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Abstract

This paper presents a method for monitoring of systems that operate in a repetitive manner. Considering that data batches
collected from a repetitive operation will be similar unless in the presence of an abnormality, a condition change is inferred
by comparing the monitored data against a nominal batch. The method proposed considers the comparison of data in the
distribution domain, which reveals information of the data amplitude. This is achieved with the use of kernel density estimates
and the Kullback-Leibler distance. To decrease sensitivity to unknown disturbances while increasing sensitivity to faults, the
use of a weighting vector is suggested which is chosen based on a labeled dataset. The framework is simple to implement
and can be used without process interruption, in a batch manner. The method was developed with interests in industrial
robotics where a repetitive behavior is commonly found. The problem of wear monitoring in a robot joint is studied based on
data collected from a test-cycle. Real data from accelerated wear tests and simulations are considered. Promising results are
achieved where the method output shows a clear response to the wear increases.
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1 Introduction In the manufacturing industry, including industrial
robots, preventive scheduled maintenance is a common
approach used to improve equipment’s SRAM. This
setup delivers high availability, reducing operational
costs (e.g. small downtimes) with the drawback of high
maintenance costs since unnecessary maintenance ac-
tions might take place. Condition based maintenance
(CBM), “maintenance when required”, can deliver a
good compromise between maintenance and operational
costs, reducing the overall cost of maintenance. The ex-
tra challenge of CBM is to define methods to determine
the condition of the equipment. This can be done by
comparing the observed and expected (known) behav-
iors of the system through an algorithm. The output of
such algorithm is a quantity sensitive to a fault, i.e. a
fault indicator, which can be monitored to determine
* This work was supported by ABB and the Vinnova Indus- the current state of the system (e.g. healthy/broken).
try Excellence Center LINK-SIC at Linkoping University.
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Driven by the severe competition in a global market,
stricter legislation and increase of consumer concerns to-
wards environment and health /safety, industrial systems
face nowadays higher requirements on safety, reliability,
availability and maintainability (SRAM). In the indus-
try, equipment failure is a major factor of accidents and
downtime, [13, 18]. While a correct specification and de-
sign of the equipments are crucial for increased SRAM,
no amount of design effort can prevent deterioration over
time and equipments will eventually fail. Nevertheless,
its impacts can be considerably reduced if good mainte-
nance practices are performed.

A common approach to generate fault indicators is based
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tem provides important information about the behav-
ior of the system and facilitates the generation of fault
indicators. Different approaches for residual generation
are based on, e.g., observers, parity-space and param-
eter identification. When a model of the system is not
available or it is too costly to be developed, alterna-
tives are still possible. These alternatives will typically
require extra (redundant) sensory information or expert
knowledge about the measured data, e.g., their nominal
frequency content or the use of labeled data. Essentially,
however, any method will attempt to generate quanti-
ties that can be used to infer the actual condition of the
system given the available knowledge and observations,
i.e. data.

In the industrial robotics literature, model-based
methods are commonly used. Due to the complex dy-
namics of an industrial robot, the use of nonlinear
observers is a typical approach (see [8] for a review).
Since observers are sensitive to model uncertainties and
disturbances, some methods attempt to diminish these
effects. In [6] and [9], nonlinear observers are used to-
gether with adaptive schemes; in [7], the authors mix
the use of nonlinear observers with support vector ma-
chines and in [21], neural networks are used. Parameter
estimation is a natural approach because it can use the
physical interpretation of the system, see e.g. [12, 2, 14].
Deriving reliable robot models from physics and iden-
tification experiments is however an involving task, see
e.g. [15] for identification of flexible manipulators. Alter-
natives that do not rely on a model have been presented
in [17], where relevant features of sound measurements
are monitored and in [10], where vibration data are
used. No reference was found of condition monitoring
methods for industrial robots that make a direct use of
the repetitive behavior of the system.

For CBM, it is interesting to study faults* that can be
detected before a critical degradation takes place. Faults
that follow from a gradual degradation of the robot, e.g.
due to aging and wear, are good candidates for CBM
because of their typical slowly varying behavior. An ex-
ample of such fault is studied in [14], where an observer-
based method is suggested for health monitoring of the
actuators’ lubricant. In [2], a method is proposed for ro-
bust wear identification in a robot joint under tempera-
ture disturbances; the method is based on a custom de-
signed identification experiment, i.e. a test-cycle, and a
known friction model which can describe the effects of
speed, load, temperature and wear.

In this paper, a data-driven method is proposed for the
generation of fault indicators for systems that operate in
arepetitive manner. It is considered that in case the con-
dition of the system is nominal, data batches collected

* A fault is defined as a deviation of at least one charac-
teristic property of the system from the acceptable/usual/
nominal condition.

from repetitive executions of the system will be similar
to each other and will differ if the condition changes.
The comparison of a given data batch against a nominal
one can thus be used to infer whether an abnormality is
present. The proposed fault indicator relates to changes
in the distribution of these batches of data. This is made
possible with the use of kernel density estimators and the
Kullback-Leibler distance between distributions. The fo-
cus of the paper is to present the framework and the ideas
for the generation of fault indicators and the topics of
alarm generation and fault isolation are not addressed.

The method was developed with the interest focused on
condition monitoring of industrial robots, where a repet-
itive operation is found in many of its applications. A
repetitive behavior is also commonly found in automa-
tion or can be forced with the execution of a test-cycle,
with the drawback of reduced availability. The problem
of robust wear monitoring in a robot joint is considered
to illustrate the framework based on real and simulated
data. The problem description and basic framework are
presented in Sections 2 and 3 respectively. The robotics
application and results are presented in Section 4. Con-
clusions and future work are given in Section 5.

2 Monitoring of Repetitive Systems — Problem
Description

Consider a general system from which it is possible to
extract a sequence of data batches,

Y]w = [yo,"' ayka"' 7y]L[71]7 (1)

where y* =[y¥, - ,yk, .-+ y&]T denotes the N dimen-
sional data vector (e.g. measurements or known inputs)
with batch index k.

The sequence y* could have been generated as the re-
sult of deterministic and stochastic inputs, Z¥ and VM,
where VM is unknown, and Z* may have known and
unknown components. For example, the data generation
mechanism could be modeled as

y* = h(z",vh), (2)

where h(-) is a general function. Let the set of deter-
ministic inputs Z™ be categorized in three distinct
groups, RM, D™ and FM. The sequences f* are un-
known and of interest (a fault), while r* and d* are
known and unknown respectively (e.g. references and
disturbances). With the purpose of monitoring y* to de-
tect changes in f¥, the following assumptions are made:

A-1 (Faults are observable) Changes on f* affect the
available data y*.

A-2 (Regularity of y* if no fault) The monitored
data y* change only slightly along k, unless a
nonzero fault f¥ occurs.



A-3 (Nominal data are available) At k=0, f =0
and the sequence y° is available.

While Assumption A-1 is necessary, Assumption A-2 en-
sures that two given sequences y™, y™ are comparable
as long as there is no change of condition. Nominal data
are assumed known to allow for a comparison against
nominal.

The rationale is then to generate fault indicators from
the comparison of the nominal data y° (available from
Assumption A-3) against the remaining sequences y*.
In order to generate fault indicators using the monitored
data y, two basic questions arise:

Q-1 How to characterize y*?
Q-2 How to compare two sequences y™, y"7

The first question targets the issue of finding a data
processing mechanism of y*, written in a general form
as g(y*), that enhances the ability to further discrimi-
nate the presence of f¥. The outputs of the form g(y*)
can then be compared against nominal with the use
of a comparison or distance function, represented e.g.
as d(g(y°)|lg(y*)). Under Assumptions A-1 to A-3, the
output of such comparison can be used as a fault indi-
cator.

Ensuring a regular behavior of y* according to As-
sumption A-2 is however difficult in practice. Uncontrol-
lable inputs often affect the data, leading to an unde-
sired behavior of the fault indicator and confusion of the
inference mechanism. When the data are affected by de-
terministic inputs as in Equation (2), Assumption A-2
can be achieved if r* and d* are regular over k, leading
to the following conditions:

C-1 (Regularity of r¥) The known deterministic in-
puts r* change only slightly along .

C-2 (Regularity of d*) The unknown deterministic
inputs d¥ change only slightly along k.

Notice that Conditions C-1 and C-2 are deliberately
stated in a qualitative manner, favoring the presentation
of the ideas in the paper. A more formal treatment is
outside the scope of this paper and will depend on the
data generation mechanism, e.g. the function A(-) in (2),
and on the inference mechanism chosen, i.e. how data
are characterized and compared.

Condition C-1 ensures a repetitive operation of the sys-
tem over k and is natural when r are references. For
example, in case rf can be chosen freely, a test-cycle
can be used to guarantee a repetitive behavior by choos-
ing r*~! =r* for all k. A repetitive behavior over k is also
required for d according to Condition C-2, i.e. uncon-
trollable inputs must have a regular behavior over the
batches. Notice though that the sequences r and d are

allowed to vary over i, thus allowing for a non-stationary
behavior of the system.

Condition C-2 is in many practical cases too restrictive.
To broaden the scope of the framework it is desirable
that this can be relaxed, leading to the question:

Q-3 How to handle irregular disturbances d*?

Questions Q-1 to Q-3, outlined in this section, are ad-
dressed in the next section, where the framework and
ideas are described.

3 A Framework for Monitoring of Repetitive
Systems

3.1 Characterizing the Data — Kernel Density Estimate

There are several ways to address Question Q-1. A se-
quence y* could be characterized by a single number,
such as its mean, peak, range, etc. Summarizing the
whole sequence into single quantities might however hide
many of the data features. A second alternative would
be to simply store the whole sequence and try to moni-
tor the difference y — y* but this requires that the se-
quences are, or can be, synchronized. Depending on the
nature of the data, a synchronization might introduce
errors, which can complicate a decision. In cases where
the data are ordered and, possibly, collected under sta-
tionary conditions, the use of transforms, e.g. Fourier
and/or Wavelet, might reveal relevant information about
the fault, see e.g. [11].

The alternative pursued in this work is to consider the
distribution of y*, which contains information about the
amplitude behavior of the signal. Even though informa-
tion contained in the ordering is lost, this is a valid ap-
proach since the effects of a fault appear many times
as changes in amplitude. Because the mechanisms that
generated the data are considered unknown, the use of
a nonparametric estimate of the distribution of y* is
a suitable alternative. A nonparametric estimate of the
distribution p(-) of y* can be achieved with the use of
kernel density estimators,

() =N‘1Zkh(y—yf)7 (3)

where kp(-) is a kernel function satisfying kp(-) > 0
and that integrates to 1 over the real line. The band-
width h >0 is a smoothing parameter and y includes the
domain of YM (see e.g. [5] for more details on kernel
density estimators and criteria/methods for choosing h).
From the definition, it follows that [ p(y) dy=1, that is,
the distribution estimate is normalized to 1. The quan-
tity p¥(y) is the kernel density estimate (KDE) of y*.



Equation (3) can be rewritten as the convolution

ey a1 [ Y ok _
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where 4(+) is the Dirac delta. Using the convolution the-
orem, the kernel density estimator can be seen as a filter
in the distribution domain, controlling the smoothness
of the estimated distribution. It is typical to choose ker-
nels which are symmetric and with a low pass behavior,
where the bandwidth parameter h controls its cutoff fre-
quency. In this work, a Gaussian kernel is considered,
with h optimized for Gaussian distributions, see e.g. [5].

3.2  Comparing Sequences — Kullback-Leibler Distance

In statistics and information theory, the Kullback-
Leibler divergence (KLD) is commonly used as a mea-
sure of difference between two probability distributions.
For two continuous distributions on y, p(y) and ¢(y), it
is defined as

> q(y)
p(y)log o) dy (5)
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The KLD satisfies Dkr, (p|l¢) > 0 (Gibbs inequality),
with equality if and only if p(y) = ¢(y). The KLD is
in general not symmetric, Dkt (p||q) # Dx1 (¢||p). The
quantity

KL (pllg) £ Dxw (pllq) + Dkw (qllp) , (6)

known as the Kullback-Leibler distance, is however sym-
metric. See [19] for an up to date review of divergences.

An answer to Question Q-2 can therefore be given with
the use of the KL distance defined in (6). From Assump-
tion A-3, fault-free data are always available, so that y°
is known and p°(y) can be computed. The quantities
KL (ﬁ0||ﬁk) can therefore be used as a fault indicator,
remaining close to 0 in case p°(y) is close to p*(y) and
otherwise deviating to positive values.

3.8 Handling Irreqular Disturbances — Data Weighting

One way to address Question Q-3 is to weight the raw
data y* according to prior knowledge of the fault and
disturbances in order to give more relevance to parts of
the data relating to a fault. The approaches considered
here will assume availability of a labeled dataset, YM as
given in (1), where the fault status (present or not) is
known to each component y* and is the same to each
of its elements y¥. The disturbance vector d* does not
need to satisfy Condition C-2, in fact, the dataset should
contain variations in d* that are expected to be found
during the system’s operation.

The fault-free data in the set are said to belong to the
class Cy, with My observations, while the faulty data
belong to class Cy, with My = M — M observations. Each
batch y* is weighted according to

vt =woy", (7)

where o is the Hadamard product (element-wise multi-
plication), yielding the weighted dataset

YME GO, gt gMott L gMitMe] o (8)

)

The objective is to choose w to maximize the sensitivity
to faults while decreasing sensitivity to disturbances.

Considering the basic framework presented in Sec-
tions 3.1 and 3.2, a natural criterion would be to
choose w according to its effects to KL (p™ (w)|[p"(w)),

where p(-) is the KDE of ¥ and therefore dependent
on w. When y™ is fault-free and y™ is faulty (and vice-
versa), the distance should be maximized otherwise it
should be minimized. A general solution to this prob-
lem is however difficult since it depends on how p*(w)
is computed (e.g. the kernel function chosen) and opti-
mization over (6).

In this work, simpler criteria are considered in a compro-
mise to explicit solutions. As it will be shown, the results
are related to linear discriminant analysis (LDA) used
in classification problems, see e.g. [1]. In LDA, instead
of the Hadamard product used in (7), data are weighted
using the inner product, yielding w’y. While the data
are reduced to a scalar quantity in LDA, the use of the
Hadamard product keeps the data dimensionality and
therefore the KDE can still be computed, yielding the
estimates p*(w). Furthermore, the objective in LDA is
to obtain a classifier; here, w is chosen as to achieve aver-
age separation between faulty and fault-free data while
giving small variability to disturbances.

Notice that once the weights are chosen, the same vec-
tor w is used for new data batches. For consistency, it
is thus required that the data sequences are synchro-
nized. This can however be overcome in case the weights
are strongly correlated to measured data. In such case,
an approximate function can be used to describe the
weights relation to the data, e.g. described as a static
function h(-) such that w; =h(y¥). The use of such rep-
resentation of the weights is illustrated in Section 4.2.

3.8.1 Choosing w — Linear Discriminant Analysis

A simple criterion is to maximize the difference between
the classes means in average. The average of the cth class



mean over all M, observations is
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The distance between the means of classes Cy and C; is
proportional to
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and the objective is to choose w which maximizes the
expression. This problem is equivalently found in LDA.
Constraining w to unit length w’w =1 (otherwise the
criterion can be made arbitrarily large), it is possible to
find that the optimal choice is according to (see e.g. [1,
Exercise 4.4]),

o (' — ). (9)

A criterion based only on the distance between the
classes means does not consider the variability found
within each class, e.g. caused by disturbances. An alter-
native is to consider maximum separation between the
classes means while giving small variability within each
class. The average value of the weighted variance vector
over k for class c is given by
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where S¢ is a diagonal matrix with diagonal elements
given by s¢. Defining the total within class variation
as y_.5° the following criterion can be used when two
classes are considered

wh(p' —pO)(p' —p°)"w
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which is a special case of the Fisher criterion. It can be
shown, see e.g. [1], that solutions for this problem satisfy

w* oc (ST 4+ 80t — u0). (10)
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Fig. 1. A simplified scheme of a robot motion control. The
trajectory U, determined from a robot program, is used as
a reference to the controller. The applied torques 7 are the
control inputs to the system. The controller is based on feed-
forward actions (not shown) computed based on U and feed-
back from measured motor positions and velocities (¢, ¢).

That is, each weight w; is proportional to the ratio be-
tween the average changes, u! — u, and the total vari-
ability found in the data, s} + s9.

4 Wear Monitoring in an Industrial Robot Joint

In a typical setup, industrial robots are equipped only
with sensors that relate to the robot’s states. With lit-
tle/no information of the surroundings, the behavior of
the robot is determined from a robot program, which
contains user defined instructions specified in task (or
joint) space. Based on the robot program, the control
system generates a trajectory, U, describing the time
dependence of the robot motion required to behave ac-
cording to the robot program. A trajectory is a known
deterministic sequence used as a reference to the motion
control (see Figure 1), i.e. it relates to r in the previ-
ously introduced framework. In many applications, the
same robot program is executed over and over again, in
a repetitive manner. Let U denote the trajectory to be
executed at instance k, a repetitive operation is ensured
with U*~1 =0F for all k, thus satisfying Condition C-1.

The controller ensures real-time motion performance
and high repeatability. Both feedforward and feedback
control actions are used. Typical measured quantities
are angular position at the motor side and motor cur-
rent. Angular position measurements ¢ are achieved
with high resolution resolvers (or encoders) and can
be differentiated to achieve motor angular speed ¢. A
current controller is used to provide a desired torque 7
on the motor output. Since the current controller has
much faster dynamics compared to the arm, it is com-
mon to accept a constant relationship between current
and torque, and to consider 7 as the control input to the
system. The relation between applied torque and mo-
tion at a given joint can be described from a multi-body
dynamic mechanism by

7= M(p)p+C(p, @) + 14(9) + 7s(¥) (11a)
+Tf(90a 71, Tv W)a (11b)

where 7 is the applied torque at the joint. The terms
given by M(p), C(p,¢), 74(¢), 7s(¢) and 7y(-) relate to



the inertia, speed dependent torques (e.g. Coriolis and
centrifugal), gravity-induced torque, nonlinear stiffness
and friction at that joint. The friction term in (11b)
considers its relation to joint speed ¢, the manipulated
load 7, the temperature inside the joint T', and the wear
levels w. These dependencies of friction are motivated
from the experimental studies presented in [3, 2] and are
illustrated in Figure 2* .

The deterministic unknown input of interest, i.e. a fault
sequence f, is the wear level w. The available data are
the quantities (¢, ¢) and the control input 7. The mea-
surements are corrupted by random noise, i.e. v, and
so is 7 due to feedback. Among the available data, it is
clear from (11) that 7 is affected by wear through fric-
tion, satisfying Assumption A-1. The applied torque, T,
is therefore included as the monitored sequence y. The
behavior of 7 is mainly dependent on ¢ and its deriva-
tives as given in (11) which are function of the trajec-
tory O. Notice that, for the same reference trajectory,
the required friction torques to drive the joint will differ
in case there are friction changes present. This is due to
the presence of feedback in the controller.

The variables 7; and T are deterministic and unknown
and thus relate to disturbances d. Given that the robot
is operating in a repetitive manner (U0F~! = U%), As-
sumption A-2 is achieved in case 7; and T satisfy Con-
dition C-2. The manipulated load is dependent on the
arm configuration through time (described by the tra-
jectory U) and on external forces/torques acting on the
robot (present e.g. in contact applications). Joint tem-
perature is the result of complicated losses mechanisms
in the joint and heat exchanges with the environment
which are difficult to control. The effects of 7, and T to 7
are in fact comparable to those caused by w (recall Fig-
ure 2). The problem of robust wear monitoring is there-
fore challenging. Finally, fault-free data, and thus As-
sumption A-3, are made possible if, e.g., data are avail-
able from the beginning of the robot operation, when no
significant wear is yet present.

The next subsection presents experimental results for
the wear monitoring problem when the changes in dis-
turbances are kept small. In this simplified setting, Con-
dition C-2 is considered valid and the basic framework
described in Sections 3.1 and 3.2 is used. In Section 4.2,
temperature disturbances are introduced in simulation
studies and the approaches described in Section 3.3 are
used to illustrate how robustness can be achieved.

* Throughout the paper, all torque quantities are normal-
ized to the maximum allowed torque and are therefore di-
mensionless.

4.1  Experimental Wear Monitoring under Constant
Disturbances

Accelerated wear tests were performed in a robot joint
with the objective of studying the wear effects. In an
accelerated wear test, the robot is run under high load
and stress levels for several months or years until the
wear levels become significant and maintenance is re-
quired. Throughout the tests, a trajectory U from a
test-cycle was executed regularly a total of M times
yielding a dataset [10,--- 7M~!]. The experiments
were performed in a lab, in a setup to avoid tempera-
ture variations and effects of load caused by external
forces/torques. It is thus considered that the distur-
bances satisfy Condition C-2. Considering 7° to be
fault-free, the quantities KL (ﬁ0||ﬁk) are computed
for k=1,... M—1.

Data collected from two accelerated wear tests are con-
sidered here to illustrate the usage of KL (ﬁOHﬁk) as a
fault indicator. For an illustration of the wear behavior
during the experiments, the friction curves in the joint
were estimated using a dedicated experiment (see [3] for
a description of such experiment) at each kth execution
of . The results are shown in Figures 3 and 4 where
relevant quantities are shown.

For the first case, displayed in Figure 3, M =36 batches
of data are considered. From analyses of the friction
curves in Figure 3(c), it is possible to note that wear
only starts to considerably affect friction after k =~ 25.
The effects of wear to the torque sequences, shown in
Figure 3(a), appear as small variations in amplitude due
to increased friction. The variations in the torque se-
quences are more easily distinguishable in the distribu-
tion domain. As seen in Figure 3(b), wear affects the lo-
cation and size of the KDEs peaks. Notice further that
the KDEs are similar during the first part of the tests,
i.e. for £ < 25, when the robot condition has not sig-
nificantly changed. The resulting fault indicator, shown
in Figure 3(d), shows a clear response to the changes in
friction, remaining close to 0 for k£ < 25 and increasing
thereafter. To allow for CBM, it is considered that, in
this test, a fault should be detected before k = 30. Us-
ing data for £ < 25, the mean and standard deviation
for the (considered) nominal behavior fault indicator are
estimated as [ug,00]=[1.191072,5.09107%]. The dashed
line in Figure 3(d) shows the value of up + 309, making
it clear that such early detection is made possible with
the proposed fault indicator.

The second case illustrates the situation where a gearbox
is replaced after a wear related failure takes place. A to-
tal of M =111 data batches are collected during acceler-
ated wear tests using the same test-cycle. At the begin-
ning, the nominal data are assigned as the one collected
from the start of the experiments. A gearbox failure oc-
curs at k=73 when it was replaced by a new one and the
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Fig. 3. Monitoring of a wear fault in an industrial robot joint under accelerated wear tests and controlled load and temperature
disturbances. A trajectory U was executed repetitively through the experiments, and the colormaps relate to its kth execution
and is chosen as to highlight increased friction values. The friction changes caused by wear were estimated during the
experiments and are shown in (¢) for a comparison. The monitored torque data are shown in (a), their respective KDEs were
computed using a Gaussian kernel and are shown in (b). At k=0, it is considered that the robot is fault-free and the fault
indicator given by KL (ﬁOHﬁk ) is shown in (d) where the dashed line represents an upper limit for the nominal behavior of the
fault indicator. Notice the clear response of the fault indicator to the wear changes.



nominal data were thus reset for the new gearbox. The
friction curves related to the faulty gearbox are shown
in Figure 4(c), where it can be noticed that the changes
due to wear start to appear around k£ =64. The related
KDE:s for this gearbox are shown in Figure 4(a), where a
similar behavior as in the previous case can be noticed,
with changes in the size and position of the distribu-
tions’ peaks. The KDEs for the replaced gearbox can be
seen in Figure 4(b) where it is possible to notice that no
significant variations are present. The fault indicator is
shown in Figure 4(d), where, as in the previous case, the
dashed lines represent the sum of mean and three times
the standard deviation of the fault indicator when the
gearboxes are considered healthy. The filled circle high-
lights the moment when the gearbox was replaced. As it
can be seen, an early detection of the increased wear is
made possible with the use of the proposed fault indica-
tor, allowing for CBM.

4.2 Simulated Wear Monitoring under Temperature
Disturbances

The experimental studies presented previously were
based on experiments performed in a lab where only
small variations of load and temperature were present.
To illustrate the ideas to improve robustness presented
in Section 3.3, simulation studies were carried out. The
use of simulations allow for more detailed studies of the
effects of the disturbances compared to what could be
achieved based on experiments in a feasible manner. A
realistic friction model is used in the simulation that
can represent, amongst others, the effects of wear w and
joint temperature 7. See Appendix A for details of the
simulation environment used.

4.2.1 Finding the weights w

First, the weight vector w must be found. According to
the procedures described in Section 3.3, this requires the
use of a labeled dataset Y. This dataset is achieved
here based on M = My+ M, simulations of a trajectory
O based on the same test-cycle used in Section 4.1. The
first My =100 batches of data are generated for class Cyp,
under no presence of wear but with variations of tem-
perature. The remaining M7 = 100 batches contain the
same characteristic of temperature variations and an in-
creased wear level. The simulation setup for each class
is according to

Co: WZO7
Ci: W= W,

T ~U[T, T+ Ar] (12a)
T~UT,T+Ar]  (12b)

where w. =35 is a wear level considered critical to gen-
erate an alarm (see [2] for details of the wear model).
Here, T is considered random, with uniform distribution
given by T = 30°C and Ap = 40°C. This assumption
is carried out for analysis purposes and allows for great
variations of temperature disturbances.

The solution for the optimal weights given in (9)
is proportional to the average changes found in the
data, ! — p?, while the solution given by (10) relates
to the ratio between these quantities and the total vari-
ability, s} + s?. These quantities are computed based on
the labeled dataset and are displayed in Figure 5(a) as a
function of the joint speed ¢. As it can be seen, the opti-
mal weights present a strong correlation with . This is
not a surprise since the effects of w and 7" depend on ¢,
recall Figure 2. In the same figure, worst case estimates
along speed are also shown (solid lines), i.e. pu} — pud
closest to zero and largest s} + s. Figure 5(b) presents
the ratio for such worst case estimates, which is consid-
ered as the optimal weights according to (10).

The solid line in Figure 5(b) is a function approximation
of the optimal weights given by

() = sech(B¢) tanh(ag) (13)

with o =1.451072 and § =4.5510~2. The parametriza-
tion of the weight vector as a function of ¢ allows for a
more general use of the optimal weights, e.g. the same
weighting function can be used for other trajectories. Ef-
fectively, the optimal weighting function selects a speed
region that is more relevant for robust wear monitoring,
giving less relevance for data collected at speeds close to
zero or higher than 100 rad/s. A similar behavior was
found in [2] for the quality (variance) of a wear estimate
for different speeds under temperature disturbances.

4.2.2  Robustness improvements

The improvements in robustness achieved using the
weighting function can be illustrated by considering
the detection of an abrupt change of w from 0 to w,.
Considering a dataset generated according to (12), a
pair (7™, 7") is given and the objective is to decide
whether the pair is from the same class or not, that is,
the two hypotheses are considered

m,n € Cy (14a)
meCl,nECO. (14b)

Ho : m,n € Cy or
Hi: mely,nely or

In view of the framework presented in Section 3, this
problem is analyzed by computing the distribution
of KL (p™||p") for each hypothesis, i.e. p(KL|Ho)
and p (KL|#H1). The density p(KL|Ho) should concen-
trate values close to zero, indicating that no change
is present while p(KL|H;) should contain large posi-
tive values, clearly indicating the change. Applying the
weighting function to the pair (7™, 7") will hopefully
provide more separation between the resulting densities.

The overlap of these distributions relates to how difficult
it is to make a correct decision, i.e. whether a change
is present or not. Given the value of the fault indicator,
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Fig. 4. Monitoring of a wear fault in an industrial robot joint under accelerated wear tests and controlled load and temperature
disturbances. Data collected from the same trajectory U used in Figure 3 are considered. A wear fault develops in the gearbox
from k=0 to k=72, whereafter the faulty gearbox is replaced by a new one. The KDEs for the faulty gearbox are shown in
Figure 4(a), which presents a similar behavior as for the previous case, recall Figure 3(b); the respective friction curves are
shown in Figure 4(c). The KDEs for the new gearbox are shown in Figure 4(b), where only small deviations are visible. The
nominal data are assigned at k=0 and at k=73 before and after the replacement respectively. The resulting fault indicators
are shown in Figure 4(d), with a clear response to the friction changes and regular behavior when no fault is present; the
circle in the figure highlights when the replacement took place and the dashed lines represent an upper limit for the nominal
behavior of the fault indicator.
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Fig. 5. Choice of optimal weights w. The effects of disturbances by temperature and faults are shown in (a), together with a
worst case estimate (solid lines). The optimal weights for the worst case estimate are shown in (b) together with a function
approximation (solid). Notice how the optimal region for wear monitoring is concentrated in a narrow speed range.



a decision regarding which hypothesis is present can be
made with a threshold check

Hi
IiL(ﬁniﬂﬁ");? h (15)

o]

and reads, decide for H; if KL (p™|[p™) > h other-
wise choose Hy. The decision mechanism and densi-
ties p(KL|Ho) and p(KL|#1) define a binary hypothesis
test* . It is possible to evaluate the probabilities of a
false detection P, i.e. accepting H; when H, is true,
and of correct detection Py, i.e. accepting H; when H;
is true as

Pf:/ p(z; KL|Ho) dz, sz/ p(z; KL|H,) dz.
h h
(16)

Notice that for a fixed Py there is an associated A (this
is known as the Neyman-Pearson criterion for threshold
selection) and therefore a P;. For a satisfactory perfor-
mance of the fault indicator, low P; and high P; are
typically desirable.

For given values of w,., T and Ar , the trajectory based
on the test-cycle is simulated using Monte Carlo simula-
tion for the classes described in (12) and the hypotheses
densities are estimated. The threshold is found using the
Neyman-Pearson criterion for the fixed Py = 0.01 and
the related P; is computed. For w,. =35 and T =30°C,
Figure 6(a) presents the achieved P, as a function of Ap
with and without the use of the weighting function. No-
tice that the use of the weighting function considerably
improves the robustness to temperature variations, but
for too large Ar it becomes difficult to distinguish the
effects.

A similar study can be performed to illustrate how w,
affects the performance. For the fixed Ar = 25°C
and T'=30°C, data are generated according to (12) for
different values of w.. The hypotheses’ densities are
estimated using Monte Carlo simulation. Figure 6(b)
presents Py as a function of w, for the fixed Py =0.01.
The improvements achieved using the weighted data are
clear.

5 Conclusions and Future Work

The suggested framework considers the monitoring of
changes in the distribution of the data batches. Because
no prior knowledge is assumed about the data distribu-
tion, nonparametric kernel density estimates are used,

* The presentation of the topic was put into the context of
this paper. The topic is however common and is found, e.g.,
in detection theory, related to receiver operating character-
istics, (see e.g. [20]) and classification problems (see e.g. [1]).
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which give great flexibility, are simple to implement
and have an inherent smoothing behavior. More studies
are however needed regarding the selection of kernel
functions and the bandwidth parameter. The effects
of the use of different distances than the symmetrized
Kullback-Leibler is also relevant.

The validity of the framework and methods were illus-
trated with promising results on real case studies and
simulations for the wear monitoring problem in a robot
joint. In the application, the execution of the same tra-
jectory, based on a test-cycle, ensured a repetitive behav-
ior of the robot. In general however, there might not be a
trajectory that is repeated through all of the robot’s life-
time. Nevertheless, trajectories are quite often repeated
through a certain period. The study of approaches to re-
lax Condition C-1 and extend the framework to applica-
tions where the repetitive behavior of the system varies
are therefore important.

The fast increase of friction due to wear found in the
experimental studies in Section 4.1 is common to other
applications, as presented in [4]. Such transient behav-
ior is important when determining the scheduling of the
data collection. The transient behavior of wear is also re-
lated to the equipment’s remaining lifetime, a quantity
important for decision support of maintenance actions.

In the future, the framework should be considered to
other types of mechanisms and failures. An important
advantage of the framework presented is that no model of
the system is required and modeling efforts are therefore
not needed. Furthermore, it opens up for use in systems
where a stationary behavior is difficult or not possible.

Finally, to achieve a diagnosis based on the suggested
fault indicator, methods for alarm generation and fault
isolation should be addressed in the future.
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A Simulation Model

The simulation model considered is the 2 link manipulator
with elastic gear transmission presented in the benchmark
problem of [16]. The simulation model is representative of
many of the phenomena present in a real manipulator, such
as,

e measurement noise,
e coupled inertia,
e torque ripple,

e torque disturbances,
e nonlinear stiffness,
e closed loop operation.

With the objective of studying friction changes related to
wear in a robot joint, the static friction model described
in [2] is included in the simulation model. The static friction
model was developed from empirical studies in a robot joint
and describes the effects of angular speed ¢, manipulated
load torque 7, temperature T', and wear w.

In the simulation setup, a trajectory U is described by a set
of reference joint positions through time to the robot, which
is controlled with feedforward and feedback control actions,
guaranteeing the motion performance. If no variations of w



and T are allowed, the torque sequence required for the ex-
ecution of a task U varies only slightly due to the stochastic
components and feedback.
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