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Abstract 

In this thesis we use the GARCH(1,1) and GJR-GARCH(1,1) models to estimate the 

conditional variance for five equities from the OMX Nasdaq Stockholm (OMXS) 

stock exchange. We predict 95% and 99% Value-at-Risk (VaR) using one-day ahead 

forecasts, under three different error distribution assumptions, the Normal, Student’s t 

and the General Error Distribution. A 500 observations rolling forecast-window is 

used on the dataset of daily returns from 2007 to 2014. The empirical size VaR is 

evaluated using the Kupiec’s test of unconditional coverage and Christoffersen’s test 

of independence in order to provide the most statistically fit model. The results are 

ultimately filtered to correspond with the Basel (II) Accord Penalty Zones to present 

the preferred models. The study finds that the GARCH(1,1) is the preferred model 

when predicting the 99% VaR under varying distribution assumptions. 
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1 Introduction 
In econometrics, and especially in financial econometrics, the assumption of 

homoscedasticity of the error term is implausible since the volatility of a security tend 

to vary over time. Observations containing low (high) volatility are often followed by 

another low (high) volatility observation. In financial econometrics, this is called 

volatility clustering which means the data suffers from heteroscedasticity. Engle 

(1982) developed the ARCH model where homoscedasticity is no longer an 

assumption and the time varying conditional variance is treated as a variable to be 

modelled. It was not until a few years later when this methodology was applied in the 

financial sector that the model proved useful forecasting risk. Since then, a whole 

branch of new models emerged with the GARCH model as a starting point. 

(Bollerslev, 1986) 

 

Within risk management the VaR is a widely used measurement, predicting the 

potential loss of a portfolio or a specified asset. It is a regulatory framework applied 

by the Basel committee on Banking Supervision, implemented in the committee’s 

second accord, Basel II. The committee’s mission is global financial stability and one 

of the three fundamental pillars is capital requirements to cover market risk. As return 

is associated with risk, an investor taking much risk implies potential large losses but 

taking too little risk implies an opportunity cost. The Basel accords therefore specify 

capital requirements in relation with the risk held by the investor, resulting in 

monitored capital coverage and limited maximum risk-taking.  

 

VaR can be defined as the loss that a given portfolio will not exceed given a certain 

level of confidence within a specified timeframe. The regulatory framework does not 

specify how the calculations are to be done. The obvious opportunity to pinpoint the 

correct VaR drives the institutions to create models providing better predictions. This 

leaves room for research and empirical testing to conclude the superior forecasting 

procedure (Basel III, 2010). Having in mind the potential short term benefits of 

underestimating the predicted VaR, the Basel Accord Penalty Zones was developed to 

counteract bias in reported held risk and avoid insufficient capital coverage (Jiménez-

Martín et. Al 2009).  
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When applying the GARCH models to financial time series the error term distribution 

must be assumed. When Engle (1982) first presented the ARCH model the error term 

𝜀!  was assumed to be normally distributed, while Bollerslev (1987) later argued for 

the error term to be t distributed. Also the General Error Distribution, suggested by 

Harvey (1981), has proven suitable for the error term in the use of GARCH models.  

This study uses all three different error distribution assumptions to assess the 

preferred conditional model for the chosen financial time series. Two different types 

of GARCH models are used to predict the VaR for the chosen securities. The 

GARCH and the GJR-GARCH. GJR-GARCH is an early development of the ARCH 

model. It has proven to stand the test of time while still parsimonious. It controls for 

eventual asymmetry in the data set with the incorporated leverage term (Teräsvirta, 

2006). The data set examined consists of the closing price for five large cap equities 

from the OMX Nasdaq Stockholm Exchange for the time period January 1st 2007 

until May 15th 2014.  

 

Our main objective in this thesis is to answer the following question. 

Which model, given the different error term assumptions, provides the most efficient 

VaR prediction for the examined dataset? 

 

1.1 Earlier Research 

Since the studies by Bollerslev (1986 & 1987) an extensive amount of variations of 

the GARCH model has been developed and tested. Today there are over 100 

specifications of the GARCH model. However, earlier models, GARCH and GJR-

GARCH have proven to be successful and widely used over time. Also higher order 

GARCH models with additional lag terms have been analysed. Engel (2002) finds 

GARCH (2,2) to be useful when a longer span of data is used such as hourly 

observations. Different distributions for the error term have been tested. Usually the 

normal, student-t and GED have been used. Several studies conclude that Leptokurtic 

distributions perform better than the Normal distribution (Angelidis et al., 2004; 

Engle, 2002; Orhan and Köksal, 2011). In the literature, there is no definite answer to 

which specific GARCH model performs the best. Extensive empirical work has been 

done forecasting different types of equites and markets to predict VaR. To name some 

of the recent studies Angelidis et al. (2004) concludes that TARCH and EGARCH 
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perform better than the original GARCH model. Orhan and Köksal (2011) compare a 

comprehensive amount of GARCH models to calculate VaR. Their conclusion is that 

the ARCH(1) is the preferred model. 

2 Theoretical framework 
In financial econometrics the return is defined as, 

 𝑟! = 100 ∗ 𝑙𝑛 𝑝!/𝑝!!! , (1) 

where 𝑝! is the prize at time t and 𝑟! is the daily return. 

2.1 GARCH models 

Financial returns under the influence of heteroscedasticity is commonly represented 

as an autoregressive process of order one, where u is assumed zero and an error term 

is dependent on time t as 

 𝑟! = 𝑢 + 𝜀! . (2) 

The error term can be defined consisting of two parts as 

 𝜀! = 𝜎!𝑧! , (3) 

where 𝑧! is an independent and identically distributed sequence with zero mean and 

variance one, 𝜎!  is the conditional standard deviation in the period t under the 

assumed error distribution stated beforehand. Engle (1982) suggested the Auto 

Regressive Conditional Heteroscedasticity model, ARCH, as 

 
𝜎!! =   𝛼! + 𝛼!𝑟!!!! .

!

!!!

 (4) 

To model the variance at time t conditioned upon the lagged squared return. This 

under the assumption that 𝛼!  and 𝛼!  is strictly positive, where i = 1, 2, … , q. 

Bollerslev (1986) later Generalized the ARCH model adding the lagged variance 

according to 

 
𝜎!! =   𝛼! + 𝛼!𝑟!!!!

!

!!!

+ 𝛽!𝜎!!!!

!

!!!

, 
(5) 

where 𝛼!, 𝛼! and 𝛽! have to be strictly positive for all i and j to guarantee positive 

variance. The GARCH(1,1) is found if we let q = p = 1 , for covariance stationarity 

we must have that 𝛼! + 𝛽! < 1. The forecast expression for the 1-day-ahead is 

expressed as  
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 𝜎!!!! =   𝛼! + 𝛼!𝑟!! + 𝛽!𝜎!!. (6) 

When the forecast horizon goes to infinity the conditional variance converges to the 

unconditional variance as (Bollerslev 1986, Taylor 1986) 

 𝜎! =
𝛼!

1− 𝛼! + 𝛽!
  . (7) 

Many variations of the GARCH have been presented after its introduction but few 

have stood the test of time. The GJR-GARCH developed by Glosten, Jagannathan and 

Runkte (1993) taking the asymmetric affect of the lagged negative return into 

account. It is expressed as 

 
𝜎!! =   𝛼! + 𝛼!𝑟!!!!

!

!!!

+ 𝛾!𝑟!!!! 𝐼!!!

!

!!!

+ 𝛽!𝜎!!!!

!

!!!

, (8) 

where 𝐼!!! is an indicator variable taking the value one if the innovation is smaller 

than zero, and zero otherwise, as 

 𝐼! =
1, 𝑖𝑓  𝑟! < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (9) 

The GJR-GARCH allows for asymmetric impacts of the lagged return, allowing the 

effect of the negative lagged returns to have a different magnitude then the positive 

lagged returns. This is enabled by the leverage term activated by the indicator 

function. The GJR-GARCH(1,1) is given by the model restricted to q = 𝛾 = p = 1, in 

the one day ahead forecasts as 

 𝜎!!!! =   𝛼! + 𝛼!𝑟!! + 𝛾!𝑟!!𝐼! + 𝛽!𝜎!!. (10) 

2.2 Error distributions 

In order to estimate the model we need 𝑧!~𝑁 0,1  as 

 
𝑓 𝑧 =

1
2𝜋

𝑒𝑥𝑝 −
𝑧!

2 . (11) 

Furthermore, the error term can be assumed to follow different distributions. This 

study will consider the Normal, Student’s t and General Error distribution. 

Equation 12 gives the normal probability density function as 

 
𝑓 𝜀 =

1
𝜎 2𝜋

𝑒𝑥𝑝 −
1
2
𝜀 − 𝜇
𝜎

!
, (12) 

where 𝜇 is the mean and 𝜎 is the standard deviation. The t distribution assumed by 

Bollerslev (1987) has the probability density function given by  
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𝑓 𝜀 =
Γ 𝑣 + 1

2
Γ 𝑣
2 𝜋(𝑣 − 2)𝜎!!

1+
𝜀!!

(𝑣 − 2)𝜎!!

! !!!
!

  𝑣 > 2, (13) 

where the lagged conditional volatility and degrees of freedom standardization 

𝑣 − 2 𝑣  are introduced to the Student’s t distribution. As 𝑣 → ∞  the t 

distribution converges asymptotically to the normal distribution. Harvey’s (1981) 

General Error Distribution’s (GED) is given by below, where 𝛽 alters the skewness 

 
𝑓 𝜀 =

β

2𝜎Γ 1
𝛽
𝑒𝑥𝑝 −

𝜀 − 𝜇
𝜎

!

. (14) 

When 𝛽 = 2 the GED distribution is symmetric and equal to the normal distribution. 

3 Value at Risk 
𝑉𝑎𝑅 1− 𝛼   is  defined  as  

 𝑉𝑎𝑅 1− 𝛼 = −𝜎!𝑍!. (15) 

  𝜎! is the conditional standard deviation at time t and 𝑍! is the quantile of the assumed 

distribution. The distribution function is either Normal, Student t or the GED.  This is 

the upper boundary of the left tail in the assumed error distribution given the 

confidence level 𝛼 (in this study 1 % or 5 %). The distribution determines the critical 

value i.e. -1,645 for 5 % in the normal distribution. Notice the negative sign since we 

are only interested in potential losses. This implies only positive values of VaR.  1− 𝛼 

is the confidence level according to 

 Pr 𝑅! < 𝑉𝑎𝑅 1−   𝛼 =   𝛼. (16) 

𝛼 is referred to as the nominal size and this value is to be exceeded precisely 100 ∗   𝛼 

times out of a 100 trails. For example if we want to calculate a 3 % Value-at-Risk 

with a 95 % confidence given a portfolio of $100.000, the portfolio would expect to 

lose at least $3000 (=3%*$100.000) one day out of twenty (5 %). 

 

Each time the daily return (in absolute numbers) exceeds the VaR prediction the 

observation is labeled as a violation (v), using the indicator function (Equation 17). 

The number of violations are summed and divided with the total number of VaR 

predictions, which gives a proportion called the empirical size. (Orhan & Köksal, 

2011) 
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 𝐽! =
1, 𝑖𝑓  𝑟! < 𝑉𝑎𝑅    (𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (𝐻𝑖𝑡) . (17) 

To evaluate our forecasts we will use the two different tests developed by Kupiec 

(1995) and Christoffersen (1998), outlined in the following section. 

3.1  Kupiec’s test for unconditional coverage 

The Kupiec test allows us to test the empirical size against the nominal size using a 

likelihood ratio test. 

 𝐿𝑅!" = 2ln   1−
𝑣
𝑛

!!! 𝑣
𝑛

!
− 2ln( 1− α)!!!𝛼! , (18) 

where 𝐿𝑅!"~𝜒!(!) and the null hypothesis !
!
= 𝛼 against the alternative   !

!
≠ 𝛼. 

The more the empirical size !
!

 deviates from the nominal size 𝛼  the larger test 

statistic. A 5% significant level is used with a corresponding critical value of 3.841. A 

score exceeding the critical value lead to rejection of the null hypothesis, thus 

concluding that the model is not suitable for capturing the VaR at the nominal size. In 

a perfectly specified model the violations would occur with 𝛼 percent probability. If 

the violation occurs more often in relation to the nominal level, the model 

underestimates the risk, implying investors take on too much risk, in comparison the 

their coverage. Vice versa if the violations occur less often in relation to the nominal 

level the model overestimates the risk. This implies that investors take on lesser risk 

in relation to the coverage. (Orhan & Köksal, 2011) 

3.2 Christoffersen’s test of independence 

A drawback to the Kupiec test is its inability to take into account the sequence of 

violations, still assuming violations to be independent. Christofferen (1998) 

developed a test to consider clusters of violations when the volatility is varying and 

assessing how well the proposed model compensate for the sudden cluster. The 

purpose of this test is to examine the violations’ independence. For the complete 

specifications regarding the needed proportions, in Equation 19 (as 𝜋 s), see 

Christoffersen (1998). 

𝐿𝑅!"# =   −2ln  [(1− 𝑝)!!!𝑝!]+ 2ln  [ 1− 𝜋!" !!!𝜋!"
!!" 1− 𝜋!! !!"𝜋!!

!!!], (19) 
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where 𝐿𝑅!"#~𝜒!(!). The null hypothesis is that the violations are independently 

distributed, therefore rejecting the null implies that the violations are clustered and 

thus that the independence does not hold. (Christoffersen, 1998) 

4 Data 
The analyzed data is collected from OMXS large cap list and five equities are chosen 

from five different sectors (Table 1). The data comprise daily closing price spanning 

from January 1st 2007 until may 15th 2014 and consists of 1853 observations. During 

that period the market experienced periods containing volatility clustering. 

Company Sector
ABB Industrial gods  & services
Boliden Mining, basic resources
MTG International multimedia
SEB Banking industry
StoraEnso Paper & pulp, basic resources  

Table 1 Description of Equities’ sectors. The 
equities are chosen with a controlled sampling with 
the purpose to enable different businesses to 
experience different cycles and exogenous effects 
influencing the companies’ evaluation. 

Table 2 shows summary statistics for the five different equities. The high values of 

the Kurtosis and Jarque-Bera statistics suggest that the returns for all equities are 

largely deviating from a normal distribution. The returns of the equities seem to 

follow a leptokurtic distribution. The experienced skewness can have an effect on the 

model fit when comparing symmetry and leverage in the estimation model. 

Company Mean St. D Skewness Kurtosis Min Max Jarque-Bera
ABB 0,01 0,87 -0,073 15,458 -9,572 6,158 12121,9
BOLIDEN -0,015 1,395 0,322 8,937 -8,313 9,342 2750,265
MTG -0,008 1,327 -0,902 14,867 -12,223 7,058 10812,98
SEB -0,0213 1,403 -2,333 48,112 -23,006 10,083 158635,2
StoraEnso -0,011 1,0855 0,149 6,271 -5,595 6,488 830,9085

 
Table 2 Descriptive statistics for the five equities. It is clear that the data is leptokurtostic and somewhat skewed, 
confirmed in the Jarque-Bera test on normality (all rejected). Mean is about zero and the standard deviation is 
varying depending on both the sector and the individual equity. 

Looking at the plots in Figure 1 the returns data clearly shows volatility clustering and 

the bell-shaped returns succeeding a larger shock. All series indicates a high volatility 

period in 2009 and 2010, as well as in 2012. 



 
 

10 
 

 

 

 
Figure 1 Illustrating returns exhibiting heteroscedasticity and the bell shaped clusters of volatility varying in 
different periods. The returns also indicate zero mean and stationary. The five described data series all 
experience more volatile periods around 2008 – 2009 and less volatile periods around 2012, depending on 
sector and individual events.  
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5 Methodology 
A 1 day-ahead out of sample forecast is used to estimate the GARCH models and 

calculate the VaR. The 1-day ahead forecast is obtained by setting a window of 500 

observations to use as a rolling forecast. These are the previous 500 observations in 

the dataset for each stock consisting of 1853 observations. At time t a forecast is made 

for time t+1 using the first 500 observations. VaR is then calculated and the 

observation is classified as a violation or not. At time t+1 the same procedure is 

repeated but with the t-499th observation dropped and observation t+1 added. Our 

window moves one step for each observation until the end of the dataset. This process 

has been set up using Matlab version 2013b “Toolbox MFE toolbox”, as for the 

empirical VaR estimations we decided to use a 95% and 99% confidence level. As the 

rolling forecast window reaches the end of the dataset, the number of violations is 

summarized and the result evaluated by using Kupiec’s test for unconditional 

coverage and Cristoffersen’s test for conditional coverage. 

 

 

 

 

 

  

Correct 
size? 

 

Violation 
independence? Yes Not under-

estimating risk? 
Remaining 

models 
 

N
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Statistical evaluation      Basel Accordance 

Figure 2 Flowchart of the test procedure for the estimated models to determination of the preferred models 
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6 Results 
In this section the results and analysis is presented. For each tested series a rolling 

forecast has been made using the procedure described in section 5. All estimated 

models are tested using Kupiec’s test for unconditional coverage, testing the empirical 

size in relation to the nominal size. Models with an empirical size significantly 

different from the nominal size are dropped. The remaining models are tested using 

Christoffersen’s test of independence. Estimated models rejecting independence are 

discarded, leaving only the models containing independent. The models unable to 

reject the size or independence are the statistically efficient models predicting the 

VaR. Presented in Table 3 for each tested series over the given level of confidence. 

Company 1% 5%
ABB GARCH -N -t -GED GARCH -t, GJR -N -t
Boliden GARCH -t -GED GJR -N -t -GED
MTG GARCH -N-GED GARCH -GED GJR -N -GED
SEB GARCH-t -GED all except GARCH-t
Stora Enso GARCH -N -t -GED all except GJR -N  

Table 3: The most précis model or models are presented with the assumed 
error distribution under the specified confidence level. The Kupiec likelihood 
ratio test is used to discard statistically differing empirical size models. The 
Christoffersen test of independence is non-significant for all but four of the 
presented models. Those four models are discarded. 

The statistically efficient models are separated with respect to risk aversion in line 

with the Basel Accord Penalty Zones. The underestimating models are dropped 

(where the empirical size is larger than the nominal size), as the potential lesser 

capital coverage is conflicting the Basel committee’s mission of financial stability. 

The models overestimating the risk are promoted and presented in Table 4.  

Company 1% 5%
ABB GARCH -t -GED GARCH -t, GJR -N -t
Boliden GARCH -t -GED* GJR -N -t -GED
MTG GARCH -N -GED GARCH -GED, GJR -N
SEB GARCH -t GARCH -N -t -GED
Stora Enso GARCH -t -GED all execpt GJR -N  
Table 4: Selection of the preferred models based on a risk avert 
approach promoted in the literature of the Basel accords. The risk 
underestimating models are here discarded.   
* In the case of 1%–Boliden the models that withstood the evaluation 
test were both underestimating the risk.   
 

Table 4 presents the main results. The multiple confirmed models arise from the fact 

that the Kupiec test was not rejected in several cases. The Christoffersen test was only 

able to reject a small number of statistics among the models selected from the Kupiec 
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test1. There are known bad small sample properties (regarding the small number of 

violations) in the independence test that a larger sample could have overcome. 

Filtering the underestimating models there are still several cases of multiple preferred 

choices to predict the equities. For the 1% nominal size, the GARCH model 

outperforms the GJR in large but under varying distributions, the GARCH-t and 

GARCH-GED are the preferred models for four out of five equities. Regarding the 

results covering the 5% nominal size there is no clear trend where one of the models 

or distributions are preferred, or the combination of the two, over the others. 

7 Conclusions 
The purpose of this paper has been to evaluate different GARCH models predicting 

VaR under different distributional assumptions for five picked equities from the OMX 

Nasdaq Stockholm Exchange. The data set ranges from January 1st 2007 to May 15th 

2014 and contains both high and low volatile periods. The study compared GARCH 

and GJR-GARCH, under the Normal, Student’s t and General Error Distribution 

assumptions predicting Value-at-Risk (1% and 5% nominal size) using a rolling 

window of 500 observations. For the 1% the GARCH was preferred over the GJR-

GARCH under the Student’s t and GED distributional assumption. Regarding the 5% 

nominal size the result is inconclusive since no trend is found in the results. For the 

                                                
1 For test statistics and p-values of the Kupiec and Christoffersen tests, consult the Appendix.  

Figure 3 Illustrating example of the graphical result predicting 5 % VaR using GARCH-t for ABB. The 
broken line is the predicted VaR. The plot starts at time t+499 because of the rolling window estimating the 
GARCH. The empirical size is calculated to 3,84 % overestimating the nominal 5 % and rejecting the null 
hypothesis. 
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five tested equities there are multiple preferred models under varying distributional 

assumptions. Interesting to note is the lack of difference between the GARCH and 

GJR-GARCH, thus proposing that controlling for leverage is not an advantage. In the 

1% case the results indicate that the leverage accounted for using the GJR-GARCH 

does not yield an advantage. The take from this study is that there is no overall 

preferred model and distributional assumptions. Being able to simulate the most 

efficient fit from a range of models under different assumptions is the preferred 

strategy to a successful risk management team. 

7.1 Recommendations for further studies 

This study only covers a handful of cases and assumptions. Expanding the range of 

statistical forecasting model and model assumptions, prolonging the forecasting range 

and controlling for the expected shortfall (extreme value theory) on a wider range of 

financial time series is our recommendations for the continued research. 
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9 Appendix 
Estimation results presented over company and estimated model.  These are the 

results we focused on when comparing and confirming the preferred model for each 

tested equity. 

 

ABB
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,18% 3,84% 0,74% 4,51% 0,74% 3,84%
Kupiec 0,43 4,13 1,02 0,71 1,02 4,13

(0,51) (0,04) (0,31) (0,40) (0,31) (0,04)
Christoffersen 0,00 0,47 0,00 0,02 0,00 0,47

(1,00) (0,49) (1,00) (0,88) (1,00) (0,49)

Normal Student's t GED
GARCH

 
Table 5 GARCH for ABB. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 

 

ABB
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,30% 4,07% 0,96% 4,58% 0,96% 3,91%
Kupiec 53,53 2,65 68,71 0,51 68,71 4,13

(0,00) (0,103) (0,00) (0,475) (0,00) (0,042)
Christoffersen 0,00 1,24 0,00 0,46 0,00 1,71

(1,00) (0,26) (1,00) (0,50) (1,00) (0,19)

GJR-GARCH
Normal Student's t GED

 
Table 6 GJR-GARCH for ABB. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 

 

Boliden
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,62% 4,06% 1,33% 4,58% 1,33% 4,06%
Kupiec 4,49 2,67 1,34 0,52 1,34 2,67

(0,03) (0,10) (0,25) (0,47) (0,27) (0,10)
Christoffersen 3,86 4,88 1,40 4,92 1,40 4,88

(0,05) (0,03) (0,24) (0,03) (0,24) (0,03)p-value 0,0495 0,0272 0,23604 0,02656 0,23604 0,02718

GARCH
Normal Student's t GED

 
Table 7 GARCH for Boliden. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 
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Boliden
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,62% 4,28% 1,33% 4,95% 1,40% 4,28%
Kupiec 43,55 1,53 53,61 0,01 50,94 1,53

(0,00) (0,22) (0,00) (0,93) (0,00) (0,22)
Christoffersen 0,81 0,86 1,40 0,15 1,24 0,86

(0,37) (0,35) (0,24) (0,70) (0,27) (0,35)p-value 0,3681 0,3533 0,23605 0,70181 0,26644 0,35326

Student's t GED
GJR-GARCH

Normal

 
Table 8 GJR-GARCH for Boliden. Kupiec & Christoffersen statistics and p-values included. 

The preferred models according to table four are highlighted in Bold. 

 

MTG
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,55% 3,55% 2,58% 15,44% 1,18% 4,51%
Kupiec 3,55 6,69 23,90 204,71 0,43 0,72

(0,06) (0,01) (0,00) (0,00) (0,51) (0,40)
Christoffersen 0,94 0,33 1,05 0,44 1,79 0,22

(0,33) (0,56) (0,30) (0,51) (0,18) (0,64)p-value 0,3326 0,5645 0,30482 0,50712 0,18052 0,63919

Normal Student's t GED
GARCH

 
Table 9 GARCH for MTG. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 

 

MTG
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,70% 3,99% 2,36% 13,29% 1,55% 5,47%
Kupiec 39,09 3,13 24,42 137,54 45,84 0,61

(0,00) (0,08) (0,00) (0,00) (0,00) (0,44)
Christoffersen 0,59 0,78 0,08 0,84 0,94 1,34

(0,44 (0,38) (0,78) (0,36) (0,33) (0,25)p-value 0,4436 0,3768 0,78419 -0,36 0,33279 -0,25

Normal Student's t GED
GJR-GARCH

 
Table 10 GJR-GARCH for MTG. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 
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SEB
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,85% 4,95% 0,96% 4,95% 1,11% 4,87%
Kupiec 7,84 0,01 0,02 0,01 0,15 0,05

(0,01) (0,93) (0,88) (0,93) (0,70) (0,83)
Christoffersen 0,49 1,98 2,53 7,67 2,02 2,17

(0,48) (0,16) (0,11) (0,01) (0,16) (0,14)p-value 0,4828 0,1594 0,11152 0,00561 0,15559 0,14112

GARCH
Normal Student's t GED

 
Table 11 GARCH for SEB. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 

 

SEB
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,85% 5,47% 0,81% 5,61% 0,81% 5,03%
Kupiec 36,99 0,60 75,89 1,03 75,80 0,00
p-value (0,00) (0,44) (0,00) (0,31) (0,00) (0,97)
Christoffersen 0,00 0,93 0,00 0,71 0,00 0,72
p-value (1,00) (0,33) (1,00) (0,40) (1,00) (0,40)p-value 1 0,3343 1 0,39968 1 0,39683

Normal Student's t GED
GJR-GARCH

 
Table 12 GJR-GARCH for SEB. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 

 

StoraEnso
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,33% 4,43% 0,74% 4,73% 0,67% 4,21%
Kupiec 1,34 0,96 1,03 0,22 1,74 1,88

(0,25) (0,33) (0,31) (0,64) (0,19) (0,17)
Christoffersen 0,00 0,20 0,00 0,43 0,00 1,12

(1,00) (0,66) (1,00) (0,51) (1,00) (0,29)p-value 1 0,6586 1 0,51106 1 0,28917

GARCH
Normal Student's t GED

 
Table 13 GARCH for StoraEnso. Kupiec & Christoffersen statistics and p-values included. The 

preferred models according to table four are highlighted in Bold. 

 

StoraEnso
Nominal size 1% 5% 1% 5% 1% 5%
Empirical size 1,40% 3,84% 0,81% 4,36% 0,74% 3,92%
Kupiec 50,94 4,15 75,89 1,21 79,61 3,60

(0,00) (0,04) (0,00) (0,27) (0,00) (0,06)
Christoffersen 0,00 0,00 0,00 0,00 0,00 0,00

(1,00) (1,00) (1,00) (1,00) (1,00) (1,00)p-value 1 1 1 1 1 1

GEDNormal Student's t
GJR-GARCH

 
Table 14 GJR-GARCH for StoraEnso. Kupiec & Christoffersen statistics and p-values 

included. The preferred models according to table four are highlighted in Bold. 


