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Abstract

This thesis work presents a new algorithm for simulating fluid based on the
Navier-Stokes equations. The algorithm is designed for cell based sandbox games
where interactivity and performance are the main priorities. The algorithm en-
forces mass conservation conservatively instead of enforcing a divergence free
velocity field. A global scale pressure model that simulates hydrostatic pressure
is used where the pressure propagates between neighboring cells. A prefix sum
algorithm is used to only compute work areas that contain fluid.
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1
Introduction

Cell based sandbox games is a genre of computer games where the player can
interact with the environment and shape it by mining and placing blocks. The
player can build structures, machines, and traps and is generally free to be cre-
ative and find his own solution to challenges. The cells in these games are often
rectangular blocks in 3D. Games such as Dwarf Fortress, Minecraft and Terraria
have made the genre very prominent. The goal of this work is to develop a fluid
simulation algorithm that the player can interact with and that runs in realtime.

The goal of this thesis work is to present a fluid simulation algorithm that is:

1. Faster than real-time performance

2. Giving consistent performance with no lag spikes

3. Cell based

4. Mass conserving

5. Calculating pressure on a macroscopic scale

6. Running on the GPU

Computer games are often very performance intensive and any component in a
computer game has to run at interactive framerates alongside every other com-
ponent of the game. To achieve this the fluid simulation must run faster than
real-time on its own.

Most fluid simulation research to this date has been on accurate physical simula-
tions or visual focused animation. When developing a fluid simulation algorithm
for real-time applications it is common to relax the mass conserving property of
the fluid. This is a good way to speed up the simulation in applications where

1



2 1 Introduction

fluid is added and removed from the system regularly such as with smoke, fire,
rivers, or ocean. In cell based sandbox games the user has more direct control
over the fluid and can build contraptions that depend on fluid that does not dis-
appear. Another property that is often relaxed to speed up the simulation is
pressure on a large scale. In cell based sandbox games it is useful if the pressure
propagates across large distances for example so that the user can build reservoirs
that supplies water to the users base.

Unlike many other applications realism is not important in this work. Looking
at popular cell based sandbox games we see that the realism of the fluid does
not necessarily correlate with player enjoyment. It is more important that the
players understand how the fluid behaves and can interact with it. A good visual
representation of the fluid can help build immersion but is not something that is
covered in this thesis work.

The cells in cell based sandbox games are often of the size 1m2 or 1m3. Dwarf
Fortress has cells that are 2 m high and 1 m wide, Minecraft has 1m3cells, and
Terraria has 0.7 m2 cells. A lot of fluid behavior such as surface tension, turbu-
lence, and splashes will be lost with fluids simulated at this scale. The target
world size in this project is 256 * 128 * 256 cells which is a typical size for a cell
based sandbox game.

1.1 Related work

Fluid simulation has been researched for a lot of different purposes. Weather
forecasts use fluid simulation to predict weather. Movies and other visual media
use fluid simulation to make realistic looking water, smoke, and fire.

The most common way of simulating fluids is by using the Navier-Stokes equation
[1]. By solving this equation you get a velocity field that is used to advect the
fluid. Advection is the process where the mass and other properties of a fluid
is transported with regards to the fluids velocity field. Of particular interest in
this thesis work is the simulation of incompressible newtonian fluids. That a
fluid is incompressible means that the density of the fluid remains constant. A
newtonian fluid has a constant viscosity. Viscosity can be thought of as the fluids
thickness. An example of an incompressible newtonian fluids is water.

Jos Stam [2] proposes an unconditionally stable way to solve Navier Stokes equa-
tion. This allows for longer time steps which makes real-time interaction possible.
The method works by representing the fluid in an isotropic grid while represent-
ing advection as particles, which is called semi-Lagrangian advection.

Lentine, Aanjaneya, and Fedkiw [3] proposes an improvement to the semi-Lagrangian
method which unlike the traditional implementation of the semi-Lagrangian method
is fully momentum conserving. Their improvements come from a new method
in which the order of the advection, diffusion and clamping of mass has been
modified.
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The shallow water equations can be used to describe the flow below a pressure
surface in a fluid. The equations are derived by integrating the Navier Stokes
equation along an axis, which reduces the complexity. The shallow water equa-
tions are useful in situations where the horizontal size is much bigger than the
vertical size of the fluid. It has problems in more unpredictable scenarios such
as waterfalls, underground rivers, and eruptions. Kass and Miller [4] presents
a fast and stable height-field approach to fluid simulation based on an approx-
imation of the shallow water equations. The approximation consists of making
the velocity of the waves proportional to the square root of the depth of the water.
The stability comes from their use of an alternating-direction implicit integration
technique.

A version of the height-field approach is the column-based height-field approach
where the fluid is represented as columns that lie directly on the terrain. The
method works by calculating the hydrostatic pressure in the columns and the
flow between the columns that result from pressure differences. Marcelo, Fuji-
moto, and Norishige [5] presents an optimization of the column-based height-
field approach that is designed to work with fluids on irregular terrain such as
rivers.The optimization in their implementation is based upon removing redun-
dant interactions between columns which reduces the amount of memory and
calculations necessary. They also show an implementation that is parallelized for
the GPU.

Chentanez and Müller [6] present an algorithm that combines the height-field
approach with an isotropic grid. The height-field part of the algorithm makes up
the bottom part of the body of fluid while the isotropic grid is on top of the height-
field and provides the fluid with surface detail. By doing this they get visually
rich fluid that runs with real-time performance. They also present a multigrid
algorithm for solving the Poisson equation that represents the fluids viscosity.
The algorithm runs on the GPU.

Smoothed particle hydrodynamics is a method of fluid simulation where the fluid
is represented as particles. Each particle represent a mass of the fluid which
makes the method inherently mass conserving. One drawback is that the method
requires a large number of particles to achieve the same quality of simulation as
a grid-based approach. Another method is needed to generate geometry in or-
der to render the fluid. Hegeman, Carr, and Miller [7] shows an implementation
of smoothed particle hydrodynamics that runs on the GPU. They use a dynamic
quadtree structure to accelerate the lookup of nearest neighbor. The GPU imple-
mentation is nearly an order of magnitude faster than previous CPU versions.

Guay, Colin, and Egli [8] present an algorithm that solve the Navier Stokes equa-
tion in a single pass by temporary relaxing the incompressibility condition. This
gives very good performance but is not mass conserving.

Chen, Lobo, Hughes, and Moshell [9] present an algorithm that first solves the
Navier Stokes equation in 2D and then raises the surface according to the fluids
pressure field. This reduces the complexity but is unstable.





2
Theory

This chapter will cover the theory behind the methods used in this project. The
Navier-Stokes equation will be used as a baseline and is covered in the next sec-
tion. The goal parameters of this project are slightly unusual so some parts of
the Navier-Stokes equation has been modified to better fit the goal. In order to
simulate a fluid we need three more parts that works together with the Navier-
Stokes equation. We need to make the fluid incompressible and the different
methods of achieving this will be discussed in section 2.2 Incompressibility. The
Navier-Stokes equation uses a pressure gradient but how this pressure is calcu-
lated is not covered in the equation. In section 2.4 Pressure we will discuss how
the pressure can be calculated. The final part that needs to be determined in the
simulation is the method of advection, which is discussed in section 2.5 Advec-
tion. The algorithm is implemented in OpenGLs compute shaders. Section 2.6
OpenGL describes how to develop for OpenGL.

2.1 Navier-Stokes

Incompressible flows of Newtonian fluids can be described using the Navier-Stokes
equation [1]:

ρ(
∂v
∂t

+ v · ∇v) = −∇p + µ∇2v + f (2.1)

where v represents the fluid velocity vector, ρ is the fluid density, p is the pressure,
µ is the viscosity, and f is external force vectors. The left side of the equation
represent the inertia of the fluid while the right side of the equation represent
stress factors and external forces. The equation is derived from Newton’s second
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6 2 Theory

law together with the assumption that the viscosity is proportional to the gradient
of the velocity field.

The Navier-Stokes equation is a nonlinear partial differential equation which
makes it very expensive to solve with high accuracy. By solving the Navier-Stokes
equation we get a velocity field that describes the flow of the fluid at a given point
in space. This velocity field is then used to advect the fluid.

As mentioned in the introduction to this chapter, the Navier-Stokes equation does
not specify how the pressure and external forces are calculated. If we disregard
the pressure and external forces we get the part of the equation that handles the
velocity. How this part is calculated is discussed in section 2.3 Velocity.

2.2 Incompressibility

The fluids covered in this work are all incompressible. The most common way to
enforce fluid incompressibility is to make the velocity field of the fluid divergence
free, as seen in equation 2.2. This means that at least two kinds fluids need to be
simulated in the model. The two fluids are usually air and the fluid that is the
focus of the simulation, such as water, smoke or fire. Note that air is compressible
but a common simplification in simulations where the pressure is relatively low
is to consider air to be incompressible. There are two popular ways of enforcing
a divergence free velocity field.

∇ · v = 0 (2.2)

The first way consists of two passes. In the first pass we solve equation 2.1 and
get a velocity field w that is not divergence free. In a second pass we project w
onto its divergence free component to get v which is divergence free. To get the
divergence free part you decompose the vector field into w = u + ∇q where u
is a divergence free vector field and q is a scalar field. The projection operation
will take the form of a Poisson equation and to solve it with high accuracy is
expensive. This is the method used by Jos Stam in Stable Fluids [2]. A Poisson
equation is a partial differential equation that is often written as ∇2ϕ = f where
ϕ is the potential function to be determined and f is a known function. In a 3D

grid the equation takes the form of
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ϕ(x, y, z) = f (x, y, z).

The second way revolves around trying to enforce density invariance. This is
done by solving the Navier Stokes equation for density to get the relation be-
tween the density variation and the divergence of the velocity vector field. This is
used to create a corrective pressure field P = K(ρn−ρ0) where K is a constant cho-
sen according to the fluid properties and ρ0 is the initial density. This pressure
field is used to make the vector field divergence free. It should be noted that the
corrective pressure field does not replace the pressure field in equation 2.1 but
could be seen as an internal pressure field. This is the method used Guay, Colin,
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and Egli in Simple and Fast Fluids [8].

Neither of these methods give completely incompressible fluids, only approxi-
mations of it. To get completely incompressible fluids in real time alternative
methods need to be used. One method is to relax the incompressibility condition
in the first pass, and in a second pass move fluid from cells with compressed fluid
into cells that are not full. This can be done with a flood-fill algorithm that traces
backwards in the velocity field with the help of an influence map. This method
suffers from inconsistent performance and poor performance in deep fluids. It
also produces a “bubbling” effect on the surface of the fluid.

(a) Cells A and B are
blocked. Cell C advects as
normal.

(b) All the cells can advect
as normal.

Fig. 2.1: The arrows represent fluid velocity which in this case is equal to the
maximum fluid velocity.

It is also possible to enforce fluid incompressibility without making the velocity
field divergence free and using equation 2.2. This means that only one fluid can
be simulated at once and interactions between different fluids need to be handled
separately. Some realism is also lost from the lack of bubbles and the lack of
resistance from the second fluid. A very important side effect of this is that cells
that do not contain the simulated fluid do not need to be simulated, which is
discussed in greater depth in section 3.4 Resting work areas. The terrain in cell
based sandbox games is often unpredictable and may change at any time from
things like floodgates closing, placing blocks, or starting pumps. A change in the
terrain can create a chain reaction where the velocity field for a large body of fluid
becomes affected. This means that it is expensive to predict the density of a cell in
the next iteration. To enforce incompressibility we have to conservatively advect.
This works by assuming that no other fluid than the current cell will advect and
then only advect the amount of fluid that can currently fit in the destination
cell. If more than one cell tries to move fluid into the same cell then the fluid in
that cell can temporarily be compressed. If the system compensates for this by
increasing the pressure then the system can become unstable. Another side effect
from this method is that the maximum advect amount is limited by the density of
the destination cell which means that cells with fluids at maximum velocity can
only be half full. Figure 2.1 illustrates this effect. The effect can be reduced by
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decreasing the time step length without increasing the maximum velocity. This
method is very cheap to execute and is easy to make stable.

2.3 Velocity

In this section I will discuss how to solve the velocity part of the Navier-Stokes
equation. I will do this by breaknig down the equation and looking at what effect
each part contributes with and how to solve it. The velocity part of the Navier-
Stokes equation can be written as:

∂v
∂t

= −(v · ∇v) + µ∇2v (2.3)

The first term, −(v · ∇v), represent convective acceleration which is the change
in velocity over position. The convective acceleration make the cells spread their
velocity by averaging the velocity of the transported fluid with the velocity of the
fluid in the destination cell. When enforcing a divergence free velocity field this
will result in effects such as fluids accelerating through narrower parts of a pipe.
Since we are not enforcing a divergence free velocity field these effects will be
lost. In this work we solve the convective acceleration as:

vn+1
a =

vna ∗mna + vnb ∗m
n
b

mna + mnb
(2.4)

where vaand ma is the velocity and mass of the current cell, while vband mb is the
velocity and mass of the fluid transported to the current cell.

The second term, µ∇2v, represent viscosity which can be thought of as the fluids
thickness. Lava has a very high viscosity, water has a low viscosity, and air has
a very low viscosity. The viscosity term can be solved efficiently using a second
order central finite difference scheme as shown by Guay, Colin, and Egli [8]. Like
the vast majority of real time applications of the Navier-Stokes equation their
method is made for a divergence free velocity field. To make the viscosity work
without a divergence free velocity field is beyond the scope for this thesis work
so the viscosity term is ignored. This can be seen as setting the viscosity to zero
which gives the fluid a thickness closer to air than water. To emulate the effect
of viscosity I use a down scaling of the velocity as: vn+1 = K ∗ vn where K is the
scaling factor.

Another side effect of a divergence free velocity field is that the velocity in a cell
will decrease if the velocity in the neighboring cell decreases. If a body of moving
fluid becomes blocked then the fluid velocity in the body will decrease. I emulate
this by decreasing the velocity in a cell proportionally to how much of the fluid
that could not fit in the neighboring cell. I solve this as:
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vn+1 = vn ∗ (1 −mn) (2.5)

where v is the velocity and m is the mass of the fluid that became blocked.

2.4 Pressure

The pressure field can be derived from p = F
A where F is the normal force and A

is the contact area. If we disregard external forces the equation can be written as
p = ma

A where m is the fluid mass and a is the fluid acceleration. The large time
steps needed for real time simulation makes it hard to calculate the pressure from
fluid acceleration. The accuracy becomes poor and the system becomes unstable
for large time steps. Instead of using the fluid acceleration we limit the algorithm
to only handle fluid that is at rest.

Fig. 2.2: A deformed U-pipe seen from the side. The numbers represent the
pressure values and the letters are for column reference. Note how the pres-
sure is calculated as normal according to p = ρgh in column A. In column B
and C the pressure has been shared from the neighboring cells. In column D
the pressure is being shared upwards. The arrow to the top right represent
the change in the velocity field that will result from the pressure field and
gravity.
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(a) Starting scene (b) Pressure locking

Fig. 2.3: A scene where the pressure is locked between two cells after the
original pressure source is removed. The numbers represent the pressure
values.

2.4.1 Hydrostatic pressure

When the fluid is at rest and is only affected by gravity we can derive the hydro-
static pressure as p = ρgh where g is the gravitational acceleration and h is the
height of the fluid column above the active cell. This assumes that the fluid is in-
compressible and that g is constant. With this limitation we loose the interaction
of momentum to pressure but we get a more responsive system that is stable. The
pressure is the same for fluid in the same system at the same height which means
that cells need to share their pressure with neighboring cells in the xz-plane. To
allow the fluid to flow upwards the pressure needs to be shared with neighboring
cells upwards. This is illustrated in figure 2.2. When the pressure is shared be-
tween neighboring cells a new problem is introduced. Two neighboring cells can
“lock” a pressure value by continuously sharing the pressure between them after
the source of the pressure is removed. This is illustrated in figure 2.3. To solve
this we introduce a dampening effect on the pressure sharing which will make
the pressure locked cells loose their locked pressure over a few iterations. A side
effect is that the accuracy of the pressure is slightly reduced.

2.5 Advection

Advection is the process where the mass and other properties of a fluid is trans-
ported with regards to the fluids velocity field. There are two popular methods of
advection that works in a cell based simulation; semi-Lagrangian advection and
eulerian advection.

In lagrangian advection the fluid is represented as particles and each particle has
its own velocity. This technique is difficult to make stable with the large time
steps required in real-time applications. A far more popular technique for ad-
vecting a fluid in real-time is semi-Lagrangian advection [2]. In this technique
the fluid is represented in a grid of cells that contain the mass and velocity of
the fluid, but the advection of the fluid is done with particles. A particle is cre-
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ated in the center of each cell and is then traced through the velocity field for 4t
time. The fluid is advected between the source cell and the cell that the particle
ends up in. This is illustrated in figure 2.4. Semi-Lagrangian advection can be
made stable for any time step length but requires that the velocity field is diver-
gence free which can be a problem as discussed in section 2.2 Incompressibility.
The most common version of semi-Lagrangian advection traces the particle back-
wards against the velocity field.

Fig. 2.4: semi-Lagrangian advection. The filled circle is the starting point of
the particle and the non-filled circle is the destination.

The technique used in this work is eulerian advection where the fluid and the
advection is represented in a grid of cells. Between every neighboring cell is
a virtual pipe that the fluid advects through. How many neighbors each cell
interacts with will be discussed in section 3.1 Parallelization. Eulerian advection
does not require a divergence free velocity field and is very easy to parallelize.

2.6 OpenGL

Compute shaders [10] has been a part of OpenGL since version 4.3 and is a new
shader stage used entirely for general-purpose computing on graphics process-
ing units (GPGPU). Compute shaders are separate from the traditional rendering
pipeline and does not have any defined input or output variables except for the
compute space defining constants. It is up to the user to read and write to buffers
and to determine how to interpret the data in the buffers.

Shader storage buffer object (SSBO) [11] is a new type of buffer that was intro-
duced in OpenGL version 4.3. SSBOs have similar functionality as texture objects
using the image load/store functions but are easier to work with since the data in
an SSBO is generic while the data format in a texture is generally more restrictive.
SSBOs can typically contain an amount of data on the order of magnitude of GPU
memory and can read and write atomically.
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2.6.1 Work group

GPUs consists of a number of compute cores. The GPU I used when testing the
implementation of this work is a GeForce GTX 670 which has 1344 cores[12]. The
cores are grouped into a number of work groups which shares a work group spe-
cific shared memory[10]. It is generally a good idea to have as large work groups
as possible while still having enough shared memory for each work item. In this
implementation I use a work group size of 16*8*8 work items which is equal to
the required maximum work group size of 1024 in the OpenGL specification. As
will be discussed in section 3.2 Fluid cell data structure this work group size also
makes good use of all the shared memory.

2.6.2 Memory

GPUs have a number of different memory types and using the correct memory
type for each situation can have a big performance impact [13]. In this work I
will only use three of them but I will briefly describe them all. Note that the
memory type names can be different between different platforms such as CUDA
and OpenCL.

Global memory can be read from and written to by the host program and all
threads in all workgroups. Global memory is cached but is still very slow. Access-
ing the global memory can be a major bottleneck so it is recommended to limit its
use. The content in the global memory is preserved between shader invocations
which allows us to limit the expensive data transfer between the host program
and the GPU. In this work we use the global memory for SSBOs containing the
fluid cell data structure arrays.

Shared memory can be read from and written to by all threads in a workgroup.
Each work group has its own shared memory which can not be accessed by the
other workgroups. Shared memory is very fast and often used as a manual cache
for the global memory. A common pattern which is used in this work is to assign
each element in the data structure array to its own thread and let that thread copy
the content of the data structure from the global memory to the shared memory.
This way other threads in the workgroup can access the data from the shared
memory instead of the global memory. This is the way I use shared memory
in this work. The content in the shared memory will not be preserved between
shader invocations.

Registers are where the local variables in a thread are stored. Registers are very
fast. In most applications the programmer does not have to consider the use of
registers. In applications that have very much local variable data the data will
be stored in local memory. Local memory is an abstraction of the global memory
and as such is very slow. In this work we do not have that much local variable
data so that we have to worry about local memory.

Texture memory can be written to by the host program and read from by all
threads in all workgroups. Texture memory is of comparable speed of the global
memory but the cache is optimized for operations common for textures. Texture
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memory provides free linear interpolation. I do not use texture memory in this
work.

Constant memory can be written to by the host program and read from by all
threads in all workgroups. Constant memory is as fast as registers but is very
small. Constant memory could be used if the host program wants to change
settings in runtime but is not used in this work.

2.6.3 Memory alignment

GPUs are optimized to read chunks of 32, 64, or 128 bytes at a time that is aligned
to their respective size from the global memory [14]. Lets do an example where
we read an array with elements of size 20 bytes from the global memory. This is
illustrated in figure 2.5. When we access the element A we would read the first
32 bytes and get element A and parts of element B. When we access element B the
GPU will read two chunks of 32 bytes and then merge data from the two chunks
to get element B. As we can see the unaligned memory forces the GPU to access
twice as much data as aligned memory would. To fix this we add padding to our
elements so their size becomes 2x for some positive integer x. Figure 2.6 shows a
case where the memory is aligned.

Fig. 2.5: Unaligned memory. The numbers represent byte indices in the
memory. A, B, and C are the elements.

Fig. 2.6: Aligned memory. The numbers represent byte indices in the mem-
ory. A, B, and C are the elements.





3
Implementation

This thesis work has been implemented in C++ with the main algorithm imple-
mented in OpenGLs compute shaders. A basic rendering code was written for
debugging and demonstration purposes.

3.1 Parallelization

The volume to be simulated is discretized into an isotropic grid of cells where
each cell is meant to represent 1 m3. Each cell can be calculated using only the
previous state of the grid. This means that the order the cells are calculated does
not matter as long as the grid is completely calculated before the next iteration
starts. In other words, the cells can be calculated in parallel. If each cell writes
the result of the calculations into the same buffer that it read from we introduce
race conditions. The cells might access the data of the neighboring cells from this
iteration or the previous iteration. To solve this we use the ping-pong technique
[15]. The cells read data from an input buffer and writes data to an output buffer.
After each iteration the buffers are swapped so the cells always read the data from
the previous iteration. By using this technique the data in the input buffer will
remain constant during an iteration which removes the race conditions.

How far each cell looks is also an important consideration. In this project cells
have 6 direct neighbors in 3D, which is called 6-connectivity. If the cells look to
their closest neighbors they have to access 7 cells, if they look one cell further
they have to access 25 cells, and if they look 3 cells away they have to access 63
cells. If the cells access cells further away we can allow a faster maximum fluid
velocity and a faster pressure spread but the calculations will take considerably
longer to execute. If the cells only access their closest neighbors we achieve a
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fluid velocity and pressure spread speed of 30 m/s if the algorithm runs at 30
ticks per second with 1 m3 cells. The terminal velocity of rain is 9 m/s [16] and
a typical river flows at about 2 m/s [17] so a maximum fluid velocity of 30 m/s
is sufficient for most scenarios. In real life the pressure in water spreads at the
speed of sound which is about 1500 m/s in water [18]. This is far faster than
30 m/s but on a small scale it is not noticeable. In this thesis work I prioritize
performance which is why the cells only access their closest neighbors.

3.2 Fluid cell data structure

The fluid simulation works with 4 variables per cell; volume, pressure, solid, and
velocity. The variables and their respective size can be seen in table 3.1. If all
variables have a precision of 4 bytes per float then the cell data structure is 21
bytes large. In order to get memory alignment we can add padding to the fluid
cell data structure so it becomes 32 bytes large. If needed, the 11 bytes of padding
could be used to store some other property such as temperature or to increase the
precision of some variable. It is also possible to achieve memory alignment by
making the data structure 16 bytes large. The first way to do this is to lower
the precision of volume to 1 byte and the precision of pressure to 2 bytes. The
other way is to lower the precision of velocity to 6 bytes. Both ways can be made
to work but will noticeably lower the simulation quality. One of the reasons
why one would want to have a cell data structure size of 16 bytes instead of
32 is to fit twice as many cells in the shared memory of a work group. In the
OpenGL specification, the required maximum shared memory size is 32 KB, and
the required maximum work group size is 1024. This makes for a ratio of 32
bytes per cell which is as much as we have in the full precision version of the cell
data structure, which means that we can not have larger work groups anyway.
The other reason to have data cell structures of 16 bytes is that a lower amount
of data is quicker to read from the global memory than a larger amount of data.

Name Full precision size Alternative size A Alternative size B
Volume 4 bytes 1 bytes 4 bytes
Pressure 4 bytes 2 byte 4 bytes

Solid 1 bit 1 bit 1 bit
Velocity 12 bytes 12 bytes 6 bytes

Total with padding 32 bytes 16 bytes 16 bytes
Table 3.1: Fluid cell data structure with 3 precision options.

3.3 Pseudo Code

The algorithm is implemented in an OpenGL compute shader. Compute shaders
do not have input or output variables but instead buffers in the global memory
that it can read and write. This algorithm uses one SSBO for input and one SSBO
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for output.

copy data into shared memory
wait for the rest of the work group
for each axis

find the neighbor cell that this.velocity points to
unclampedTransport = this.mass * this.velocity * dt
clampedTransport = clamp unclampedTransport

between 0 and neighbor.spaceLeft
blockedFluid = unclampedTransport - clampedTransport
this.mass = this.mass - clampedTransport
this.pressure = blockedFluid / dt
this.velocity = this.velocity * (1 - blockedFluid)

end

The cell looks forward through the velocity field to find the neighboring cell that
this cell will advect to. It calculates how much fluid can be transported to the
neighboring cell conservatively as discussed in section 2.2 Incompressibility. The
reason pressure depends on the amount of blocked fluid is to make cells con-
tribute with pressure only if something prevents it from transporting all the fluid
it can. This prevents falling and other non-static fluids from adding pressure. Fi-
nally we decrease the velocity proportionally with the amount of blocked fluid as
discussed in section 2.3 Velocity.

for each neighbor

if the neighbor.velocity points to this cell
unclampedTransport = neighbor.mass *

neighbor.velocity * dt
clampedTransport = clamp unclampedTransport

between 0 and this.spaceLeft
this.mass = this.mass + clampedTransport
this.velocity =

(neighbor.velocity * clampedTransport +
this.velocity * this.mass) /

(clampedTransport + this.mass)
end

end

In this section the cell looks backwards through the velocity field to find each
neighboring cell that wants to advect to this cell. Like with forward step the cell
advects conservatively as discussed in section 2.2 Incompressibility. The other
thing we do in this section is the convective acceleration part that is described in
section 2.3 Velocity.

add pressure from the cell above
if cell(below).pressure - maxWater > this.pressure
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copy the pressure from the cell(below)
end
for each neighbor at the same height

if the neighbor has a higher pressure
copy the pressure from the neighbor

end
end

Here we spread the pressure from neighboring cells to this cell as described in
section 2.4 Pressure.

add gravity acceleration
reduce the velocity by a scaling factor
clamp the velocity to be within the maximum velocity

Here we add external forces which in this case is gravity. We then scale the veloc-
ity down to simulate the viscosity part of the Navier-Stokes equation as discussed
in section 2.3 Velocity. Finally we make sure that the velocity stays within the
maximum velocity.

3.4 Resting work areas

In this section the group of cells that a work group computes will be called work
area. Because of the decision to not enforce a divergence free velocity field we
don’t have to compute work areas where no cells currently contain any fluid or
will contain fluid in the next iteration. To know which work areas should be
computed we create an array where each element represent whether or not a
work area should be active or resting. We call that array the work area array.
An active work area is a work area that contains fluid and will be computed. A
resting or inactive work area is a work area that does not contain fluid and will
not be computed. The elements in the work area array are stored in an SSBO in
the global memory and are reset to ’inactive’ before each solver iteration. When
a cell detects that it contains fluid or will advect fluid to an adjacent cell it sets
the corresponding element in the work area array to ’active’. By doing this a lot
of cells will overwrite each others data in the work area array but since the data
can only change from ’inactive’ to ’active’ this does not matter.

In an implementation on the CPU we could just query the work area array with an
if-statement in the beginning of the solver to skip work areas that are empty, but
because of the SIMD architecture of a GPU that solution will not work. In this
implementation I solve this by using a parallel prefix sum algorithm. A prefix
sum algorithm will take an array of data as input and output an array where each
element is the sum of all previous elements. We call this array the prefix sum
array. For example, if we input [2, 5, 1, 0, 9] we would get [0, 2, 7, 8, 8]. Note how
the output is shifted one step and the last element in the input is ignored. This
version of a prefix sum algorithm is called exclusive. The implementation of the
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prefix sum algorithm used in this thesis work is the one described in chapter 39
of GPU Gems 3[19].

Fig. 3.1: A compact array and a prefix sum array that is created from a work
area array. The elements that thread #3 reads and writes has been circled.

What we want in order to skip empty work areas is an array where the elements
are indices for work areas that are active. We call that array the compact array.
In the normal case each work group would compute its corresponding work area,
but now the work groups will instead compute the work area linked by the corre-
sponding element in the compact array. For example, if the compact array is [7,
31, 36, 42] then the first work group would compute work area 7 and the second
work group would compute work area 31 and so on. The compact array can be
created in parallel. Each thread looks at its corresponding element in the work
area array. If that element is ’active’ then the thread looks at its corresponding
element in the prefix sum array. The value in the prefix sum array is the index
in the compact array that the thread will write the index of the thread. This is
illustrated in figure 3.1. For example, thread #3 in the figure will first check in-
dex 3 in the work area array. Since that value is ’active’ it will check index 3 in
the prefix sum array. That value is 1 which is the index in the compact array that
the thread will write its thread index to, which is 3. The threads #0, #2, and #5
where its corresponding element in the work area array is ’inactive’ will not write
to the compact array.





4
Result

To evaluate this project I will look at the performance of the algorithm and the
behavior of the fluid. The performance is easy to objectively measure but the
quality of the behavior is a subjective quality.

4.1 Performance

All of the measurements are done on a GeForce GTX 670 running OpenGL 4.3.
Each test is run for one minute and the documented result is the average perfor-
mance during this time. The performance is measured both with and without the
prefix sum algorithm running. When testing without the prefix sum algorithm
we are interested in the overall performance as well as how the performance
scales with the number of cells. When testing with the prefix sum algorithm
we are interested how the performance scales with different ratios of active to
inactive cells as well as any overhead for running the prefix sum algorithm.

Table 4.1 shows the performance of the algorithm when running at different grid
size without using the prefix sum algorithm. The performance of 91 frames per
second for our target grid size of 256*128*256 satisfies our requirement of faster
than real-time performance. An interesting observation is that the performance
scales superlinearly with the grid size. A superlinear speedup is when the al-
gorithm runs faster on a larger data set than on a smaller data set [20]. The two
most likely reasons for the superlinear speedup in this project is that the GPU use
its work groups more efficiently, and that the data read from the global memory
becomes cached which makes subsequent memory accesses more efficent. Figure
4.1 is a chart that shows the number of cells computed per second for different
sized grid. The superlinear speedup is clearly visible in this chart.
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Table 4.2 shows the performance of the algorithm using the prefix sum algorithm.
All the tests are run on the target grid size of 256*128*256 with varying amount
of cells active. When the prefix sum is used but all cells are active we get a
performance of 72 frames per second. Compared with the performance of 91
frames per second that the algorithm achieves without the prefix sum algorithm
on the same grid size, we see that the overhead of using the prefix sum algorithm
is about 19 frames per second in this case. Figure 4.2 is a chart that compares the
performance when using and not using the prefix sum algorithm. The prefix sum
algirthm plot uses the target grid size of 256*128*256 but has a variable amount
of cells active to be computed.

Number of cells Frames per second

256*128*256 91
192*128*256 98
128*128*256 144
128*128*128 231

64*64*64 1,418
32*32*32 9,698

Table 4.1: Performance without the prefix sum algorithm

Number of cells Percent active Frames per second

256*128*256 100 % 72
256*128*256 75 % 87
256*128*256 50 % 115
256*128*256 25 % 201
256*128*256 0 % 23,422

Table 4.2: Performance with the prefix sum algorithm

4.2 Behavior

Please note that visualization of the fluid is not a part of this thesis work. A
simple renderer was implemented for debugging and demonstration purposes.
The cells are colored in such a way that it is easy to see the height of the cells. The
cells are colored from blue at the lowest height, to green after 10 cells difference
in height. The color then wraps to blue again. The internal height in the cells is
rendered from not red at the bottom of the cells, to red at the top of the cells.

The effect of hydrostatic pressure can be seen in figure 4.3. The pressure spreads
to neighboring cells and pushes the water up the right side of the pipe. In this
case I’m reducing the pressure spread by 5% in order to prevent pressure locking.
In the figure the pressure spreads 13 cells and the reduced pressure spread can
be seen in the bottom-right image in figure 4.3 where the water is at rest. The



4.2 Behavior 23

Fig. 4.1: Number of cells computed per second for different sized grid.

Fig. 4.2: Performance comparison between using and not using the prefix
sum algorithm.
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top-right image in the figure shows the momentum created from the pressure
difference pushes the water against the right wall.

Figure 4.4 shows a scene where the hydrostatic pressure from a water pillar ejects
the water through a pipe. The different height of water pillar creates the expected
difference in arcs. A flaw in the pressure spread can also be seen in the figure.
The pressure spreads from the water pillar out into the ejected water and thereby
spreads the water.

In figure 4.5 we can see a wave created from an initially stationary body of water.
This wave is the result of the higher pressure that spreads from below the smaller
body of water. When the pressure spreads the water will accelerate towards the
lower pressure which is upwards and outwards.

Figure 4.6 shows a river that is in the process of filling with water from an eternal
water source.

Fig. 4.3: Hydrostatic pressure makes the fluid level equalize in the U-pipe.
The imbalance in the final figure is from pressure lock prevention.
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Fig. 4.4: Different height of water pillar ejecting water at different speed.
The spread at the nozzle is because the pressure spreads out to the ejected
water.
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Fig. 4.5: A wave that is created from an initially stationary body of water.
This effect is from hydrostatic pressure.

4.3 Overall Evaluation

In this section I will evaluate the result of this project compared with the goals
set up in chapter 1:

1. Faster than real-time performance

2. Giving consistent performance with no lag spikes

3. Cell based

4. Mass conserving

5. Calculating pressure on a macroscopic scale

6. Running on the GPU

4.3.1 Is the algorithm faster than real-time performance?

When running the algorithm on a grid of size 256*128*256 cells we get a perfor-
mance of 91 frames per second when the prefix sum algorithm is not used. If the
prefix sum algorithm is used we can get a performance of hundreds of frames per
second depending on how many cells are active. This is well within the criteria
for faster than real-time performance. Rendering of the fluid can be done very
efficiently since the fluid data is already located on the GPU which eliminates the
need for most data transfers between the CPU and the GPU.
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(a)

(b)

Fig. 4.6: A new river flowing down the landscape.
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4.3.2 Is the algorithm giving consistent performance with no lag
spikes?

The algorithm does the same amount of computation regardless of the data it
works with. A cell where the fluid is at rest will take as long to compute as a cell
where the fluid flows at high speed with multiple external forces present. When
testing the algorithm the frame rate was consistent with variations of up to 5%
and no lag spikes. This is good enough to be considered consistent performance.
When using the prefix sum algorithm the performance can vary drastically. The
performance is consistent while the same amount of cells are active. This means
that the performance inconsistancies are only when the algorithm runs faster due
to a lower amount of active cells. This can decrease the value of the prefix sum
algorithm so whether or not it is to be used depends on the application.

4.3.3 Is the algorithm cell based?

The algorithm is cell based. In a cell based sandbox game the world already
consists of cells which makes the interaction between the fluid simulation and
the rest of the application seamless. If the cells in the application are large then it
is hard to render thin bodies of fluid such as small streams or thin jets of water. If
such details are important in the application then the cells in the fluid simulation
can be made smaller than the cells in the rest of the application, and can then be
stored in an octree or a similar data structure.

4.3.4 Is the algorithm mass conserving?

The conservative advection model used in this project makes the algorithm com-
pletely mass conserving. If mass conservation is of lower importance then the
conservative advection can be relaxed in order to make the system stable for
longer time steps or lower the limitation on velocity from cell mass as discussed
in section 2.2 Incompressibility. The algorithm was completely mass conserving
when testing.

4.3.5 Is the algorithm calculating pressure on a macroscopic
scale?

The pressure calculated in this project is the hydrostatic pressure. The pressure is
propagated to neighboring cells in order to get pressure on a macroscopic scale.
To avoid pressure locking we have to decrease the propagation of the pressure
which creates the artifacts that can be seen in figure 4.3. By only calculating
the hydrostatic pressure we miss some fluid behavior and the interaction from
momentum to pressure. The pressure model presented in this project is sufficient
for some applications but is something that can be improved.

4.3.6 Is the algorithm running on the GPU?

The algorithm runs on OpenGLs compute shaders on the GPU. The algorithm is
created to be run in parallel and different kinds of memory is used on the GPU
to improve the performance.
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Summary

In this report I have presented a new algorithm for simulating fluids in a cell
based world. The algorithm is based on Navier-Stokes equation but is heavily
modified to work without a divergence free velocity field. This has allowed the
algorithm to be completely mass conserving and has made it easier to skip the
computation of empty work areas which significantly speeds up the algorithm. In
order to skip empty work areas a prefix sum algorithm was used. The algorithm
also features a global scale pressure model that simulated hydrostatic pressure.
This pressure spreads to neighboring cells which creates phenomena such as high
pressured water flowing up a pipe, and waves created from an impact with a body
of water.

5.1 Future work

By not enforcing a divergence free velocity field we miss some fluid like behavior
like whirls and bubbles. These behaviors can be achieved by loosely enforcing
a divergence free velocity field while still using the conservative advection de-
scribed in this report. By doing this it might be possible to relax the restrictions
on the conservative advection in order to lower the impact to maximum velocity
that mass have. The limiting factor in such an algorithm would be stability as
cells would often have more fluid what is allowed. If a divergence free velocity
field were to be enforced then it would be hard to skip computing cells that are
empty with a prefix sum algorithm. An alternative solution would be to go from
an isotropic grid to an adaptive octree or some similar data structure.

In this project we simulate hydrostatic pressure. It might be possible to extend
this to include both hydrostatic pressure and dynamic pressure. The biggest prob-
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lems with this would be that the relatively long time steps required for real-time
applications would create oscillations and instability. This might be solvable
by having a separate data structure containing the pressure that dynamically
changes so each element is a body of fluid that has the same pressure.

The focus of this project was to create an algorithm for simulating fluid but did
not include any visualization of the fluid. Compared to most other fluid simu-
lation algorithms, this algorithm is designed to work with relatively large cells.
This might make it hard to create a convincing rendering that disguises the cells.
Mist, foam, and splash particles can help with disguising the cells. Since this
algorithm is designed to work in OpenGLs compute shaders it would be very ef-
ficient to render the fluid since all the fluid data is already on the GPU. The only
time the fluid data has to be transferred between the CPU and the GPU is when
the user interacts with the fluid which is something that happens comparatively
rarely.
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