. 23-24), 2000.

[14] Jirstrand, M.; Gunnarsson J. and Fritzson P. “MathModelica — a new modeling and
simulation environment for Modelica. In Proceedings of the Third International
Mathematica Symposiu(tMS’99, Linz, Austria, Aug), 1999.

[15] Maffezzoni C.; Girelli R. and Lluka PGenerating efficient computational procedures
from declarative modelSimulation Practice and Theory 4 (1996) pages 303-317.

[16] Modelica AssociationModelica — A Unified Object-Oriented Language for Physical
Systems Modeling - Tutorial and Design Rationale Versior{Retember 15, 2000).

[17] Modelica AssociationModelica — A Unified Object-Oriented Language for Physical
Systems Modeling — Language Specification Version(Dgcember 15, 2000

[18] Takeaki Uno. “Algorithms for Enumerating All Perfect, Maximum and Maximal
Matchings in Bipartite Graphs.” InProceedings of Eighth Annual International
Symposium on Algorithms and Computation (ISAAC $mgapore, December 17--19,
1997.

[19] Tiller M. Michael. Introduction to Physical Modeling with Modelic&luwer Academic
Publisher 2001.

[20] Wolfram S.;The Mathematica BookVolfram Media Inc. (February). 1996.

