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The laminar incompressible boundary layer over a rotating disk, also called
the von Karman flow, is investigated. The goal is to set up a direct numerical
simulation (DNS) environment for further use to investigate the transition from
laminar to turbulent flow for this boundary layer. For this the spectral-element
code Nek5000 is used. A set of ODE-equations are first derived from the
incompressible cylindrical Navier—Stokes equations, which are solved for the
exact von Karman solution. Further, Nek5000 is prepared to solve for the
same laminar solution. Comparing the two solutions give a quantification of
the accuracy of the DNS solver Nek5000. Different scalings of the equations are
investigated, together with quantifications of how good the different available
boundary conditions are, also investigating different reference frames and grid
dependency of the solution. The general conclusion is that the von Karman
flow is possible to simulate in Nek5000. The method was robust when it came
to using different scalings, reference frames and resolutions.

1. Introduction

This report discuss the laminar flow over an infinite rotating disk, also called
the von Karman flow. This is a three-dimensional (3D) boundary layer, for
which, the similarity solution to the Navier—Stokes equations in cylindrical
coordinates can be described by three 1D profiles, see figure 1. This solution
was first derived by von Kérmén (1921) and research on this flow has been
ongoing ever since.

Since an exact similarity solution exist, this flow has been analysed for its
linear stability properties. One experimental observation which is specific to
the rotating-disk boundary layer is the seemingly sharp edge that separates
laminar from turbulent flow. Conversely, in flat-plate boundary layers (be
it two or three-dimensional) transition is much more irregular, very much in
agreement with the idea of a convective instability. Following this observation,
Lingwood (1995) showed that there is a local absolute instability present above
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FIGURE 1. The laminar velocity profiles of the flow over a
rotating disk. U is the radial velocity component, V is the
azimuthal velocity component and the vertical greyscale lines
indicate the profile for W (white is zero velocity).

a nondimensional radius (r = r*/L* where L* = /v/Q*, v is the kinematic
viscosity and Q* is the rotation rate) of 510. This number is later updated
in Lingwood (1997) from 510 to 507. This local absolute instability was later
concluded not to be transferred to the global (non-parallel) case by linear
direct numerical simulations (DNS) (Davies & Carpenter 2003). However, the
global instability characteristics of the rotating-disk boundary layer are still
the subject of ongoing research. An extension to the linear DNS work done by
Davies & Carpenter (2003) is of interest to contribute to a better understanding
of the linear stability characteristics, along with nonlinear DNS of the flow,
which can serve as a direct comparison to the experimental work. DNS has
some advantages over experiments and it is possible to play with parameters in
a more elaborate way. In order to perform such simulations a stable numerical
setup is needed that is sufficiently accurate. Furthermore, the code has to be
numerically efficient since extensive computations will be needed to make the
calculations. Once a setup and code has been chosen, the first test case is to
obtain the laminar von Karméan flow described in this report. Herein, there will
only be a description of the laminar flow in order to investigate the robustness
of Nek5000. Mainly the purpose is to investigate numerical parameters such as
the grid structure, boundary conditions and resolution.

The following section describes the solution of the von Karmén equations
using numerical methods. The DNS code Nek5000 will be discussed in section
3. The scaling of the equations will be further discussed in section 4, followed
by sections investigating the solution of Nek5000 by examining the different
reference frames available (section 5), the dependency of the chosen boundary
conditions (section 6) and the grid dependency of the solution (section 7).
Section 8 will further discuss simulations when extending the domain to higher
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Reynolds numbers. Some concluding remarks together with an outlook for
further runs will be given in section 9.

2. Solving for the similarity solution using the shooting
method

The equations governing the flow over the rotating disk are the incompressible
Navier—Stokes and the continuity equation in cylindrical coordinates (r, 0, z),
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where U, V and W are the radial, azimuthal and wall-normal velocities and P is
the pressure. v is the kinematic viscosity, p is the density, €2 is the rotation rate
and ¢ is time. The star superscript means that the quantities are dimensional.
Included are the centrifugal force and the Coriolis force, respectively, —2*e, x
(N*e, x r*e;) = Q*?r*e, and —2Q%e, x U* = 2Q0*V*e, — 2Q0*U*ey, where e;,
ey and e, are the unit vectors in each direction.

=0 (4)

The similarity variables are functions of z alone. For the global scale
these are U(z) = U*/r*Q*, V(z) = V*/r*Q*, W(z) = W*/(vQ*)V/?, P(z) =
P*/pvQ*, z = z*/L* and r = r*/L* where L* = (v/Q*)'/2. The nondimen-
sional Reynolds number can be rewritten by using the similarity variables
r*Q*L* L 1o,

;o el T
that is, the Reynolds number is equal to the nondimensional radius. Using
these global-scale similarity variables in the governing equations, (1)—(4), and
assuming that the base flow is independent of § and steady in time the following
ordinary nonlinear differential equations are obtained

2U +W'=0

U? -~ (V+1)24+UW-U"=0
20(V+1)+V'W-V"=0

P +WW' —W" =0

R:

=T (5)
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FIGURE 2. Similarity solution for the flow over a rotating disk.
The solution is shown in the laboratory frame of reference.
Results obtained from (a) the ODE solution and (b) DNS per-
formed with Nek5000.

where the prime denotes differentiation with respect to z. The above equa-
tions were solved by using the Runge—Kutta fourth order (RK4) method with
a Newton—Raphson searching method (from now on referred to as the ODE
solution). The boundary conditions used are: no slip at the wall, U(0) = 0
and V(0) = 0; W(0) = 0 due to the impermeability of the disk; and a far
field boundary condition implying no viscous effects far from the wall giving
U(# - o0) = 0 and V(2 — o00) = —1. Note that the equations are solved
in the rotating frame of reference where the rotation was set to 2 = 1. The
z-domain spanned from 0 — 20 containing approximately 10000 gridpoints with
the possibility either to be equidistant or adapted to a spectral-element mesh.
Further details on the solution procedure can be found in paper 4 in this the-
sis, Appelquist & Imayama (2014). The resulting profiles are shown in both
figure 1 and in figure 2. Figure 1 illustrates the global profiles in the labora-
tory frame of reference, and it particularly shows the linear increase of the U
and V' components with radius. Also, it shows that the boundary layer height
is constant with radius as seen from the W profile (greyscale). Figure 2(a)
shows the profiles normalized to r = 1, also this in the laboratory frame of
reference. Figure 2(b), shows the outcome from the DNS in Nek5000 discussed
later. The profiles obtained from the ODE solution are used to set both initial
and boundary conditions when needed in Nek5000.

This von Karman flow is driven by the disk itself and is one of the simplest
3D boundary layers not least because the similarity profiles only depend on
the height (z). Similarities can be found to the boundary-layer flow over a
swept wing, since both flows contain an inflectional laminar velocity component,
meaning that they are susceptible to certain instabilities triggering transition
to turbulent flow. Although for the rotating disk, many of the parameters are
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eliminated compared to the swept wing, such as the sweep angle and pressure
gradient, simplifying the experimental configuration compared with the wing
case.

3. Nek5000

The simulations were performed with the massively parallel spectral-element
code Nek5000 (Fischer et al. 2012). Nek5000 is a Legendre polynomial based
spectral-element method code which solves the incompressible Navier—Stokes
equations. The temporal discretization scheme used is based upon operator
splitting, where the nonlinear convective terms are treated explicitly via a pro-
jection scheme, and the viscous and divergence operators are treated implicitly
(Deville et al. 2002). The scheme is based on the backward differential formula
(BDF) where, for the nonlinear terms it is extrapolating (EXT). Equation (15)
in Karniadakis et al. (1991) corresponds to the operative scheme BDFk/EX Tk,
where in Nek5000 orders of k= 1 — 3 are possible. There is also a possibility to
turn off the nonlinear terms and only run the code in a linear fashion.

3.1. Meshing

The spectral elements within the code are flexible and can be used to build
complex geometries. The geometries used for the rotating-disk case are seen
in figures 3(a) and (b). They are further extended in the third wall-normal
direction, where the elements are stretched by a factor s = 1.15 according to

Zp = Z Az 72 (10)
i=0

with highest resolution close to the disk surface. Here z, is the coordinate
at position n above the wall and Az = 0.2 is the spectral element closest
to the wall, followed by 16 elements to a height of z = 11.1. An example
of the elements distribution after this stretching is seen within figure 4 as
lines parallel to the x-axis. Using 16 elements in the vertical direction gives
a mesh of 3072 elements when using the mesh of the whole disk, figure 3(b),
containing 192 elements at each level. For all the simulations presented in
this report, 9 collocation points are introduced for each element, where the
solution is approximated using 8th order polynomials. This corresponds to a
mesh containing elements that themselves are divided into 8 small elements
in each direction, as seen in figure 3(a) and (b). To obtain spectral accuracy
these grid points are distributed according to Gauss-Lobatto-Legendre (GLL)
quadrature points. The total number of grid points for mesh (b) thus becomes
3072-8-8-8=1,572,864.

The already calculated ODE solution of the von Karméan similarity solu-
tion is, as already mentioned, used to set the initial and Dirichlet boundary
conditions. This solution is provided in double precision on the predicted GLL
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(a) Annular sector (b) Whole disk (c) Interpolation mesh

FIGURE 3. 2D visualizations of the meshes used in the
Nek5000 simulation. (a) and (b) show the computational
meshes and (c) shows the interpolation mesh with further in-
formation in table 1.

interval A n

r 0-100 3.125 33
0 | w/64-2m | w/64 | 128
z 0-11 0.1 111

TABLE 1. Table of points in connection to the interpolation
grid of figure 3(c).

points of the Nek5000 mesh. Since the similarity solution depend on z, before
assigning the solution to the gridpoints in Nek5000 these are checked to corre-
spond to the exact GLL points of the ODE solution. The similarity solution
is then first assigned to the points in the z-direction, followed by a scaling of
the profile in r from recognizing the x and y positions (Cartesian grid) of the
specific grid point.

3.2. Interpolation

Within Nek5000 there is a possibility to interpolate the data with spectral
accuracy. This is done to a new cylindrical grid in order to further post-
process the data in Matlab easily. When doing so, there is less data to handle
in the post-processing step and the data can be structured as desired making
it easier to handle than the points given by the original GLL points. It is thus
important that the interpolation routine works accurately. The interpolation
grid corresponding to the mesh of the whole disk is seen in figure 3(c) and
the gridpoints can be calculated based on the information given in table 1
where the radius is assumed to be 100 and the height of the domain 11. The
interpolation points are here chosen so that the outer part of the grid has 4
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FIGURE 4. Relative interpolation error (see equation (11) for
t = 0) as a function of height of the velocity profiles at a
position of r = 50 and 6 = /4.

points per element in the radial and azimuthal direction. In the inner part of
the grid, the number of points per element becomes larger due to the polar
structure of the interpolation grid.

The interpolation error for the velocity field can be estimated by setting
the similarity solution as an initial condition in Nek5000, and then outputting
this same field when interpolated to the mesh of figure 3(c). The amplitude of
the relative error is seen in figure 4 as a function of height (z), at a position
r = 50 and § = 7/4 when using the mesh in figure 3(b). The relative error is
calculated by taking the interpolated Nek5000 solution, subtracting the ODE
solution, and then dividing by the ODE solution,

U —Uopr

Urel _
Uobe

) (11)
where the time ¢ = 0. The values are seen to lie within the range 10712 — 1078,
The U and V profiles have an increasing error with height whereas the W error
decreases with height. This is since the U and V profiles approach zero as
z — 20 for the ODE solution and the uncertainty of the relative error becomes
larger. This is not due to the decrease in resolution when moving further
away from the wall. At certain positions the interpolation routine was less
accurate. This will be brought under closer attention when discussing the grid
dependency of the solution in section 7.

To evaluate the interpolation routine for the pressure, Nek5000 had to first
calculate the pressure before it could be compared. This relative error is seen in
figure 6(a) together with the relative errors for the velocity components after
one rotation. The values are taken from a converged run called sc3. These
errors will be discussed later however the figure shows that the interpolation
routine also gives good results for the pressure where the procedure is initially
different compared with the velocities. For the pressure, there is an extra
mapping step involved since there is a difference between the velocity grid and
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the pressure grid (Py-Py—_2 method). The velocity field is calculated on the
mesh seen in figure 3(b), that is on the GLL points, whereas the pressure
is calculated on a grid only containing the Gauss-Legendre (GL) points (the
endpoints are not included). For the pressure the GL points are mapped to
GLL points before interpolating. There is also a possibility to use the same
gridpoints for the pressure as for the velocities (P, — P,, method), meaning all
values in the simulations are calculated on the GLL points. This gave results
corresponding to the P, — P,,_5 method, both for the interpolation routine and
in general for the simulations.

3.3. Setup

The first simulations of the von Karman flow in Nek5000 presented in this
report used Dirichlet boundary conditions on all boundaries. The Reynolds
number at the edge of the disk was set to 100, and these first simulations
were done using the nonlinear version of the code with time integration order
k= 3. Also a stabilizing filter with a weight of 5% for the last mode (highest
wavenumber) was used. The von Karman field can later be used as the baseflow
for the linear version of the code although, in this report, everything is done
nonlinearly.

Using ) = 1 creates a simple way of measuring time, since it is then
always equal to the radians the disk has rotated through. For the laminar
simulations using the mesh of the whole disk, figure 3(b), the time step was
At = 71072 and the number of time steps was n = 2000, leading to a total
time of T = At - n = 2m, corresponding to one rotation. During the single
rotation of the disk simulation, data is stored 16 times, every 125" step. The
Courant-Friedrichs-Lewy (CFL) condition for these first specific simulations
was then 0.425 indicating the run should be stable since it is below 0.5.

4. Simulations in Nek5000 with different scaling

It is possible to use different scalings of the similarity solution in Nek5000.
Three comparable simulations using the mesh of figure 3(b) have been made
to both explain this scaling and make sure there is no difference between them
when simulating the flow. The three runs are named scl, sc2 and sc3, and they
used the nondimensional lengthscales L = L*/(100L*) = 1/100, L = 1/10 and
L = 1/1, respectively. When simulating Reynolds numbers up to 100, the edge
of the disk corresponds to radius 1, 10 and 100 referring to each lengthscale. It
is thus only the last case (sc3) that is equivalent to (5) where R = r. For the
other cases R = 1007 (scl) and R = 10r (sc2). This is since 7 now is scaled
according to the new lengthscales; r = r*/(xL*) and thus r*/L* = zr where
x is 100 (scl) or 10 (sc2). Within Nek5000 the Reynolds number is defined
using nondimensional variables, R = Lr{)/v. A fixed computational Reynolds
number is set according to Ryeder = 1/v = R/(Lr§2) where Q = 1 in our
simulations for simplicity (£2 is radians per nondimensional time unit). Using
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the values at the edge to determine this R,,oqe¢; gives for scl Rpoqer = 1002
since for R = 100, r = 1. For s¢2 Rpoder = 10? and for sc3 Rioger = 1.

The results from the simulations with the three scalings are all shown in
figure 2(b) since they all coincide with each other. 1D profiles are seen from
3D simulations. This is since the solution is averaged both in the azimuthal
and radial direction however in the radial direction, both the U and V profile
have to be rescaled by the local radius before averaging. The calculations for
the profiles are

Uin() = 52 =7 / /%dedr (12)

27 V
Vin() = 5o s / / aoar (13)

Wip(z) = - — / " Waedr (14)

om (rg —71)

27r
Pip(2) = 51 / / Pdodr. (15)

The points at the radial boundary are not included since the boundary values
are already set from the ODE solution. The terms 71 and 79 are thus precisely
excluding the inner and outer boundaries of the domain in the radial direction.
The obtained 1D solution is a good measure by which to compare the Nek5000
solution to the ODE solution of the von Karméan flow. The two solutions are
seen in figure 2(a), the ODE solution, and (b), the Nek5000 solutions. The
reference level of the pressure for the Nek5000 profiles were first shifted for a
zero wall value.

Before comparing the individual runs to the ODE solution, the development
in time is investigated to make sure the solution after one rotation is converged.
The 1D profiles shown in figure 2(b) are used to determine the change of the
model in time. This is done by taking the mean of the difference in time of the
profiles,

1 (7 t+AT t

AU, =5 [ U5~ Ulps (16)
where Z = 11.1. The time difference is the time between two stored times;
AT = 125 -7 -1073. Figure 5 shows AU;p, for the sc3 run. The pressure
quantity (not shown) was of the order of 10~8 corresponding to the value of the
divergence operator set in Nek5000. Again, there was no significant difference
between the three runs and all values reach an approximately constant level
for large times. Computing the relative error of U, V', W and P to the ODE
solution as a function of height at the last time step using equation (11) where
t =T gives figure 6 for the sc3 run, which is comparable to figure 4 where t = 0.
The errors were again of the same order for all runs (scl, sc2 and sc3). Figure
6(a) shows the relative errors for just one r-6 position (r = 50 and 0 = 7/4),
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FI1GURE 5. The y-axis show the difference of the values in time
of the averaged 1D profiles for the sc3 run, see equation (16),
and the time () is shown in radians.

(a) sc3, position r = 50 and 6 = /4 (b) sc3, 1D profile relative error

FIGURE 6. Relative error as a function of height (z) for the
sc3 run after one rotation (T = 27).

and (b) shows the relative errors of the 1D profiles (exchange U7 to U7, in
(11) to get UT%). Within the figures, the vertical distribution of elements is
also shown. Comparing figure 4 and figure 6(a) the error has become larger
and smoother over time. There are thus additional errors entering the flow field
possibly depending on the grid resolution or the domain height for example.
In figure 6 it is also seen that the relative error of the pressure is larger than
the relative errors of the velocity profiles.

A comparison of the time per time step was made to see if there is a
difference in computational time for the different scalings used, seen in table
2. The number of cores used for these simulations was 10 and the runs were
done locally on a 12 core computer. When comparing the time per time step, a
significant difference between all the runs can be observed as shown in the table.
The scl run was seen to be faster than sc2 which was faster than sc3. When
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run HELMHOLTZ | time/time step (sec.)
scl 1078 3.73
sc2 107° 3.90
sc3 10~10 4.48
rot_{r 10710 4.52

TABLE 2. Various runs for different scaling together with the
HELMHOLTZ parameter value normalized to the scaling of
the scl run. The rotating reference frame run (rot_fr) is in the
same scaling as sc3 and thus comparable to this run.

taking a closer look at the runs, they had different iteration numbers for the
velocity convergence in the Helmholtz solver. The parameter controlling this is
called HELMHOLTZ in Nek5000. This number was set to be equal in all runs
(107®) however it was concluded to be an absolute value meaning this affects the
run differently depending on the scaling. When this parameter was decreased
to 107° in sc3 (since the scaling differs by a factor 100), the result from scl
was recovered. In table 2 the HELMHOLTZ parameter value with respect to
scl is seen together with data how the time/time step is affected by it. Thus,
when increasing the accuracy of the simulation, more iterations are needed for
the Helmholtz solver and this increases the time per time step. However, this
accuracy difference is not seen in the results when comparing e.g. figure 6 for
the three simulations. This indicates that the dominating errors are not due
to the convergence of the Helmholtz part, but to other aspects of the setup.
The time per time step can thus be optimized by setting the HELMHOLTZ
parameter as high as possible without affecting the results. There is one more
run not discussed yet in the same table which will be discussed in the next
section.

The results shown above indicate that the three scalings are equivalent.
However, there is one advantage of sc3 and this is the fact that R = r. This
scaling is found in all theoretical and experimental reports (e.g. Lingwood
1995; Imayama et al. 2012) and will thus be the natural choice. All further
simulations are therefore made according to the sc3 scaling.

5. Simulations in the rotating reference frame

Simulating the rotating reference frame, forcing terms were added to the ex-
plicit scheme consisting of the Coriolis and the centrifugal force. The forcing
terms added in the z and y direction are then, respectively, 2QV + Q2z and
—2QU + Q%y.

The difference between the rotating reference frame and the laboratory
reference frame is then the V profile where, respectively, V.= 0 and V = 1,
at the wall. In Nek5000, the rotating reference frame runs became identical to
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Nek5000 notation formulation
Dirichlet v u = (u,v,w)
Homogenous Neumann O n-(vVu—pIl) =0
Boundary-layer condition ON u=u,v=v,0W/0z=p/v

TABLE 3. Table of boundary condition available in Nek5000.
ON case is shown for a surface with the normal in the z-
direction.

the laboratory frame ones when comparing development in time. The result-
ing relative errors were also in the same order as for the laboratory frame of
reference.

A difference was seen in the time per time step shown in table 2. There is
a slight increase for the rotating reference frame compared to the laboratory
frame of sc3 possibly due to the extra forcing term included in the simulation
for this case.

6. Simulations with various boundary conditions

So far, the simulations have been conducted with Dirichlet boundary condi-
tions everywhere. These are denoted with v, consistent with the notation in
Nek5000. As already mentioned, this boundary condition is defined by setting
the velocities at the boundaries to predetermined values, here they consist of
the values obtained from the ODE solution to the von Karméan equations. Since
these bounday conditions already provide information about the solution, they
are expected to be the most accurate ones. There are other available boundary
conditions in Nek5000 and they are summarized in table 3. The homogenous
Neumann boundary condition, denoted O in Nek5000 due to the outflow na-
ture, is the stressfree condition and also the natural boundary condition for
the spectral-element method. If r is the normal direction to the boundary O
becomes vOU/dr —p = 0, dV/Or = 0 and OW/Or = 0 at the boundary. For the
rotating-disk boundary layer this boundary condition does not concur with the
similarity solution. The desired outflow condition in the radial direction is thus
not the homogenous Neumann condition, but the corresponding condition with
respect to a rotational system, that is dU/dr = r, dV/dr = r and dW/dr = 0.
The reason for this formulation is the global increase of U and V' with radius,
and the fact that the boundary layer height is constant. In order to formulate
such conditions, a Neumann condition currently not available is needed how-
ever an investigation needs first to be done if such a condition would be stable
in Nekb5000.

There is one more boundary condition relevant to our flow case, the ON
boundary condition. This is a mix of v and O first developed to suit the Blasius
boundary layer, where the velocities in the plane at the top boundary were set
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as v, whereas the velocity in the normal direction was set to O. In this sense the
flow can escape at its own pace (i.e. it allows transpiration). In a similar way,
for the rotating disk, the ON boundary condition can be used at the top of the
domain to set both U and V', but leave W as 0W/9z = p/v. This formulation of
the ON condition can be found in table 3, and considering a constant pressure
in the radial direction, the wall-normal velocity gradient is constant. In both
the case of the Blasius boundary layer and for the rotating-disk boundary layer,
this constant equals zero since Nek5000 then normalizes the pressure at this
boundary, giving 0W/0z = 0. The main difference between the two boundary
layers is that the rotating-disk boundary layer has a negative W component
meaning that the flow is not leaving but rather entering the domain. However,
the desired boundary condition for the rotating-disk boundary layer on the
top is actually lim,_,., OW/0z = 0, although, it is not possible to map the
boundary to infinity and the domain has to be cut. For U and V there are
then two options, either they are set to the ODE solution at the top (ON), or
they are set to exactly zero at the top (ON_0).

Various runs elaborating the boundary conditions can be seen in figure 7,
where the colour scale is in log;, scale. All subplots show the amplitude of
the relative error of the azimuthal mean values of W, obtained by Nek5000
compared to the ODE solution. This time, there is no averaging with radius
to obtain the 1D profile discussed earlier. The axes seen are then showing the
height z and the radial direction r. The reason why W is chosen is because
the U and V profiles both approach zero as z — oo. Figure 7(a), (b) and
(c) differ in the top boundary condition used. (a) use v on top, (b) use ON
at the top where the U and V values are set to the von Kdarmén flow, which
is different in (c), where ON_0 is used where U and V are set to zero, which
is the limit when z — oco. Comparing the top boundary for the three runs,
the v and ON are very similar containing the same order of the error. There
is a large error in (c) where the error at the top boundary increases with the
radius, which can be expected since the U and V increase linearly with radius
and thus the difference to zero from the von Karmén profile does the same,
also contaminating the W-component by continuity. Notice also the change
of colour scale indicating much larger errors than the previous cases. It is
interesting to see that this error is spread down through the whole domain.
An additional comment that can be made for figure 7(a) and (b) is that the
maximum error is following where the highest gradient of the similarity profiles
are located.

Investigating the effect of different radial boundary condition, figure 7(b)
and (e) are compared, having, respectively, v and O at the radial boundary.
Once again, the colourscales are different in the two figures, and the O boundary
experience a larger error throughout the whole domain. This is reasonable since
O tries to set the derivatives in r to zero, however, this is only satisfied by one
of the velocity components, W. U and V both increase linearly with r and
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FIGURE 7. Relative error of W averaged in the azimuthal di-
rection at the last time step. r and z is shown on the x and y
axis, respectively, and the colour bar is shown in log;, scale.
The first letters denotes the top boundary condition and the
last letter the radial boundary condition.

thus using a homogeneous Neumann condition for these will not satisfy our
flow and the errors become large close to the boundary decreasing inwards.
The preferred condition in the radial direction is thus v.

When simulating the annular sector there is one additional inflow condition
at Re = 50. Figure 7(f) shows a run using v conditions everywhere. The
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Fi1GURE 8. Relative error of W averaged in the vertical direc-
tion. The axis show the x and y component in the plane. As
usual, the first letters denotes the top boundary condition and
the last letter the radial boundary condition. The colourbar is
shown in log;, scale.

relative error is also of the same order as the error when simulating the whole
disk, although, it has a different distribution across the domain.

The amplitude of the relative errors averaged in the vertical direction can
be seen in figure 8. Panel (b) shows the annular sector with vv conditions and
(a) shows the a quarter of the whole mesh with vv conditions. For both figures,
there are larger errors towards higher radius where also the elements are larger.
For the annular sector, (b), this structure is seen clearly and it follows an arc
as do the elements in the mesh. The annular sector will be further discussed
in the next section about grid dependence and resolution, together with figure
7(d) which has not been discussed so far.

7. Grid and resolution dependence of the simulations

Results from both the whole disk mesh and the annular sector mesh have
already been shown in the previous section regarding the influence of bound-
ary conditions. In addition, there are differences between the two setups not
involving the boundary conditions but concerning the interpolation and the
computational efficiency.

When using the annular sector mesh, there are spots of errors seen within
the domain, see figure 7(f) and figure 8(b). These errors are due to the in-
terpolation routine since they cannot be found when visualizing the solution
directly on the DNS grid (not shown). The order of these errors is 1077, and
they always occur close to an element boundary. The reason for the error was
shown to be based within the interpolation algorithm, where sometimes the
routine was extrapolating instead of interpolating. These interpolation errors
can however be eliminated here by changing the number of elements in the 6
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F1GURE 9. Relative error of W. The values are averaged in the
azimuthal direction and show a simulation where the height is
extended to z = 20 using v boundary condition everywhere.
The colourbar is shown in log;, scale.

direction from 8 (figure 3(a)) to 9 (not shown). The interpolation routine is
thus dependent on the grid used for the specific simulation.

The largest advantage of using the annular sector over the whole disk is
however that the number of elements can be reduced considerably, decreas-
ing the number of spectral elements from 3072 to 512. The computational
time saved is actually more than that fraction since the CFL number can be
decreased from 0.425 to 0.257, making it possible to take larger time steps.
However, as seen in figure 7(f) and figure 8(b) there is a resolution depen-
dence with radius showing an error increase, which is not as pronounced for
the whole disk as for the annular sector. However, the amplitude of the errors
never exceeds the errors of the whole mesh still favouring the annular sector.

To investigate if there is a change of the solution when elevating the res-
olution, the mesh of figure 3(b) was used. An h-refinement was done where
the spectral elements were doubled in the radial and azimuthal direction, and
in the vertical direction their number increased to 20 from 16. The stretching
factor remained at s = 1.15 whereas Az decreased to 0.1. This led to a total
number of spectral elements of 15360. A polynomial order of 8 is still used
and the simulation ran for one rotation. However, the time step had to be
decreased to keep the CFL number lower than 0.5. The error could be seen to
be decreased across the whole domain, compare figure 7(d) and 7(a).

For future simulations, a height of z = 20 is desired in Nek5000 and the
height of the domain of the whole mesh, figure 3(b), was increased to z = 20.
The wall-normal resolution was kept the same as in previous simulations close
to the wall (Az = 0.2) however additional elements were extending the mesh at
the top. Also refining the mesh in the -0 directions the resulting relative error
is seen in figure 9. Here v conditions are used. The values are not reaching the
same accuracy as in figure 7(a), although this can be achieved by refining the
mesh further in the -6 direction.
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FI1GURE 10. A laminar simulation with a mesh stretching from
r = 150 to 743. The absolute value of W is shown at z = 1.3
where the colourbar is in log;, scale.

8. Going towards higher Reynolds numbers

When higher Reynolds numbers are simulated with Nek5000, the flow is more
easily disturbed compared with having an edge at R = 100. This is since there
are several unstable modes able to grow, both downstream and upstream, see
e.g. Lingwood (1995). The upstream mode can in particular create problems
at the radial outer boundary since the boundary itself can then be a source of
disturbances propagating inwards toward the centre of the disk. An example
of such a phenomena is shown in figure 10, when laminar flow is simulated
with Dirichlet boundary conditions everywhere on an annular sector stretching
from radius 150 to 743. The colour bar is shown in log;, scale and the absolute
W-values at a nondimensional height z = 1.3 is shown. The disturbances are
still growing when this snapshot is taken at a time of m, when the disk has
rotated half a revolution. The figure is taken from a simulation when the mesh
in the vertical direction had single precision errors. These caused sufficiently
large disturbances at the outflow boundary (Dirichlet conditions) and allowed
the upstream mode existing at these high Reynolds numbers to bring these
disturbances into the domain. When the same simulation was conducted with
mesh points in double precision in the vertical direction, no such errors could
be seen. For future simulations at similar Reynolds numbers, there will be
disturbances induced inside the domain, and a sponge layer will be used to
remove the disturbances before reaching the boundary.

9. Summary and Outlook

Tha laminar von Kédrméan flow has been set up and simulated in the spectral-
element model Nek5000. A numerical solution for the ODE describing the
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similarity solution was used to estimate the accuracy of the interpolation rou-
tine. The accuracy was found to be of the order 1078-107'2 for the velocity
profiles. This routine was also found to sometimes fail close to element bound-
aries. The relative errors in these points were in the order 107°. Since the
error occurrs in the same position for all time steps during a simulation, it
is easy to pinpoint them and find methods to eliminate them, e.g. by rear-
ranging the elements. For the annular sector mesh, the errors were found to
be eliminated when using a mesh with 9 elements in the azimuthal direction
instead of 8. For future simulations, a check for such points should be made.
The advantage of using the interpolation routine within Nek5000 is to simplify
the post-processing scripts without having to compromise the accuracy of the
solution with e.g. low-order interpolation.

No dependence on the scaling of the governing equations was shown when
running three different cases. For further simulations in Nek5000, the scaling
sc3 will mainly be used since this is consistent with the scaling used in previous
work (e.g. von Kdrman 1921; Lingwood 1995; Imayama et al. 2012) where
R = r. For running simulations in the rotating reference frame compared
with the laboratory frame, there was a slight time increase for each time step
however an advantage of the rotating frame is the stationary disk, enabling a
more straight-forward inclusion of surface roughness into the geometry.

From boundary-condition tests, results showing how the different bound-
ary conditions affect the solution are given concluding that the condition ON
or v on top, and v on the outer radial boundary, were found to give the low-
est error when compared with the ODE solution, see figure 7(a) and (b). For
the other boundary conditions, errors arose close to either the top or the ra-
dial boundaries contaminating the domain inward. For future simulations when
disturbances are introduced into the domain, using only v in the radial direction
would most likely cause reflections. A sponge region can then be combined with
this condition. This sponge layer would kill the disturbances before reaching
the boundary by using a forcing term, and the flow would then leave the do-
main through the v condition. This non-reflecting boundary condition and has
earlier been seen to work well for incompressible stability calculations (Kloker
& Konzelmann 1993) and will be further investigated in Nek5000 in combina-
tion with new simulations. There is a possibility to implement new boundary
conditions for Nek5000 and one option for this would be the advective bound-
ary condition allowing small disturbances to pass out from the domain. This
condition can be formulated as dp/dt + VIp/In = 0 (Colonius 2004) where
Xu & Lin (2007) has specifically implemented this for their spectral-element
code. A velocity component is here expressed as o, V is the outlet convection
velocity to be set, and n is the normal to the outflow boundary. The outlet con-
vection velocity must be as close as possible to the actual local phase velocity
of the wave packets, which can be either obtained from linear theory (in case of
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low-amplitude disturbances) or from temporal averaging in the case of turbu-
lent outflow. This boundary condition would eliminate the usage of a sponge.
A version of this boundary condition has been applied by Viaud et al. (2008,
2011) when simulating an open rotating cavity. Similar wave-like boundary
conditions have also been applied for the rotating-disk case in a linear code
(Davies & Carpenter 2001, 2003).

Going back to the laminar flow simulations, the boundary conditions set
for the top boundary provide information about the similarity solution from
the ODE solver. However, what must be mentioned in this context is that the
ON_0 condition essentially contains the same boundary condition information
set at the top of the ODE-solver domain. Since this solver uses a domain up
to z = 20, the ON and ON_0O condition are set exactly equal if the height
of the Nek5000 domain is z = 20. The ON_0 boundary condition would be
particularly useful for future simulations when the laminar flow is changed to a
transitional and/or turbulent one. The simulation domain would then be higher
than z = 20 due to a thicker boundary layer, and the von Karman similarity
solution would be allowed to change and the boundary layer can develop in its
own nature.

For further simulations including higher Reynolds numbers, the mesh will
also have to be refined to resolve the disturbances put into the flow. For the grid
structure, the annular sector had a large advantage in the low computational
costs and therefore it will mainly be used, with the condition that it should
also be checked for interpolation errors. Note, however, that when dividing
the domain in the azimuthal direction, there is a limitation on the possible
wavenumbers in this same direction.

The general conclusions from this report is that the von Karman flow can
be simulated in Nekb5000. The method was robust when it came to using
different scaling and reference frames. It was also possible to anticipate how
the different boundary conditions would behave showing a promising outlook
for the future.

This work is supported by the Swedish Research Council through the
ASTRID project and the Linné FLOW Centre.
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