SIGRAD (2014)
M. Obaid, D. Sjolie and M. Fjeld (Editors)

GPU-based ray-casting of non-rigid deformations: a
comparison between direct and indirect approaches

F.M. M. Marreiros'*? and O. Smedby' >

ICenter for Medical Image Science and Visualization (CMIV), Link&ping University, Sweden
2Department of Science and Technology (ITN) - Media and Information Technology (MIT) , Linkoping University, Sweden
3Department of Radiology (IMH), Link&ping University, Sweden

Abstract

For ray-casting of non-rigid deformations, the direct approach (as opposed to the traditional indirect approach)
does not require the computation of an intermediate volume to be used for the rendering step. The aim of this study
was to compare the two approaches in terms of performance (speed) and accuracy (image quality).

The direct and the indirect approach were carefully implemented to benefit of the massive GPU parallel power,
using CUDA. They were then tested with Computed Tomography (CT) datasets of varying sizes and with a synthetic
image, the Marschner-Lobb function.

The results show that the direct approach is dependent on the ray sampling steps, number of landmarks and image
resolution. The indirect approach is mainly affected by the number of landmarks, if the volume is large enough.
These results exclude extreme cases, i.e. if the sampling steps are much smaller than the voxel size and if the image
resolution is much higher than the ones used here. For a volume of size 512x512x512, using 100 landmarks
and image resolution of 1280x 960, the direct method performs better if the ray sampling steps are approximately
above 1 voxel. Regarding accuracy, the direct method provides better results for multiple frequencies using the
Marschner-Lobb function.

The conclusion is that the indirect method is superior in terms of performance, if the sampling along the rays is
high, in comparison to the voxel grid, while the direct is superior otherwise. The accuracy analysis seems to point
out that the direct method is superior, in particular when the implicit function is used.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture;
1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling ; 1.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism ;

1. Introduction

Since the introduction of the Graphics Processing Units
(GPUs) with programming functionalities, we have seen an
explosion of algorithms being ported to these devices. The
NVIDIA’s Compute Unified Device Architecture (CUDA)
enables the usage of these devices. The necessary software
programming interface to access the hardware is available in
”C for CUDA” [Cud10] (C with NVIDIA extensions and cer-
tain restrictions), but many language bindings are also avail-
able.

One algorithm that largely benefited from programmable
GPU architectures is volume ray-casting. Volume ray-

(© The Eurographics Association 2014.

casting is a well known Direct Volume Rendering (DVR)
technique used mainly to render regular grid volume data,
but it also can be used to render implicit surfaces [Sig06].
Examples of such data are medical image modalities like
Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI). Ray-casting operates by casting one ray
per pixel, and each ray is computationally independent, thus
benefiting greatly from highly parallel programmable GPU
architectures, e.g. shaders or CUDA. In this paper, we will
use mainly isosurface ray-casting, a special case of volume
ray-casting also known as first-hit ray-casting, with regular
grid and implicit surface data. The same conclusions can be
generalized for other DVR types.

FE. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

Ray-casting is mostly used to generate images of static
objects; if the volume is deformed over time, the traditional
approach (indirect) is to compute an entire new volume for
each time step and render it. The intensities at the corre-
sponding positions in the original volume have to be cal-
culated for each voxel. In the literature there are several
voxel-based non-rigid deformation methods, which can also
be used for specific tasks like volume morphing or volume
registration. In this paper we focus on the Radial Basis Func-
tions (RBF) method, one of the most widely used non-rigid
deformation methods in the medical field that also has fast
GPU implementations.

We compare the direct and indirect methods exploiting in
both approaches the benefits of the GPU hardware architec-
ture. The comparisons are provided in terms of performance
and accuracy.

The motivation is to study if it is possible to enable de-
formation interaction with a frame rate that allows visual
feedback (at least 1 frame-per-second). There are two main
application scenarios considered: first tracking of points in
real-time to guide the deformation; second for artistic pur-
poses where the artist/animator is controlling the position
of the points to guide the deformation. In both cases visual
feedback is critical, thus a proper frame rate is essential.

2. Related work
2.1. GPU-based ray-casting

Several GPU-based ray-casting techniques have been pro-
posed in the literature. An overview of the major develop-
ments in this area, including acceleration techniques like
early-ray termination or empty space skipping, can be found
in [HLSRO09]. From a historical perspective, some of the ini-
tial implementations of GPU-based ray-casting with acceler-
ation techniques are from Kriiger and Westermann [KWO03]
and Rottger et al. [RGW*03]. Both implementations use
shaders and early-ray termination, but their empty space
skipping implementations are different. Kriiger and West-
ermann [KWO03] use an octree for empty-space skipping.
Rottger et al. [RGW*03] calculate the ray’s intersections
with the volume bounding box and use them as the starting
and end points of the rays. Li et al. [LMKO3] compared sev-
eral empty space skipping and occlusion clipping techniques
for texture-based volume rendering.

More recently, a combination of CUDA and OpenGL
can be used to compute the images (CUDA side) and pass
them directly to be rendered (OpenGL), bypassing the tradi-
tional rendering pipeline. This uses the OpenGL Pixel Buffer
Object (PBO) to store the texture ensuring that the gener-
ated images reside in the GPU as described in the chapter
OpenGL Interoperability of the CUDA Programming Guide
and the example code [Cud10]. There are already advanced
CUDA ray-casting implementations [MRH10]. To be no-
ticed, in the CUDA SDK a simple ray-casting example can

also be found. Although CUDA was used here the imple-
mentation could also be made using OpenCL or shaders,
with similar results expected.

2.2. Non-rigid deformations

A considerable number of non-rigid deformations methods
have been proposed. A good survey of physically based de-
formable models can be found in [NMK™*05]. Most of these
approaches are dependent on a mesh representation, but a
subset of mesh-free methods exist. Besides the physically
based methods, many others exist that in general try to opti-
mize the transformation minimizing some constrains. In this
work we will use a non physically based mesh-free method.

A distinguishing factor between them is the data they
use to drive the deformation. They can thus be divided into
point-based, surface-based, intensity-based, etc. In this pa-
per, we will focus on the point-based approach, in particular
the Radial Basis Function (RBF) method, and one specific
RBF: the Thin Plate Spline (TPS). A comparison of some
of these methods can be found in Fang et al. [FSRR00] who
also describe an implementation that does not require the in-
termediate volume. Further methods that also do not require
the intermediate volume and are tied to the rendering stage,
include ray deflectors [KY97], free-form [CHMO3], free-
form and texture mapping [WRSO01], spatial transfer func-
tions [CSW™03], constrained illustrative [CSC10], and 3D
chainmail algorithms [Gib97]. From the last set of methods
the ones that can use homologous points to control the de-
formation in the same way as with the TPS are the free-form
methods [WRSO01], [CHMO3]. These share many similarities
with our work. In [WRSO01] no intermediate volume is cal-
culated but instead a shape model and an appearance model
are used. The shape model is a tessellation of the surface
enclosing the object and the appearance a 3D texture of the
volume. The second free-form method [CHMO03] computes
a deformed ray in the original object space and approximates
the ray path by polylines.

Recent, RBFs have been implemented in the GPU, for
warping and non-linear registration. Levin et al. [LDS04],
Rowland [Row07] and Lapeer et al. [LSR10] all use shaders
or a shader/CPU combination for comparisons. One should
notice that these implementations could be tuned to trade
speed for accuracy, a feature essential in some application
scenarios. All these approaches require the computation of
a new volume (indirect), which can possibly be rendered in
a subsequent step. The voxel positions in the new volume
(Target) have to be evaluated, and the intensity of the corre-
sponding position in the original volume (Source) fetched
and assigned to the new voxel. This process is known as
backward mapping.

We also implement the indirect method for comparison
purposes using CUDA. For the direct approach, we evalu-
ate and perform backward mapping at the ray-casting sam-
pling positions. This has the drawback of being useful only

(© The Eurographics Association 2014.

F. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

for rendering purposes, but if rendering is the primary goal,
then our approach may prove valuable. In addition, we can
control image quality and frame rate using the traditional
ray-casting parameters.

3. Materials and Methods
3.1. RBF

RBFs are well known for their smooth interpolation proper-
ties. They are able to smoothly interpolate point positions in
3D to generate a surface, as seen, e.g., in [CBC*01]. We use
the RBF as a smooth mapping function, to determine cor-
responding positions in two 3D volume spaces. Each space
has a set of points, also referenced in the literature as land-
marks or centers, necessary to drive the mathematics of the
method. Both spaces need to have the same number of land-
marks and each landmark in one space (Template or Source)
has a corresponding homologous landmark (e.g. the same
anatomical location) in the mapped space (Target). An ini-
tial use of RBFs, in particular the thin-plate spline (TPS)
for modeling of biological shape change, was proposed by
Bookstein [Boo89]. Bookstein formulated the TPS algebra
in 2D; later extensions by Lapeer and Prager [LP00] enabled
the use in 3D. We can also find in [LPOO] the concepts of for-
ward and backward transformation.

In algebraic terms, the backward mapping can be de-
scribed by the following equation:

(xs5,¥5,25) = f (X1, 1, 2) M

where: (x;,y:,z:) are target point coordinates in Cartesian
space;

(xs,ys,zs) are source point coordinates in Cartesian space;

f(x,y,2) is a function mapping points in the target space
to the source space. This function needs to be decomposed,
solved and evaluated separately per coordinate, in the 3D
case:

Feye,ze) = [G,y ze)s fy (v 2), f2 (e, ve,2)] - (2)
where: f)/((xt,yt,Zt):xS;fll/(xtvyha):yS;fé(xtvtht):ZS'
Per coordinate the function f " has the following equation:

n
felx,y,2) = a1 +azx+asy+aszt Y, Aid(|P— (x,y,2)])
i=1
©)]

where:

* 1s an index for the individual coordinates, it should be
replaced by X, Y or Z;

A1x,024,a3, a4, are the coefficients of an affine transfor-
mation;

n the number of landmarks;
Aix are the weights;
P; a landmark point - in backward mapping the target

landmarks, in forward mapping the source landmarks;

(© The Eurographics Association 2014.

0 the radial basis function.

The TPS function in 3D is given by the following equa-
tion.

o(r)=r 4)

Using the landmark values in equation (2), we obtain a lin-
ear system of equations that can be directly solved by LU
decomposition. In this way, the unknown affine coefficients
and weights can be obtained for each coordinate ([Boo89],
[LPOO0]). To solve the linear system of equations we used
a C++ linear algebra library named Armadillo [San10] in
CPU, as the time needed to solve the system is very short.
The greatest amount of time is spent in the evaluation of the
new point positions performed in GPU.

Knowing the coefficients of the affine transformation and
the weights, we can evaluate the point coordinates directly
using equation (2). The purpose of this mapping is to obtain
the corresponding image intensity values of the target points.
Using the indirect method, we want to know the intensity
values of the voxels positioned on a regular grid (target vol-
ume image). Since the target voxel positions are known, we
can use the mapping function to obtain the corresponding
position in the source volume (equation (2)).

o

I(xt;,y15,20) = 1(Xg,y5,25)3i = Loong, j=L.ny,k =1...n;

oo

(me‘wz‘v) :f(xli7yfj7ka) (5)

where: ny,ny,n; are the dimensions of each volume coor-
dinate.

The mapped point in the source image may lie between
voxel positions; if this is the case, then trilinear interpola-
tion is required to obtain the intensity value. The trilinear
interpolation is performed by the GPU in hardware, consid-
erably reducing computation time. Still, evaluating all voxels
in the volume requires considerable computational power,
since the RBF depends on the number of landmarks.

3.2. Ray-casting of non-rigid deformations

The traditional (indirect) way of using ray-casting and non-
rigid deformations is to first calculate an entire new volume
by backward mapping all the voxels and then render it. Our
direct approach is different: we evaluate (backward mapping
and check the intensity in source image) at the sampling
points locations along the ray. The evaluation of the gra-
dients, used for illumination, is also calculated in this way.
In our case, a 3D Sobel filter is used to estimate the gradi-
ent. This filter requires 26 neighbor points, which are back-
ward mapped to obtain the appropriate intensity value in the
source image. The indirect method also uses the Sobel filter,
but in the intermediate volume space. Furthermore early-ray
termination is used to stop the ray when the maximum opac-
ity level is reached and adaptive sampling to increase the pre-
cision of the isosurface position by increasing the sampling

FE. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

rate by eight times in positions where the intensity values
approximate the isosurface threshold.

3.3. Volume bounding boxes

The position and size of the target bounding box is defined
by the user. This is done to allow the user to select the ap-
propriate dimensions. In cases where the source and target
bounding boxes have the same size, an expansion of the tar-
get volume would possibly clip it. If this is the case, the
user manually increases the size of the bounding box and
the problem is solved.

The bounding boxes serve also to determine where the
rays initiate and possibly terminate, if the surface was not hit.
This is performed by computing where the ray intercepts the
faces of the bounding boxes to determine the points closer
and further from the center of projection.

3.4. Accelerating the RBF evaluation

As mentioned earlier, with the direct approach the RBF is
evaluated at the points along the sampling ray and with the
indirect method at the point locations of the voxels in the in-
termediate volume. The evaluation requires the computation
of a sum that depends on the number of landmarks. In order
for these operations to be performed as fast as possible, we
make use of CUDA texture memory. We then need to store in
texture memory the coefficients of the affine part, the target
landmarks and the weights. Note that these variables are re-
quired for each ray/voxel, because they all are needed for the
deformation computation of each sample point. This CUDA
memory usage greatly improves performance since texture
memory is cacheable; the alternative would be to get these
variables from global memory every time we need to use
them. This would introduce a great penalty due to memory
latency and bandwidth.

4. Results

To compare consistently the indirect and direct methods in
terms of performance, independently of the volume data we
have used empty volumes with source and target landmarks
with the same values (no deformation) and three volume
sizes:

e 512x512x512
e 512x512x256
e 512x512x128

with isotropic voxels of 0.5 mm per coordinate. The perfor-
mance tests were dependent on:

e ray sampling step
e number of landmarks
e image resolution (number of rays)

25

20 /

volume size

=== 512x512x512 Direct
=== 512x512x256 Direct
=== 512x512x128 Direct

frame rate (FPS)

= ©= 512x512x512 Indirect
= &)= 512x512x256 Indirect
512x512x128 Indirect

ray sampling steps (voxel)

Figure 1: Performance test: variation of ray sampling steps.
The image resolution used was 1280x 960 and the number
of landmarks 100. The direct and indirect methods are com-
pared.

volume size

=== 512x512x512 Direct
== 512x512x256 Direct

e 512x512x128 Direct
== 512x512x512 Indirect

frame rate (FPS)
@

= &= 512x512x256 Indirect
512x512x128 Indirect

number of landmarks

Figure 2: Performance test: variation of number of land-
marks. The image resolution used was 1280%x960 and the
ray sampling step 1.0 voxel. The direct and indirect methods
are compared.

20

15 I volume size

=== 512x512x512 Direct
== 512x512x256 Direct

== 512x512x128 Direct

frame rate (FPS)
=
1S5)
)l

== 512x512x512 Indirect
= &= 512x512x256 Indirect

512x512x128 Indirect

0
300000 500000 700000 900000 1100000 1300000
number of rays

Figure 3: Performance test: variation of number of
rays. The resolutions used were: 1280%x960 (1,228,800
rays), 1024 x768 (786,432 rays), 960x640 (614,400 rays),
640480 (307,200 rays). The ray sampling step used was
1.0 voxel and the number of landmarks 100. The direct and
indirect methods are compared.

(© The Eurographics Association 2014.

F. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

Figure 4: Examples of a TPS non-rigid deformation, using a CT of a head and partially chest (512x512x512) dataset. The
images on the left and right are deformed and the center one is not deformed.

Care was taken to place the volumes projections (by con-
trolling the camera position) fully within the image space.
The graphics card used was an NVIDIA Geforce GTX 680
with 1536 CUDA cores, 2GB of dedicated video memory
and CUDA architecture 2.0. Figures 1, 2, 3 present the re-
sults found for the several tests. To analyze the performance
we look at the frame rate in frames per second (FPS). Fig-
ure 1 shows that the direct method is linearly dependent on
the ray sampling steps: the frame rate varies linearly for all
datasets, but with different slopes. For the indirect method,
there are no significant differences if the volume is large
enough. These results exclude extreme cases, i.e. if the sam-
pling steps are much smaller than the voxel size. In these
cases it is expected that the time to compute the deformation
is neglectable in comparison to the ray traversal producing
very low framerates. Figure 2 shows that both methods are
dependent on the number of landmarks: the frame rate de-
cays exponentially with the increase of landmarks. Finally,
in Figure 3 we can see that the frame rate using the di-
rect method is exponentially decaying, while for the indi-
rect method, if the volume is large enough, the frame rate is
constant. Extreme cases where the image resolution is much
higher than the ones used here are not considered. The same
consideration as in the ray sampling steps apply here.

For the direct method, we perform an extra test. The per-
formance with and without early-ray termination was com-
pared, using a CT dataset of the head and part of the chest
(512x512x512), presented in Figure 4, where the central
image corresponds to the volume without deformation and
the remaining with a deformation applied. The results are
presented in Figure 5.

In Figure 5 we can see that the increase in performance
with early termination is small. In fact, it may even take more
time to produce the rendering with the early-ray termination
than to traverse the entire empty volume. This is due to adap-

(© The Eurographics Association 2014.

\

o= with early-ray
termination

/s —aemptyvolume

frame rate (FPS)
w a

ray sampling steps (voxel)

Figure 5: Performance test: early-ray termination versus an
empty volume of the same size, using the direct method and
multiple ray sampling steps. The image resolution used was
1280960 and the number of landmarks 100.

tive sampling: the sampling rate increases in regions with
values near the isosurface threshold, but if the ray does not
hit the surface, then the performance penalty is high.

Besides the performance tests we also tested image qual-
ity. A synthetic volume was created using the Marschner-
Lobb function [ML94], with a resolution of 512x512x256.
To generate the ground truth approximation, we used the di-
rect method and in the source space tested the voxel values
with the analytical function with a translation of 1.25 voxel
in each coordinate, rendering the values larger or equal to
0.5. To compute the gradient, we used also the Sobel filter,
but again testing the values with the analytical function. The
offsets of the sampling positions were in all three coordi-
nates 0.5 voxel, and the ray sampling steps 0.05 voxel. The
comparison was made using two frequencies: fy; = 10 and
fm =20 and a = 0.25. The two rendering approaches had
as input an implicit function (Marschner-Lobb) or a sam-
pled volume regular grid. The values of the voxels of the

FE. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

Table 1: PSNR of the direct and indirect method (with im-
plicit or volume regular grid as input) for the Marschner-
Lobb functions with frequencies (fyr = 10, fyr = 20) and
a=0.25.

PSNR direct implicit indirect implicit
fm =10 | +57.4130 dB +25.3260 dB
fm =20 | +57.1295 dB +23.5643 dB
direct regular grid | indirect regular grid
fm =10 | +32.8225dB +25.5789 dB
fm =20 | +24.5623 dB +23.3019 dB

Table 2: SSIM of the direct and indirect method (with im-
plicit or volume regular grid as input) for the Marschner-
Lobb functions with frequencies (fyr = 10, fyr = 20) and
a=0.25.

SSIM direct implicit indirect implicit
S =10 | 0.998835 0.834781
S =20 | 0.998947 0.682028
direct regular grid | indirect regular grid
S =10 | 0.957126 0.847693
S =20 | 0.718059 0.663997

regular grid were obtained using the analytical function. The
translation applied to the ground truth was necessary in or-
der to test the impact of the TPS transformation (the source
landmarks and target landmarks have different positions). To
produce equivalent results, the target landmarks need also to
be translated 1.25 voxel in each coordinate. The results are
presented in Figure 6.

To compare the images, we use the image quality metrics
peak signal-to-noise ratio (PSNR) and the structural simi-
larity measure (SSIM) [WBSS04]. SSIM takes into account
human eye perception. Table 1 and 2 present the results
obtained. The images used for these tests were cropped ver-
sions (boundaries were cropped) of the images in Figure 6.

5. Discussion

The major contribution of this paper is the comparison of
direct and indirect TPS non-rigid deformations and mak-
ing use of the graphics hardware (CUDA). Regarding direct
methods, [FSRROO], [WRS01] and [CHMO3] also have im-
plementations that not require the intermediate volume and
can use points to control the deformation. Although these
seem conceptually similar the main differences are that they
use intermediate data structures for acceleration purposes in-
stead we rely on brute force GPU acceleration. Also, we ex-
pect a better deformed image quality due to the fact that the
intermediate data structures are used for approximation pur-
poses and can trade image quality for speed. The most sim-
ilar method to ours is the free-form method [CHMO03], but a

key difference is that the free-form method deforms the rays
in the original volume space and then traverse them. In our
approach the rays are straight and traversed in the deformed
volume space; the sampling positions are backward mapped
to obtain the intensity values in the original volume space.

Comparing the two methods in terms of performance and
accuracy (image quality), we note that the indirect method
is less sensitive to changes in the ray-sampling steps and to
image resolution, while both seem to be similarly affected
by the number of landmarks. For larger volumes and greater
sampling steps, the performance of the indirect method is
worse than the direct method. There are also other draw-
backs of the indirect method, for instance the inability to
trade image quality for frame rate, because the main param-
eter used for this purpose is the ray sampling steps and for
large volumes the indirect method presents almost no change
(constant). In contrast, the direct method is very sensitive
to the ray-sampling steps, thus allowing easy control of the
frame rate. Furthermore, the indirect method requires that
two volumes are loaded simultaneously to texture memory,
which for larger volumes can present a severe limitation.

In this work, we did not explore faster deformation tech-
niques, as we are interested in preserving image quality
and keeping the method as general as possible. Using RBFs
fast alternatives exist, that trade image quality for speed, as
pointed out in the non-rigid deformations section [Row07],
[LSR10]. We could also use the locally bounded Hardy
method like in [FSRRO0], and RBF with compact support
[FRSO1]. The choice of the method to be used should de-
pend on the data and the purpose. Our implementation can
easily be changed to use some of these methods, if needed.

The second set of tests performed in our study related to
the accuracy of both methods. In Figure 6 we can see that
differences exist in both methods, although, in some cases,
they are rather hard to perceive with the naked eye. Using
the image quality metrics PSNR and SSIM (the higher the
better), the direct method gives superior results, in particular
when the implicit function is used. The worse results of the
indirect method can be explained by the double trilinear in-
terpolation: first at the evaluation of each voxel value (back-
ward mapping - generation of intermediate volume) and sec-
ond in the reconstruction (at each sampling position). It also
depends on the resolution with which the intermediate vol-
ume is sampled. Also to observe, the direct implicit method
is less sensitive to frequency, because no volume grid sam-
pling is performed to obtain the voxel intensities. In this
case, the sources of errors reside in the sampling positions
along the ray and in numerical rounding errors in the TPS
calculation. However, as can be seen, these are rather small
errors.

6. Conclusion

A comparison of direct and indirect ray-casting TPS non-
rigid deformations was performed. Both methods were im-

(© The Eurographics Association 2014.

F. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

Figure 6: Marschner-Lobb function comparison, ground truth (top row), direct method with implicit function (second row),
direct method with regular grid (third row), indirect method with implicit function (fourth row), indirect method with regular
grid (fifth row). The ground truth approximation was generated using the direct method and evaluated in source space with
the analytical function with a 1.25 voxel translation, threshold 0.5 and using a Sobel filter for the gradient with offsets of the
sampling positions in all tree coordinates 0.5 voxel. The ray sampling steps 0.05 voxel. Two frequencies were used: fyy = 10
(Left) and fyr = 20 (Right) and o. = 0.25.

(© The Eurographics Association 2014.

FE. M. M. Marreiros et al. / GPU-based ray-casting of non-rigid deformations: a comparison between direct and indirect approaches

plemented in the GPU using the NVIDIA CUDA archi-
tecture for acceleration purposes. The comparisons of both
methods were made in terms of performance and accuracy.
Regarding performance, the indirect method is superior if
the sampling along the rays is high, in comparison to the
voxel grid, while the direct is superior otherwise. The ac-
curacy analysis seems to point out that the direct method is
superior, in particular when the implicit function is used.

Acknowledgment

This work was funded by the Visualization programme of
the Swedish Foundation for Strategic Research, the KK
Foundation, Vinnova, Invest in Sweden Agency, Vardalstif-
telsen (grant 2009/0079) and the Swedish Childhood Can-
cer Foundation (grant no. MT2013-0036). The authors are
indebted to Petter Dyverfeldt for his help in the medical im-
ages acquisition and selection.

References

[Boo89] BOOKSTEIN F.: Principal warps: Thin-plate splines and
the decomposition of deformations. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 11 (1989), 567-585. 3

[CBC*01] CARR J. C., BEATSON R. K., CHERRIE J. B,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS
T. R.: Reconstruction and representation of 3d objects with radial
basis functions. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 2001), SIGGRAPH ’01, ACM, pp. 67-76. 3

[CHMO03] CHEN H., HESSER J., MANNER R.: Raycasting free-
form deformed-volume objects. The Journal of Visualization and
Computer Animation 14 (2003), 61-72. 2,6

[CSC10] CORREA C. D., SILVER D., CHEN M.: Constrained il-
lustrative volume deformation. Computer & Graphics 34 (2010),
370-377. 2

[CSW*03] CHEN M., SILVER D., WINTER A. S., SINGH V.,
CORNEA N.: Spatial transfer functions - a unified approach to
specifying deformation in volume modeling and animation. Pro-
ceedings of volumegraphics’03, pp. 35-44. 2

[Cud10] Nvidia cuda ¢ programming guide, version 3.1, 2010. 1,
2

[FRSO1] FORNEFETT M., ROHR K., STIEHL H.: Radial basis
functions with compact support for elastic registration of medical
images. Image and Vision Computing 19 (2001), 87-96. 6

[FSRROO] FANG S., SRINIVASAN R., RAGHAVAN R,
RICHTSMEIER J. T.: Volume morphing and rendering - an
integrated approach. Comput. Aided Geom. Des. 17 (January
2000), 59-81. 2,6

[Gib97] GIBSON S. F.: 3d chainmail:a fast algorithm for deform-
ing volumetric objects. Proceedings of the 1997 symposium on
interactive 3D graphics. 2

[HLSR09] HADWIGER M., LJUNG P., SALAMA C. R., ROPIN-
SKI T.: Eurographics 2009 course notes: Gpu-based volume ray-
casting with advanced illumination. In Eurographics 2009 course
(2009), Eurographics 2009. 2

[KWO03] KRUGER J., WESTERMANN R.: Acceleration Tech-
niques for GPU-based Volume Rendering. In Proceedings IEEE
Visualization 2003 (2003). 2

[KY97] KURZION Y., YAGEL R.: Interactive space deformation
with hardware-assisted rendering. IEEE Computer Graphics and
Applications 17,5 (1997), 66-77. 2

[LDS04] LEVIN D., DEY D., SLOMKA P. J.: Acceleration of 3d,
nonlinear warping using standard video graphics hardware: im-
plementation and initial validation. Computerized Medical Imag-
ing and Graphics 28, 8 (2004), 471-83. 2

[LMKO3] L1 W., MUELLER K., KAUFMAN A.: Empty space
skipping and occlusion clipping for texture-based volume ren-
dering. In Proc. IEEE Visualization 2003 (2003), pp. 317-324.
2

[LPOO] LAPEER R., PRAGER R.: 3d shape recovery of a newborn
skull using thin-plate splines. Computerized Medical Imaging
and Graphics 24 (2000), 193-204. 3

[LSR10] LAPEER R., SHAH S., R.S. R.: An optimised radial
basis function algorithm for fast non-rigid registration of medical
images. Computers in Biology and Medicine 40, 1 (2010), 1-7.
2,6

[ML94] MARSCHNER S. R., LOBB R. J.: An evaluation of re-
construction filters for volume rendering. IEEE Visualization’94.
5

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K. H.: An
advanced volume raycasting technique using gpu stream process-
ing. In GRAPP: International Conference on Computer Graph-
ics Theory and Applications (Angers, 2010), INSTICC Press,
pp. 190-198. 2

[NMK*05] NEALEN A., MULLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics, 2005. 2

[RGW*03] ROTTGER S., GUTHE S., WEISKOPF D., ERTL T.,
STRASSER W.: Smart hardware-accelerated volume rendering.
In VisSym (2003). 2

[Row07] ROWLAND R. S.: Fast Registration of Medical Imaging
Data Using Optimised Radial Basis Functions :PhD Disserta-
tion. PhD thesis, University of East Anglia, 2007. 2, 6

[San10] SANDERSON C.: Armadillo: An open source c++ linear
algebra library for fast prototyping and computationally intensive
experiments, 2010. 3

[Sig06] SIGG C.: Representation and rendering of implicit sur-
faces, 2006. 1

[WBSS04] WANG Z., Bovik A. C., SHEIKH H. R., SIMON-
CELLI E. P.: Image quality assessment: From error visibility to
structural similarity. /EEE Transactions on Image Processing 13
(2004), 600-612. 6

[WRSO1] WESTERMANN R., REZK-SALAMA C.: Real-time vol-
ume deformations. Computer Graphics Forum 20, 3 (2001). 2,
6

(© The Eurographics Association 2014.

