Aplication of Graph Decomposition Techniques to Debugging
Declarative Equation Based Languages

Peter Bunus, Peter Fritzson

Department of Computer and Information Science, Linkdping University
SE 581-32 Linkoping, Sweden
{petbu,petfr}@ida.liu.se

Abstract. This paper concerns the static analysis for debugging purposes of programs written in
declarative equation based modeling languages. At the same time, we examine the particular
debugging problems posed by Modelica, a declarative equation based modeling language. We also
present our view of the issues and solutions based on a proposed framework for debugging
declarative equation based languages. Program analysis solutions for program understanding and
for static debugging of declarative equation based languages, based on bipartite graph
decomposition, are presented in the paper. We also present an efficient way to annotate the
underlying equations in order to help the implemented debugger to eliminate the heuristics involved
in choosing the right error fixing solution. This also provides means to report the location of an error
caught by the static analyzer or by the numeric solver, consistent with the user’s perception of the
source code and simulation model. A prototype debugger is implemented.

1. Introduction

Simulation models are increasingly being used in problem solving and in decision making since
engineers need to analyze increasingly complex and heterogeneous physical systems. In order to support
mathematical modeling and simulation, a number of object-oriented and/or declarative acausal modeling
languages have emerged. The advantage of such a modeling language is that the user can concentrate on
the logic of the problem rather than on a detailed algorithmic implementation of the simulation model.

Equation based declarative programming presents new challenges in the design of programming
environments. In order for declarative equation based modeling languages to achieve widespread
acceptance, associated programming environments and development tools must become more accessible
to the user. A significant part of the simulation design effort is spent on detecting deviations from the
specifications and subsequently localizing the sources of such errors. Employment of debugging
environments that control the correctness of the developed source code has been an important factor in
reducing the time and cost of software development in classical programming languages. Currently, few
or no tools are available to assist developers debugging declarative equation based modeling languages.
Since these languages usually are based on object-orientation and acausal physical modeling, traditional
approaches to debugging are inadequate and inappropriate to solve the error location problem. To begin
to address this need, we propose a methodology for implementing an efficient debugging framework for
high level declarative equation based languages, by adapting graph decomposition techniques for
reasoning about the underlying systems of equations. Detecting anomalies in the source code without
actually solving the underlying system of equations provides a significant advantage: the modeling error
can be corrected before embarking on a computationally expensive numerical solution process provided
by a numerical solver. Also the errors detected by the numerical solvers are not reported in a way which
is consistent with the user perception of the declarative source code.

Traditional static checkers detect type errors and simple anomalies such as obviously uninitialized
variables. These static checkers are frequently used and usually integrated in the programming language
compiler, the static checking being a distinct phase in the compilation phase. In the case of declarative
equation based languages where underlying constraints expressed by equations give the behavior of the
simulation model, the functionality of the static checkers need to be extended in order to successfully
handle structural diagnosis problems of the underlying equations and constraints.

The rest of the paper is organized as follows: Section 2 gives some explanations why is hard to debug
declarative equation based languages. In Section 3 a simple simulation model together with the
underlying declarative specification and source code written in the Modelica language is presented. Then,
we present several graph decomposition techniques and our algorithmic debugging approach based on



those techniques. Section 5 provides some details about the structures used to annotate the underlying
equations of the simulation model, in order to help the debugger to eliminate the heuristics when multiple
choices are available to fix an error. In Section 6 we explain the debugging of an over-constrained system.
Implementation details of the debugger are given in Section 7. Finally, Section 8 concludes and
summarizes the work.

2. Arising Difficulties When Debugging Declarative Equation Based Languages.

The application of algorithmic debugging techniques [20] and generalized algorithmic debugging
techniques [10] to the evaluation of structural procedural languages is an approach which has found
increased applicability over the past years. However, traditional approaches to debugging are inadequate
and inappropriate to solve the error location problem in declarative equation based languages. The
fundamental problem is that conventional debuggers and debugging techniques are based on observation
of execution events as they occur.

Even nontraditional declarative debugging techniques such as the above-mentioned algorithmic
debugging method, are inadequate for equation-based languages. In order to see this, consider invoking
an algorithmic program debugger [20] on a functional/logic program after noticing an external symptom
of a bug. The debugger executes the program and builds a trace execution tree at the function level while
saving some useful trace information such as function names and input/output parameter values. In other
words, the algorithmic debugging method is dependent on the use of functions and function calls in the
language. In the case of declarative equation based languages, there is no clear execution tree and the
inputs and outputs are not clearly stated inside the model. Therefore using an algorithmic debugging
technique is useless.

In conclusion we can take a look on why errors are hard to find in a declarative equation based
language:

e There is a cause-effect gap between the time or space when an error occurs and the time or space
when the error becomes apparent to the programmer.

The acausality of the language eliminates the use of program traces as a debugging guide.

e The transformation process from the declarative form to the procedural form looses or obscures a lot
of model structure information, which might be useful for debugging purposes.

e Even in a highly structured system, which extensively uses hierarchical and modular simulation
models, surprising event may occur because the human mind is not able to fully comprehend the
many conditions that can arise mainly because of the interactions of the components.

e Debugging is in some sense harder to perform because much run-time debugging must be replaced
by compile-time static checking.

e The static analysis is mostly global and it is necessary to consider the whole program.

3. Simulation Model Example

Obviously, each simulation problem is associated with a corresponding mathematical model. In dynamic
continuous simulation the mathematical model is usually represented by a mixed set of algebraic
equations and ordinary differential equations. For some complicated simulation problem the model can be
represented by a mixed set of ordinary differential equations (ODEs), differential algebraic equations
(DAEs) and partial differential equations (PDEs). Simulation models can become quite large and very
complex in their structure sometimes involving several thousand equations. An efficient way of
specifying a simulation model is to employ a modeling language.

Modelica is a new language for hierarchical object-oriented physical modeling which is developed
through an international effort [9][6]. The language unifies and generalizes previous object-oriented
modeling languages. The reader of the paper is referred to [17][18] and [22] for a complete description of
the language and its functionality from the perspective of the motivations and design goals of the
researchers who developed it. Those interested in shorter overviews of the language may wish to consult
[9] or [6].



In Fig.1. the Modelica source code of a simple simulation model consisting of a resistor connected in
parallel to sinusoidal voltage is given. The intermediate form is also given for explanatory purposes. The
Circuit model is represented as an aggregation of the Resistor, Source and Ground submodels
connected together by means of physical ports. The system of equations describing the overall model is
obtained by merging the equations of all simple models and all binding equations generated by the
connect statements.

connector Pin Flat equations
Voltage v; 1. Rl.v == -Rl.n.v + Rl.p.v
Flow Current 1i; 2. 0 == Rl.n.i + Rl.pi
end Pin;
3 Rl.i == Rl.p.i
model TwoPin 4 R1.1i*R1.R == Rl.v
Pin p, n;
Voltage v; 5. AC.v == -AC.n.v + AC.p.Vv
Current 1i; 5 0 == AC.n.i + AC.p.1i
equation X X
v =p.v -n.v; 0=p.1i+n.i; i =p.1i 7 AC.i == AC.p.i
end TwoPin; 8 AC.v == AC.VA*Sin[2*time*AC.f*AC.PI]
model Resistor ° G.p.v==20
extends TwoPin; 10. AC.p.v == Rl.p.v
parameter Real R; . .
equation 11. AC.p.i + Rl.p.i == 0
R*i == v; 12. Rl.n.v == AC.n.v
end Resistor;
13. AC.n.v == G.p.Vv
model VsourceAC 14, AC.n.i + G.p.i + Rl.n.i == 0
extends TwoPin;
parameter Real VA=220; parameter Real f=50;
pro?ected constant Real PI=3.141592; Flat Variables
equation
v=VA* (sin (2*PI*f*time)); 1. Rl.p.v 2. Rl.p.1i 3. Rl.n.v
end Vsourceal; 4. Rl.n.i 5. Rl.v 6. R1.i
model Ground 7. AC.p.v 8. AC.p.1i 9. AC.n.v
Pin p; 10. AC.n.i 11. AC.v 12. AC.i
equation
p.v == 13. G.p.v 14. G.p.1i
end Ground;
Flat Parameters
model Circuit R1.R -> 10
Resistor R1(R=10); VsourceAC AC; Ground G; AC.VA -> 220
equation AC.f -> 50
connect (AC.p,R1.p); connect (Rl1.n,AC.n);
connect (AC.n,G.p); Flat Constants
end Circuit; AC.PI -> 3.14159

Fig. 1. Modelica source code of a simple simulation model and the corresponding flattened systems of equation,
variables, parameters and constants.

4. Graph Based Representation of the Underlying Model

Many practical problems form a model of interaction between two different types of objects and can be
phrased in terms of problems on bipartite graphs. The expressiveness of the bipartite graphs in concrete
practical applications has been demonstrated many times in the literature [4][2]. We will show that the
bipartite graph representations are general enough to efficiently accommodate several numeric analysis
methods in order to reason about the solvability and unsolvability of the flattened system of equations and
implicitly about the simulation model behavior. Another advantage of using the bipartite graphs is that it
offers an efficient abstraction necessary for program transformation visualization when the equation
based declarative specifications are translated to procedural form.

The bipartite graph representation and the associated decomposition techniques are widely used
internally by compilers when generating the procedural form from the declarative equation based
description of the simulation model [7] [16] but none of the existing simulation systems use them for
debugging purposes or expose them visually for program understanding purposes. Our debugging
approach follows the same philosophy as does the reduction of constraint systems used for geometric
modeling in [1] and [3].

In the remaining of this paragraph it is our intention to give the basic definitions and some of the
notation which we shall use throughout the rest of this paper.



Definition 1: A bipartite graph is an ordered tripleG = (V,,V,, E) such that V; and V, are sets,
VinV, =@ and E c{{x,y};xeV,,yeV,}. The vertices of G are elements of V,; UV,. The edges of
G are elements of E .

Definition 2: LetGbe a graph with vertex set V(G)={v,v,,...,v,}and edge set
E(G)={e,e;,...,¢,}. The incidence matrix of G is the pXxg matrix M (G) = lm,] J, where m; is 1 if the
edge e;; is incident with vertex v, and O otherwise.

We consider the bipartite graph associated to a given system of equations resulting from the flattening
operation of declarative specification. Let beV,the set of equations and V,the set of variables

representing unknowns. An edge between eqe V,and var e V, means that the variable var appears in the
corresponding equation eq. Based on this rule the associated bipartite graph of the flattened system of

equation from Fig. 1 is presented in Fig. 2.

eql eq2 eqS eq6 eq7 eq8 eq9 eql0 eqll eql2 eql3 eqld

varl  var2 var3 vard var5 var6 var7 var8 var9 varl0 varll varl2 varl3 varl4

Fig. 2. The associated bipartite graph of the simple circuit model from Fig. 1

4.1 Bipartite Matching Algorithms.

Definition 3: A matching is a set of edges from graph G where no two edges have a common end
vertex.

Definiton 4: A maximum matching is the matching with the largest possible number of edges.

Definition 5: A matching M of a graph G is maximal if it is not properly contained in any other
matching.

Definition 6: A vertex v is saturated or covered by a matching M if some edge of M is incident with
v. An unsaturated vertex is called a free vertex.

Definition 7: A perfect matching P is a matching in a graph G that covers all its vertices.

Definition 8: A path P={v,,v,,---,v; }in a graph G is called an alternating path of M if contains
alternating free and covered edges.

In Fig. 3 all the possible perfect matchings of a simple bipartite graph are presented. It should be noted
that a maximum matching and the perfect matching of a given bipartite graph is not unique.
Jvarl  eqlC D varl

eql C = Jvarl  eqlC

e ——var2  eq2 —H—=var2 e 5 var2

eq3 Ovar3  eq3C Ovard  eq3( ) var3

Fig. 3. An example bipartite graph with all the possible perfect matchings marked by thick lines

The associated equation system to a perfect matching is structurally well-constrained and therefore can
be further decomposed into smaller blocks and sent to a numerical solver. Fig. 3 illustrates the maximal
matching of the associated bipartite graph to the simulation model presented in Fig. 1. It worth noting that
in that case the maximal matching is also a perfect matching of the associated bipartite graph.
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varl var2 var3 var4 var5 var6 var7 var8 var9 varl0 varll varl2 varl3 varl4

Fig. 4. One possible perfect matching of the simulation model associated bipartite graph

From the computational complexity point of view, the best sequential algorithm for finding a
maximum matching in bipartite graphs is due to Hopcroft and Karp [13]. The algorithm solves the

maximum cardinality matching problem in O(n>’?) time and O(n m) memory storage where n is the

number of vertices and m is the number of edges. Algorithms for enumerating all perfect, maximum and

maximal matchings in bipartite graphs are also proposed in [11][21]. The enumeration algorithm for all

1/2

perfect matchings in bipartite graph proposed by Fukuda and Matsui in [11] takes O(n""“m+mN ,) time

where N, is the number of perfect matchings in the given bipartite graph. In [21] improved algorithms

for finding and enumerating all perfect, maximal amd maximum matchings are presented and it takes
only O(n)time per a matching. We will come back to these algorithms later in the paper when the

reduced list of the equaivalent over-constraining equations are constructed for a erroneous simulation
model.

4.2 Dulmage — Mendelsohn’s Canonical Decomposition.

In this section we shall present a structural decomposition of a bipartite graph associated with a
simulation model which relies on the above presented vertex coverings. The algorithm is due to Dulmage
and Mendelsohn [5] and canonically decompose any maximum matching of a bipartite graph in three
distinct parts: over-constrained, under-constrained, and well-constrained part.

over-constraint | well-constraint y  under-constraint

cq4 eqs : cq6 cq7
- S f(var)=0

f(var, var,) =0

1
cql eq2 cq3

Qo O

1
1
1
1
1 fvar, vay) =0

f(var,, vary,var,) =0
f(var,,vars) =0
f(vary, var,, vars, varg) = 0
OEEGEES Or0 O O [ (vars, varg, var;) =0

varl var2 : var3  var4 : varS  var6  var7

Fig. 5. Dulmage Mendelsohn’s canonical decomposition of an associated bipartite graph to an equation system

The algorithm is given as follows:

Algorithm 1: Dulmage and Mendelsohn canonical decomposition
Input Data: A biparpartite graph G
Result: Three subgraphs: well-constrained ‘W@, over-constrained OG and under-constrained UG.
begin:
— Compute the maximum matching MG of G.
— Compute the directed graph G’ by replacing each edge in MG by two arcs and orienting all
other edges from the equations to the variables.
Let be OG the set of all descendants of sources of the directed graph G’.
Let be UG the set of all ancestors of sink of the directed graph G’.
Calculate WG= G-OG-UG.

end.




The over-constrained part: the number of equations in the system is greater than the number of
variables. The additional equations are either redundant or contradictory and thus yield no solution. A
possible error fixing strategy is to remove the additional over-constraining equations from the system in
order to make the system well-constrained. Even if the additional equations are soft constraints which
means that they verify the solution of the equation system and are just redundant equations, they are
reported as errors by the debugger because there is no way to verify the equation solution during static
analysis without explicitly solving them.

The under-constrained part: the number of variables in the system is greater than the number of
equations. A possible error fixing strategy would be to initialize some of the variables in order to obtain a
well-constrained part or add additional equations to the system.

Over and under-constrained situations can coexist in the same model. In the case of over-constrained
model, the user would like to remove the over-constraining equations in a manner which is consistent to
the original source code specifications, in order to alleviate the model definition.

The well-constrained part: the number of equations in the system is equal to the number of variables
and therefore the mathematical system of equations is structurally sound having a finite number of
solutions. This part can be further decomposed into smaller solution subsets. A failure in decomposing the
well-constrained part into smaller subsets means that this part cannot be decomposed and has to be solved
as it is. A failure in numerically solving the well-constrained part means that no valid solution exists and
there is somewhere a numerical redundancy in the system.

The decomposition captures one of the many possible solutions in which the model can be made
consistent. The direct solution proposed by the decomposition sometimes cannot be acceptable from the
restriction imposed by the modeling language or by the modeling methodology by itself. Therefore a
search through the equivalent solution space needs to be done and, check whether the equivalent solutions
are acceptable.

5. Equation Annotations

For annotating the equations we use a structure which resembles the one developed in [8]. We define an
annotated equation as a record with the following structure: <Equations, Name, Description,
No. of associated egs., Class name, Flexibility level, Connector
generated>. The values defined by annotations are later incorporated in the error repair strategies,
when heuristics involved in choosing the right option from a series of repair strategies need to be
eliminated.

Table 1. The structure of the annotated equation

Attribute Value

Equation R1.i * R1.R == Rl.v

Name “eqd”

Description “Ohm’s Law for the resistor component”
Nr. of associated eq 1

Class Name “Resistor”

Flexibility Level 3

Connector generated no

The Class Name tells from which class the equation is coming. This annotation is extremely useful in
exactly locating the associated class of the equation and therefore providing concise error messages to the
user.

The No. of associated eqs. parameter specify the number of equations which are specified together
with the annotated equation. In the above example the No. of associated eqgs. is equal to one since there
are no additional equations specified in the Resistor component. In the case of the TwoPin
component the number of associated equations is equal to 3. If one associated equation of the component
need to be eliminated the value is decremented by 1. If, during debugging, the equation R1.i * R1.R ==
R1.v is diagnosed to be an over-constraining equation and therefore need to be eliminated, the
elimination is not possible because the model will be invalidated in that way (the No. of associated egs.
cannot be equal to 0) and therefore other solutions need to be taken into account.

The flexibility level, in a similar way as it is defined in [8], allows the ranking of the relative
importance of the constraint in the overall flattened system of equations. The value can be in the range of



1 to 3, with 1 representing the most rigid equation and 3 being the most flexible equation. Equations,
which are coming from a partial model and therefore are inherited by the final model, have a greater
rigidity compared to the equations defined in the final model. For example, in practice, it turns out that
the equations generated by connections are more rigid from the constraint relaxation point of view than
the equations specified inside the model. Taking into account these formal rules, for an equation defined
inside a Modelica class, a maximal flexibility level will be assigned. In conclusion a maximum flexibility
level will be defined for the equations in the final model, followed by equations defined in partial classes
and equations generated by the connect statements.

The Connector generated is a Boolean attribute which tells whether the equation is generated or not by
a connect statement. Usually these equations have a very low flexibility level.

It is worth nothing that the annotation attributes are automatically initialized by the static analyzer,
incorporated in the front end of the compiler, by using several graph representations [12] of the
declarative program code.

6. Debugging of an Over-Constrained System

Let us again examine the simple simulation example presented in Fig.1. where an additional equation
(1=23) was intentionally introduced inside the Resistor component in order to obtain a generally
over-constrained system. The D&M canonical decomposition will lead to two parts: a well-constrained
part and an over-constrained part (see Fig. 6.). Equation “eq//” is a non-saturated vertex of the equation
set so it is a source for the over-constrained part. Starting from “eq//” the directed graph can be redrawn
as is illustrated in Fig. 7a. An immediate solution of fixing the over-constrained part is to eliminate
“eqlI” which will lead to a well constrained part and therefore the equation system becomes structurally
sound. However, examining the associated annotations to the “eq11” :
<AC.p.v == Rl.pv, “egll”, ™ %, 2, “Circuit”, 1, vyes>

one can note that the equation is generated by a connect statement from the Circuit model and the
only way to remove the equation is to remove the connect (AC.p, Rl.p) statement. But removing
the above-mentioned statement will remove two equations from the flattened model, which is indicated
by the No. of associated eqs. = 2 parameter. One should also note the flexibility level of the equation is
equal to 1, which is extremely low, indicating that the equation is extremely rigid. Therefore an another
solution need to be found, namely another equation need to be eliminated from the equation system

instead of removing the equation AC.p.v == Rl.pv.
Rl.v == -Rl.n.v + Rl.p.v "varl" Rl.p.v
0 == Rl.n.i + Rl.p.i "var2" Rl.p.i
Rl.i == Rl.p.i "var3" Rl.n.v
Rl1.i R1.R == Rl.v "var4" Rl.n.i
Rl1.i == 23 "var5"  R1.v
AC.v == -AC.n.v + AC.p.v "var6" R1.1i
0 == AC.n.i + AC.p.i "var7" AC.p.v
AC.i == AC.p.i "var§" AC.p.i
AC.v == AC.VA*sin[2*time*AC.£f*AC.PI] "var9" AC.n.v
" G.p.v =0 "varl0" AC.n.i
AC.p.v == Rl.p.v "varll" AC.v
AC.p.i + Rl.p.i == 0 "varl2" AC.i
" Rl.n.v == AC.n.v "varl3" G.p.v
" AC.n.v == G.p.v "varl4" G.p.i
" AC.n.i + G.p.i + Rl.n.i == 0

O vard

eq7 C

' :) var§
eq8 ; ] E E ) varl0
eql2C Jvarl2

eql0C, €15 —) VT4

eqll g well-constrained part
eql37

eqldy

over-constrained part

Fig. 6. The decomposition of an over-constrained system



6.1 Calculating the Set of Over-Constraining Equations.

In the next step of the debugging procedure for the over-constrained system of equations we need to
introduce several definitions regarding the some particular equation subsets which have special properties
from the structural analysis point of view.

Definition 9: We call the equivalent over-constraining equation list associated to a system of
equations the list of equations {eq1 ,eqo, - eq, } from where eliminating any of the component equations

will lead to a well constrained system of equations.

Definition 10: We call the reduced equivalent over-constraining equation list the subset of equations
obtained from the equivalent over-constraining equations after the language constraints have been
applied.

When the size of the reduced equivalent over-constraining equation list exceeds 1, the automatic
debugging is no longer available, and then the list should be presented by the debugger to the user in
order to solve the conflicting situation.

From the over-constrained part resulting from the D&M decomposition we can construct an algorithm
to find the equivalent over-constraining list based on the associated directed graph of the over-constrained
part:

{ ) varll

eq9
AC.v == AC.VA*
) var6 sin[2*time*AC.f*AC.PI]

eqs

) varl3

eql0

Fig. 7. a) An associated directed graph to the over-constrained part starting from “eq/1”. b) The fixed well-
constrained directed graph by eliminating equation “eq5”.

We describe the algorithm as follows:

Algorithm 2: Finding the equivalent over-constraining equations list
Input Data: An over-constrained graph OG resulting after D&M decomposition applied to G.
Result: the reduced equivalent over-constraining equation list
begin:
— Compute the directed graph OG’ of O@G by replacing each edge in MG by two arcs and
orienting all other edges from the equations to the variables.
— Find a depth-first search tree T in OG’ with the root vertex being one of the sources of the
directed graph OG’.
— Apply a strongly connected component decomposition algorithm for the graph obtained by
removing the last visited equation vertex.
— If the number of strongly connected components is equal to 1 then
add the last visited equation vertex to the reduced list.
— Output the equivalent over-constraining equations list.
end.

The basic idea behind the algorithms for enumerating all the perfect matchings in a bipartite graph,
presented in [11] and [21], is the exchange of matching edges with other edges along an alternating cycle
or a feasible path. Enumerating all of the maximal matching which include the source vertex (in out case
“eql1”) is not interesting, since they are equivalent from the solution relaxation point of view. All the



obtained maximal matching will include a perfect matching plus the source node. Therefore we are
interested in finding other maximal matchings which include the source vertex leaving other equation
vertexes free. One important property of the over-constrained bipartite graph is that it only contains
alternating paths because it is constructed from perfect matching and a supplementary free edge. We can
easily obtain all the maximal matchings in the over-constrained graph by exchanging matching edges
with other edges along an alternating path. An algorithm for computing the reduced equivalent over-
constraining equation list is given below:

Algorithm 3: Annotation based equation set reduction

Input Data: A reduced equation set taken from the output of Algorithm 2.

Result: the final reduced equivalent over-constraining equation list

begin:

— Eliminate from the list all of the equations generated by a connect statement and for which

the No. of associated eqs. parameter exceeds the system degree of freedom.
Eliminate all the equations for which the No. of associated eqs. parameter is equal to 1. Add
that equation to the history list.
Sort the remaining equations in decreasing order of flexibility level
Output the sorted list of equations.

end.

If the length of the reduced equivalent over-constraining list is equal to 1 automatic debugging of the
model is possible by eliminating the equation from the simulation model without any supplementary user-
intervention. Of course the history list together with the elimination is output to the user. If the length of
the list is greater than 1, this means that several error fixing strategies are possible and therefore user
intervention is required. The reduced list is output to the user starting with the equation which has the
higher flexibility level.

In our case the set of equivalent over-constraining equations is {“eqll”, "eql3”, "eql0”, "eq5”,
”eq9”}. “Eqll” was already analyzed and therefore can be eliminated from the set. “Eq/3” is eliminated
too for the same reasons as equation “eq/1”. Analyzing the remaining equations {’eql0”, “eq5”,
”eq9”} one should note that they have the same flexibility level and therefore they are candidates for
elimination with an equal chance. But analyzing the value of the No. of associated eqs. parameter,
equation “eq/0” and “eq9” have that attribute equal to one, which means that they are singular equations
defined inside the model. Eliminating one of these equations will invalidate the corresponding model,
which is probably not the intention of the modeler. Examining the annotations corresponding to equation
“eq5” one can see that it can be safely eliminated because the flexibility level is high and eliminating the
equation will not invalidate the model since there is another equation defined inside the model. After
choosing the right equation for elimination the debugger tries to identify the associated class of that
equation based on the Class name parameter defined in the annotation structure. Having the class name
and the intermediate equation form (R1.1=23) the original equation can be reconstructed (i=23)
indicating exactly to the user which equation need to be removed in order to make the simulation model
mathematically sound. In that case the debugger correctly located the faulty equation previously
introduced by us in the simulation model.

By examining the annotations corresponding to the set of equations which need to be eliminated, the
implemented debugger can automatically determine the possible error fixing solutions and of course
prioritize them. For example, by examining the flexibility level of the associated equation compared to
the flexibility level of another equation the debugger can prioritize the proposed error fixing schemes.
When multiple valid error fixing solutions are possible and the debugger cannot decide which one to
chose, a prioritized list of error fixes is presented to the user for further analysis and decision. In those
cases, the final decision must be taken by the user, as the debugger cannot know or doesn’t have
sufficient information to decide which equation is over-constraining. The advantage of this approach is
that the debugger automatically identifies and solves several anomalies in the declarative simulation
model specification without having to execute the system.

7. Prototype Debugger Implementation Details

For the above presented graph decomposition techniques to be useful in practice, we must be able to
construct and manage the graph representation of the declarative specification efficiently. Another
important factor that must to be taken into account is the incrementality of the approach in order to



accommodate incremental static analyzers to be added to the existing simulation environment of the
declarative equation based language. In this section, we outline the architecture and organization of the
implemented debugger attached to the simulation environment.

A prototype debugger was built and attached to the MathModelica simulation environment as a testbed
for evaluating the usability the above presented graph decomposition techniques for debugging
declarative equation based languages. MathModelica is an integrated problem-solving environment (PSE)
for full system modeling and simulation [14][15]. The environment integrates Modelica-based modeling
and simulation with graphic design, advanced scripting facilities, integration of code and documentation,
and symbolic formula manipulation provided via Mathematica[23]. Import and export of Modelica code
between internal structured and external textual representation is supported by MathModelica. The
environment extensively supports the principles of literate programming and integrates most activities
needed in simulation design: modeling, documentation, symbolic processing, transformation and formula
manipulation, input and output data visualization.

The information output by the debugger will of course lead to a mathematically sound system of
equations, however some of the solutions might not be acceptable from the modeling language point of
view or from the physical system model perspective. The debugger focuses on those errors whose
identification would not require the solution of the underlying system of equations.

As indicated previously, it is necessary for the compiler to annotate the underlying equations to help
identify the equations and to help eliminating the heuristic involved in choosing the right solution.
Accordingly, we modified the front end of the compiler to annotate the intermediate representation of the
source code where equations are involved. The annotations are propagated appropriately through the
various phases of the compiler, and, when an error is detected, the debugger uses them to eliminate some
of the heuristics involved in the error solving process and, of course, to exactly identify the problematic
equations and to generate error messages consistent with the user perception of the source code of the
simulation model.

The implemented debugger was successfully tested on declarative models involving several hundreds
of algebraic equations and differential algebraic equations.

The general architecture of the implemented debugger is presented in Fig. 8 and the debugging
algorithm proceeds as follows: Based on the original declarative source code the intermediate
representation is generated. From the intermediate representation the overall system of equations is
extracted and transformed into bipartite graph form. The associated bipartite graph is canonically
decomposed and error-fixing strategies are applied if the decomposition lead to over- or under-
constrained components. The debugger will try to solve the errors automatically without the explicit
intervention of the user. If automatic error solving is not possible due to missing information the user
will be consulted regarding the repair strategy. When the user is interrogated, all valid options that will
lead to a numerically sound underlying system of equations are presented.

Algorithm 4: Static Debugging of the declarative equation based simulation model
Input Data: The Modelica source code of the simulation Model

Result: Error fixing information consistent with the user perception of the original source code
begin:
— Each model M specified in the Modelica modeling language is translated to an intermediate
flattened form JM.
— From JM the flattened equations FEM, variables F VM and constant FCM list are extracted.
— Annotate the FEM with additional debugging information.
— From FEM and FV M obtain the bipartite graph representations G of the model.
— Apply Algorithm 1 in order to decompose G into well-constrained ‘W@G, over-constrained OG
and under-constrained UG components.
while OG+® and UG+D do
— Apply error fixing strategies to the OG by eliminating the additional constraining
equations.
— Apply error-fixing strategies to UG by adding additional equations to the model or
initializing some of the variables.
end.
end.
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Fig. 8. General architecture of the implemented debugger



8. Summary and Conclusions

Determining the cause of errors in models of physical systems is hampered by the limitations of the
current techniques of debugging declarative equation based languages. We have presented a new
approach for debugging declarative equation based languages by employing graph decomposition
techniques and have given a usage example for debugging an over-constrained simulation model. It has
also been demonstrated that it is possible to create a tool with an enhanced user interaction capability that
explicitly can be used in understanding complicated simulation models.

The contributions of this paper are twofold: the proposal of integrating graph decomposition
techniques for debugging declarative equation based languages and an efficient equation annotation
structure which helps the debugger to eliminate some of the heuristics involved in the error solving
process. The annotations also provides an efficient way of identifying the equations and therefore helps
the debugger in providing error messages consistent with the user’s perception of the original source and
simulation model. The implemented debugger helps to statically detect a broad range of errors without
having to execute the simulation model. Since the simulation system execution is expensive the
implemented debugger helps to greatly reduce the number of test cases used to validate the simulation
model.

The merits of the proposed debugging technique are as follows:

— the user is exposed to the original source code of the program and is therefore not burdened with
understanding the intermediate code or the numerical artifacts for solving the underlying system of
equations.

— the user has a greater confidence in the correctness of the simulation model.

— when a simulation model fails to compile we report the error consistent with the user’s perception of
the simulation model or source code, and also several possible repair strategies are presented. The error
fixing strategies are also prioritized by the debugger, which benefits the user in choosing the right error
fixing solution.
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