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Abstract

The contents of this thesis are centered in the developement of new efficient

algorithms for molecular integral evaluation in quantum chemistry, as well as new

design and implementation strategies for such algorithms aimed at maximizing

their performance and the utilization of modern hardware.

This thesis introduces the K4+MIRROR algorithm for 2-electron repulsion

integrals, a new ERI integral scheme effective for both segmented and general con-

traction, which surpasses the performance of all previous ERI analytic algorithms

published in the literature. The performance of the K4 kernel contraction scheme

is further boosted by the use of some new recurrence relations, CDR/AERR family

of recurrences, and the algorithms is further refined for spherical GTOs with the

also new SKS method.

New prescreening methods for two-electron integrals are also derived, allowing

a more consistent methodology for discarding negligible ERI batches. This thesis

introduces new techniques useful to pack integrals efficiently and better exploit

the underlying modern SIMD or stream processing hardware. These algorithms

and methods are implemented in a new library, the Echidna Fock Solver, a hybrid

parallelized module for computing Coulomb and Exchange matrices which has been

interfaced to the Dalton suite of quantum chemistry programs. Self-Consistent

Field and Response Theory calculations in Dalton using the new EFS library

are substantially accelerated, also enabling for the first time the use of general

contraction basis sets as default basis for extended calculations.

The thesis further describes the derivation and implementation of an integral

algorithm for evaluating the matrix elements needed for the recently introduced

QM/CMM method, for which many of the techniques previously derived are also

used, along with a suitable prescreening method for the matrix elements. The

implementation is also interfaced to the Dalton quantum chemistry program, and

used in production calculations.

The last chapter of the thesis is devoted to the derivation of a general an-

alytic solution for type-II Effective Core Potential integrals, arguably one of the

most troublesome molecular integrals in quantum chemistry. A new recurrence is

introduced for the integrals, and a screening method is presented. Based on these

results, a new efficient algorithm for computing type-II ECPs is also described.
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Chapter 1

Introduction

”Science is what we understand well enough to explain to a computer.

Art is everything else we do.”

Donald Knuth

Computational chemistry constitutes one of the most profound and spectacu-

lar successes in the modern scientific endeavour. Thanks to the advent of modern

computers, computational chemistry methods like quantum chemistry and classi-

cal molecular dynamics can now be routinely applied to a vast array of problems

arising in multiple scientific disciplines, from engineering to biophysics. The the-

oretical grounds of some of its more important methodology has been recognized

as worthy of the Nobel prize in chemistry on two occasions; first in 1998 to Walter

Kohn for his development of Density Functional Theory and John A. Pople for his

development of computational methods in quantum chemistry1, and more recently

in 2013 to Martin Karplus, Michael Levitt and Arieh Warshel for the development

of multiscale models for complex chemical systems2. Many new interdisciplinary

fields which were born out of the convergence of chemistry, physics and biology at

the nanoscale use in-silico simulations as a primary tool for analysis and prediction.

Quantum chemistry is the application of quantum physics to the study of

chemical systems. The underlying theoretical framework -quantum theory- tends

to be very counterintuitive to many scientists, yet it is the single most successful

theory in the history of science. Its success lies in great measure in the gen-

erality of its principles, but also in the astonishing precision of its predictions,

some of which3 match the experiment with a relative error of less than 1 in 109.

In practice, researchers investigating physics and chemistry at the nanoscale are

not interested in such numerical accuracy, but focus on modelling the properties

and behaviour of their systems of study first qualitatively, and then perhaps to a

few digits of precision. Quantum chemistry provides a unifying description of all
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CHAPTER 1. INTRODUCTION

chemical and electronic structure of atoms and molecules - which explains their

chemical reactivity- and their physical and chemical properties, including spec-

troscopy. However, the full quantum mechanical description is, except for the

smallest cases, too impractical and often out of the reach of any present super-

computer, so nearly all methodology of quantum chemistry has been developed

around the use of reasonable physical or chemical approximations which tradeoff

some accuracy for speed. Besides very simplified models constructed to qualita-

tively predict the outcome of some reactions or explain some experimental data

from some orbitals or bonds, the computation of the full wavefunction of a molecule

was a practical impossibility until transistor-based computers started to spread in

research labs in the mid 1950s, and soon started to attract the attention of many

chemists4.

The first successful methods used in computational chemistry were developed

within the following decade, extending to the entire molecule the orbital descrip-

tion, and using empirical data to estimate the value of the matrix elements. As

computers became faster and memory increased, the number of atoms that could

be treated with semiempirical methods also increased, and more expensive and

accurate models based on fewer simplifications from first principles (ab-initio) be-

came also more popular. Nowadays there are dozens of methods available, capable

of simulating systems up to several thousands of atoms to various degrees of ap-

proximation and computational cost. The value of such simulations goes well

beyond their use as simple tools of prediction, as the joint use of fast algorithms

and 3D computer visualization has transformed the value of the output, from what

years ago was just a stream of numbers, into today’s window to the behaviour of

matter and energy at the nanoscale, observable otherwise only indirectly and with

highly sofisticated laboratory equipment. This graphic-oriented human-machine

communication is invaluable for developing better intuition of the physics govern-

ing a regime where the macroscopic intuition of everyday experience is of little

use.

Computational chemistry continues to be a field in constant expansion due to

the demand of new theoretical methods to study a growing list of problems in chem-

istry, biology and physics, and the need to extract good performance off hardware

architectures constantly changing and improving in computational power. Like

many other scientific disciplines, computational chemistry has greatly benefited

from the exponential growth in semiconductor integration of the last decades, to

a point where SCF calculations of thousands of atoms and molecular mechanics

simulations with millions of atoms are not unheard of.
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Scientific software has been traditionally written in the FORTRAN program-

ming language5. FORTRAN was originally designed by IBM during the 50s as an

alternative to the assembly languages of the time. The objective was to abstract

any low-level details of the hardware and OS and provide just the functionality

required to write numerical software that could be easily understood (by humans).

Many programmers of the time were reluctant to use a high-level language due

to concerns about performance loss, which prompted IBM to develop the first

optimizing compilers for FORTRAN. The generally good performance of the com-

piled programs popularized FORTRAN amongst scientists, until the language was

finally standardized in 1966. During decades, supercomputer manufacturers pro-

vided a FORTRAN compiler for every new machine, which would aggressively

optimize the code for the specifics of the architecture. Since architectures were in

general incompatible amongst themselves there were no good reasons to attempt

any low-level optimization of the code by hand. This model began to change in

the 90s, when the relative low cost and high volume of production of PC hardware

gradually changed supercomputer architectures. The standarization of software

libraries, programming languages and other software tools, induced a transition

in the HPC community from the expensive monolithic supercomputers of the 80s

based on custom hardware, to massively parallel systems composed of networked

high-end PC hardware in the following decade. FORTRAN compilers for different

OSs allowed porting old scientific codes to the x86. However C/C++ were already

the languages of choice to develop PC applications and offered a greater flexibility

than FORTRAN, so many developers switched to C/C++ for their new projects

or mixed C/C++ with Old Fortran codes. After a few years of competition with

the PVM model6, the MPI standard7 became the de-facto programming model

for multi-processor and cluster scientific software. During the decade, x86 proces-

sors doubled in frequency and halved in size every 18 months or so, increasing the

performance of any program written for x86 without changing a single line. Any

increases in hardware complexity, like the increasingly more complex instruction

pipeline were handled transparently to the programmer.

The turn of the millenium brought two important additions: first with the

addition of vector instructions and later with the jump to 64 bits. The original

MMX vector instructions were a simple way to operate on two integers with a

simple instruction, but many more instructions would be added later on which

converted the floating point registers into vectore registers not unlike those in

supercomputers two decades earlier. This change would eventually mean that

either compilers needed to become smarter at finding potential vectorization spots

in non-vector code or numerical codes would need to be partially rewritten to take

advantage of a two-, four- or eight-fold speedup in floating point operations. The

3



CHAPTER 1. INTRODUCTION

jump to 64 bits doubled the reggister widths of the processor, added new registers

and enabled addressing more than 4Gb of memory.

The ”race of the megahertz” finished abruptly around the year 2004, when it

became obvious that processor frequencies were about to reach power constraints8.

The power consumed by a processor increases linearly with the frequency at which

it operates. This energy is converted to heat, which must be dissipated from the die

quickly enough before it damages its components. The thermal conductivity of the

materials and the temperature gradients in a computer impose practical limits to

the magnitude of heat flux that can be extracted. The cost of the energy itself was

another factor that required attention, as processors had become the most energy-

hungry component of the hardware, and laptops and clusters demanded higher

efficiencies. The move from single core to multicore processors kept increasing

the total theoretical performance after frequencies peaked at about 4Ghz, but

the actual increase in performance for many applications was dubious. Many

programs, even today, do not support parallelism, so no amount of extra cores will

accelerate their execution. Parallel programming also requires a much more careful

analysis of algorithms and data structures, because Amdhal’s law9 predicts that

any sequential or poorly parallelized section of the software can become a major

bottleneck of the program. Fortunately, the scientific software built using MPI

was ready to use any extra cores without modification, at the cost of sacrificing

the advantages of shared memory.

The increasing gap between CPU performance and memory bandwidth, which

had been previously addressed by increasing the cache memory and eventually

adding a second cache (L2), became again a problem considering all cores had to

share the same bus. There are different cache hierarchy designs implemented in

different processors, but most use a shared L3 for all cores and per-core L1 and

L2.

With the end of Dennard scaling10, by which processors had been exponen-

tially improving in performance per watt without design modifications, finding

new approaches to increase efficiency soon became one of the main concerns of mi-

croprocessor design. This eventually forced redesigns in CPU microarchitectures,

adding considerable amounts of extra logic in the form of register renaming, out-of-

order execution, more sofisticated jump and branch predictors, multiple execution

ports, etc.

All these technologies have been steadily improving, and are part of virtally

every computer processor being sold as of 2014. While still improving in perfor-

mance, the situation is far from when it was possible to get a ”free” performance

improvement from a code by buying a new computer. Processors sold as much a

4



seven years ago still offer nearly the same single-core scalar performance as a simi-

larly priced processor today. How to make the newest hardware run anywhere near

peak performance has to be necessarily integrated in the design of the program.

One of the obvious inconveniences of CPU designs when it comes to numerical

performance is the small area reserved to FLOP instructions compared to the area

for control. GPUs, on the other hand, have these ratios almost reversed; they

employ most of the surface in floating point ALUs, with some small control units

alternating. Although this use is not new11, GPUs have become increasingly pop-

ular in HPC thanks to the commercialization of products with full double precision

support, registered memory, and peak FLOP performances up to 5 Tflop/s. GPU-

accelerated numerical libraries are free to download and use12. On the downside,

programming numerical algorithms for GPUs can prove to be quite challenging,

although it is becoming easier as users demand missing hardware and software

functionalities and manufacturers successively implement them in every next iter-

ation.

Accelerators such as Intel Xeon Phi13 are a response to the rise of GPUs in

HPC. Instead of introducing a new programming model that new users might be

very unfamiliar with, Intel has integrated a manycore card with very minimalistic

in-order x86 cores, each containing a vector ALU wider than the SIMD of regular

x86 cores, and a control unit that can manage the concurrent execution of up to

4 threads. Its main advantage over GPUs is that code written for CPU can be

recompiled and run on the Xeon Phi without modification, although obtaining

good performance requires tuning.

The near future of HPC seems to be tightly constrained by the laws of physics.

Despite some improvement, the problems of energy efficiency, heat dissipation and

memory bandwidth are sooner or later unavoidable bottlenecks to current semi-

conductor technology. The trend aims clearly towards increasing multilevel par-

allelism and distributed computing, which benefit inherently scalable and parallel

problems, but fail to improve their sequential bottlenecks. The imminent intro-

duction of 3D stacked memory will surely give some fresh air and boost many

memory-intensive applications, but this is a one-time trick.

Despite the active interest in finding more efficient technologies, there is still

no alternative material or process even close in its maturity to be a substitute

candidate to CMOS in the next decade. The current trend in miniaturization is

expected to reach the 5nm node as soon as 202014, coinciding with the expected

arrival of the first exascale supercomputers15. 5nm is about the width of ten silicon

cells, possibly the absolute smallest functional transistor that can be made with

silicon without deviating too much from its ideal behaviour. 3nm and smaller may

5



CHAPTER 1. INTRODUCTION

still be possible to print, but current leakage at these scales consumes nearly all

power and degrades the energy efficiency sharply. It is also not clear how reliable

would these circuits be, and how much error correction would be necessary to

make them viable. Overall, CPUs and accelerators of the time could well peak

at 10 to 30 times the performance and density of current hardware based on the

22 nm node, and perhaps 10 times the current memory bandwidth, mostly due

to the migration from the traditional bus designs to high throughtput stacked

memory. The improvement in performance per watt is also expected to rise by

a similar factor due to the migration to Silicon-on-Insulator manufacturing and

Near-Threshold Voltage computing.

It is of course expected that manufacturers will keep adding incremental up-

dates to the microarchitecures afterwards, but this will only benefit control and

logic intensive software. Numerical performance relies necessarily on the number

of transistors and die surface dedicated to floating point multiplier/FMA units,

which are already heavily optimized logic blocks. Any substantial increase in per-

formance will have to come from radically new microprocessor designs, materials

or technology.

If something has been proven constant during the 70 years of scientific com-

puting is that no amount of computational resources is ever enough. Even with

today’s petaflop supercomputers there is a myriad of simulation problems of an

even bigger magnitude waiting to be solved. However, if hardware performances

stall, it is not likely that this demand will be met by multiplying the number of

machines in the HPC clusters. Tianhe-2, the world’s fastest supercomputer at the

moment peaks at 33 Pflop/s and uses about 24 MW, with the refrigeration system

alone using 7 MW16. Tianhe-2 delivers about 1.9 Gflop/J Other supercomputers

are much less energy efficient, to the point of having an annual energy bill exceed-

ing the price of the hardware. The road to exaflop according to DARPA’s program

PERFECT17 requires an efficiency of at least 75 Gflop/J, about 40 times the effi-

ciency of Tianhe-2 and 17 times that of the top efficient cluster in the Green 500

list as of August 201418. Even if all manufacturing and architectural challenges

necessary for exascale computers are met by 2020, computing beyond exascale will

remain a logistic impossibility unless the root problems of energy efficiency and

other limitations of the silicon technology are addressed in one way or another.

Since user applications running on current low-end hardware rarely experience

bottlenecks anymore, computer sales have declined in the last few years notably,

and portable consumer electronics are slowly taking their place. Without a large

consumer base fueling a demand for new hardware, it looks like the smaller HPC

and server markets need to look elsewhere to be able to supply an always increas-

6



ing demand. This performance wall poses the biggest challenge to the future of

HPC. Recent history has proven in many occasions that speculating about the

viability and speed of diffusion of future technologies can be an excercise in futil-

ity. However, it seems reasonable that some technologies existing today such as

ASICs (application-specific integrated circuits) and FPGAs (Field-Programmable

Gate Arrays) will tenmporarily bridge the gap. Special-purpose hardware usually

delivers much better performance per watt and speedups between one and three

orders of magnitude over equivalent algorithms running on regular processors. The

GRAPE (gravity pipe) supercomputer19 uses heavily pipelined ASICs to solve N-

body systems. The latest GRAPE-8 design powering the cluster is synthesized on

a stripped-down FPGA board running at 250Mhz, and yet it provides 480 Gflop/s

per chip at only 26 W consumption20. A similar design ported to ASIC could pos-

sibly achieve 5 Tflop/s. The Anton supercomputer21 is a 512-node machine with

special-purpose ASICs designed to solve MD simulations quickly, and at the time

of its debut it beat the fastest MD software running on a 256-node opteron cluster

by a factor of 300. The best FFT software libraries peak at about 15 Gflop/s

in multicore processors22 and 150 Gflop/s on GPUs23, while FPGA implementa-

tions achieve up to 20 Tflop/s24. Even in the field of quantum chemistry, there

has been some interest in developing hardware for accelerating the evaluation of

electron repulsion integrals25 26. The obvious inconveniency to these approaches is

the increased complexity of making an integral analysis of the application, study

different algorithmic solutions and jointly engineer and program the hardware and

software. ASICs in particular also have a high barrier to entry largely due to the

cost of development and testing of the photolitographic masks, which can only be

amortized by the producing large enough quantities of the hardware.

Regardless of the upcoming hardware solutions that will appear in the next

years, the central paradigm of HPC will remain to make the best use of available

resources: computational, energetic and economic. The key to this is to use the

best algorithms to solve the problem, optimized for the hardware at hand. This

idea is always stressed in every introductory text to HPC, but is very rarely fol-

lowed by actual examples, so here is one: during the golden age of Moore’s Law,

from 1988 to 2003, the performance of microprocessors multiplied by about three

orders of magnitude. However, during the same period the algorithms for solving

linear programming problems improved by 4 to 5 orders of magnitude27. Simi-

larly, when SCF calculations became more widespread, the asymptotic complexity

of HF and DFT calculations was improved from the canonical O(N4) to O(N2)28

or even O(N) in some cases, with the focus being now shifted towards reducing the

linear prefactor. Linear algebra problems, which seemed to be a completely solved

field, are now some of the most studied problems in HPC and numerical analysis,
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with most of the focus of the last decade being put in finding parallel scalable

algorithms29 and developing efficient methods for sparse matrices. Examples like

these are common, and illustrate how progress in numerical simulation methods

comes from many sources, and how the evolution of algorithms and hardware can

influence one another.

Algorithms, in general, have hoever fallen short in the parallelism facet. De-

spite the existence of clusters with thousand to millions of cores, few (if any) codes

are able to utilize the totality of the hardware of a modern supercomputer without

incurring in any major bottleneck in its design that degrades its performance well

below what is reasonable. This scale of computation is of course neither necessary

nor recommended for most simulations, but will become an increasingly noticeable

issue as supercomputers become even more massively parallel. The scalability

problems of many parallel numerical codes have pushed already the design of new

algorithms. These designs and their implementation can be particularly difficult

considering multicore, manycore and massively parallel computing are relatively

new and many programmers have not yet developed the skills to think concur-

rently. Beside the lack of standard hardware and software mechanisms to support

concurrency, the issue of resiliance (the probability of any one hardware compo-

nent failing during the computation is dramatically increased in massive parallel

systems) needs to be eventually addressed in the design.
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Chapter 2

Quantum Chemistry

2.1 Basic concepts

The main goal of quantum chemistry is the determination of the properties

and reactivity of molecules, for which the wavefunction of the chemical system

is required. The time-independent Schrödinger equation30 provides the starting

point for the mathematical formulation of non-relativistic quantum chemistry:

H|Ψi〉 = Ei|Ψi〉 (2.1)

Where H is the quantum Hamiltonian operator of the system, Ei is the energy

of the i-th state and ψ is its wavefunction, which is a function of the positions (or

equivalently, the momentums) and spins of all the particles in the system, and the

time.

|Ψi〉 = Ψi(r1, s1, . . . , rN , sN ; t) (2.2)

The full solution of the time-independent Schrödinger equation is the energy

spectrum of the system, and all the corresponding states. In the time-independent

formulation, the time only appears to shift the phase of the function Ψ(r; t) =

Ψ(r; 0)e−2πiEt/h and is irrelevant for the discussion. The states form an orthogonal

basis and are assumed normalized, which in Dirac’s bracket31 notation is expressed

as:

9
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〈Ψi|Ψj〉 =
∑

s1,...,sN

∫

V1

dr1 . . .

∫

VN

drNΨ∗i (r1, s1, . . . , rN , sN)Ψj(r1, s1, . . . , rN , sN) (2.3)

〈Ψi|Ψj〉 = 〈Ψj|Ψi〉 = δij (2.4)

The non-relativistic evolution of a the system is determined by the time-

dependent Schrödinger equation:

ih̄
∂

∂t
|Ψ〉 = H|Ψ〉 (2.5)

The Hamiltonian is defined in correspondence to the classical Hamiltonian by

applying canonical quantization and substituting the classical momentum with the

quantum momentum operator.

H = TN + VNN + Te + VeN + Vee (2.6)

TN =
∑

n

− 1

2Mn

∇2
Rn (2.7)

VNN =
∑

n<m

ZnZme
2

4πε0|Rn −Rm|
(2.8)

Te =
∑

i

− 1

2me

∇2
ri

(2.9)

VeN =
∑

i,n

−Zne2

4πε0|Rn − ri|
(2.10)

Vee =
∑

i<j

e2

4πε0|ri − rj|
(2.11)

The full Schrödinger equation finds actually little use in quantum chemistry.

The molecular structure of the system is often known in advance from experimental

methods or lower levels of theory, and the sought information is mostly encoded in

the electronic degrees of freedom. The Born-Oppenheimer approximation32 splits

the total system wavefunction as a product of nuclear and electronic wavefunctions

or, equivalently, splits the Hamiltonian into the direct sum of nuclear and electronic

Hamiltonians.

HN = TN + VNN + Ee(~rn) (2.12)

He = Te + Vee + VeN(~rn) (2.13)

10
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This approximation is justified whenever the time scale of the nuclear motion

is much larger than the time scale of the electron motion, which is given to first

order by their mass ratio. Because nuclei are thousand of times heavier than

electrons, the system can be thought of in the nuclear scale as a cloud of electrons

responding instantly to any nuclear movement, or in the electronic time scale as

an electronic wavefunction determined by the electrostatic potential generated by

a set of nuclei fixed in space. There are situations in which this approximation

breaks down, most notably around conical intersections33 in excited states. The

treatment of such cases requires the explicit coupling of the relevant nuclear degrees

of freedom to the electronic wavefunction, an approach known as vibronic coupling.

Otherwise, the nuclear degrees of motion are usually treated on their own through

a variety of methods and approximations.

The convention for the electronic Hamiltonian is the use of atomic units, with

e = me = h̄ = 1/(4πε0) = 1. It is often expressed as the sum of 1- and 2-particle

components:

H =
∑

i

hi +
∑

i>j

gij (2.14)

hi = −1

2
∇2
ri
−
∑

n

Zn
|ri −Rn|

(2.15)

gij =
1

rij
=

1

|ri − rj|
(2.16)

With indices i and j representing the coordinates of each electron. The 1-

particle components of the Schrödinger equation have their relativistic counterpart

in the Dirac 1-particle Hamiltonian34

hDi = −ic~αi~∇ri + c2(βi − I4)−
∑

n

Zn
|ri −Rn|

(2.17)

correct to all orders of α = 1/c. The relativistic Hamiltonian is no longer a

scalar operator; ~αi and βi are 4× 4 Dirac matrices, and its solutions are 4-vector

wavefunctions. The special importance of this lies in the physical meaning of its

four solutions, corresponding to the four combinations of the two possible spin

states and its two possible energy states, one for the electron and the other for the

positron. The most accurate many-body relativistic equations are derived directly

within the QED (quantum electrodynammics) framework, but given the scale of
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the energies under consideration in chemistry, the most significant relativistic ef-

fects for all intents and purposes can be incorporated with the few first terms of

the expansion in α, and treated usually by perturbation theory. The most used

relativistic corrections are the Gaunt and the Breit interactions

gCGij =
1

rij
− ~αi~αj

rij
(2.18)

gCBij =
1

rij
− ~αi~αj

2rij
+

(~αi~rij)(~αj~rij)

2r3
ij

(2.19)

which are correct to O(α0) and O(α2), respectively.

The time-independent Hamiltonian is a differential equation which admits

very few known analytic solutions. In practice, however, approximate solutions

can be obtained by selecting a basis on which the operators are projected, ef-

fectively transforming the differential equation formulation into an algebra prob-

lem. Matrices were, in fact used in the original formulation of quantum theory

by Heisenberg, later shown to be equivalent to Schrödinger’s ondulatory formula-

tion. This approach can be extended into what is known as second-quantization

formulation, where the Hamiltonian and other operators are represented as linear

combinations of the elements of the CCR and CAR algebras, also known as cre-

ation and annihilation operators. These algebras correspond to the behaviour of

fermions and bosons.

2.2 Electronic structure methods

The electronic wavefunction of a system of N electrons is a function of the

3N coordinates of space and its N spin coordinates. Additionally, it must obey

Pauli’s exclusion principle, which can be expressed as the function’s antisymmetry

with respect to the exchange of the coordinates of any two electrons:

Ψ(. . . , ri, si, . . . , rj, sj, . . .) = −Ψ(. . . , rj, sj, . . . , ri, si, . . .) (2.20)

and must be an eigenstate of the total spin operator Ŝ2. In practice, one builds

an N -particle basis satisfying the antisymmetry constraint, guaranteeing that any

linear combination of the basis will also trivially satisfy the condition. This trans-

lates the problem into the linear algebra domain, where it can be solved efficiently.

The Hamiltonian is an hermitian operator, which implies that the energy of the

ground state (its extremal eigenvalue) is bound by the variational principle:

12
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∀Ψ : E0 ≤ E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (2.21)

coinciding for the exact ground-state wavefunction E0 = E[Ψ0]. Attempting the

direct minimization of the energy functional over general parametrized antisym-

metric functions is not the preferred solution in routine calculations. The over-

whelmingly preferred approach is to construct solutions as linear combinations of

a particular class of antisymmetric functions named Slater determinants. Slater

determinants are N-particle functions constructed by antisymmetrizing a product

of 1-particle functions:

Ψ(r1, r2 . . . rN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) . . . φN(r1)

φ1(r2) φ2(r2) . . . φN(r2)
...

...
. . .

...

φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣
= |φ1φ2 . . . φN |

where the 1-particle functions are assumed orthonormal. This ansatz simpli-

fies considerably the manipulation, because any pair of Slater determinants con-

structed from a common orthonormal set of functions are orthogonal if and only

if it contains at least one different function.

One way to resolve the Hamiltonian spectrum is to project it on a complete

basis of
(
B
N

)
Slater determinants, constructed from B orthonormal single-particle

functions. This approach is also known as full-CI, and is performed with an it-

erative eigenvalue algorithm (a variant of the power method), which gives a few

selected lowest pairs eigenvalue/eigenvector. This approach is however rarely used

in practice given the prohibitive computational cost, which is roughly exponential

with the number of electrons in the system, having a scope that is limited to very

small systems.

For practical calculations, there are many methods based on different lev-

els of approximation to the wavefunction or Hamiltonian, with more reasonable

computational costs than full-CI. The most common electronic structure methods

used nowadays are HF/DFT (O(N4)), Möller-Plesset pertubation theory (O(N5)

for MP2) and Coupled Cluster (O(N7) for CCSD(T)), all exhibiting polynomial

asymptotic behaviour which depending on the implementation can be made re-

duced to more reasonable powers and made even linear-scaling. The HF/DFT

approaches are outlined next.
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2.2.1 SCF methods

The Self-Consistent Field (SCF) methods of quantum chemistry are the quan-

tum equivalent of Mean-Field Theory in statistical mechanics35, which is some-

times also refered to as ”self-consistent field theory”. SCF methods are the very

heart of quantum chemistry, and have been extensively studied in the literature

from every angle: range of applicability, convergence of the procedures, function-

als (for DFT), methods for accelerating its convergence, low asymptotic scaling

algorithms for large molecules, etc.

Hartree-Fock

The Hartree-Fock method36 is perhaps the simplest ab-initio approximation

to the full electronic Hamiltonian, but provides meaningful results to a variety of

chemical problems, and its solution is often a good reference from which higher-

order solutions are build. It starts with the assumption that the electronic degrees

of freedom are uncorrelated, and that every electron ”feels” the potential of the

averaged distribution of the rest of the electrons. This is the equivalent of sub-

stituting the electron-electron interaction potential of the electronic Hamiltonian

with a one-particle potential, which makes the N-electron Hamiltonian fully sep-

arable into N x 1-particle Hamiltonians, which can be solved simultaneously by

diagonalizing the Fock operator. The solution is used to contruct a new averaged

potential from which a new Fock operator is built and solved, and the procedure

is carried on iteratively until convergence. For a closed-shell system, the Fock

operator is:

F = h+

N/2∑

j

(2Jj −Kj) (2.22)

The Coulomb operator Jj is the contribution to the repulsion generated by

the orbital j of the previous iteration. The exchange operator Kj has no classical

counterpart, and arises from the antisymmetry of the total wavefunction.

The common HF procedure consists in choosing a basis set for the system

and evaluating 〈φn|F |φm〉 by computing the necessary 1-electron integrals of the

core Hamiltonian h and the Coulomb and Exchange operators. The projection

of the operators J and K in the basis requires two-electron integrals, which are

numerous and time consuming. In the early days they were computed at the

beginning of the calculation, stored in disk and retrieved as necessary, but after
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decades of increasing speed gap between the electronics and the electromechanical

components of computers, it has become more efficient to compute them when

necessary, and use more thoughtful methods in general. Today there are many

different approaches aimed at substantially speeding up, and even in some cases

at even circumventing the whole procedure entirely. Given that the algorithm is

iterative, the first steps can use much faster and cruder approximations, increasing

the numerical precision as the procedure converges.

For the most part, Hartree-Fock calculations involve non-orthogonal atom-

centered bases. The molecular orbitals can be solved with the Roothaan-Hall

equation37, which is a generalized eigenvalue problem:

F (n)C
(n)
i = SC

(n)
i Ei (2.23)

with F the Fock matrix, S the overlap matrix, Ci the orbital solutions and Ei
their respective energies. The N orbitals of lowest energy are used to construct

the 1-electron density matrix:

ρ
(n)
ij =

N/2∑

k

C
(n)
ik C

(n)
kj (2.24)

which in turn is used to build the Coulomb and Exchange contributions to the

Fock matrix of the next cycle:

F
(n+1)
ij = hij + 2Jij(ρ

(n))−Kij(ρ
(n)) (2.25)

The one-particle reduced density matrix (or some guess) is used to compute

the next Fock matrix. The Fock matrix is diagonalized in the system basis and

a new density matrix is constructed from the orbitals corresponding to the low-

est energy eigenvalues. The density matrix can also be obtained directly without

diagonalization through a number of methods based on density matrix purifica-

tion38. The density matrix obtained is normally not fed back in the loop right

away. Convergence accelerators such as DIIS, ODA or EIIS keep track of the re-

sults of previous steps and can extrapolate a better guess for the next DM, which

reduces the number of SCF cycles. They can also fail to converge in some cases.

The final molecular orbitals can be used to construct a Slater determinant

that can be proven to minimize the expected value of the Hamiltonian within the
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subspace of single determinants generated from the given basis set. In other words,

the HF method provides the best approximation to the true wavefunction express-

able with only one Slater determinant. This is the reason why the Hartree-Fock

method is used as a reference ground state on top of which better approxima-

tions are built. The HF solution is however limited in its scope. Systems with

only dynamic correlation, like the ground state of most organic and many inor-

ganic materials, can be reasonably approximated by a Hartree-Fock ansatz. The

solution can be further refined with perturbational and/or exdended variational

approaches such as Möller-Plesset39, Configuration Interaction36 and Coupled-

Cluster40. But as expected, the method predicts solutions very departed from the

variational minimum in any system containing highly correlated electrons, also

known as static correlation. Breaking chemical bonds, transition metal oxides or

metals with incompletely filled d− and f− electron shells are typical examples of

static correlation where the HF method doesn’t provide a good approximation.

Even the usual correlated approaches for these systems tend to fail, due to their

limited ability to treat correlation other than local (dynamic). The proper descrip-

tion of these systems requires a reference ansatz which explicitely includes some

level of static correlation, like valence-bond theory, multiconfiguration SCF36 or

DMRG41.

Some variants of HF can treat systems with open shells. Unrestricted Hartree-

Fock (UHF)42 simply decouples alpha and beta electrons and generates different

spinorbitals and occupation numbers for the alpha and beta electrons. The prob-

lem with this approach is that its solutions are not in general proper solutions

of the total spin operator S2. The Restricted Open-shell HF method (ROHF)43,

is slightly more complicated in its formulation, but solves the spin contamination

problem,

Density Functional Theory

Density Functional Theory is a method based on an entirely different approach

than Hartree-Fock. The Hohenberg–Kohn theorems44 state that the wavefunction

of a non-degenerate system is uniquely determined from its electronic density n(~r),

and that the energy of the system as a functional of the density is minimized only

by the correct ground state density. This parallels the variational principle for

wavefunctions, but on a significantly reduced number of degrees of freedom, making

it a very attractive computational approach. The energy functional can be split

as a sum of kinetic functional, external potential (arising from the nuclei and any

other contribution), Coulomb repulsion, and exchange-correlation functional. The

functional contributions from the kinetic T [n] and 2-electron terms U [n] should
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always have the same form, since they depend only on the electron density, and

are thus called universal. The electron density -and therefore all properties of the

ground state- is determined only by the external potential V (~r).

E[n] = T [n] + U [n] +

∫
V (~r)n(~r)d3r (2.26)

The exact functional form of the kinetic energy and exchange-correlation terms

is however not known, and there are compelling mathematical reasons to think that

it might not be possible to express them in a useful way. The exact functional has

to be able in principle to describe correctly not only loosely correlated electrons,

but also states with high amounts of static correlation, which amounts to solving

the problem of N-representability45. In other words, the cost of evaluating the

exact functional would be equivalent to solving the system by traditional means.

There are however many approximations and parametrizations for the functionals

that can work good enough in a range of chemical systems, ranging from the very

simple -like the Thomas-Fermi model46- to the very complex, each of them with

its strengths and weaknesses.

The Kohn-Sham formulation of DFT47 results in a SCF procedure very similar

to HF. The fundamental difference is the introduction of an exchange-correlation

functional, which should correct the deficiencies in the kinetic functional used, the

lack of proper exchange for same-spin electrons and the rest of the correlation.

The Kohn-Sham SCF equation is analogous to the Roothaan Hall equation:

K(m)C
(m)
i = SC

(m)
i Ei (2.27)

projected in some basis χk(~r), on which the resulting orbitals are expressed as:

φ
(m)
i (~r) =

∑

k

C
(m)
ik χk(~r) (2.28)

from which the density is computed:

n(m)(~r) =
N∑

i

|φ(m)
i (~r)|2 (2.29)

which is used to generate the next Kohn-Sham operator:
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K̂(m+1) = T̂ + V̂ex(~r) + Ĵ [n(m)] + V̂XC [n(m)] (2.30)

Hybrid functionals use the HF exchange matrix as part of their formulation.

The rest of the terms of the exchange-correlation functionals are local function-

als of the density and its derivatives (an extra assumption not inferred from the

method), and are not that computationally intensive in comparison. Regarless of

its limitations, DFT is one of the preferred methods in quantum chemistry because

it is able to introduce the effects of electron correlation at a negligible cost over

HF.

2.2.2 QM/MM

The use of ab-initio QM to calculate the properties of systems of the scale of

biomolecules has been impossible until recently, and continues to be too imprac-

tical even with linear scaling state-of-the-art QM algorithms and large computer

clusters. Fortunately, in most cases the interesting chemistry and phyisics of the

system is localized to relatively few atoms. For instance, in the study of enzymatic

catalysis, the region of interest includes the atoms of the active site and the sub-

strate, where the chemical reaction occurs. In reactions in solution, the accurate

description of the solvent can be considered a second-oder effect of smaller impact

than the correct description of the reactants. QM/MM is a very useful approach in

such cases48, combining the strengths of QM methods and MM methods. QM/MM

methods partition the system into a chemically-active subsystem, treated with the

QM method of choice, and the rest of the system, treated with MM methods.

QM/MM allow the study not only of chemical reactions within the much larger

system, but also photochemistry, spetroscopy, and other properties depending on

the electronic wavefunction. The main problem of QM/MM is the treatment of the

boundary and the interaction between the subsystems, which is not straightforward

considering that the transition from a region described by classical phenomenolog-

ical potentials due to the combined effects of nuclei and electrons to a region where

electrons are described in detail is not smooth. Different embeddings can be used

to more or less accurately enforce the consistency between systems. To solve the

issue, it is also necessary to calibrate the QM/MM interaction potentials to repro-

duce the interaction between the subsystems. A more difficult problem appears

when the QM region is covalently bonded to the MM system, because chemical

bonds appear naturally in the QM solution, but in MM they need to be explicitly

defined. One usual solution in these cases is to cut the systems at some sigma bond
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and treat the boundary of the QM region by either adding frozen orbitals at the

bound MM atoms or terminating the QM system with a virtual ”dummy” (link)

atom or group that doesn’t significantly change the shape of the wavefunction in

the QM region.

2.2.3 QM/CMM

The QM/CMM method49 is a new multiscale method developed in our labo-

ratory, that expands the reach of the QM/MM methodology to include the interac-

tion with metallic nanoparticles and surfaces where plasmonic effects are not dom-

inant. The metallic part is modelled with the capacitance-polarizability method

of Jensen et al.50, in which the individual atoms are defined as having capacitance

and polarizability, and the interacting system is solved by computing the partial

charges and dipoles of every atom self-consistently. This level of description of

the metallic system lies somewhere between the QM models and the solution of

the macroscopic Maxwell equations, and is capable of accurately reproducing the

experimental polarizability of noble metal nanostructures. The rest of the system

is modelled using the traditional QM/MM approach, using DFT for the QM re-

gion, and a polarizable force field for the MM part. One obvious restriction of

this method is that chemical bonding between the metallic part and the other

subsystems is not allowed. The method is currently being tested and developed,

but initial application to the prediction of the optical properties of molecules ph-

ysisorbed on noble metal nanoparticles and surfaces are promising.

2.2.4 Effective core potentials

One of the fundamental observations in chemistry are the similar physical and

chemical properties of elements of the same group, which is the direct consequence

of the partial shielding of the nuclear charge from the filled inner electron shells

leaving somewhat similar effective potentials for the electrons in the outermost

valence shells, which are responsible of nearly all of the chemistry of an element.

Inner shells tend also to remain largely unaltered by the chemical environment of

the atom, and in heavier atoms contribute with many electrons and basis func-

tions to the system, significantly increasing the dimension of the problem and the

required computational cost to solve it. Pseudopotentials combine the nuclear

charge and the shielding effects of the core electrons into a single potential, elim-

inating the need of an explicit all-particle approach. Moreover, pseudopotentials

can include the relativistic effects of the innermost electrons, and can considerably

simplify the relativistic treatment of heavy elements or avoid it entirely. Pseu-
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dopotentials are modified from the true potential in such a way that they produce

atomic (pseudo)orbitals smooth and nodeless close to the nucleus, and coinciding

with the ”true” orbitals obtained from the full system when the radius is larger

than some distance.

2.2.5 Response theory

Many observable physical properties of a chemical system are due to its in-

teraction with the environment, and can therefore not be computed directly from

the ground state wavefunction or density. Some of these properties can be calcu-

lated from the time-dependent response functions of the system. In particular the

time-dependent response functions due to an oscillating electric field are useful to

predict the frequency-dependent polarizabilities and hyperpolarizabilities, as well

as the energy of excited states, their transition moments and many of their prop-

erties. Response theory is even more relevant for DFT, since it cannot, by design,

compute the density of states other than the ground state51.

The response theory formalism adds a time-dependent pertubation to the sys-

tem’s Hamiltonian, coupled adiabatically. The calculation of properties to different

levels is due to the expansion of the perturbation as linear superposition of fre-

quencies plus terms quadratic, cubic, etc. to generate the linear, quadratic, cubic,

etc. response functions.

2.3 Basis sets

The choice of an adequate basis set plays a key role in obtaining meaningful

results from a QC calculation. In principle, any complete basis set could be used

to compute a QC problem, but in practice only a few general types are commonly

used. The choice of some basis set is usually due to its flexibility for the problem

of interest, the cost of evaluating the necessary integrals, and other computational

limiting factors such as available memory, performance of the necessary algebra

subsystems, etc. The chosen basis set has to be able to describe the features of

the system that are important for the properties or behaviour we are interested in

studying. A poor choice of basis will result in meaningless data regardless of the

level of theory or quality of the method, since no amount of correlation can fix the

shape of the 1-particle orbitals.

Common basis sets in QC can be largely divided in what we will refer to as

”systematic” and atom-centered basis sets. The first kind are usually insensitive

to the chemical system of study and are uniquely defined by some resolution or
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cutoff parameters, and the shape of the box containing the system. Improving

the resolution provides a systematic way of converging towards the complete basis

set (hence the name). The second type is arguably the most popular in quantum

chemistry, and is characterized by the extensive parametrization required to have

a working basis set. Note however that this classification can be ambiguous in

some cases, and that the word ”systematic” used here is not to be taken literally.

Many different types of basis sets have been used throughtout the years in

quantum chemistry. Following is a summary of the most relevant.

2.3.1 Systematic basis sets

The main advantages of systematic basis sets are that molecular integrals

can often be solved analytically, and can be computed in advance before even

knowing any details about the system. Their main drawback is the high number

of functions needed to represent the system with good accuracy. This is in part due

to the difficulty of capturing the characteristic discontinuous shape of the orbitals

at the nuclei positions, and the overall behaviour after that. The core orbitals also

become more localized as the atomic charge increases, while other features such

as long-range decay of valence orbitals are mostly unaffected due to screening,

so more functions are needed to resolve all features. Increasing the number of

functions rapidly increases the memory and the computational cost of the algebra.

A usual approach is to eliminate the core shell electrons from the description and

the 1/r Coulomb potential of the nuclei and substituting them for some type of

pseudopotential. Pseudopotentials incorporate the effects of both the nucleus and

core electrons of the atom, and their shape is modified close to the atom center so

that the valence orbitals obtained from each pseudopotential are close to the true

orbitals away from the center, but remain smooth and nodeless close to the atom

core. This approach can reduce drastically the resolution of the basis set needed

to describe the chemistry of the system.

Plane waves

Plane waves are popular basis sets due to their unique properties. Plane waves

are the solution to the Schrödinger equation for the free-moving particle, and a set

is uniquely defined by some boundary box and an energy cutoff,

χk(r) = e−2πik·r (2.31)
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As advantages, plane waves offer one of the most systematic ways to extend

the accuracy of calculations, by just increasing the energy cutoff. They are or-

thonormal, which simplifies QC methods by removing orbital dependency of the

overlap matrix. Since the basis is always the same for a given (set) region, forces

can be computed by the direct application of the Hellman-Feynmann theorem52.

On the negative side, they can be one of the most ”wasteful” sets for many systems.

This is because of the irregular spacial distribution of the atoms of many chemical

systems, which leave regions of the bounding box practically empty of electron

density. Another problem with plane waves is that they invariably lead to dense

linear algebra, which despite the efficiency of modern algorithms, eventually does

not scale well with the dimension of the problem.

Spacial grids

A spacial grid basis set is composed of a set of points in space, which may or

may not be arranged in a periodic grid. A periodic grid basis is related to a plane

wave basis by a Fourier transform,

χA(r) = δ(r−A) (2.32)

The orbitals or densities are described by their numerical values at some given

points in space. Integration and derivation are usually carried out by implicitly

assuming an interpolating function spanning the point and its nearest neighbours

or is done analytically in Fourier space. The resolution considerations mentioned

above also apply to this case, so the grid should be dense enough to represent

the most contracted orbitals/region with largest density fluctuation. This makes

spacial grids an acceptable basis for representing the density in DFT, but a very

wasteful representation of orbitals, unless orbital localization of some kind is en-

forced. Some spacial grids incorporate some dependence with the shape of the

external potential, making them somewhat less ”systematic”.

Wavelets

Wavelets are functions used originally in data processing and multiresolution

analysis, but have in the last years received increasing interest in quantum chem-

istry. A wavelet can be any function with good localization both in space and

momentum, and a wavelet basis is easily contructed from the original wavelet by

applying translation and scaling transformations. There are countless wavelet ba-

sis sets, but Gaussian Plane Waves (GPW) also refered to as Morlet wavelets or
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Gabor wavelets in signal processing, have attracted most attention for use in quan-

tum chemistry. GPWs share most if not all the benefits of plane wave basis, but

their locality translates into sparser representations of the system,

χk(r) = e−2πik·re−α|r|
2

(2.33)

2.3.2 Atom-centered basis sets

Atom-centered basis sets stem from the LCAO approach to bond description

in chemistry, where bonds are approximated by a linear combination of the or-

bitals of the parent atoms53. The use of atom-centered basis sets complicates the

computation of matrix elements in many ways compared to systematic basis sets,

but they simultaneously lower significantly the dimension of the algebra problem,

usually showing fast numerical convergence with the addition of extra functions

to the ”exact” numerical solution obtained from a complete basis set. They are

constructed by optimizing beforehand a set of parameters for every shell and every

element; the total basis set used to compute a system is generated by a union of

elemental sets centered in every atomic nucleus.

The explicit dependence of the basis with the external potential generated by

the nuclei implies a-priori assumptions about the form of the solution and there-

fore also about the properties of the system, making the approach less ”systematic”

than the previously discussed examples. In polyatomic systems, shells centered in

neighbouring atoms are not orthogonal, and it is often preferrable to generate a

molecular basis set by orthogonalizing the atom-centered functions. The incom-

pleteness of the basis is in this case a problem that leads to a variety of unphysical

results if not addressed. Computation of inter- and intra- molecular interactions are

subject to Basis Set Superposition Error54 55, where the orbitals of every fragment

are artificially over-stabilized by the basis functions of the other in a distance-

dependent way, producing unreliable results for dissociacion energy curves unless

the basis is close to complete or some correction is applied56 57. Another case is

the computation of forces for ab-initio molecular dynamics or geometry optimiza-

tion, where the Hellman-Feynmann theorem52 does not hold if the basis set is

not kept constant in the process. A failure to compensate for this effect intro-

duces ”phantom” forces in the system, also known as Pulay forces58. Regarless of

the inconvenients, atom-centered basis sets are by far the most popular in quan-

tum chemistry; due to early adoption, there is an extensive amount of literature

dedicated to their optimization and their limitations. Atom-centered basis sets

also allow more compact representations of the molecular orbitals, and preserve
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the LCAO picture in the chemist’s mind, which becomes useful in many analysis.

Many efficient algorithms have been developed over the years, and their perfor-

mace has also been subject of extensive analysis and optimization. The majority

of basis sets employed in calculations of non-periodic systems are nowadays of the

GTO type.

STOs

Slater-type Orbitals were the first kind of basis functions used in quantum

chemistry. The analytic solution of the nonrelativistic hydrogenoid atom factors

into a radial and an angular component,

Ψnml(r) = Rnl(r)Y
m
l (θ, φ) (2.34)

The radial part Rnl(r) = Lnl(r)e
−α|r|/n is the product of a Laguerre polynomial

responsible for the nodal behaviour and an exponential rapidly decaying with the

separation to the center.

STOs can be used as a basis to construct N-particle wavefunctions of poly-

electronic atoms, giving reasonable results for optimized parameters. In STOs

the Laguerre polynomials are dropped in favour of a simpler rn factor, and the

exponents of each function are optimized to give the variational minimum. The

rationale behind changing the exponents comes from the idea of separating the

total wavefunction as a direct product of hydrogenoid-like wavefuctions, where the

densities of the other electrons partially ”shield” every orbital from the nuclear

charge by a constant factor everywhere,

χnml(r) = |r|nY m
l (θ, φ)e−α|r| (2.35)

STOs can also be used for calculations in molecules. This approach has been

traditionally limited to very few atoms, due to the difficulty of calculating multi-

center integrals over STOs. These integrals do not have in general closed analytic

solutions and require numerical quadrature methods for their evaluation, so even

the best available integral algorithms for STOs can be orders of magnitude less

efficient in polyatomic computations compared to other basis sets. The advantages

of STOs, are the proper behaviour at the cusp r = 0, which guarantees that the

divergence in the kinetic energy is exactly cancelled by the divergence of the po-

tential. They also show the expected exponential decay for long distances, which

is desirable to compute intermolecular interactions like van-der-Waals.
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GTOs

Boys pointed out that the difficulties of evaluating integrals over STOs in

molecules could be bypassed with the use of Gaussians. Gaussian functions have

many remarkable properties which allow much faster algorithms for integral eval-

uation, which will be discussed in more detail in the next chapter. Gaussians are

localized both in real and Fourier space, they are infinitely smooth and many in-

tegrals admit an analytic solution. However, they differ significantly from STOs

and do not satisfy the limits at r → 0 and r → ∞. These defects are solved in

part by using contracted Gaussian-Type Orbitals or GTOs. Contracted GTOs are

defined as a linear combination of Gaussians with different exponents - referred to

as ”primitives” -, multiplied by a common polynomial part,

χn(r) = Pn(r)
K∑

k

Dke
−αk|r|2 (2.36)

In GTOs, the contraction coefficients and the exponents of all Gaussians are

usually optimized simultaneously. Gaussians can fit any decaying radial function

with arbitrary precision as more primitives are used, and in the limit, STOs can

be exactly represented through the following integral transform:

e−α|r| =
α

2
√
π

∫ ∞

0

s−3/2e−(a2/4)s−1

e−s|r|
2

ds (2.37)

The earliest and simplest type of GTO basis is the STO-nG series59, where

the STOs optimized for single atoms are fitted (by minimal residues) by an n

primitive expansion. More recently developed GTO basis obtain the parameters

directly from the optimizing energies with repect to the parameters.

Polynomial part

The polynomial part in GTOs use either simple powers of the three spatial

coordinates (Cartesian GTOs or CGTOs) or solid spherical harmonics (Spherical

GTOs or SGTOs). Both approaches are equivalent for angular momentum less

than 2 (for s- and p- shells), but start diverging in number thereafter. Cartesian

GTOs come in sets of Tl+1 functions, with l the angular momentum and Tn =
1
2
n(n+ 1) the n-th triangular number,
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PC
n (r) = Nnx

nxynyznz (2.38)

nx + ny + nz = l (2.39)

whereas Spherical GTOs come in sets of 2l + 1 functions, corresponding to

the typical quamtum magnetic number of the hydrogenoid atom:

P S
lm(r) = Nlm|r|lY m

l (θ, φ) = NlmR
m
l (r) (2.40)

−l ≤ m ≤ l (2.41)

The extra functions in CGTOs can be linearly combined to form additional

sets of spherical harmonics of lower order. These extra functions have no corre-

spondence to the original STO basis, usually add little extra flexibility to the basis

(since other functions are used to treat the smaller angular momentums), and in-

crease the dimension of the linear algebra problems. Because of this, SGTOs are

usually preferred, and can be obtained by linear combination of CGTOs.

Minimal vs. split zeta basis

The basis constructed from the juxtaposition of the atomic orbitals of the

individual atoms is referred to as ”minimal” basis set. Minimal basis like the STO-

nG described above are considered nowadays to be too crude to describe even the

most basic molecular properties, chemical bonds and other features with acceptable

accuracy. One of the first approaches aimed at increasing the flexibility of the basis

in molecules was to use ”split-zeta” basis sets, popularized by Pople-type basis sets

such as 3-21G60. The main idea is to keep the minimal basis for the core electron

shells, which are usually quite insensitive to the chemical environment, and add

extra fuctions to the valence shell to improve the bond description in different

environments. Some Pople-style basis sets, still in use today, add the further

restriction of using the same primitives (with different contraction coefficients) for

the s and p shells of the same energy level. This design was the key to accelerate

the evaluation of 2-electron integrals in the Pople-Hehre algorithm61, as will be

later discussed in more detail.

Polarization and diffuse functions

A common practice is to add polarization shells to a basis set. Polarization

shells62 are functions with angular momentum higher than the highest occupied
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atomic orbital in the isolated atom. Polarization shells improve the description

of some higher-order features of the molecular orbitals due to effects other than

the inmediate chemical environment. Diffuse functions63 are functions with low

Gaussian exponent that add flexibility in describing the actual, slower decay of the

atomic and molecular orbitals (compared to regular GTOs), important in some

systems, like the previously mentioned intermolecular interactions.

Correlation-consistent basis sets

Many classic basis sets were obtained from HF energy optimizations, and

give good results for HF calculations. However, these parameters do not pro-

vide the best basis for correlated methods, which are more expensive to compute

and therefore need a basis with the best convergence possible to the basis set

limit. Correlation-consistent basis sets64 were developed to address this issue; the

parameters of correlation-consistent basis sets are optimized directly from mini-

mizing the atomic energy with some correlated calculation. Hylleraas65 was the

first to note in his analysis of the helium atom wavefunction that the expansion

in Slater determinants necessarily included orbitals of higher angular momentum.

Correlation-consistent basis sets also include extra shells for all the angular mo-

mentums of the atom and higher, to treat the Coulomb hole appearing at higher

levels of theory. The convergence of the wavefunction with increasing angular mo-

mentum is nevertheless slow unless the wavefunction ansatz is modified to make

explicit use of the interelectronic distance, like in the R12 and F12 approaches66 67,

or in many DFT functionals.

General contraction basis sets

General contraction basis sets were originally proposed by Rafenetti68 as a

systematic way to converge in accuracy to the basis set limit with every extra shell.

In this approach, all GTO shells of a given angular momentum are constructed

from a common set of primitives, as oposed to optimizing every shell separately.

The minimal basis set reproduces the energy of the atom computed with the full

set of primitives, and every extra shell correspond to virtual orbitals of the atom

increasing in energy.

χjlm(r) = NlmR
m
l (r)

K∑

k

Dj
ke
−αk|r|2 (2.42)
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This idea was expanded further by Almlöf and Taylor69 in their Atomic Nat-

ural Orbital (ANO) basis sets, naturally extending the method to correlation-

consistent basis sets with higher momentum components. ANO basis are obtained

from the natural orbitals (the basis diagonalizing the 1-reduced density matrix)

obtained from a correlated calculation of the atom, originally CISD. The atomic

wavefunction will converge towards the limit in the fastest possible way, with ev-

ery new function added to the basis. ANO-type basis sets are used in calculations

where very high accuracy is needed, so the primitive sets used are usually much

larger than in other basis sets with similar number of functions. This has tradi-

tionally limited their use, due to the bad scaling of integral algorithms with the

contraction degree of the basis.

Even tempered basis sets

The exponent optimization of the primitive Gaussians is a non-linear problem

which tends to be time-consuming, numerically-unstable, and grows fast with the

number of parameters. Even-tempered basis sets70 bypass these problems using

fixed geometric progressions of the primitive exponents αk = α0κ
k and optimizing

only the coefficients Dkj in the linear expansion. This is based on the observation

that optimized primitive exponents tend to approximately follow this trend, and

span the exponent space evenly. This approach is also more systematic, easier to

extend, and avoids potential bias. One computational advantage of using even-

tempered basis sets in QC calculations is the appearence of close-formula solutions

for the molecular integrals, with explicit dependence on the index of the primitives.

Some more sophisticated approaches, like the well-tempered basis set71, re-

place the geometric progression with a more complex recursive definition of the

exponents. However, even-tempered basis sets have been proven to span most

evenly the Hilbert space in the Coulomb metric72, a useful property in QC con-

sidering that the Coulomb metric is the metric of choice in Density Fitting73 and

other methods requiring the minimization of the energy error.

28



Chapter 3

Integrals in quantum chemistry

The computationally intensive core of a quantum chemistry calculation can

be divided between the linear algebra and the molecular integral evaluation.

The linear algebra typically consists of matrix-vector and matrix-matrix prod-

ucts, and matrix decompositions like singular value decompositions, diagonaliza-

tions, Cholesky factorizations and inversions. These operations are the building

blocks of many methods in science and engineering, and there is already a number

of libraries74 75 12 76 77 with efficient implementations of these basic routines, care-

fully tuned for performance by hardware vendors and research labs for all common

hardware architectures. There is in general little use in writing new implemen-

tations of any of these routines, as it makes the code less portable and almost

certainly worse-performing than the reference implementation. However, chosing

the appropriate linear algebra routine and using it correctly is not always easy,

given the variety of libraries, algorithms, sparse representations, preconditioners,

etc. for every linear algebra problem. The correct choice for the problem at hand

can have a huge impact in the elapsed wall-time of the calculation.

Some advanced methods (correlated methods, in particular), involve higher-

rank tensor operations for which standard libraries do not always exist, problems

may not always fit in memory, and/or the sparse patterns may be too intricate.

It might be necessary in some case to write the implementation of the required

algebra operations, although general approaches to the problem already exist78.

As usual, any knowledge about the structure of the problem that can be used to

improve the design is worth exploiting, and many well-known techniques used in

the optimization of rank-2 linear algebra problems (blocking, vectorization, etc.)

can also apply to higher-rank operations.

The most fundamental tensors in the calculation contain as elements the pro-

jections of the one- and two-electron operators in the given basis, more usually
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referred to as Molecular Integrals. The efficiency and maturity of the dense linear

algebra routines, coupled with the elevated computational cost of evaluating many

integrals, generally make integral evaluation the most time-consuming part in SCF

methods and some more advanced methods, even when the algebra has a worse

asymptotic scaling with the system size (O(N3) vs. O(N2)). Since the beginning

of quantum chemistry, a lot of efforts have been focused in finding faster integral

algorithms, whether analytic solutions or numerical approximations, appropriate

for the scale of the problems and the limitations of the available hardware at the

time. GTOs are the almost universal basis in such computations, but despite their

history and the efficiency of the integration and implementation techniques dis-

cussed below, integral evaluation is still the main bottleneck in many calculations.

3.1 Fundamentals of integral evaluation with GTOs

A set of standard cartesian Gaussian-type orbitals (CGTOs) is defined as a

sum of weighted Gaussian primitives times a simple monomial of the cartesian

coordinates:

φa(r,A) = Na(x− Ax)ax(y − Ay)ay(z − Az)az
K∑

k

Dke
−αk|r−A|2 (3.1)

A set of CGTOs is uniquely defined by its angular momentum L, and the

contraction coefficients Dk and Gaussian exponents αk of its primitives. The total

number of primitives K is referred to as its contraction degree. The values of

nλ are positive (or zero) integers, which add up to the angular momentum L.

Note that because nx + ny + nz = L is constant, the Gaussian expansion and the

polynomial part can be normalized separately. A shell of CGTOs can be expressed

in shorthand notation in its 〈bra| form as:

(a| =
K∑

k

Dk [ak| (3.2)

where a is the integer vector of the powers of its monomials, and (x| and [x| are the

contracted function and its uncontracted primitives, respectively. We can consider

a general contraction scheme, and express the functions in shorthand notation

with:
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(aj| =
K∑

k

Dj
k [ak| (3.3)

but in general the indices will be omitted for simplicity and only be used to resolve

otherwise ambiguous formulas.

Alternatively, it is possible to define a batch of spherical Gaussian-type or-

bitals (SGTOs) by substituting the polynomial part with a set of regular solid

harmonics of order L.

φml (r,A) = Rm
l (r−A)

K∑

k

Dke
−αk|r−A|2 (3.4)

Rm
l (r) =

√
4π

2l + 1
|r|lY m

l (r̂) (3.5)

The index m is bound as usual to the admissible values for spherical harmonics

−L ≤ m ≤ L. Like in the case of spherical harmonics, the complex solid harmonics

Rm
l and R−ml are often combined to give two purely real functions.

C
|m|
l (r) =

1

2
(R
|m|
l (r) +R

−|m|
l (r)) (3.6)

S
|m|
l (r) =

1

2i
(R
|m|
l (r)−R−|m|l (r)) (3.7)

The main advantage of GTOs over STOs or any other radial function is the

many existing analytic relations involving Gaussians that simplify integral evalu-

ation. As previously pointed out, it is possible to express STOs as a continuous

transform with a Gaussian kernel; after changing the integration order, it is pos-

sible to express any STO integral as a GTO integral, itself integrated over the

Gaussian exponents. This approach is practical for simpler integrals, but the final

integration steps in multi-center electron-repulsion integrals are not analytic even

with this approach. Using multidimensional quadrature techniques to evaluate

them is equivalent to expressing the STOs as a weighted sum of Gaussians in the

first place.

Following are some of the most important results, analytic identities and no-

tations useful in the evaluation of molecular integrals over GTOs.
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3.1.1 Gaussian product theorem

The Gaussian product theorem states that the product of two Gaussians cen-

tered around two different points in space is another Gaussian centered on a third

point, lying on the segment connecting the original points. Because Gaussian

functions in N-dimensions factor into a product of N 1-dimensional Gaussians,

this simplifies the handling of multicenter integrals considerably.

Specifically, the Gaussian product theorem for GTO primitives can be written

as:

e−α|r−A|
2

e−β|r−B|
2

= e−
αβ
η
|A−B|2e−η|r−P|

2

(3.8)

with:

η = α + β (3.9)

P =
αA + βB

η
= A− β

η
AB = B +

α

η
AB (3.10)

3.1.2 Cartesian polynomial translation

The polynomial part of each GTO needs also to be translated to the new

center P. This is acomplished either by direct expansion or by recurrence. The

direct expansion is a corollary of Newton’s binomial formula:

(xλ − Aλ)n = ((xλ − Pλ) + APλ)
n =

n∑

i=0

(
n

i

)
(xλ − Pλ)i(APλ)n−i (3.11)

Alternatively, the recurrence is more useful to derive algorithms:

(xλ −Aλ)n(xλ − Pλ)m = (xλ −Aλ)n−1(xλ − Pλ)m+1 +APλ(xλ −Aλ)n−1(xλ − Pλ)m
(3.12)

which is often expressed, in 〈bra| form the following way:

[(a + 1λ)p| = [a(p + 1λ)|+ APλ[ap| (3.13)
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where the appearence of two integer vectors implies the simultaneous expansion

of monomial powers around the two different centers. Any such translation affects

only the polynomial part of the CGTO batch, so it is irrelevant whether it is

applied primitive by primitive or to the contracted function. In fact, applying it

to the contracted function gives the well-known Horizontal Recurrence Relation,

introduced in the HGP algorithm79 as a particular case for two-electron integrals,

following an entirely different approach.

((a + 1λ)b| = (a(b + 1λ)|+ ABλ(ab| (3.14)

3.1.3 Hermite Gaussian functions

Hermite Gaussian functions are the eigenfunctions of the Fourier transform.

One of the most fundamental and remarkable properties of the Fourier transform

is the conversion of the x· operator in real space into the ∂ω operator in Fourier

space and vice-versa, simplifying the algebraic manipulation of many problems.

Evaluating batches of molecular integrals over different combinations of powers of

the cartesian axes can be similarly simplified with the use of Hermite Gaussian

functions.

While it is possible to express the product of two primitives GTOs as a new

Gaussian times a cartesian polynomial expansion, it is sometimes more convenient

to find an expansion in terms of the corresponding Hermite Gaussian functions,

defined as:

Hn(η, r−P) = (∂Px)
nx(∂Py)

ny(∂Pz)
nze−η|r−P|

2

(3.15)

Every successive application of a partial derivative increments the total de-

gree of the polynomial part by one. Any complete set of Hermite functions of

order up to nx + ny + nz ≤ n necessarily spans the same polynomial subspace as

the corresponding cartesian GTO shell products. The benefit of using Hermite

functions as intermediates in some derivations is that the solution to higher-order

integrals becomes straightforward; the only analytic solution required is for the

simplest case (that of zero-angular momentum), and the rest can be solved from

there by simple derivation. This was first noted by McMurchie and Davidson in

their landmark paper about integral evaluation80.

A CGTO with exponent η and vector powers e can be expanded in HGFs

(denoted by p) around the same center with the simple recurrence:
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[(e + 1λ)p| = pλ[e(p− 1λ)|+
1

2η
[e(p + 1λ)| (3.16)

which is a restatement of the classical recurrence relation for Hermite polynomials

of general exponent. A product of CGTOs with centers A and B (denoted by

ab) can be expanded in HGFs with center in P using any of the following two

equivalent recurrence relations:

[(a + 1λ)bp| = pλ[ab(p− 1λ)|+ APλ[abp|+
1

2η
[ab(p + 1λ)| (3.17)

[a(b + 1λ)p| = pλ[ab(p− 1λ)|+BPλ[abp|+
1

2η
[ab(p + 1λ)| (3.18)

named transfer equations by Gill, Head-Gordon and Pople.

3.1.4 Laplace transform of the Coulomb potential

The Coulom potential 1/r12 appearing in electron repulsion integrals and nu-

clear potential integrals among others has a pole at r12 = 0, and the form of such

integrals over Gaussian densities has no obvious immediate solution. Fortunately,

the Laplace transform of the potential brings a much more useful form:

1

|r2 − r1|
=

2√
π

∫ ∞

0

e−s
2|r2−r1|2ds (3.19)

Changing the integration order, integrating over the spacial coordinates first

and leaving the integration over s for last, greatly simplifies the solution of such

integrals. For instance, the integral:

V (η, ζ, ~P , ~Q) =

∫

V1

∫

V2

e−η|~r1−
~P |2e−ζ|~r2−

~Q|2

|r2 − r1|
d3~r1d

3~r2 (3.20)

between two Gaussian charges can be integrated over the volumes to

V (η, ζ, ~P , ~Q) =
2√
π
π3

∫ ∞

0

e
− ηζs2

ηζ+(η+ζ)s2
|PQ|

(ηζ + (η + ζ)s2)3/2
ds (3.21)
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Substituting t2 = s2/(θ + s2) with θ = ηζ
η+ζ

and simplifying some terms, we

arrive at:

V (η, ζ, ~P , ~Q) =
2π5/2

η3/2ζ3/2
Θ1/2F0

(
Θ|PQ|2

)
(3.22)

Fm(z) =

∫ 1

0

t2me−zt
2

dt (3.23)

Where the function Fm(z) is known as the Boys’ function or the chemists’

incomplete gamma function. An alternate, but ultimately equivalent formulation

to the one presented here for ERI algorithms is the Rys quadrature81. Its approach

is to construct an exact quadrature with weights and points w∗n and t∗n and directly

evaluate the integrals of the type

∫ 1

0

e−zt
2

P (t)dt =
∑

n

w∗nP (t∗n) (3.24)

The damped potential operator erf(ω|r12|)/|r12| or its complementary

erfc(ω|r12|)/|r12| are related to the regular Coulomb potential by a trivial modi-

fication of the integration limits of its Laplace transform.

3.1.5 Rotation of a solid harmonic expansion

Any rotation in 3D euclidean space can be uniquely determined by the axis

of rotation and an angle. General rotations can be also expressed in terms of

their three Euler angles (α, β, γ), which decompose the rotation matrix into three

simpler rotations around cartesian axes. Of the many possible choices for the axes,

the following is the most followed convention is quantum mechanics:

R(α, β, γ) = Rz(α)Ry(β)Rz(γ) (3.25)

The rotation of a set of spherical harmonics is represented by the Wigner

D-matrix:

Dj
m′m(α, β, γ) = 〈jm′|R(α, β, γ)|jm〉 = eim

′αdjm′m(β)e−imγ (3.26)
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with djm′m being the Wigner d-matrix.

The rotation of the spherical harmonic (l,m) around its z-axis amounts to

a linear combination of (l,m) and (l,−m). Because of this simplicity, the z-

axis is always the preferred axis for composing more complex rotations. To ro-

tate a complete spherical harmonics expansion, it is necessary to generate the

(2l + 1) × (2l + 1) rotation matrices, either implicitely or explicitely. Chosing

0,−1,+1,−2,+2, . . . ,−l,+l for the order of coefficients the matrix becomes 2× 2

block diagonal:

Zl(α) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 0

0 cos(α) sin(α) . . . 0 0

0 sin(−α) cos(α) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . cos(lα) sin(lα)

0 0 0 . . . sin(−lα) cos(lα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

To perform the next rotation around the (new) y-axis while preserving the

relative simplicity of the previous z-rotation, it is also necessary to introduce an

orthogonal matrix Jl known as the one corresponding to the (xyz)→ (yzx) index

permutation, or equivalently, its inverse J−1
l = JTl . The rotation around the y-axis

becomes simply:

Yl(β) = JTl Zl(β)JlJ
m′m
l = 〈lm′|Pyzx|lm〉 (3.27)

The last step is another rotation around the (new) z-axis. The total rotation

of the expansion can be expressed as the product of five matrices82:

Rl(α, β, γ) = Zl(α)JTl Zl(β)JlZl(γ) (3.28)

The first (rightmost) rotation moves the axis zR until it is made coplanar with

the xz− plane. The second, moves zR and makes it colinear with the z’-axis. The

final rotation makes the axes x′′ and y′′ coincide with xR and yR.

Any cartesian rotation has a constant O(1) computational cost, so the total

cost of such rotations is O(L) or O(L2), depending on whether the expansion

includes only one shell of angular momentum or all angular momentums up to L.

The cost of transforming the cartesian axes is that of a dense matrix-vector product
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(albeit many of the entries are zero), and therefore the total cost of rotating the

expansion is O(L2) or O(L3), respectively. If the axis of rotation zR is known in

advance, but not the angle, it is possible to precompute the first four steps and

perform the last O(L)/O(L2) rotation once the angle is known.

3.1.6 Translation of a solid harmonic expansion

The translation theorem of solid harmonics gives a closed formula for the

translation of a 3D polynomial expressed as an expansion of regular solid harmon-

ics82.

Rm
l (r + a) =

l∑

λ=0

λ∑

µ=−λ
Cm,µ
l,λ Rµ

λ(r)Rm−µ
l−λ (a) (3.29)

with the expansion coefficients defined by:

Cm,µ
l,λ =

(
l +m

λ+ µ

)1/2(
l −m
λ− µ

)1/2

(3.30)

Notice that translations involving only the z-component simplify the calcula-

tion of the above expression from O(L4) to O(L3).

Rm
l (r + aez) =

l−|m|∑

λ=0

Cm,0
l,λ a

λRm
l−λ(r) (3.31)

The better scaling of the second expansion makes it the method of choice in

algorithms using extensive multipole expansions, as pointed by Greengard in83.

To use the second method, the general translation has to be decomposed into a

O(L3) rotation of multipole expansion to make its z-axis coincide with the transla-

tion vector, followed by the O(L3) translation along the z-axis, and a final O(L3)

rotation recovering the original orientation.

3.2 Screening

Screening methods are fundamental to achieve high performance in direct SCF

methods. One fundamental observation is that the integrals over GTO products

decay faster-than-exponentially with increasing separation of the centers. From

the Gaussian product rule, it is clear that the higher the exponent of a primitive

Gaussian (sharper/more localized function), the faster the products with primitives
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CHAPTER 3. INTEGRALS IN QUANTUM CHEMISTRY

from other centers decay with distance and the sooner they become negligible.

For large enough molecules, it is possible to discard a majority of GTO pairs

on this basis alone. Even amongst surviving pairs, and since GTOs may and

usually do contain primitives with exponents spanning several orders of magnitude,

it is also beneficial performance-wise to test every primitive product of the pair

and discard those below some threshold. This procedure reduces the effective

contraction degree of the shell pairs, which is direcly related to the evaluation cost

of its integrals. For most practical purposes, it is possible to discard the primitive

pair using:

e−
αβ
α+β
|AB|2 < τ (3.32)

or

|AB|2 > − log(τ)(α−1 + β−1) (3.33)

with typical values of τ ∼ 10−20. This threshold is not mathematically rigorous,

considering that it omits the value of the contraction coefficients and the extent

of the Gaussian density associated to the primitive product. However, even if the

error due to it was of a few orders of magnitude, the cutoff distance would not be

altered by more than a few percent of the theoretically correct distance. In practice,

interatomic distances in a molecule tend to cluster around some particular values

more than being spread in a continuum, and it is hard to imagine a situation where

a few percent over or under some distance might create any significant numerical

error.

Another useful screening method for discarding whole batches of integrals is

based on the Cauchy-Schwarz inequality. It usually takes the form:

〈a|Ô|b〉2 ≤ 〈a|Ô|a〉〈b|Ô|b〉 (3.34)

where the operator Ô can be viewed as a metric of an inner product space, and

is therefore required to be symmetric positive definite. The Cauchy-Schwarz in-

equality is rather general; it applies from vector products and Frobenius norms to

convolutions and integrals over L2 complex functions.

3.3 Efficient evaluation of molecular integrals

The resurgence of vector-capable hardware, the complex cache hierarchies and

the adoption of radically different special-purpose architectures, combined with the
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evolution of integral algorithms requires a careful re-assessment of the traditional

methods for integral evaluation. The rest of the chapter will introduce a few

general key concepts used in the implementation of the integral codes presented in

this thesis.

3.3.1 Elementary Basis Set

Contemporary hardware is ideally suited for integral batch processing designs

based on Elementary Basis Sets and other related ideas. EBS is a way of classifying

and packing the necessary integrals that has been described in several papers84 85 86

under different names, or without any explicit name. The name employed in this

work is derived from the term Elementary Basis Algorithm, which was introduced

in the first paper84 explicitely describing the idea.

The elementary basis set is the generic set of atom-centered basis functions

defined for a given element in a calculation, not to be confused with the basis

set itself, which is the set of all the functions in the system used to represent the

wavefunction. The same way all atoms in the system are instances of some element,

every basis function or shell in the system is an instance of some elementary basis

function (or shell). This distinction is quite relevant to the implementation of the

integral codes for the following reasons:

• A majority of simulations contain no more than a few different elements.

It is rare for chemical systems (or at least the useful ones) to be composed

by more than 5 or 6 elements. With very few exceptions, the norm in QC

computations is to assign the same elementary basis to all atoms of the same

element.

• Molecular integrals involving the same set of elementary shells share the same

angular momenta, contraction degree, general contraction degree, weights,

exponents, etc. Computing the integrals of the same EBS tuple together

expose all the potential data-level parallelism amongst integrals. Many in-

termediate constants can be computed fewer times because they are reused

for all the integrals computed in the same block. The same batch screen-

ing bounds and primitive screening methods are also applicable to all the

integrals in the block.

• Vector and stream computing perform best when the data is accessed in

regular patterns, and when the branch followed by the control instructions

has a pattern that can be correctly predicted by the CPU, or in the case of

GPUs, when all threads in a warp execute the same path.
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The EBS approach is used together with the integral geometry classification

described next.

3.3.2 Integral Geometry and Rotations

The geometry of an integral refers to the degeneracy of the centers that appear

in the integral. QM/CMM and ECP integrals involve up to three centers, and their

different possible geometries are, up to symmetry, (AA|A), (AA|B), (AB|B) and

(AB|C). ERIs can involve up to four centers, and can be classified into seven

geometries: (AA|AA), (AA|AD), (AB|AB), (AA|BB), (AA|CD), (AB|AD) and

(AB|CD). The algorithms presented here use the non-degenerate centers from the

3- and 4-center geometries to define a frame of reference in which several geometric

parameters vanish, simplifying both the algebraic manipulation and the number

of FLOPs necessary to evaluate them. The resulting integrals must be rotated to

the lab frame of reference where the molecule is defined.

The classification of integrals according to their geometry is necessary to avoid

numerical errors in the rotation matrices of degenerate geometries, and also because

degenerate geometries can use simpler and faster versions of the integral routines.

Having more than one function from one atom, same-center GTO products might

have product densities and integrals many times larger than the average case. They

are also likely to contribute to the block-diagonal of the tensor, where numerical

errors propagate faster to other parts of the code.

In conclusion, classifying by EBS tuple and geometry accelerates integral eval-

uation and minimizes numerical errors.

3.3.3 Cache Line Vectorization

Cache Line Vectorization consists in packing (shuffling) the data correspond-

ing to the variables of different integrals in the usual vector form, but using the

number of elements that fits in exactly one line of L1/L2/L3 cache (x86: 64bytes)

instead of matching the length of the processor’s vector unit (SSE2: 16 bytes /

AVX: 32 bytes) as it is commonly done. There are multiple benefits to this design:

• The data loaded in any line of cache is either all useful or all evictable. This

reduces data fragmentation in the cache to practically zero.

• It simplifies design by collapsing one level of variable granularity (it depends

on the vector instruction set) unto another that’s nearly constant in all hard-

ware implementations. With data being aligned to cache boundaries and
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packed, there cannot be contention between processors for one line of cache.

Vectors are automatically aligned to the most effective offset for loading and

storing.

• Close to peak ALU utilization. Contemporary x86 vector ALUs have a la-

tency of 4 cycles and throughtput of 1 cycle for ADD, MUL and FMA.

Processing some operation on all the data in the cache line sequentially (one

vector after another) guarantees that the SSE vector ALU will recieve new

data every cycle, and that there are no chain dependencies between the data

wasting CPU cycles (64 bytes = 4 * 2 doubles/SSE * 8 bytes/double). Rou-

tines with a high CCR and enough cache to store the required data achieve

nearly peak FLOP performance with SSE2. AVX-capable processors con-

sume twice as much data per cycle (32 bytes = 4 doubles * 8 bytes/double),

while the cache line is unchanged, which can only guarantee half the occu-

pation, although it is possible to regain full occupation in Intel processors by

using two threads per core with Hyperthreading (at the cost of sharing the

cache). This solution lies somewhere between the SSE2 vectorization and

how the Intel MIC works. The Intel MIC supports the AVX-512 instruc-

tion set, which can initiate a vector operation per cycle using all 64 bytes

(8 doubles). However, each physical core is concurrently executing up to 4

threads, which continuously feed the ALU, and effectively hide the latency.

For CUDA GPUs, the data is packed in blocks of at least 32 elements in-

stead, which corresponds to the size of a CUDA warp, as well as 32x8=256

bytes being the alignment of the GPU memory banks. Many kernels need at

least twice to four times the number of threads per core to avoid starvation.

3.3.4 Automated code generation

Maximizing the performance of numerical software involves at some point ag-

gressive code optimization of the innermost routines. Integral routines are ideally

suited for some of these techniques: they involve multiple functions potentially

spanning many combinations of angular momenta, but at the same time these

values are low enough so that propagating their value at compile-time could cause

big code simplifications. Furthermore, the state-of-the-art algorithms for GTO

integrals introduced and referenced in this work involve for the most part convo-

luted recurrence relations with irregular memory access patterns. Integral routines

capable of treating general cases cannot be efficient for any particular case.

If the program needs relatvely few calls to the integral routine, the potential

increase in complexity may not be justified by an unnoticeable gain in performance,
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but if the call originates in one of the innermost loops, the difference in performance

can be dramatic and such complexity may be more than justified.

When the parameter space of some of the input variables is relatively small

with boundaries known in advance, the routine should be specialized for at least the

most common cases. Automating this procedure (rather than doing it manually)

is the best strategy to avoid hard to dectect errors and maintainance issues. The

simplest cases can be handled by the compiler with function and class templates,

or equivalent. The pointers to the specialized routines can be stored in an array,

from where the appropriate specialization is retrieved for every call to the function.

Integral routines tend to benefit considerably from these techniques. Unrolled

or specialized routines further expose a number of potential optimizations to the

compiler such as constant folding and common subexpression elimination, fewer

to no control structures improve the speed of small routines by avoiding potential

branch mispredictions in the processor’s pipeline, and a more compact code that

fits better in the L1 instruction cache.

More complex cases require code generation to some degree, because compilers

tend to perform rather poorly at generating code from complex recursive definitions

(when they do not crash). There are also a practical limitations to the number

of lines of code a compiler can handle. There are two solutions to this issue: to

directly generate assembly/machine code or to use bytecode. Generating assembly

is not difficult in itself, and unrolled intensive numerical code is expected to run

at about the same speed regardless of whether it is optimized by the compiler or

not. In case of stalling, the Out-of-Order execution will reorder the microop queue

if necessary to deal with the instructions required for the control of the program

flow in advance. The problem with assembly/machine code is that the length of

machine x86 vector instructions, times the number of FLOPs per formula, times the

number of vectors per cacheline likely exceeds the size of the L1 instruction cache,

which has to compete with the routine’s data for L2 cache space and bandwidth.

The bytecode, on the other hand, can be made more compact than machine code,

while only requiring a minimal interpreter code to execute it.
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Chapter 4

Evaluation of 2-electron repulsion integrals

2-electron repulsion integrals (ERIs) are the most computationally demand-

ing type of molecular integral commonly used in quantum chemistry simulations.

The search for efficient ERI evaluation schemes has guided the evolution of basis

sets61 87 and QC codes alike88. ERIs are typically evaluated in batches of all the

possible combinations of angular momenta of the four shells participating in the

batch. This accelerates their evaluation due to the many common intermediate

variables. Over the years, many algorithms have been developed to evaluate ERIs

efficiently, either for particular special cases or as general approaches. However,

every analytic solution requires in one way or another some summation over all

four contraction indices KA, KB, KC , KD, which make high-quality basis sets with

high contraction degrees prohibitively expensive in many cases.

(ab|cd) =

KA∑

i

KB∑

j

KC∑

k

KD∑

l

DiDjDkDl [aibj|r−1
12 ||ckdl] (4.1)

After the publication of the first algorithms able to treat general cases81 80 89, a

series of efforts initially lead by John A. Pople, Martin Head-Gordon and P.M.W.,

Gill focused on the developement of faster algorithms for treating high degrees

of contraction that outperform the näıve method of accumulating the integrals

inside the summation loops. Their investigations culminated in two related general

algorithms with much lower prefactors for the asymptotic O(K4) scaling, namely

the PRISM90 and BRAKET91 algorithms. These and other fast algorithms based

on similar ideas are nowadays referred as ”early contraction algorithms”, and lie

at the core of many QC codes. Although their lower asymptotic prefactor made

certain basis sets with higher contraction degrees more popular, the use of general

contraction and other higher-quality basis sets remain still today a relative rarity
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due to their high cost of evaluation. One of the main issues of early contraction

algorithms is that they tend to have a high constant computational cost, i.e. a

computational penalization for integrals of relatively low contraction degree. This

forces in many instances the inclusion of multiple algorithms optimized for different

types of ERI, complicating the design of the ERI evaluation module.

Except for some notable exceptions92, the focus in development ERI algo-

rithms has nowadays shifted torwards finding new better approximations93 or al-

ternative ways to bypass their computation in practical calculations. Some of these

alternatives deliver high performance with good typical errors, acceptable within

the application. However, the complete ERI batches are still needed in many cal-

culations of higher precision, such as some correlated computations, where every

potential source of numerical error needs to be either well-bounded or eliminated.

4.1 New ERI algorithms

The K4+MIRROR algorithm is a new ERI algorithm developed and pre-

sented fit the first time in this thesis, designed for high contraction degrees. It

works in two major steps: the K4 contraction of ERI kernels and the MIRROR

transformations. The first step performs the contraction of the kernels maximally

exploiting the quadruple nested loop structure to avoid unnecessary computations;

it has a complexity of O(K4JL2) for the general four-center case. The MIRROR

(Mixed and Interleaved Recurrence Relations Over Rotated axes) steps are carried

out outside the loops, and make effective use of frame rotations and some modified

recurrence relations to keep the FLOP count down to a minimum; its complexity

is O(J4L8), which contrary to most other early contraction algorithms, is usually

low enough to treat low contractions at a negligible extra cost. Its details are

discussed in the first paper.

The number of FLOPs in the K4 contraction step can be further reduced by

applying the CDR/AERR recurrence relations, discussed in the last paper. Their

use reduce the complexity of the innermost loop to O(K4JL). In the (typical) case

of spherical GTOs, it is also possible to skip the accumulation of several kernels,

as well as to simplify or eliminate a few recurrence relations involving them later

on.

The choice in the order of application of the MIRROR recurrence relations

as well as the particular application of the CDR/AERR inside the K4 contraction

loops are based purely on heuristics. Both happen to work reasonably well for all

tested cases. This is not to say that they are the optimal application of the RRs for

any case. Other RR block orders sometimes produce slightly lower FLOP counts,
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especially for low angular momentum routines. In particular, it is quite possible

that mixing RRs from different blocks might produce better FLOP counts. The

form of the CDR and 1-center RR are also strongly indicative that it is possible to

combine both recurrences and reduce the cost of the contracted CDR + MIRROR

steps.

The asymptotic complexity of contraction can be further reduced down to

O(K4Jlog(L)) for a particular case of even-tempered basis sets, but the more

difficult implementation and the relative low values of L are likely to render the

algorithm useless for practical purposes.

4.2 Implementation

The K4+MIRROR algorithm has been implemented in the Quimera library

(a Query-based unified interface for managing electron repulsion algorithms) and

optimized for both x86 and NVIDIA Fermi architectures. The latter is still in an

earlier stage of development.

4.2.1 Steps of evaluation

In the COLD PRISM94 nomenclature, the computation of integrals is divided

in four steps: the O- step is the computation of the Boys’ function and generation

of 1-center integrals; the C-step is the contraction of 1-center integrals to ERI

kernels (CDR/K4 step in the algorithm); the L-step is the transformation of ERI

kernels to the ERI batches (MIRROR transformations); the final D- step is the

digestion (use) of the integrals, not discussed in the current chapter. To make the

best possible use of instruction caches and expose regularity, ERIs are processed

in blocks, and every step is performed on the totality of the block before starting

the next one. Between steps, a memory buffer is used to store the intermediate

values.

4.2.2 Automatic code generation

The recurrence relations of the CDR/K4+MIRROR show little regularity in

their memory accesses, which due to the many possible combinations of angular

momenta would make an efficient general implementation hopeless. Instead, the

recurrence relations and intermediate integrals necessary for solving each individual

case of angular momenta and geometry are backtracked by the code generator.

Once the dependency graph is generated, a simple procedure carries out some

45



CHAPTER 4. EVALUATION OF 2-ELECTRON REPULSION INTEGRALS

basic simplifications like eliminating identities or propagation of zeros. Because

the memory is managed entirely by the code generator, it is important to minimize

the number of simultaneously alive intermediate variables during the MIRROR

step. One basic heuristic in this process is to group the recurrence relations in

blocks according to their invariant indices (the indices not directly participating in

the recurrence relation), which helps reduce the number of intermediate variables

staying alive95.

Once the evaluation order is generated, there are two alternative modes of

execution. The generator can write a source with the optimized code for the specific

routine, which can later be compiled and linked to the library. Alternatively, it

can generate a compact bytecode and store it to a file. The bytecode files are

read when the library is initialized and stored in memory, and the bytecode is

interpreted whenever that specific routine is called.

VILIC

VILIC (Variable Instruction Lenght Interpreted Code) is a bytecode format

used by Quimera to store and interpret the contraction step K4 or CDR/K4 of

ERI routines, defined by a list of kernel contractions and recurrence relations.

Each instruction starts with the address of the destination to be updated, followed

by a variable number of sources and optionally ending with some integer. The

variable length of the bytecode is due to the very different nature of the frequently

accessed contractions (using 2 addresses + 1 integer) and AERR (3 addresses) on

one side and the much less frequently used CDR recurrences, which vary from 3

to 9 addresses. Using the minimal length for every instruction helps minimize the

memory footprint and minimize contention over cache utilization, since the cache

is being simultaneously used to store intermediate integrals.

The recurrence relations of the MIRROR transformations are performed in

blocks of the same basic kind, executed sequentially. Every individual RR starts

with the destination address (relative to the position 0 of the buffer used), followed

by the addresses of the more operands, and depeding on the class or RR, ending

with the auxilliary integer.

No loss of performance is observed from the extra processing needed to com-

pute addresses. The computation of addresses, bookkeeping of IC pointer and

format conversion are probably overlapped in the CPU with the FLOP intensive

job.
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4.2.3 Optimization for x86

O-step

The Boys’ function is computed inside a quadruple-nested loop over the prim-

itives. Two quantities are computed: the value of the incomplete gamma of the

total angular momentum and an exponential. The rest of the values can be com-

puted from those by recurrence. The x86 implementation of the Boys’ function

uses a lookup table with derivatives for the short-range part and an inverse square-

root followed by several FLOPs for the long-range part. The short-range calls are

computed using a four-term Taylor expansion around the closest tabulated point.

The table range is from 0 to 32, with 32 divisions per unit; it requires four doubles

per point (the value + 3 derivatives), totalling 32Kb of memory. The exponential

is computed from another Taylor expansion, which reuses the computed powers.

Fm(z∗ + ∆z) ' Fm(z∗) + ∆zFm+1(z∗) +
(∆z)2

2
Fm+2(z∗) +

(∆z)3

6
Fm+3(z∗) (4.2)

e−(z∗+∆z) = e−z
∗
e−∆z ' e−z

∗

(
1 + ∆z +

(∆z)2

2
+

(∆z)3

6

)
(4.3)

To help reduce the memory needed for buffering beetween the routine com-

puting the Boys’ function and the K4 contraction, only the highest needed Fm(z)

is contracted with the usual weight and stored, along with the exponential used in

the recursion:

[mijkl] =
21/2π5/2

η
3/2
ij ζ

3/2
kl

e
−αiβj

ηij
|AB|2

e
− γkδl

ζkl
|CD|2

(2θijkl)
m+1/2 Fm(θijkl|Pij −Qkl|2) (4.4)

[(m− 1)ijkl] =
21/2π5/2

η
3/2
ij ζ

3/2
kl

e
−αiβj

ηij
|AB|2

e
− γkδl

ζkl
|CD|2

(2θijkl)
m−1/2 e−θijkl|Pij−Qkl|

2

(4.5)

the rest of the one-center integrals are computed by downward recursion in the K4

contraction routine.

[mijkl] =
1

2m+ 1

(
|PQ|2[(m+ 1)ijkl] + [mijkl]

)
(4.6)

With the CDR/AERR recurrence relations, these integrals are used directly.
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4.2.4 C and L steps

Perhaps surprisingly, the use of interpreted code is faster than compiled code

for many cases, and both can reach up to 50% of peak performance in modern

x86 CPUs, for relatively low total angular momentum. This is fundamentally due

to the rational use of the CPU cache combined with the high instruction-level

parallelism of the CPU, which is able to simultaneously execute the vector floating

point arithmetic and compute the addresses of the following instructions. For high

total angular momentum, bytecode is the only option, as the generated sources

can contain up to millions of lines of code.

The implementation uses the L1/L2 cache basically as a vector file where old

variables are being overwritten by new ones. The generator attempts to create

a topological sort (instruction order) such that intermediate variables are used

as soon as possible to free the memory for other variables. The destination in

memory of a recently computed variable can be chosen to minimize the chance of

the destination having been spilled from the cache since its last use, according to

some model of cache eviction policy.

4.2.5 Optimization for CUDA

Several modifications over the basic implementation show substantial improve-

ment in the CUDA architecture. The most notable ones relate to the evaluation of

the Boys’ function Fm(z), using redundant computations to save bandwidth and/or

avoid random memory accesses, and using the constant memory to accelerate some

computations.

OC-step

To avoid unnecessary memory use and GPU bandwidth, the computation of

the Boys’ function and the K4 contraction are merged into a single OC kernel in

the GPU implementation.

The GPU code uses the hardware implementation of the exponential, as it is

optimized. The lookup table used for the CPU implementation could fit in the

GPU’s 64Kb of available constant memory, but it would exceed the only 8Kb of

cached constant memory per multiprocessor. Moreover, different threads within

a warp are almost certain to use different (albeit close) values from the table,

which would force most accesses to constant memory to be serialized, impacting

performance. In this design, the tables would need to be reloaded before every OC
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kernel call, because the total angular momentum might differ from one call to the

next.

Instead, the CUDA version substitutes the Taylor expansion with a Cheby-

shev expansion, where the order and number of tabulated points of the table have

been simultaneously optimized to minimize memory while keeping the maximum

numerical error under 10−15. An 8-th order expansion with a total of 64 points suf-

fices, giving a total size of 4Kb per table. Such design uses more FLOPs than the

CPU code, but has many advantages. First, it allows up to 16 tables in constant

memory, enough to store the tables needed for up to (ff |ff) angular momentum,

avoiding the costly movement of small data. Second, it allows two complete tables

to reside simultaneously in the constant cache, without spilling data during the

kernel execution. Finally, dividing the range in 64 intervals increases the likeli-

hood of multiple threads accessing the same values, reducing serial access. All of

the above also permits the concurrent execution of the CUDA kernel by multiple

streams with different L.

The values of e−
αβ
η
|AB|2 and e−

γδ
ζ
|CD|2 are recomputed when needed. The

problem with storing these values in memory is not in this case the saturation of

memory bandwidth, but the irregularity of the memory access patterns required.

The screening of primitive integrals is computed directly in the K4 loops, at the

cost of few FLOPs. To achieve high performance in screening, the ERI batches

need to be packed in any case, since the warps’ ability to handle divergent execution

is limited, and is done by executing in serial all paths.

Before every call to the OC-kernel, all the batch-independent constant data

required is computed by an initialization function, and placed in the device’s mem-

ory. It includes contraction coefficients, powers of Gaussian exponents, θijkl , con-

stants used in primitive screening, etc. Since all threads in the block use the same

constants at a given time, these values can be loaded from the device memory with

the optimized LDU (load uniform) instruction.

L-step

The MIRROR transformations tend to have a high computation-to-communication

ratio (O(L8)/O(L4)), and are ideally suited for GPU processing, assuming there’s

enough local memory to store the intermediate results. Benchmarks done with up

to d-functions (L = 8) show a negligible time spent in this step compared to the

rest of steps of the computation.
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Chapter 5

Evaluation of Coulomb and Exchange matrix elements

The Self-Consistent Field (SCF) methods previously discussed - Hartree-Fock

and (hybrid) DFT - are the core of a majority of quantum chemical programs. The

computation of the Coulomb and Exchange matrices is the principal bottleneck of

SCF methods, response theory and some correlated methods, in particular those

based on local schemes, density fitting or resoluton of identity. Due to the scale

of many chemical problems and the widespread use of parallel machines, it is

nowadays not only crucial to achieve high efficiency per-CPU core, but also to find

strongly scalable solutions capable of utilizing multicore processors and multinode

clusters.

In its most basic form, the computation of Coulomb and exchange matrices

can be expressed as the contraction between a rank-4 tensor and a rank-2 tensor.

Tensor contractions and products are considered ”embarrasingly parallel” tasks,

because most operations can be divided almost perfectly amongst any number of

independent tasks (reasonable for the dimensions of the problem) and only required

minimal communication at the very end, when the final reduction across nodes is

performed.

Jij =

N,N∑

k,l

ρkl (ij|kl) (5.1)

Xik =

N,N∑

j,l

ρjk (ij|kl) (5.2)

In this sense, every contraction of a (rank-2) sub-block of the input den-

sity matrix D with a (rank-4) ERI batch is also independent of any other. The

computation-to-communication ratio is very favorable in general because both in-
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put and output matrices are of size O(N2), while computation is O(N4). Even

for large systems where typical integral screening discards nearly all but O(N2)

integrals, the prefactor hidden in the Big-O notation is large enough to hide com-

munication costs.

In practice, however, good scaling is not so simple to achieve due to a num-

ber of factors, which can be roughly classified into algorithmic-related, hardware-

related and problem-related. The algorithmic factors are due to the advances in

the performance of state-of-the-art SCF algorithms, which tend inevitably to trade

better theoretical performance for increased software complexity, making the per-

formance problem more difficult. The hardware-related factors are those due to

the advances in hardware architectures, accelerator cards, node-to-node communi-

cation, etc., which similar to the algorithmic category end up trading performance

for programming simplicity. The last category encompasses everything related to

the potential diversity of the spectrum of inputs, like the basis set and elements

used in the calculation and the spatial distribution of atoms. For instance, find-

ing an appropriate load balancing of the work for heterogeneous chemical systems

such as metalloproteins or surface-adsorbed molecules, deciding sensible atom ref-

erences for a z-matrix representation or reordering the atoms to achieve bandwidth

minimization in sparse matrices.

5.1 Modern methods for Coulomb and Exchange formation

Many of the issues mentioned can indirecly affect other aspects of the code.

Attempts to address all problems simultaneously result in design constraints inter-

acting at different levels of the software design, some of which require some degree

of compromise. However there are a few very relevant factors which impact the

design at the largest possible scale and have to be considered before other more

fine-grained details. The following considerations are central to modern hardware

and SCF methods:

5.1.1 Direct methods

Because of the large number of basis functions, the number of ERIs in many

problems exceed available memory and even disk space. Modern SCF methods96

recompute, use and discard the Coulomb and Exchange matrices required at every

SCF step. Due to the cost of ERI evaluation, this approach is almost invariably

associated with integral screening methods or some more advanced technique. A

useful alternative that has found its way up to correlated methods is to perform
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an incomplete Cholesky factorization of the ERI matrix, computing only enough

Cholesky vectors to approximate the matrix within some predefined accuracy. The

procedure can be carried out even with limited memory, storing the vectors to

disk, because the Cholesky factorization algorithm only uses a subblock of the

ERI matrix at any time, which can be computed as required.

5.1.2 Screening

It is common procedure to use techniques to ”screen” negligible ERIs and skip

their computation entirely, usually by means of the Cauchy-Schwarz inequality28.

This form of screening discards a significant amount of ERIs which would con-

tribute to the final matrices below some predefined threshold. In direct SCF, the

original inequality is usually extended to also take into account the magnitude

of the elements in the density matrix subblocks. Other screening methods in-

clude distance-dependent estimates97, in cases where distances in the molecule are

considerable, but especially for screening contributions in canonical perturbation

theory, which involve products of ERIs, and decay with distance becomes more

relevant. These techniques on the other hand make the problem relatively sparse

(irregular), and can no longer be split in equal-sized tasks with the same ease.

In some cases, the so-called differential density ∆D(n) = D(n) − D(n−1) (the

difference between density matrices of two consecutive iterations) is used instead of

the full density matrix and the differential Fock operator obtained from it is added

to previous operator. This approach, together with screening methods, has the

advantage of further skipping many more ERI evaluations during the final cycles

of the procedure, due to the presence of nearly-converged orbitals (typically core

and other low-energy orbitals).

5.1.3 Convergence acceleration

There are several methods typically used in SCF calculations to accelerate

the converge to the solution and decrease the number of iterations and overall

computation. They also tend to stabilize the SCF procedure and increase the

radius of convergence, which can otherwise be problematic in some systems. The

immediate way to do it is to generate the best possible initial guess for the density

matrix, typically based on a semiempirical method or some previous calculation.

The most widespread techniques used during the iterative procedure consist

in extrapolating the density guesses for the next iteration. The Direct Inversion

of Iterated Subspaces (DIIS)98 keeps track of the last Fock and density matrices
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to generate a linear combination for the next iteration that minimizes the error

residual. EIIS99 is a similar approach that does the same for the energy, but its

use is limited to a certain radius of convergence. Even with these techniques, con-

vergence is not guaranteed. Shifting energy levels may sometimes be necessary to

avoid non-converging oscillatory solutions, which usually occur when the LUMO

and the HOMO are so close in energy that small perturbations change their or-

dering. The Optimal Damping Algorithm (ODA)100 is a technique using implicit

shifts in the Fock matrix generated by linear combinations of previous results, and

can enforce absolute convergence to the solution.

Some other methods use approximations that reduce the computational com-

plexity during the initial steps. A common family of approaches divide a large

system into several subsystems or fragments, solve each one independently, and

piece the solutions together101 102. Another method suggested by Adamson and

coworkers103 is to replace the long-range |1/r12| operator with the short-range

CASE operator erfc(ω|r12|)/|r12|, an aproach that can be used for the first cy-

cles of a SCF calculation, or even start with an initial ω (more local interaction)

and decrease its value every cycle until ω = 0, which recovers the original |1/r12|
operator. The nuclear-electronic potential has to be modified accordingly, and

computed every time the value of ω is modified. Both methodologies can reduce

the number of ERIs necessary from O(N2) to O(N) without substantially chang-

ing core orbitals, bonds, and other important chemical features, which tend to be

localized.

A simple approach which I haven’t found mentioned in the literature consists

is using a smaller basis during the initial iterations, and add extra sets of shells

every time the density matrix error norm of a given iteration converges below

some threshold. This reduces not only the dimension of the algebra problem, but

also skips the evaluation of the most time-consuming integrals until the last steps.

This approach might be best suited for GC basis sets, which are augmented in a

systematic way.

5.1.4 Advanced algorithms

Many implementations consider the Coulomb and Exchange problems inde-

pendently, enabling a number of approaches that can accelerate their evaluation.
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Coulomb matrix

The Coulomb matrix is a classical Coulomb problem, requiring the evaluation

of the interactions between some charge densities and the potential generated by

the total electron density of the molecule. The fast decay of the overlap between

basis with the distance makes the Coulomb matrix sparse and block-diagonally-

dominant. The different methods described next are not mutually exclusive.

While basis sets are designed to approximately span the subspace of molecular

orbitals, the basis generated by their products are asymptotically degenerate, and

in practice contain many near-linear dependencies contributing little to its flexibil-

ity to describe the electron density. Density-fitting methods104 employ a smaller

auxiliary basis set that is used to fit the total density or the basis products, re-

ducing the total computation time. However, they also introduce new sources of

numerical error, and new problems such as the choice of an adequate auxiliary

basis for a particular problem and which is the appropriate fitting metric. Some

approaches aimed at bounding the errors105 use the ERI matrix’ Cholesky vec-

tors as fitting basis, or more commonly the Cholesky vectors from the atomic ERI

matrices.

The J-engine106 is another approach, based on the observation that many

geometry-dependent recurrence relations are shell pair dependent only. In the J-

engine, the |ket〉 basis products constituting the density are multiplied with their

densities and expanded as Hermite Gaussian functions or contracted HGFs. The

Coulomb matrix is computed by iterating over all the expanded 〈bra|’s for every

ket, and applying the Hermite and horizontal recurrences to the contracted 〈bra|’s.
The reduction of the number of pair transformations is from O(N2) for all ERI

batches to O(N), a cost negligible in practice.

Linear-scaling methods are also used in SCF problems. The original Fast

Multipole Method (FMM)107 was designed for point particles, but it has been

extended to treat densities in the Continuous Fast Multipole Method (CFMM)108.

The KWIK method109 uses a partition of the 1/r12 operator into a short-range

operator containing the pole erfc(ω|r12|)/|r12| and a smooth, long-range operator

erf(ω|r12|)/|r12|. The short-range operator is evaluated in real space in O(N), and

the long-range operator is evaluated in Fourier space.

The worst-performing cases for ERIs are usually due to slowly-decaying GTOs,

which not only couple to other GTOs within a larger radius, but tend also to be

of higher angular momentum. Primitives of GTOs with low Gaussian exponents

delay the onset of performance gains in CFMM and other reduced-scaling tech-

niques, because they impose larger cutoff distances before the problem can be
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approximated. The Fourier Transform Coulomb (FTC) method by Fusti-Molnar

and Pulay110 computes ERIs numerically in Fourier space, and can be used to

evaluate integrals over diffuse GTOs efficiently, while using any other method(s)

for the remaining ERIs.

Exchange matrix

The techniques described above are not applicable to the computation of the

Exchange matrix, which is not expressable as a Coulomb problem. Neverthe-

less, and because according to Kohn’s conjecture the density matrix ρ(r, r′) of

an insulating system (system with non-vanishing HOMO-LUMO gap) exhibits an

exponential decay with the distance |r−r′|, it is possible to combine this with pre-

screening to construct O(N) methods for evaluating the Exchange contribution in

such systems. These include the ONX111 and LinK112 algorithms. Some recent at-

tempts have been directed towards reducing the prefactor. The Chain-of-Spheres

algorithm113 acomplishes this by mixing analytic and numerical integration, and

pseudospectral methods114 evaluate the integrals numerically on a spatial grid.

5.1.5 Parallelization

The cost of computing an ERI batch and contract it with the associated DM

blocks can vary by orders of magnitude according to the angular momentums and

contraction degrees (the elemental batch) of that batch. The number of batches

of the same elemental batch can vary greatly depending fundamentally on the

chemical system and basis set used, but also on the screening threshold and other

details.

Such variability can lead in näıve parallel implementations to poor load bal-

ancing (asymetric computation effort between processors or nodes), translating

into very inefficient use of the computational resources. The problem cannot in

general be solved with static scheduling algorithms because integral pre-screening

prunes the ERI batch lists on-the-fly and in an irregular manner. One possible

solution is to use dynamic scheduling in a master-slave parallel architecture, where

the master node dynamically computes lists of integrals to be evaluated and sends

them to each node, but which introduces a sequential bottleneck in both the com-

putation and the communication, which may not be noticeable for small clusters

and/or problems, but can kill scalability in larger computations.

Modern processors are multicore, and multiple threads in the same node using

shared memory for communication is much faster than inter-node communication,
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which makes a hybrid OpenMP+MPI (or similar) implementation desirable. The

latest MPI standard has included shared memory features, but the new standard

is still not fully supported, and like everything else in the standard, the actual

mechanism is left to the implementation.

5.1.6 Cache hierarchy

Modern CPU cache hierarchies are the principal reason for the CPU perfor-

mance, and are the key to high-performance codes. With cache miss latencies

approaching 100 CPU cycles, the penalty of overlooking cache optimization in nu-

merical software can in some regimes be many times higher than any improvement

from using an algorithm with a better FLOP count. CUDA-capable GPUs also

have their own slightly different cache hierarchy, but in many cases the program-

ming model makes their details irrelevant.

5.1.7 Vector and stream processing

The vector unit of x86-64 CPUs has to be explicitely programmed, since effi-

cient vectorization cannot in general be trusted to the compiler. To fully exploit

the SIMD vector instructions available in modern processors and simultaneoulsy

preserve tsome degree of data locality, it is necessary to use vector data structures

properly aligned to the cache line’s boundaries, and use the AoSoA (array of struct

of arrays) construct to pack the data in a format such that the processor can di-

recly load the vector variables efficiently, as opposed to the typical AoS (array of

structs) packing typical of the C family of languages or the SoA (struct of arrays)

used in FORTRAN. A similar reasoning applies to warps in stream processing.

This technique is somewhat analogous to matrix blocking, common in numerical

linear algebra, whereby the matrices are sliced into small square blocks in order to

simultaneously optimize data locality and vectorization.

To maximally exploit SIMD instructions and stream processors, the ERI

batches ”packed” in the same struct have to be chosen to be as similar as pos-

sible115 116 (extrinsic vectorization), to be able to use the same control flow on the

whole vector and perform the minimal unnecessary calculations. This is specially

relevant for ERIs, where prescrening is also applied to the primitive Gaussian prod-

ucts, and GTO products of the same elemental basis pair can have very different

effective contraction degrees depending on the distance between its centers. To

make effective use of the primitive product prescreening with vectorization, all

batches in the ”pack” have to share reasonably similar contraction degrees in both

pairs.
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5.2 Design of the Echidna Fock Solver

The design of the Echidna (Exchange+Coulomb Hybrid Implementation of Di-

rect Novel Algorithms) library is based in all previous considerations. The Echidna

solver is an efficient, hybrid OpenMP+MPI parallel implementation of a Coulomb

and Exchange matrix solver. Some of its core routines are also implemented for

GPU, permitting hybrid CPU+GPU computations. It requires a molecule geome-

try and a basis set at initialization. The main routine admits a number of density

matrices as input, which may be non-symmetric (for use in response theory) and

outputs a set of Fock matrix contributions which may equal the Coulomb matrix

only (for pure DFT functionals) or Coulomb plus any fraction of the Exchange

contribution (for hybrid DFT functionals), including 1 (for Hartree-Fock).

5.2.1 Initialization

At initialization, an exhaustive list of all ERI ’kinds’ required for the input

molecule is generated. Here, the term ’kind’ refers to the previously defined El-

ementary Basis Shell quadruplet and geometry of the atomic centers. A number

of batch constants are precomputed and stored for each elemental basis quadru-

plet. A local memory pool is initialized per thread and per GPU stream, and an

extra memory pool is initialized per node. Once the list with all ’kinds’ is known,

Echidna makes a call to initialize Quimera, the ERI evaluation library, and passes

a list of the geometries and angular momenta of the ERI ’kinds’ so Quimera can

check that it can link to every routine needed, or load the necessary bytecode. A

list of basis function products is generated, including their effective contraction

degree and the Gaussian prefactors of their primitive products. The last step is to

compute the Cauchy-Schwarz screening parameter for every product and store it

for later use.

Echidna internally uses its own matrix storage format, with a recursive pattern

that preserves memory locality for blocks of the same shell pair, GC function pair

(if applicable), and atom pair. Every thread and CUDA stream keeps local output

matrices (Coulomb and/or Exchange) where it performs its own partial updates.

This circumvents the need for inter-thread synchronization to avoid race conditions

between the threads, that could cause unnecessary contention.

When the Fock update routine is called, the input density matrices for the

system are broadcasted to all nodes, and all thread-local output matrices are reset

to zero.
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5.2.2 The task scheduler

The list of ERI ’kinds’ is sorted in dicreasing order of estimated computa-

tion weight and fed to each node’s task scheduler, which in essence is a parallel

(multithreaded) producers-consumers problem. Using a hybrid scheme is a big

advantage over using MPI alone, because shared memory allows faster commu-

nication between threads, something that can be used to dynamically adjust to

different workloads and different tasks. The threads switch between the task of

adding (producing) Lists of Matrix Updates (LMUs) to a task pool and executing

(consuming) the lists, depending on the filling level of the task pool. If GPUs

are available and some CUDA stream is idle, the threads’ priority is to make all

asynchronous data copies necessary and fill the kernel queue of the stream with the

matching asynchronous kernel launches. This prevents the GPU scheduler from

starving once the other stream finishes, but returns control almost inmediately to

the thread to continue working. GPU performance depends on its workload in a

non-linear way, being notoriously poor for small tasks. To avoid any performance

drop due to short LMUs outnumbering the computationally-intensive ones, the

LMU pool is implemeted as a min-max priority queue, where the LMUs for the

GPU streams are served from the front (max), and threads’ LMUs are served from

the back (min).

The principal philosophy followed during the parallelization is to avoid any

form of synchronization between components as much as possible, making sure

individual work threads can progress regardless of the global state of the compu-

tation. At the moment no task scheduling or any other synchronization is done

across nodes. Synchronization introduces some overhead, and without knowing the

specifics of the system (topology, bandwidth, latency, etc.) it’s impossible to use

a synchronization protocol that is generally efficient but that wouldn’t potentially

kill the scalability of the solver in some other cases. As a first approach it appears

to be better to use a mechanism with which every node can generate its own list

of integrals on its own, independently of other nodes. In the implementation the

workload betweem nodes is balanced statistically through a simple mechanism:

every node goes through the same ’kind’ lists, but from every list only shell pairs

or quadruplets with index congruent to the node’s index (modulo the total number

of nodes) are considered as candidates for evaluation. In the limit of large systems,

all nodes evaluate LMU lists that are similar in number and composition to every

other node’s.

This approach can be easily extended in the future if it becomes necessary to

support task migration between nodes. For reasons discussed next, it would be

preferrable in terms of data-level parallelism to not shuffle the lists between nodes
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as it is currently done, and instead compute ranges of consecutive shell pairs within

the same node, with very short LMUs being computed entirely in the same node.

The communication is needed to avoid duplicated Matrix Updates in the system.

An alternative strategy is to collect profiling data of the ERI evaluation (CPU time

and number of processed batches for each ERI kind) in each node and broadcast

it after every cycle. The collected data can be used to generate an educated guess

of which tasks can be moved to another node to improve the balance of the next

iteration.

5.2.3 Prescreening

The prescreening mechanism implemented is a modified Cauchy-Schwarz al-

gorithm. Whether a given ERI and its related matrix updates is scheduled for

execution or discarded depends on estimates of the integral batch and the density

matrix sub-blocks which it is going to be contracted with. This prescreening can be

partialy done in advance, discarding many updates below a predetermined thresh-

old, but the integrals surviving the crude first-pass screening are tested again with

a more accurate test.

The criteria to accept an ERI batch is that it contributes to the expected

energy above some threshold κ = 10−τ , or equivalently, the batch is discarded if

it has a negligible expected contribution to the final energy. Up to a constant

factor, the condition is equivalent to simultaneously satisfying the following three

inequalities:

κ > ∆JABCD =
∑

a,b

∑

c,d

Da,b
AB D

c,d
CD (ab|cd) (5.3)

κ > ∆KACBD
1 =

∑

a,c

∑

b,d

Da,c
AC D

b,d
BD (ab|cd) (5.4)

κ > ∆KADBC
2 =

∑

a,d

∑

b,c

Da,d
AD Db,c

BC (ab|cd) (5.5)

where the summations indices span all elements of the ERI batch. These sums over

the four indices can be reinterpreted as the inner product of two rank-4 tensors,

wich can be ”flattened” and recast into two rank-2 tensors (matrices). This allows

the use of

and the CS inequality can be used to derive the proper upper bond. The

norm of the external product of the matrix subblocks is simply the product of the

norms. A new inequality appears for the Coulomb contractions:
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∆JABCD ≤ ‖DAB ⊗DCD‖F ‖(ab|cd)‖F (5.6)

|DAB ⊗DCD‖2 = ‖DAB‖2 ‖DCD‖2 (5.7)

‖(ab|cd)‖2 ≤ ‖(ab|cd)‖F (5.8)

and similar expressions appear for exchange. The Frobenius norm of the batch can

be further manipulated using the typical CS inequality for ERIs:

‖(ab|cd)‖F =

√∑

a,b

∑

c,d

(ab|cd)2 ≤
√∑

a,b

∑

c,d

(ab|ab)(cd|cd) =

=

√∑

a,b

(ab|ab)
√∑

c,d

(cd|cd) =

= tr ((ab|ab))1/2 tr ((cd|cd))1/2 =

= ‖(ab|ab)‖∗‖(cd|cd)‖∗

where ‖A‖∗ is the so-called nuclear norm of the batch tensor. Finally, it is possible

to express the criteria for accepting a batch as:

µAB + µCD + dAB + dCD ≤ τ (5.9)

µAB + µCD + dAC + dBD ≤ τ (5.10)

µAB + µCD + dAD + dBC ≤ τ (5.11)

For J , K1 and K2, respectively, and with:

µIJ = −1

2
log

(∑

i,j

(ij|ij)
)

(5.12)

dIJ = − log(‖DIJ‖F ) (5.13)

τ = − log κ (5.14)

where µIJ is a new shell pair parameter -similar to the usual CS parameter- that

is computed at the beginning of the calculation, and the dIJ values are computed

for every block at the beginning of each cycle.

A slightly better bound can be derived for the Coulomb interaction, interpret-

ing the contraction as a bilinear form.
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∆JABCD ≤ ‖DAB‖FDCD‖F ‖(ab|cd)‖2 (5.15)

(5.16)

where ‖A‖2 is the spectral norm of the matrix, equal to its largest singular value.

An analogous manipulation to the previous derivation gives a result identical in

everything except the value of µIJ :

µCIJ = −1

2
log (λmax (IJ |IJ)) (5.17)

where λmax is the spectral norm (maximal eigenvalue) of the IJ shell pair’s ERI

matrix. it is also possible to derive bounds for Coulomb directly from the CS

inequality as follows:

υAB + υCD ≤ κ (5.18)

υIJ = −1

2
log

(∑

ij

∑

kl

Dij
IJD

kl
IJ(ij|kl)

)
(5.19)

which are lengthier to compute, but better than the two previous bounds. They

can also be computed at a negligible cost by moving all contributions from equal

pairs JABAB to the beginning of the computation and contracting every individual

contribution with the density matrix subblock DAB.

These approaches might be better suited than the general one if Exchange

is being computed separately (or not needed in the first place); otherwise, the

difference in the estimates tend to be small enough to prefer storing only one value

of µ for every pair. The equivalent approaches for Exchange estimates results in a

matrix with a ”flattening” of the indices that is unsuitable for obtaining good CS

estimates (their CS inequalities are trivially satisfied).

The prescreening presented here has two remarkable properties worth com-

menting:

• Rotational invariance: This is a missing property of both the traditional

CS ERI screening and other methods, even though its significance has been

recently pointed out by Maurer, Lambrecht et al. in the paper97. Using

rotationally-invariant screening is necessary to obtain consistent results in-

dependent of the chosen orientation of the molecule.
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• Symmetry: This property is also absent in the typical CS screening and is

relevant for two reasons, one conceptual and one practical. Conceptually,

because the interaction between two subsystems in the molecule is always

symmetric, so the decision of including certain batches for its computation

should also be independent from which subsystem’s perspective the method

is applied, i.e. if density P interacts strong enough with density Q it stands

to reason that the converse is automatically true. The practical reason stems

from computational savings. Coulomb, Exchange and density matrices and

ERI batches obey certain permutational symmetries, which are implicitly ex-

ploited throughout the evaluation of matrix elements, cutting down the total

amount of work. In particular, ERI batches can have up to 8 other batches

equivalent by symmetry, and can be contracted with up to 6 different density

blocks (2 for Coulomb and 4 for Exchange). This stesses the importance of

using a consistent method that will simultaneously either accept or reject

the contraction with all the density blocks of a certain type. Otherwise,

the computation of many spurious ERI batches needed only for digesting

a few elements of one density block can add up to a significant increase in

computation.

Efficiently screening the Coulomb interactions with this method is rather sim-

ple. One generates the lists µAB + dAB and µCD + dCD (or equivalent) and sorts

them by increasing value, which can be efficiently done in O(NlogN). The last

interacting CD pair of the list given an AB pair can be retrieved in O(logN) with

a simple binary search of the list for the value τ − µAB − dAB, and viceversa.

Screening of Exchange can be performed in O(N), assuming the density

matrix ρ(r, r′) decays fast with the distance |r − r′|. Of the several alterna-

tives, perhaps the simplest is iterating over all AB pairs of the list, constructing

four O(1) lists of all the shells C and D with dAC < τ − µAB − min(µCD) and

dBD < τ − µAB −min(µCD) and the analogous lists for dAD and dBC . The pairs

of lists are iterated over C and D, and the CD pairs are checked with the K1 and

K2 inequalities. Notice that the locality of exchange is manifested through a large

overlap in the results of the K1/K2 inequality tests. This approach is in essence

equivalent to the ONX algorithm, only exploiting the advantages of the EBA and

the geometric simplifications.

5.2.4 Integral packing

Once the list of acceptable shell quadruplets is generated (along with the type

of contractions it is involved into), it is divided in tiles according to the CPU
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cache line size or the GPU warp size, and the tiles are packed in LMUs. The

quadruplets are grouped according to their similitude (effective contraction degree

of its constituents) as much as possible, and the groups are sorted by increasing

distance between the shell products. A special algorithm, the EVPA2, handles the

packing of the remainders of every group.

There are different factors to consider when deciding the limit of tiles per

LMU, but in general it is better to generate many short lists instead of a larger

one, especially for integral ’kinds’ that are expected to appear towards the end of

the calculation, because the small overhead due to extra function calls and mem-

ory management is compensated by the better load-balance between threads as a

consequence of the finer-grained parallelism. The opposite is true for LMUs that

are to be computed on the GPU. When the calculation is done on a GPU, the

performance of the CPU numerical code is secondary to obtaining high occupa-

tion on GPU. The threads’ part in consuming the shortest LMUs before the GPU

streams run out of compute-intensive tasks is also vital to high combined perfor-

mance, but due to the low computational load of the LMUs, this is accomplished

automatically without requiring extra attention.

The effectiveness in screening and packing by similitude comes at the cost of

loss of the locality in the chemical system, since statistically, the more ”similar”

integral batches will most likely be in different parts of the molecule. This also

imposes some design constraints to parallelism, since it is desirable to compute

the similar batches together and not scatter them in different threads, streams or

nodes. Of course these issues with task granularity tend to diminish as the input

system becomes larger and exposes more potential data-level parallelism.

5.2.5 EVPA2

The integrals are grouped in tiles of 8, 16 or 32, so after removing all the

tiles exactly filled, it is likely that a considerable number of integrals will remain,

with contraction degree combinations scattered throughout the range of admissible

values. Moreover, this will be the case for the major part of the integrals of the

class in smaller systems and/or for some special combinations of values with low

populations.

Packing every remaining group and generating incomplete tiles would be a

waste of computational resources, given that the tiles are evaluated as a whole

regardless of the number of useful elements they contain. The solution is to pro-

mote some integrals to a higher precision (higher contraction degree) to fill the

tiles. The problem is that the contraction step (L step) scales as Keff
ABK

eff
CD , and
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while it might be the only option in some situations, the mechanism of promotion

should reuse existing tiles and avoid creating new tiles of higher Keff . Preferably,

the repacking should minimize the cost of the contraction, to the extent of the

possibilities.

The Efficient Vector Packing Algorithm 2 (EVPA2 for short) is an algorithm

designed to solve this problem. The EVPA2 algorithm starts with individual inte-

grals and groups them recursively into 2m− tiles of different sizes. Then it applies

a recursive merging strategy, which terminates with a number of 2n − tiles. In

the algorithm’s pseudocode, 2m − tiles have also a group, determined by the pair

(Keff
AB , K

eff
CD ). A tile is unpromotable if there are no tiles of a higher group in the

table, meaning with both Keff equal or higher. The algorithm proceeds as follows:

for m=2^n,...,1

for all groups G in table

if integrals in G >= m

I <- m integrals of G

t <- m-tile of I

G <- G\I

Tm <- t in group G

end if

end loop

end loop

for m=1,...,2^n

while not stalled

U <- unpromotable m-tiles of Tm

N <- unpromotable m-tiles of Tm\U

n <- find m-tile in N with highest Kab*Kcd

P <- m-tile parents of n

p <- find m-tile in P with lowest Kab*Kcd

s <- 2m-tile (p,n)

T2m <- s in group(p)

Tm <- (Tm\p)\u

end loop

while size(Tm) > 1

n,m <- find m-tiles of Tm with lowest |Kab-Kab’| + |Kcd+Kcd’|

s <- 2m-tile (n,m)
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T2m <- s in group( max(Kab,Kab’),max(Kcd,Kcd’ )

Tm <- (Tm\n)\m

end loop

if size(Tm’) > 0

n <- only m-tile left

s <- 2m-tile (n,0)

table <- s in group(n)

end if

end loop

5.2.6 Geometry and rotations

When the LMU is processed, the first step consists in finding the four (or less)

centers of the shells and computing rotation matrix between frames of reference.

The vectors ( ~AB, ~CD, ~AC) describing the geometry of the integral are rotated

accordingly and stored vector-packed in an array for use next. The matrices for

rotating spherical harmonics are also packed and stored for the digestion step. The

CPU code uses some precomputed rotations along the shell pairs to speed up the

process. In GPUs, the bandwidth and memory consumed by storing make the

approach slower than regenerating the matrices when needed.

5.2.7 OCL steps

In the COLD PRISM nomenclature94, the O-, C-, and L- steps refer to the

generation of the one center integrals [m], the contraction of kernels (CDR/K4

step), and the transformation to ERI batches (MIRROR step). These are handled

entirely by the Quimera library, and a more detailed explanation can be found in

the corresponding chapter.

5.2.8 D step

The last step of the path is the D- step, also known as digestion or contraction

with the density matrix. The CDR/K4+MIRROR algorithm of the previous step

leaves the ERI batches in the rotated frame of reference. Instead of rotating the

whole batch in O(L5) before digestion, Echidna rotates the density blocks to the

frame of reference of the ERI, contracts, and rotates the Fock block update to the

molecular frame.
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The routines in this step, both the CPU and the GPU versions, are meta-

programmed with regular templates, which generate routines for all combina-

tions of angular momenta needed. There are different contraction routines for

the Coulomb-like and Exchange-like contractions, and depending on the geometry

of the centers. The CPU code just adds the contributions to the locations in the

Coulomb and Exchange matrices where they belong. The GPU version demands

a little more commentary.

The digestion step is an example of reduction; there is a considerable amount

of generated data being used to update only a few memory positions. In cases whith

only few threads running in parallel, either locking the memory or using atomic

operations tends not to be problematic performance-wise, because collisions are

rare. However, in GPUs there might be many warps of threads executing. Using

a scatter to update the matrices’ blocks is in this case slow not only because of

the uncoalesced memory accesses, but also because atomic operations are needed

to avoid race conditions. The solution is to use a scatter-to-gather transform:

instead of mapping the warp’s threads to iterate over the list of matrix updates,

it is possible to use them to map the iteration over the positions of the matrix of

destination. This supposes a complication in the design due to sorting, transposing

and the remapping of threads, but the final update can be performed atomic-free.
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Chapter 6

Evaluation of QM/CMM matrix elements

The QM/CMM method iteratively solves for the charge distributions and

dipoles in the CMM region, and the electron density in the QM region until con-

vergence. The interaction between the CMM metallic atoms and the electrons re-

quires evaluating the corresponding 1-electron molecular integrals over two GTO

shells and the potential generated by possibly many diffuse (Gaussian) charges

and dipoles. These integrals are essentially a Coulomb problem, not much dif-

ferent from the evaluation of electron-nuclear and 2-electron interactions. The

potential generated by the metallic part of the CMM region is:

V (r) =
M∑

m

qindm

erf(|r−Cm|/Rq)

|r−Cm|
+

M∑

m

pindm ·
(r−Cm)

|r−Cm|2
×

[
erf(|r−Cm|/Rq)

|r−Cm|
− 2√

πRp

exp(−|r−Cm|2/R2
p)

]
(6.1)

where qindm and pindm are the partial charges and dipoles of the m-th atom. Note that

the typical Gaussian radiuses Rq and Rp may be different for charge and dipole

contributions.

Other than the use of Gaussian charge distributions in lieu of point charges,

there are two important factors to consider in the design of an efficient solution.

First, the nanoparticles or metallic surfaces (the metallic part of the CMM region)

may contain thousands of atoms; many times more the atoms of a typical QM

region. Second, the charge distribution in the CMM region is being solved simul-

taneously with the QM part in a SCF-fashion, and updated at every cycle until

both subsystems converge. Obtaining an overall good efficiency is therefore more

critical than for the nuclear potential matrix, which is computed once at startup

and stored for all later uses.

69
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The matrix elements can be expressed as a reduction over (at most) three-

center intregrals involving two GTOs and one atomic charge/dipole distribution.

Carrying this näıve reduction leads to O(MN2) scaling, where M is the number

of atoms in the CMM region and N is the number of basis functions in the QM

region. The first important factor to consider in the design is the typical input of

the module. For large N (extended QM region) it is expected that GTO products

will decay fast with increasing distance, so it is possible to implement some variant

of the typical GTO product screening and reduce the complexity to O(MN), as

will be discussed in detail later. Second, a heavy-load input will typically consist

of a much larger number of atoms in the CMM region than in the QM region

(M >> N) or else it would be preferable to use a fully-QM treatment.

Several techniques reduce the computational complexity of Coulomb problems

from quadratic to loglinear or better for large number of particles. These include

Ewald summation techniques and multipole expansions like FMM and related algo-

rithms. However these algorithms are cucumbersome to implement, require careful

tuning of several parameters that control the order of the approximate expansions

(determining the error bounds) for the application and, more importantly, do not

actually outperform the O(N2) direct summation of pair interactions for the sys-

tems we are interested in computing. The specifics can of course vary depending

on the hardware and the implementation, but the asymptotic prefactors of O(N)

Coulomb methods are large enough to make them an inferior choice for systems

below a few thousand particles. Another reason to avoid them is that other steps

of the method have at the moment worse complexity than O(N) because they do

not exploit the possible sparse structure of the so-called relay matrix for larger

systems.

6.1 Evaluation of integrals

Equation 6.1 can be rewritten in a more compact form as follows:

V (r) =
M∑

m

qmU
(0)(r,Cm, Rp) +

M∑

m

pm·U(1)(r,Cm, Rq) (6.2)

where the individual contributions to the potential are given by:
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U (0)(r,C, Rq) =
erf(|r−C|/Rq)

|r−C| =
2√
π

∫ 1/Rq

0

exp(−s2|r−C|2)ds (6.3)

U(1)(r,C, Rp) =
(r−C)

|r−C|3 (erf(|r−C|/Rp)−
2√
π

(|r−C|/Rp)e
−|r−C|2/R2

p

= ∇CU
(0)(r,C, Rp) (6.4)

a useful simplification for the second term comes from realizing it can be expressed

as a derivative of the first.

The potential terms of the first kind are due to the contributions we refer

to as ”Gaussian charges”, and the terms of the second kind are due to what we

will refer to as ”Gaussian dipoles”. Except for their partial charge or dipole and

possibly different radii (if there is more than one metallic element in the CMM

region), they all correspond to the same basic Gaussian charge distribution and its

spacial derivatives. Consider a (normalized) Gaussian distribution of unit charge,

with center in C and characteristic radius R, and a corresponding distribution(s)

of unit dipole moment:

σs(r,C, R) = (π−3/2R−3)e−|r−C|
2/R2

(6.5)

σp(r,C, R) = ∇Cσs(r,C, R) (6.6)

The charge density of the CMM region is generated by the superposition of

the densities of the individual atoms:

σ(r) =
M∑

m

(qmσs(r,Cm, Rm) + pm·σp(r,Cm, R
′
m)) (6.7)

The QM/CMM matrix elements can be expressed with the shorthand notation

used for 2-electron integrals:

(ab|σ) =

∫

V1

∫

V2

φa(r1,A)φb(r1,B)|r1 − r2|−1σ(r2)dr1dr2 (6.8)

where the contracted 〈bra| refers as usual to the summation over its primitive

products and the contracted |ket〉 implies of course summation over all CMM

Gaussian charges and dipoles:
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(ab| =

Ki,Kj∑

i,j

DiDje
−αiβj

ηij
AB2

[aibj| (6.9)

|σ) =
M∑

m

(qm|σm] + pm· |πm]) (6.10)

Most techniques applicable to ERIs can also be used for QM/CMM integrals,

which can be considered as the 3-center subcase of the former, with the caveat

that the ket contraction can imply arbitrary centers. In particular, the usual

McMurchie-Davidson approach holds for the 〈bra|. Expanding the product of

cartesian polynomials around the centers A and B in Hermite polynomials around

the centers P lying on the segment connecting A and B, and integrating the

product of the potential with the one center primitive function products, after

some manipulation, we find we need to solve integrals of the type:

[p|σ] = (∂Px)
px(∂Py)

py(∂Pz)
pzI(PC, η, R) (6.11)

I (PC, η, R) =
2π

η3/2

∫ (1+ηR2)−1/2

0

e−η|PC|2t2dt (6.12)

where η = α + β is the sum of the primitive exponents and P = (αA + βB)/η is

the center of the Hermite function expansion. The integrals over Gaussian dipoles

can be evaluated straightforward using the previously mentioned gradient relation:

[p|πx] = [p|∂Cxσ′)] =

= (∂Cx)(∂Px)
px(∂Py)

py(∂Pz)
pzI(PC, η, R) =

= −(∂Px)
px+1(∂Py)

py(∂Pz)
pzI(PC, η, R) =

= −[p + 1x|σ′] (6.13)

and equivalent expressions for the y and z components. This simplifies every

integral to a modified 1-center integral, which is the reason why accumulation over

the ket can be directly performed at this stage, using the following expression:

[p|σ) =
M∑

m

(
qm[p|σm]−

∑

λ=x,y,z

pm,λ[p + 1λ|σ′m)]

)
(6.14)
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The well known 1-center McMurchie-Davidson recurrence relations80 can be

applied to simplify the result to:

[p + 1λ|σ](m) = PCλ[p|σ](m+1) − pλ[p− 1λ|σ](m+1) (6.15)

Until reduction to the fundamental auxilliary integrals.

[0|σ](m) =
21/2π

η3/2

(
2η

1 + ηR2

)m+1/2

Fm

(
η

1 + ηR2
|PC|2

)
(6.16)

where Fm(z) is the standard Boys’ function117.

6.2 Algorithm

The algorithm resulting from applying the formulas presented in the previ-

ous section has a computational complexity of O(MK2L4). It can be extended

straightforwardly to treat general contraction basis sets at a negligibe O(K2J2)

extra cost.

loop over GTO primitives of centers a and b

check primitive pair screening

loop over CMM centers m

compute [0] integrals

apply 1-center MMD recurrence relation

contract [p] integrals

end loop

transform hermite to cartesian

loop over GC functions

contract primitive pair brackets

end loop

end loop

loop over GC functions

transform GTOs from cartesian to spherical

end loop

This design is practically identical to the J-engine algorithm106 used for Coulomb.

Because the total angular momentum L tends to remain lower than for two-electron
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integrals, the arguably bad (quartic) scaling with the angular momentum is not

much of an issue. It is possible nevertheless to design an algorithm with a better

bound using techniques that parallel the early-contraction schemes for 2-electron

integrals. Contrary to 2-electron integrals, however, the CMM distributions do not

necessarily follow any particular pattern that can be used to reduce computation.

This implies the only alternative left to design an early contraction method is to

accumulate over the CMM charges first. The algorithm is outlined next:

loop over CMM centers m

loop over GTO primitives of shell b

loop over GTO primitives of shell a

check primitive pair screening

compute [m] integrals

loop over GC functions of shell a

contract v{m] integrals

end loop

end loop

loop over GC functions of shell b

loop over GC functions of shell a

contract uv(m] integrals

end loop

end loop

end loop

loop over GC functions of shell b

loop over GC functions of shell a

apply bra-contracted 1-center MMD RR to generate uv(r]

contract ket with CMM charge/dipole

end loop

end loop

end loop

loop over GC functions of shell b

loop over GC functions of shell a

apply bra-contracted H2C transformation to generate (e0|s)

apply HRR to generate (ab|s]

transform GTOs from cartesian to spherical

end loop

end loop

The resulting algorithm has complexityO(MK2L2J)+O(MKL3J2)+O(ML4J2),

but it is more a curiosity than an actual practical method for the present discussion,
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because in practice the more convoluted structure of the innermost loop depending

explicitely on J incurs in a large penalization for low-L. Moreover, the prescreening

over GTO pair primitives has to be done close to the innermost loop, complicating

an otherwise regular loop structure as well as the paralellization scheme described

next.

6.3 Implementation

The QM/CMM integral module makes full use of the general implementation

techniques previously described. The GTO pairs are classified according to their

elemental basis pair tag. The pairs within every group are sorted by distance (or

equivalently, by decreasing CS parameter), with all pairs under the predefined CS

threshold being discarded. Consecutive GTO pairs within every group are packed

in tiles according to cache line size, which are sent to the evaluation routine. Due

to its comparative simplicity and the limited number of combinations of angular

momentum, the generation of specialized code can be accomplished using regular

templates.

The module also implements a simple hybrid parallelization scheme: the pair

lists are split evenly between all nodes to try to maintain a balanced load without

resorting to more complex schemes involving inter-node synchronization which

could potentially kill scalability. Within a node, the lists are further divided

amongst processors in a multithreaded producers-consumers loop. For very un-

balanced loads it is possible to generate a larger amount of smaller work tiles by

splitting the CMM lists. This incurs in some computational penalization due to

a partial duplication of work in the bra transformations and ket-contractions, but

this is in general affordable for large M .

A screening over the primitive pairs is done in the evaluation using a modified

CS scheme, but the values are precomputed and only need a relatively simple check

within the function.

6.4 Screening at the GTO-product level

Two levels of integral screening are employed in the module. The simplest one

is based in the fast decay of the GTO products with distance. This can inmediately

reduce the overall computational scaling from O(MN2) to O(MN) for a negligible

cost, and enables savings even for very small QM regions.
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The Cauchy-Schwarz inequality provides an easy and robust way of imple-

menting such screening. Consider the CS inequality for two charge densities ρ(r)

and σ(r) interacting through a Coulomb potential:

∣∣(ρ(r1)|r−1
12 |σ(r2))

∣∣ ≤ (ρ(r1)|r−1
12 |ρ(r2))1/2 (σ(r1)|r−1

12 |σ(r2))1/2 (6.17)

This form of CS is useless for nuclei-electron potential integrals because point

charges make one of the rhs integrals diverge to infinity and the inequality holds

trivially. However, it is very useful for screening two-electron integrals, where

it usually gives upper bounds that are not far from the true values. Because

QM/CMM integrals only involve distributed charge densities, the CS inequality is

an attractive starting point for screening. Moreover, the CS factors corresponding

to the GTO products are usually readily available, since they are computed and

stored for use in ERI screening. The CS factor of the CMM density requires in

principle computing the full electrostatic self-interaction potential of the CMM

region. This is expressed (omitting dipole contributions for brevity) as:

(σ(r1)|r−1
12 |σ(r2)) =

M∑

i

M∑

j

qiqj (φs(r1,Ci, Ri)|r−1
12 |φs(r2,Cj, Rj)) (6.18)

The interaction potential of a superposition of Gaussian densities can be easily

evaluated with a subset of the techniques needed for the GTO products, already

discussed in chapter 3. However, computing all pair-interactions of the CMM

region with a O(M2) method seems unnecessarily wasteful (and a potential future

bottleneck) when the interest is exclusively in obtaining a useful approximate upper

bound for a given matrix entry. Using linear-scaling techniques for such a small

issue looks like overkill. Fortunately, it is possible to produce an upper bound to

the self-interaction in O(M) time at the cost of increasing the bound only slightly.

The previously introduced CS inequality holds because the Coulomb operator

is hermitian, and it is possible to construct a normed inner product space using the

densities as the elements28. The more general, algebraic form of the CS inequality

can be written:

〈a|b〉 ≤ ‖a‖· ‖b‖ (6.19)

When the element can be ifself decomposed as a sum, the triangle inequality

provides an upper bound directly from the norms of the terms in the sum.
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‖a+ b+ c+ . . . ‖ ≤ ‖a‖+ ‖b‖+ ‖c‖+ . . . (6.20)

The CS parameter of the CMM region is estimated in such way in the module,

by simply adding the CS parameters of the individual CMM atomic densities. The

individual CS parameters involve a simple 1-center integral, and are computed

trivially. The solutions (in atomic units) are:

κs(R) =

√∫

V

φ2
s(r, 0, R)dr =

(
2

π

)1/4

R−1/2 (6.21)

κp(R) =

√∫

V

φ2
p(r, 0, R)dr =

(
8

9π

)1/4

R−3/2 (6.22)

These terms are multiplied by the norm of the partial atomic charges or dipole

vectors, respectively:

κCMM =
M∑

m

|qm|κs(Rm) +
M∑

m

‖pm‖κp(R′m) (6.23)

and the final screening formula is derived:

µAB + dAB + µCMM ≤ τ (6.24)

with terms defined in section 5.2.3 and µCMM = − log(κCMM).

6.5 Screening of GTO product primitives

A more advanced screening can be performed at the primitive product level.

Using amplitude thresholds, which are common in nuclear integrals, is in this case

arbitrary at best. A more robust methodology based again on the Cauchy-Schwarz

inequality has been developed. The general CS screening previously introduced

makes use of the properties of matrix norms to generate a rotationally-invariant

method based on the trace of the 2-electron tensor block corresponding to the

(ab|ab) integral batch. It can be generalized to treat primitive pair screening, as
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described next. In practice, this screening and the previous GTO screening are

integrated in the same method.

The primitive pairs are sorted as usual in order of increasing total exponent.

The primitives of the pair are included to a list one by one by decreasing order

of Gaussian exponent, and for each step, the trace CS µKAB of the ERI for the in-

complete primitive list is computed and stored. The last primitive product added

completes the list, and the trace CS parameter µAB is recovered. The screen-

ing procedure relies in discarding as many sub-threshold pairs as possible, while

keeping the error bounded:

‖ρAB‖F
√∑

a,b

(∆Kab|ρ)2 ≤ ‖ρAB‖FκCMM

(∑

a,b

(∆Kab|∆Kab)

)1/2

≤ κ (6.25)

Where ∆K means that only the last K primitive products of the shell pair

are considered. During integral evaluation, the list of primitive pairs to discard is

chosen to be the maximal K list such that the inequality:

µKAB + dAB + µCMM ≤ τ (6.26)

µKAB = −1

2
log

(∑

a,b

∈K∑

i,j

∈K∑

k,l

[aibj|akbl]
)

(6.27)

holds. This screening methodology requires in principle O(K2) evaluations of

the trace; if the whole batch of 2-electron integrals is computed, even with the

CDRK4+MIRROR method the computational cost can scale quite badly asO(K6L)+

O(K2L8), and become an uexpected bottleneck od the program. Fortunately a

number of simplifications can be performed. First, only needing the trace of the

2-electron batch reduces substantially the number of operations. Second, using

the (AB|AB) center degeneracy of the integrals exposes only the distance between

centers |AB| as the only dependence with the geometry. Third, the accumulation

loops can be modified to yield directly every partial contribution, reducing the

dependence with the contraction degree to O(K4). The details of the method are

nevertheless lengthy and of minor importance to this discussion given that these

integrals are computed only once. The final cost is in any case less than that of

the evaluation of a regular general 2-electron integral.
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Chapter 7

Evaluation of ECP matrix elements

Relativistic effects play an important role in the chemistry of heavy elements.

The correct description of such effects require the use of scalar relativistic correc-

tions, or approximations to the many-electron relativistic Hamiltonian operator,

such as the Dirac-Coulomb-Breit Hamiltonian. However, such effects are mainly

concentrated to the inner shells, where electrons have a higher kinetic energy, and

play a much smaller role in the outer valence shells. The differences in the core

configuration, however, indirectly affect the valence shells. Effective core potentials

(ECPs), also refered to as pseudopotentials (PP) are a popular way to incorporate

relativistic effects without the need of relativistic Hamiltonians. Similar construc-

tions are used in calculations with plane-wave basis sets to reduce the number of

functions needed. ECPs replace the V̂ = Z/|r| potential operator of one nucleus

and the core electrons associated with that atom with the following 1-electron

potential:

V̂ PS = V̂L + V̂SL (7.1)

The first term is the so-called local operator, which is long-ranged and is

defined as a function of the radius only, often expanded as a sum of optimized

Gaussians multiplied with a monic polynomial of the radius.

V̂L = VL(r) =
∑

n

∑

k

cn,k|r|ne−αn,kr
2

(7.2)

The resulting 1-electron integrals are also known as type-I ECP integrals,

and can be evaluated generally with little complication with use of the Gaussian
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product theorem. Cases involving odd powers of l are not common, so the |r|l
part usually admits exact expansion as polynomials of its cartesian variables, as

|r|l = (x2 + y2 + z2)l/2. For odd cases, one can make the substitution

|r − C|l = 2π−1/2|r − C|l+1

∫ ∞

0

exp(−s2|r − C|2)ds (7.3)

compute the rest of the integral over the cartesian coordinates analytically, and

integrate over s as the last step, in a procedure that mirrors the evaluation of

nucleus-electron potential integrals.

The second term is the so-called the semilocal operator, and is significantly

more complex to evaluate:

V̂SL =
∞∑

l=0

Vl(r)
l∑

m=−l
|lm〉〈lm| (7.4)

with Vl(r) expanded similarly as the local operator. The resulting 1-electron inte-

grals are known as type-II ECP integrals. The operator involves radial functions

centered in some atom, and an operator projecting out the angular momentum of

the left and right functions, as ”seen” from the pseudopotential center. The treat-

ment of the projection operator is far from trivial for plane waves and for GTOs

when their center does not coincide with that of the pseudopotential.

In calculations with plane waves, it is usual to bypass their computation by

using a separable representation of the radial function due to Kleinman and Bylan-

der118, which allows to compute the integrals as the product of the overlap of the

basis functions with the functions that make the factorization possible. Due to the

incompleteness of the basis used for the separation, this approach can sometimes

lead to the appearence of ”ghost” orbitals showing an incorrect number of nodes.

An integration scheme for GTO functions suitable for all cases has not yet

been presented in the literature119. All approaches to solve type-II ECP integrals

so far have been focused in carrying the integrations over the angular momentum

analytically, and solving the radial integral in a variety of ways. McMurchie and

Davidson120 attempted three different methods for the radial integration, including

Gauss-Hermite quadrature, and expanding one or both Bessel functions with Tay-

lor series and carrying the radial integration analytically. The last two attempts

have the inconveniency of requiring an undefined number of terms to achieve nu-

merical convergence, which is a function of the distances and Gaussian exponents.
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More modern attempts, like121, are usually based on the quadrature idea, which

have the computational advantage of being able to pretabulate the radial function

for each ECP-GTO pair (at the cost of O(N) memory, with N the number of

quadrature points), but the inconveniency that it is impossible to predefine a grid

with the resolution necessary to compute all integrals which is again related to the

wide range of parameters that can possibly enter the integral. This requires the

use of adaptative quadrature methods, which iteratively refine the integration grid

until the estimate of the remaining numerical error falls below some predefined

value.

It is clear from a computational perspective that a general analytic solution

is desirable. One such solution is presented for the first time in the next section.

An efficient contraction algorithm based on this solution is described in the section

following.

7.1 Evaluation of type-II integrals

We will assume the use of spherical GTOs throughout the section. It is pos-

sible to extend the analysis to cartesian GTOs, but we are trying to get rid of bad

ideas, not encourage their use. The solid harmonics are assumed to be complex

for simplicity of the formulation. The expressions for real solid harmonics can be

easily derived from the present ones.

As with any molecular integral, type-II integrals over GTOs can be expanded

in terms of their primivites. The primitive integrals are expressed with the follow-

ing formula:

[χml |V̂λ|ψm
′

l′ ] =
λ∑

µ=−λ
[χml (A)|λµ,C〉rnλe−γr2〈λµ,C|ψm′l′ (B)] (7.5)

where the GTO primitives are centered at A and B and the ECP is centered

at C. The notation employed in the brackets refer to the idea that the angular

momentum projection operator being used with the specified center.

The typical analysis of type-II ECP integrals involve carrying the integral over

the angular degrees of freedom and finding some way to numerical quadrature for

the radial integral, which becomes very difficult to treat analytically.
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Iµ,mλ,l (r) =

2π∫

0

π/2∫

−π/2

Y ∗µλ(θ1, φ1)χml (rû(φ1, θ1)−AC) sin(θ1)dθ1dφ1 (7.6)

I ′
µ,m′

λ,l′ (r) =

2π∫

0

π/2∫

−π/2

Y ∗µλ(θ2, φ2)ψm
′

l′ (rû(φ2, θ2)−BC) sin(θ2)dθ2dφ2 (7.7)

[
χml |V̂λ|ψm

′
l′

]
=

λ∑

µ=−λ

∞∫

0

r2+nλe−γr
2

Iµ,mλ,l (r)I ′
µ,m′

λ,l′ (r)dr (7.8)

As a first step, we choose two new systems of coordinates to evaluate the

integrals over the solid angle. One choice that simplifies the solution is to keep

the ECP at the origin and define the z-axis as the line containing the first or

second GTO center, respectively, while the x-axis as the one containing the other

center. Other than a trivial rotation of the GTOs, this attempt requires finding

the base-change coefficients between the two reference frames S1 and S2:

Cµµ′

λ = 〈S1, λµ|λµ′, S2〉 (7.9)

which couple the spherical harmonics. This has to be accounted for in the angular

momentum expansion of the integral:

[χml |V̂λ|ψm
′

l′ ] =
λ∑

µ=−λ

λ∑

µ′=−λ
Cµµ′

λ [χml (A)|λµ,C〉rnλe−γr2〈λµ′,C|ψm′l′ (B)] (7.10)

In such systems, the angular integrals are much easier to evaluate:

Iµ,mλ,l (r) =

∫ 2π

0

∫ π/2

−π/2
sin(θ)Y ∗µλ(θ, φ)Rm

l (r−AC)e−α(|r|2−2a|r| cos(θ)+a2)dθdφ (7.11)

where a = |AC| and Rm
l (r) = |r|lY m

l (r̂) refers to the usual solid harmonic mul-

tiplying the GTO Gaussian expansion. These can be expanded in the center of

coordinates by a simple translation of the harmonics in the z-axis. Because such

translations in z preserve the m component, it is straightforward to check that the

integral over φ will be 0 unless µ = m. The change of variable t = cos(θ) further

simplifies the expression:
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I ′µ,mλ,l (r) = δmµ

l∑

l′=|µ|

(
l

l′

)
R0
l−l′(a)Nµ

l N
µ
l′ J

µ
λ,l′(r) (7.12)

Jµλ,l′(r) = rl
′
∫ 1

−1

P µ
λ (t)P µ

l′ (t)e
−α(r2−2art+a2)dt (7.13)

where Pm
l (z) are the usual associated Legendre polynomials, the new index l′

corresponds to the summation over the new solid harmonics, translated to the

origin, and a = |AC| = ACz is the distance of the GTO from the origin. An

analogous treatment is done for the sibling GTO. Because the associated Legendre

polynomials inside the integral share the same value of m, their product is always a

polynomial it t, free from the term (1− t2)1/2. Instead of finishing the integration

over the solid angle for both functions, which would result in a Bessel function

expansion, and attempt the integration over r we switch the order of integration

and use a different approach. To avoid complicating the notation with constant

terms and indices, let’s focus in the following auxilliary integrals, from which every

other integral can be expressed as a linear combination of:

Qm,l
n =

∫ ∞

0

∫ +1

−1

∫ +1

−1

rnsmtle−γr
2

e−α(r2−2ars+a2)e−β(r2−2brt+b2)drdsdt (7.14)

from which it is possible to reconstruct the previous integrals, given that:

[JµAλ,lA(r)|rne−γr2|J ′µBλ,lB(r)] =
∑

u,v

LµA,λ,lAu LµB ,λ,lBv Qu,v
n+lA+lB

(7.15)

Pm
l1

(z)Pm
l2

(z) =

l1+l2∑

u=0

Lm,l1,l2u zu (7.16)

By deriving the expression over r, applying the chain rule, integrating both

sides and rearranging terms, we obtain a useful recurrence relation:

2(α + β + γ)Qm,l
n+1 = Qm,l

n + nQm,l
n−1 + 2αaQm+1,l

n + 2βbQm,l+1
n (7.17)

This relation can be applied until exhaustion of the index n, reducing the set

of integrals needed to just the subset Qm,l
0 . The integration over r becomes simple

for n = 0 and results in:
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Qm,l
0 =

√
π

2
√
α + β + γ

e−αa
2−βb2Mm,l (7.18)

Mm,l =

∫ +1

−1

∫ +1

−1

tmslH(s, t)dsdt (7.19)

H(s, t) = e
(αas+βbt)2

α+β+γ

(
1 + erf

(
αas+ βbt√
α + β + γ

))
(7.20)

To compute the double integral, a linear transformation of the variables s, t

is done using the following rotation/scaling:

u = (α + β + γ)−1/2(αas+ βbt) (7.21)

v = (α + β + γ)−1/2(−βbs+ αat) (7.22)

The integral boundaries must be modified accordingly. The symmetry of the

function (its behaviour with respect to the center of inversion) is also useful to

simplify the resulting expression. After some manipulation, we found two general

solutions:

Mm,l =

(∫ −p+q

−p−q

∫ (p/q)u+(p2+q2)/q

0

Fm,l(u, v)dudv (7.23)

+

∫ p+q

−p+q

∫ −(q/p)u+(p2+q2)/p

0

Fm,l(u, v)dudv

)
2(p2 + q2)−m−l−1

Fm,l(u, v) = eu
2

(pu− qv)m(qu+ pv)l m+ l = even (7.24)

Fm,l(u, v) = eu
2

erf(u)(pu− qv)m(qu+ pv)l m+ l = odd (7.25)

p = (α + β + γ)−1/2αa (7.26)

q = (α + β + γ)−1/2βb (7.27)

Expanding the powers in l and m and integrating over v yields auxilliary

integrals of the type:

En =

∫ uf

u0

uneu
2

du (7.28)

On =

∫ uf

u0

uneu
2

erf(u)du (7.29)
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For the m+ l = 2k and m+ l = 2k + 1 cases, respectively, with u0 = −p± q
and uf = ±p+ q. Integrating by parts and rearranging terms provides two useful

recurrence relations for these integrals.

En+1 =
1

2

[
uneu

2
]uf
u0
− 1

2
nEn−1 (7.30)

On+1 =
1

2

[
uneu

2

erf(u)
]uf
u0
− π−1/2

n+ 1

[
un+1

]uf
u0
− 1

2
nOn−1 (7.31)

These recurrence relations terminate for n = 2k+ 1 cases without a last term

left to evaluate. For n = 2k, they terminate with the n = 0 integrals, which

evaluate to:

E0 =
[
eu

2

D+(u)
]uf
u0

(7.32)

O0 = π−1/2
[
u2

2F2(1, 1; 2, 3/2;u2)
]uf
u0

(7.33)

Where D+(u) is the Dawson function, and 2F2(1, 1; 2, 3/2;u2) is a generalized

hypergeometric function. The potential divergence of these integrals due to their

asymptotic u−1eu
2

behaviour is cancelled for large values with the larger e−αa
2−βb2

prefactor from the Qm,l
0 integral.

The integrals appearing in E0 and O0 can be evaluated similarly to the incom-

plete gamma function and its derivatives. The (approximate) interval [0, 6], can be

divided in equal-length segments, on each of which the functions are approximated

using Chebyshev polynomials. For arguments u > 6, the two functions coincide

to machine precision, and can be evaluated numerically using the following Taylor

series:

π−1/2u2e−u
2

2F2(1, 1; 2, 3/2;u2) ' D+(u) =
1

2z
+

1

2z3
+

3

8z5
+ . . . (7.34)

which converges after a few terms.

The analytic solution here presented is very general, and can be applied to all

sorts of semilocal pseudopotentials expressable as sums of |r|λe−γr2 terms, including

λ ≥ −2 and for integer λ.
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7.2 Algorithm optimization

Since all spherical harmonic rotations, translations and associated Legendre

polynomial expansions are independent of the Gaussian exponents and weights,

they can be carried out outside any accumulation loops. The computational bot-

tleneck is therefore in the evaluation of all necessary integrals of the class Qm,l
n

inside a triple loop running for all combinations of primitives.

One potential issue of using the formulas presented without further refinement

is the possibility of loss of numerical precision due to partial cancellations of large

magnitudes. A possible approach to this problem that can be made computation-

ally efficient is to use an exact Gaussian quadrature for the H(s, t) kernel, which is

an approach reminiscent of the Rys quadrature method for 2-electron integrals81.

This is accomplished by generating a set of orthogonal polynomials over the ker-

nel and computing the necessary weights and abcissas from them. The eu
2

and

eu
2
erf(u) kernels are also good candidates for exact quadrature rules.

Let’s turn our attention again to equation 7.17. The recurrence relation

involves, other than the integrals, some Gaussian exponents and two geometric

parameters, a = |AC| and b = |BC|. Let’s introduce a braket-like notation for

the sake of simpler manipulation:

[mi|nk|lj] = Qm,l
n (αi, βj, γk) (7.35)

Equation 7.17 is expressed as:

2(αi + βj + γk)[mi|(n+ 1)k|lj] = [mi|nk|lj] + n[mi|(n− 1)k|lj] +

+ 2αia[(m+ 1)i|nk|lj] +

+ 2βjb[mi|nk|(l + 1)j] (7.36)

Following the usual early-contraction methodology, and introducing the con-

tracted quantities:

u(m|nw|l)v =
Ka∑

i

Kb∑

j

Kc∑

k

DiDjDk
(2αi)

u(2βj)
v

(2(αi + βj + γk))w
[mi|nk|lj] (7.37)

the recurrence relation can be ”contracted”:
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u(m|(n+ 1)w|l)v = u(m|nw+1|l)v + n u(m|(n− 1)w+1|l)v

+ |AC| u+1(m+ 1|nw+1|l)v

+ |BC| u(m|nw+1|l + 1)v+1 (7.38)

and be performed outside the accumulation loops. A possible algorithm using the

method and techniques here presented is described next:

loop over angular momentum L of SL operator

loop over GTO primitives of shell a

loop over GTO primitives of shell b

loop over primitives of the ECP

compute [m|0|l] integrals

contract integrals over w-index

end loop

contract integrals over v-index

end loop

contract integrals over u-index

end loop

apply CRR to generate (m|n|l) integrals

reconstruct associated legendre polynomials

contract integrals

end loop

translate the solid harmonic expansions to the GTO centers

rotate the solid harmonics of the batch to the lab frame of reference

7.3 Screening

Since ECP integrals involve the product of three functions that are localized

in space, efficient screening is key to both achieve O(N) scaling for the molecule

as well as to increase the overall performance of a batch by discarding Gaussian

triplets with very small amplitude. Absolute upper bounds for ECP type 2 inte-

grals -and rigorous criteria for the inclusion of Gaussian triplets- can be assessed

by use of the usual Cauchy-Schwarz inequality and the Frobenius norm. Given a

threshold τ , it suffices
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κaκb ≤ τ (7.39)

κa =

(∑

ma

(amala |V̂SL|a
ma
la

)

)1/2

(7.40)

κb =

(∑

mb

(bmblb |V̂SL|b
mb
lb

)

)1/2

(7.41)

to guarantee that the Frobenius norm of the tensor block will be less or equal than

τ :

‖(amala |V̂SL|b
mb
lb

)‖F ≤ τ (7.42)

Moreover, by defining κ
(k)
a and κ

(k′)
b as the previous traces computed only for

the last KA − k and KB − k′ primitives of the shell, where KA and KB are the

corresponding contraction degrees, an effective GTO primitive screening can be

implemented by selecting for every GTO pair the minimal values of k and k′ for

which the following inequality still holds:

κ(k)
a κb + κaκ

(k′)
b ≤ τ (7.43)

This test can be performed for each individual term of the sum of the semilocal

potential expansion to compute only the relevant Gaussian triplets.
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Chapter 8

Summary and outlook

The present thesis includes five papers, summarized next.

Paper I describes the K4+MIRROR algorithm, an efficient algorithm to eval-

uate electron-repulsion integrals over contracted Gaussian-type orbitals. The al-

gorithm uses an array of techniques to simplify many steps over the previous

best-performing algorithms, some of which are novel. The FLOP count for all

combinations of angular momenta is the best published in the literature for the

high contraction limit. The implementation referenced in the text and its per-

formance correspond to early versions of the ERI algorithm and the EFS, not as

efficient as the later versions interfaced to Dalton, and served to get a tentative

idea of what the performance could be.

Paper II introduces the QM/CMM method, a new multiscale approach de-

signed to compute the properties of molecules embedded in heterogeneous systems

containing metallic and nonmetallic regions, such as nanoparticles in solution or

metal surfaces in contact with a solvent. The molecule is described with DFT,

the nonmetallic region with a polarizable force field, and the metallic region with

the polarization-capacitance model. The properties of the system are predicted

through linear response theory. The method is tested by computing the spectra

of thymidine fisisorbed on a gold surface in contact with an aqueous environment,

for gold surfaces defined by different Miller indices.

Paper III extends the QM/CMM method to quadratic response theory, allow-

ing the computation of non-linear optical properties and other mixed properties

to molecules in complex heterogeneous environments. The method is applied to

study the chromophore para-nitroanilinne (PNA) adsorbed in gold surfaces with

different solvents. In particular, the variations in the principal components of the

non-linear susceptibility tensor are monitored for different solvents.
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Paper IV (submitted) analyzes the feasibility of performing TD-DFT (Time-

Dependent Density Functional Theory) computations with ANO basis sets. Re-

sults show that aug-ANO basis sets produce results of quality comparable to

def2 basis with an extra unit of angular momentum. The implemention of the

K4+MIRROR algorithm in the EFS library proves to be fast enough to perform

SCF and TD-DFT (linear response) calculations with the aug-ANO basis at a

fraction of the cost of the much simpler def2 basis, computed with the traditional

Hermit module in Dalton.

Paper V (in manuscript) introduces new recurrence relations for ERIs, which

are used to generate a more efficient version of the K4+MIRROR algorithm, with

reduced FLOP count. The CDR/AERR recurrence relations reduce the number of

FLOPs and asymptotic complexity of the K4 contraction step, while the SKS can

be used to reduce the number of kernels and FLOPs needed for spherical GTOs.

The Echidna Fock Solver library, wherein the CDR/K4+MIRROR algorithms

and the previously discussed methods to compute and accelerate the formation of

the Coulomb and Exchange matrices have been implemented, is also the product of

the research and work done in the current thesis. The EFS + Quimera libraries are

GPL version 3, and have been interfaced to the Dalton 2013122 quantum chemistry

program suite, as also has the QM/CMM integral module.

There are three major areas in which the work here presented can be improved

or extended. First, it would be interesting to extend the automation methodology

of generating ERI routines to a more general code capable of synthetizing special-

ized molecular integral libraries for different target architectures, accelerating thus

the development of new features in a QC code. This could be accomplished through

a library of general recurrence relations and heuristics and a simple front-end for

specifying the form of the integral required and the valid range of parameters for

which the specialized functions will be generated. Libraries for computing ERI

derivatives are of special interest, even if a less general approach is used for their

generation. Likewise, the three- and four-electron integrals appearing in some ex-

plicitely correlated methods are a good candidate, considering these methods need

of other integrals of lower order, too.

Second, some preliminary results not published in the present thesis suggest

that a universal, even-tempered, general contraction basis sets could have a big

computational advantage over other GC basis sets in that they admit a partic-

ularly fast ERI algorithm, due to the many degenerate centers for the Gaussian

product expansion. It might be interesting to study the accuracy of such basis for

some typical benchmark set, and the real-case performance of the ERI algorithms.

Independent of the last point, it might be possible to speed-up the computation
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of regular ERIs within some bounded error with the K4+MIRROR algorithm by

commputing the Singular Value Decomposition of the [ijmkl] kernel tensors of an

ERI batch and applying the contraction steps and most of the transformations to

the reduced number of unitary vectors.

A question that remains unanswered is whether it is possible to transform the

O(L4) CDR kernels into the O(L4) integrals of a spherical ERI batch through an

asymptotically faster method than the O(L8) FLOPs due to the MIRROR step.

Some analysis suggests that such method does indeed exist, and might potentially

reduce the number of operations of the CDR/K4+MIRROR algorithm below many

non-early-contraction algorithms, making it a universal scheme for all ERIs.

As for the QM/CMM and ECP integrals, computing the forces is greatly

simplified by considering the translation invariance of the integrals. The ECP

integral code is in an early implementation phase, but provides numerical results

corroborated by computer algebra software.
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Timothy Layman, Christine McLeavey, Mark A. Moraes, Rolf Mueller, Ed-

ward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian

Towles, and Stanley C. Wang. Anton, a special-purpose machine for molec-

ular dynamics simulation. Commun. ACM, 51:91–97, 2008.

[22] Matteo Frigo and Steven G. Johnson. The design and implementation of

FFTW3. Proceedings of the IEEE, 93:216–231, 2005.

[23] CUDA 6.0 performance report, 2014. NVIDIA.

[24] The breakthrough advantage for FPGAs with tri-gate technology (white pa-

per). ALTERA.

[25] K. Nakamura, H. Hatae, M. Harada, Y. Kuwayama, M. Uehara, H. Sato,

S. Obara, H. Honda, U. Nagashima, Y. Inadomi, and K. Murakami. ERIC:

A special-purpose processor for ERI calculations in quantum chemistry ap-

plications. In Proceedings of the 5th International Conference on High Per-

formance Computing and Grid in Asia Pacific Region, 2002.

[26] T. Ramdas, G.K. Egan, D. Abramson, and K. Baldridge. Converting mas-

sive TLP to DLP: A special-purpose processor for molecular orbital compu-

tations. In Proceedings of the 4th International Conference on Computing

Frontiers, CF ’07, pages 267–276, 2007.

[27] President’s Council of Advisors on Science and Technology. Designing a

digital future: Federally funded research and development in networking

and information technology, 2010.
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[40] J́ı̌ŕı Č́ıžek. On the Correlation Problem in Atomic and Molecular Systems.

Calculation of Wavefunction Components in Ursell-Type Expansion Using

Quantum-Field Theoretical Methods. The Journal of Chemical Physics,

45:4256–4266, 1966.

[41] A.O. Mitrushenkov, G. Fano, F. Ortoladi, R. Lingueri, and P. Palmieri.

Quantum chemistry using the Density Matrix Renormalization Group. J.

Chem. Phys., 115:6815, 2001.

[42] J. A. Pople and R. K. Nesbet. Self-Consistent Orbitals for Radicals. The

Journal of Chemical Physics, 22:571–572, 1954.

[43] C. C. J. Roothaan. Self-consistent field theory for open shells of electronic

systems. Rev. Mod. Phys., 32:179–185, 1960.

[44] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,

136:B864–B871, 1964.

96



REFERENCES

[45] David A. Mazziotti. Structure of fermionic density matrices: Complete n-

representability conditions. Phys. Rev. Lett., 108:263002, 2012.

[46] Enrico Fermi. Un metodo statistico per la determinazione di alcune priopri-
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