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Abstract—We consider a distributed detection system with
communication constraints, where several nodes are arranged in
an arbitrary tree topology, under the assumption of conditionally
independent observations. We propose a cyclic design procedure
using the minimum expected error probability as a design
criterion while adopting a person-by-person methodology. We
design each node jointly together with the fusion center, while
other nodes are kept fixed, and show that the design of each
node using the person-by-person methodology is analogous to the
design of a network with two nodes, a network which we refer to
as the restricted model. We further show how the parameters in
the restricted model for the design of a node in the tree network
can be found in a computationally efficient manner. The proposed
numerical methodology can be applied for the design of nodes
arranged in arbitrary tree topologies with arbitrary channel rates
for the links between nodes and for a general M -ary hypothesis
testing problem.
Index Terms—Decentralized detection, Bayesian criterion, tree

topology, person-by-person optimization.

I. INTRODUCTION

We consider a distributed, or decentralized, hypothesis test-
ing problem in a general tree network configured as a directed
graph, where observations are made at spatially separated
nodes. The root of the graph is the fusion center (or FC), and
information from nodes propagate toward the FC. If the nodes
are able to communicate all their data to the FC, there is no
fundamental difference from the centralized case, where the
classical solution is to use threshold tests on the likelihood
ratios of the received data at the FC. However if there are
communication constraints on the links between the nodes,
the nodes need to carry out some processing and give a
summarized, or quantized, version of their data as output.
The problem of optimal decentralized hypothesis testing

has gained noticeable interest over the last 30 years, see
for instance [1]–[5] and references therein. A common goal
in these references is to find a strategy which optimizes a
performance measure, like minimizing the error probability at
the FC. However, it is difficult to derive the optimal processing
strategies at the nodes in distributed networks, even for small
size networks. Therefore most of the works on this topic
focus on person-by-person optimization as a practical way for
the design of decentralized networks. Using person-by-person
optimization, it is guaranteed that the overall performance at
the FC is improved (or, at least not worsened) with every
iteration of the algorithm. Unfortunately person-by-person

optimization gives a necessary, but in general not sufficient,
condition for an optimal strategy [4].

While deriving decision function for one node in the person-
by-person methodology for the design of nodes in a general
tree network (including parallel and tandem networks) all other
nodes and the FC are assumed to have already been designed
and remain fixed. Focusing on person-by-person optimality, a
typical result is that if observations at the nodes are indepen-
dent conditioned on true hypothesis, likelihood ratio quantizers
are person-by-person optimal, while the optimal thresholds in
the quantizers are given by the solution of systems of nonlinear
equations, with as many variables as the number of thresholds.
This however makes the computation of optimal thresholds
intractable, even for a moderate size network [4], [6].

The main contribution of this work is to show that – contrary
to previous claims – it is possible to under the person-by-
person methodology design a distributed detection network
arranged in an arbitrary tree topology with a reasonable
computational burden. In order to do that we modify the
person-by-person methodology for the design of nodes in the
tree topology by letting the FC update its decision function
in every iteration together with the nodes. In other words,
we adopt a person-by-person methodology in which at every
iteration each node is designed jointly together with the FC.
We further assume that the FC uses the maximum a-posteriori
(MAP) rule to make the final decision, which is motivated by
the optimality of the MAP rule when the performance criterion
is global error probability, or error probability at the FC.

In order to obtain a tractable solution during the design
of a node, let say m0 (together with the FC), all other
nodes are modeled using a Markov chain and it will be
shown that the design of m0 is analogous to the design of
a special case of a network with only two nodes (which is
here called the restricted model). Then we will show how the
parameters for this restricted model can be found recursively
in a computationally efficient way from the original network.

This paper is organized as follows. In Section II we present
our model in detail and formulate the problem. In Section III
we introduce the restricted model and describe how it can be
obtained from the original tree network. We present numerical
examples to illustrate the benefit of proposed approach in
Section IV and Section V concludes the paper.
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Fig. 1. An example network (observations are not shown).

II. PRELIMINARIES

We describe a tree network by a directed and acyclic
graph where the fusion center is the root of the network and
information flows from every node on a unique path toward
the root. We denote the tree network by T � (V,E), where
V = {m1,m2, . . . ,mN} is the set of N nodes and E = {ei,j}
is the set of directed edges from nodemi to nodemj . Without
loss of generality we assume that nodemN is the fusion center
(labelled FC in Fig. 1).
We say that node mi is the predecessor of node mj if

there is a directed path from node mi to node mj , and say
that node mj is a successor of node mi. Accordingly we
say that node mi is an immediate predecessor of node mj if
ei,j ∈ E (equivalently node mj is the immediate successor
of node mi). This is exemplified in Fig. 1 where nodes
m3 and m2 are predecessors of node m1, while m2 in an
immediate predecessor of node m1. The set of all immediate
predecessors to node mi is denoted by Ii, and the set of all
immediate predecessors to the fusion center is denoted by If .
For instance, If = {m1,m4,m7} in Fig. 1. We also define Si

as a set consisting of nodemi and all its successors, excluding
the FC. In other words, Si is the set of all nodes the input
messages of node mi pass through to reach the FC, e.g.,
S6 = {m6,m5,m4} in the example of Fig. 1. We further
define the last successor ls(mi) of node mi as the last node
that the input of node mi passes through before it reaches
the FC, i.e., ls(mi) = ml, if ml ∈ Si and ml ∈ If . We let
Ti � (Vi, Ei) define the sub-tree of the network with node mi

as its root, where Vi and Ei are the set of nodes and directed
edges in sub-tree Ti.
We assume that there are two types of nodes in the tree

network: leaves and relays. A leaf is a node which makes
observation and a relay is a node that only receives messages
from its immediate predecessors. In Fig. 1 node m3 and m2

exemplify a leaf and a relay, respectively. Without loss of
generality nodes which both make an observation and receive
messages from their immediate predecessors are considered
to be relays, since every observation can equivalently be
considered as the output of a leaf with output cardinality

equal to the cardinality of its observation space. Let Cl be
the set of all leaves and Cr be the set of all relays in the
network. In a tree network, each leaf mi ∈ Cl using its own
observation xi ∈ Xi makes a decision ui ∈ Mi and sends
it through a rate-constrained channel (ei,j) to its immediate
successor mj (which is a relay or FC). Each relay mi ∈ Cr,
using input messages from all of its immediate predecessors
Ii, makes a decision ui ∈ Mi and sends it through a rate-
constrained channel to its immediate successor. Eventually
the fusion center makes the final decision uN from the set
{0, 1, . . . ,M − 1} in an M -ary hypothesis testing problem.
In this paper, we restrict our attention to discrete observation
spaces Xi where mi ∈ Cl. However we wish to stress that
any continuous observation space can be approximated by
a discrete observation space, by representing the continuous
space by a set of intervals indexed by xi from the discrete
space [7], [8].
The channel between node mi and its successor is consid-

ered to be an error-free but rate-constrained channel with rate
Ri bits. The output of node mi is then from a discrete set
Mi with cardinality ‖Mi‖ = 2Ri . Without loss of generality
we assume that the output of node mi is from the discrete
set Mi = {1, . . . , 2Ri}. In this setup each node is a scalar
quantizer which maps its inputs to an output message using a
decision function γi. A leaf ml maps its observation xl to an
output message ul using the function γl : Xl → Ml, i.e.,

γl(xl) = ul,

whereas a relay mr maps its input vector containing messages
from its immediate predecessors {ui : mi ∈ Ir} to an output
message ur using the function γr : MIr → Mr, i.e.,

γr({ui : mi ∈ Ir}) = ur.

MIr is defined as the product of alphabet of immediate
predecessors to node mr. For example, relay m7 in Fig. 1
has three immediate predecessors, I7 = {m8,m9,m10},
with decision spaces M8, M9 and M10, respectively, and
MI7 = M8 × M9 × M10. We will use the terminology
“message” and “index” interchangeably to denote the output
of a node in the network.
We assume that the observations at the leaves, conditioned

on the hypotheses, are independent. Then acyclicity of the
network implies that the inputs to each relay, and also to the
FC, are conditionally independent. We further assume that the
conditional probability masses of the observations are known
and denoted Pj(xl) � P (xl|Hj), j = 0, 1, . . . ,M − 1, for
an M -ary hypothesis testing problem.
In this paper, the objective is to arrive at a simple method for

the design of the nodes decision functions, γ1, . . . , γN , in the
tree network, in such a way that the global error probability at
the FC is minimized. In order to derive the decision function at
a node, we use the person-by-person methodology and assume
that all other nodes have already been designed and remain
fixed. However, in contrast to previous works, we treat the
FC in a different way than the other nodes: the FC decision
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Fig. 2. Restricted model for the design of nodes in tree topology.

function γN is always updated together with the node decision
function γl currently being optimized.
If the decision functions of all the leaves and all the relays

are fixed, the optimal fusion center will use the maximum a-
posteriori (MAP) rule in order to make the global decision uN

in favor of one of the hypotheses. Defining uf as the vector
containing the messages from the immediate predecessors of
the FC, i.e., uf � {ui : mi ∈ If}, the FC decides on the
hypothesis Hm̂ if [9]

πm̂P (uf |Hm̂) = max
j

{
πjP (uf |Hj)

}
, (1)

where πj � P (Hj) is the a-prior probability of hypothesisHj ,
and where j ∈ {0, 1, . . . ,M − 1} for the M -ary hypothesis
testing problem. The expected minimum error probability in
estimating H given an input message vector uf from the set
MIf �

∏
mi∈If

Mi is [10]

PE = 1−
∑

uf∈MIf

max
j

{
πjP (uf |Hj)

}
. (2)

Knowing the conditional probabilities of the input messages to
the FC from its immediate predecessors, the error probability
PE at the fusion center can be uniquely computed.
In the next section we will show that the design of a node in

the network is analogous to the design of a node (labeled by k)
in the restricted model as shown in Fig. 2, where the FC in both
networks use the MAP rule (1) as the fusion decision function.
We will further show how the conditional probabilities in the
restricted model can be recursively computed from the original
tree network.

III. RESTRICTED MODEL
Consider the distributed network with two nodes, k and

FC, illustrated in Fig. 2. The fusion center FC using its input
messages w and v makes a decision according to the MAP
rule (1). Let w and v be from the discrete sets Mw and
Mv, respectively. Conditioned on hypothesis Hj , the input
messages y and v are independent with known conditional
probability masses Pj(y) and Pj(v), respectively. Node k

maps its input y from a discrete set My to an output z
from a discrete set Mz according to a decision function
γk : My → Mz , i.e., γk(y) = z. The index z then passes
through a discrete channel which maps it to the index w with

a known transition probability P (w|z,H) that depends on the
present hypothesis H . P (y|H) and P (v|H) are probabilistic
mapping from the observation space to the discrete sets My

and Mv, respectively.

We show next that under the person-by-personmethodology,
the design of a node, let say m0, in an arbitrary tree network
is analogous to the design of node k in the restricted model for
a particular instance of the parameters of the restricted model.
To see this, let

y �

{
x0 if m0 ∈ Cl

{ui : mi ∈ I0} if m0 ∈ Cr ,
(3)

be the complete input of node m0 in the original network and
let

v � {ui : mi ∈ If , mi �= ls(m0)}, (4)

be the complete input of the FC from its immediate predeces-
sors If , excluding the node that hasm0 as its predecessor (the
immediate predecessor of FC whose the path from m0 goes
through it to reach the FC), and assume that the fusion center
in the restricted model uses the MAP rule (1). The conditional
PMFs of the inputs to node k and FC in the restricted model
are, due to the independency of observations and acyclicity of
the network, then given by

Pj(y) =

⎧⎪⎨
⎪⎩

Pj(x0) if m0 ∈ Cl∏
ui:mi∈I0

Pj(ui) if m0 ∈ Cr ,
(5)

and
Pj(v) =

∏
ui:mi∈If
mi �=ls(m0)

Pj(ui) . (6)

The transition probability P (w|z,Hj) is then simply the
transition probability from u0 to uK , where uK is the output
message of the last successor of m0, i.e., mK � ls(m0). The
key point is that under the person-by-person methodology for
the design of node m0 together with the FC, all other nodes
in the network remain fixed. This implies that Pj(v), Pj(y)
and P (w|z,Hj) remain fixed and together with the structure
of the restricted model, they capture all the important aspects
of the joint design problem of m0 and the FC. In the rest
of this section we will show how the transition probabilities
P (w|z,Hj) in the restricted model can be found from the
original network and describe a recursive method for the
computation of the conditional probability masses Pj(y) and
Pj(v) in the restricted model from the original tree network.

First, consider an arbitrary node in a tree network, say
mi, and assume that this node has |Ii| = Li + 1 immediate
predecessors, containing node mi−1. With a slight abuse
of notation we define the set of immediate predecessors of
node mi as Ii � {m̃1, . . . , m̃Li

,mi−1}, as exemplified in
Fig. 3. We also define ũl ∈ M̃l as the output message
of node m̃l, l = 1, . . . , Li. Conditioned on Hj , each index
ui−1 ∈ Mi−1 at the input of node mi is mapped to output



mi−1

m̃Li

m̃1
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Fig. 3. Node mi (shaded circle) and its Li +1 immediate predecessors, Ii.

index ui ∈ Mi according to function

γi(ũ1, . . . , ũLi
, ui−1) = ui ,

with probability Pj(ui|ui−1) � P (ui|ui−1, Hj) which is
equal to

Pj(ui|ui−1) = Pj (γi(ũ1, . . . , ũLi
, ui−1)|ui−1)

=
∑

(ũ1,...,ũLi
)∈γ

−1

i
(ui−1,ui)

Pj(ũ1, . . . , ũLi
)

=
∑

(ũ1,...,ũLi
)∈γ

−1

i
(ui−1,ui)

Pj(ũ1) . . . Pj(ũLi
) ,

(7)

where Pj(ũl) � P (ũl|Hj) is the conditional PMF of ũl,
and where γ−1

i (ui−1, ui) is the set of all input messages
(ũ1, . . . , ũLi

) that satisfy γi(ũ1, . . . , ũLi
, ui−1) = ui. It

should be mentioned that, conditioned on the hypothesis, the
input messages to node mi are independent. Now we can
state the first important result from (7) as following: consider
node mi and the set of its immediate predecessors, Ii =
{m̃1, . . . , m̃Li

,mi−1}. Node mi has a Markovian behavior in
the sense that, conditioned on the hypothesis and the input
message ui−1, its output message ui depends only on the
inputs from the immediate predecessors {m̃1, . . . , m̃Li

} and
not the sequence of messages preceding mi−1. The transition
probabilities for this Markov chain is found using (7). The
transition probability matrix from input index ui−1 to output
index ui, conditioned on hypothesis Hj , is denoted P

ei−1,i

j

where the superscript ei−1,i indicates the specific edge that
corresponds to the desired input ui−1. P

ei−1,i

j is with size
‖Mi‖ × ‖Mi−1‖, and its (m,n)th entry is defined as [11]

P
ei−1,i

j (m,n) � Pj(ui = m|ui−1 = n) .

Consequently, each relay nodemi can be represented byM |Ii|
transition probability matrices Pek,i

j , where mk ∈ Ii, and j =
0, . . . ,M − 1.
Consider again node m0 and set S0 = {m0,m1, . . . ,mK}.

There is exactly one directed path fromm0 to the FC. Assume
that node m1 is the immediate successor of node m0 and
that node ml+1 is the immediate successor of node ml for
l = 1, . . . ,K − 1. The FC is the immediate successor of node
mK . After passing throughm1 to mK , the output message u0

of node m0 from the discrete set M0 is mapped to an output

message uK of node mK from the discrete setMK , which is
then used as an input to the FC. The Markov property implies
that the transition probability from u0 to uK is given by

Pj(uK |u0) =
∑
u1

. . .
∑
uK−1

Pj(uK , uK−1, . . . , u1|u0)

=
∑
u1

. . .
∑
uK−1

K∏
i=1

Pj(ui|ui−1, . . . , u0)

=
∑
u1

. . .
∑
uK−1

K∏
i=1

Pj(ui|ui−1) .

(8)

Equivalently, in matrix form if we define P
0→K
j (m,n) �

Pj(uK = m|u0 = n), then (8) implies

P
0→K
j = P

eK−1,K

j × . . .×P
e1,2
j ×P

e0,1
j . (9)

As there is only one directed path from node m0 to mK ,
we omitted the corresponding edge labels in P

0→K
j . Thus,

using (9) we can replace all nodes between m0 and the FC by
a single hypothesis dependent transition probability given by
P

0→K
j , when designingm0. During the design of node k in the

restricted model (which is equivalent to the design of nodem0

in actual network) every channel transition probability Pj(w =
m|z = n) is replaced by the corresponding (m,n)th entry of
P

0→K
j .

In forming the restricted model for the design of m0 in the
original network, in addition to channel transition probabilities
P (w|z,H), the transition probabilities P (y|H) and P (v|H)
should be also determined. The input y to the node k is the
complete input messages to node m0 in the original tree. If
node m0 is a leaf then it only makes observation and y = x0.
However, if node m0 is a relay, then y is a vector containing
input messages from its immediate predecessors according to
(3) and P (y|H) is defined as (5). In the following we will
show how Pj(ui) in a tree network [corresponding to Pj(y)
in the restricted model] can be found in a recursive manner. To
this end, consider again node m0 in the original tree network
and its immediate predecessors mi ∈ I0. Suppose that node
mi ∈ I0 receives messages from its Li immediate predecessors
Ii � {m̂1, . . . , m̂Li

} and maps its input vector (denoted by
(û1, . . . , ûLi

)) to an output message ui according to a decision
function γi : M̂1 × . . .× M̂Li

→ Mi, i.e.,

γi(û1, . . . , ûLi
) = ui .

Then the probability masses Pj(ui) at the output of node mi

are given by

Pj(ui) = Pj (γi(û1, . . . , ûLi))

=
∑

(û1,...,ûLi
)∈γ

−1

i
(ui)

Pj(û1, . . . , ûLi
)

=
∑

(û1,...,ûLi
)∈γ

−1

i
(ui)

Pj(û1) . . . Pj(ûLi
) ,

(10)

where γ−1
i (ui) is the set of all input vectors (û1, . . . , ûLi

) that
satisfy γi(û1, . . . , ûLi

) = ui. The last equation is the result



of the fact that the inputs to each node in the tree network,
conditioned on the hypothesis, are independent.
Equation (10) shows how the probability masses of the

output of node ui can be found based on the probability
masses of its inputs and its decision function γi. Consider
sub-tree T0 in the network with node m0 as its root. In the
person-by-person methodology used for the design of node
m0 we assume that all other nodes (except the FC) are kept
fixed, including all the predecessors of node m0 in its sub-
tree T0. Starting from the immediate predecessors of m0 and
going backward in the sub-tree, the probability masses of the
output of each node can consequently be found based on
the probability masses of its input and its decision function
[cf. (10)]. Eventually, for a leafml in T0 the probability masses
at the output are given by

Pj(ul) =
∑

xl∈γ
−1

l
(ul)

Pj(xl) . (11)

Thus, the required PMFs at m0 (represented by Pj(y) in the
restricted model) can be found by going forward from the
leaves in T0 toward nodem0. Using the same approach, Pj(v)
in the restricted model can be found in a recursive manner.
The minimum error probability at the FC in the restricted

model (Fig. 2) is a function of the parameters γk, P (y|H),
P (v, |H) and P (w|z,H), i.e.,

PE,min = F
(
γk, P (y|H), P (v, |H), P (w|z,H)

)
. (12)

Once the parameters in the restricted model are found, the
error probability at the FC, when using the MAP criterion, is
given by

PE = 1−
∑
v

∑
w

max
j

{
πjPj(v)Pj(w)

}
, (13)

where Pj(w) � P (w|Hj) is

Pj(w) =
∑

z∈Mz

Pj(z)Pj(w|z)

=
∑

z∈Mz

∑
y∈γ

−1

k
(z)

Pj(y)Pj(w|z) ,
(14)

and where γ−1
k (z) is the set of all input messages (vectors)

y that satisfiy γk(y) = z. Equations (13) and (14) show how
the error probability at the FC is affected by the parameters
in the restricted channel (especially γk).
The goal of this paper is however not to show how γk can be

designed (together with the FC) in the restricted model. Rather,
the goal is just to show how the optimization problem for
γk can be formulated compactly. However, in [12] a clear-cut
guideline for the design of γk with a reasonable computational
burden is proposed. It is in [12] shown that the design of node
k in the restricted model can also be done in a person-by-
person manner in terms of the input set; an output index z is
assigned to a specific input y, while the assigned indices to
other inputs are fixed.
In closing, we emphasize that the proposed method for

the design of nodes in the general tree topology (like other

FC
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l1 l2
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l4l3
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Fig. 4. 2-symmetric 2-uniform tree network.

methods which use person-by-person methodology) leads only
to locally optimum solutions, which also depends on the
initialization of the nodes. However, in the next section we
show by a numerical example that good performance can
nevertheless be obtained.

IV. EXAMPLES

In this section we present some results from the application
of the proposed method in the design of a tree network. We
will consider a 2-symmetric 2-uniform tree network, as defined
in [13] given in Fig. 4. The primary reason for choosing such
a simple network is to be able to assess the performance of
the proposed method through comparison with previous results
for tree network and for specific channel rates. We assume the
leaves l1, . . . , l4 make observations x1, . . . , x4, respectively,
and the relays r1, r2 summarize the messages received from
their corresponding immediate predecessors and the FC makes
the final decision uN in favor of one hypothesis. We consider
the case of binary hypothesis testingM = 2, where real valued
observations are, conditioned on the hypothesis, independent
and identically distributed. The observation model at each leaf,
where each observation consists of an antipodal signal ±a in
unit-variance additive white Gaussian noise ni, i = 1, . . . , 4,
is given by

H0 : xi = −a+ ni

H1 : xi = +a+ ni .

The per channel signal-to-noise ratio (SNR) is then defined
as E = |a|2. We further assume equally likely hypotheses
(π0 = π1 = 0.5). Channels between the nodes are considered
error-free but rate-constrained where the rate of the leaf-to-
relay links are equal to Rl bits, and the rate of the relay-to-FC
links are equal to Rr bits. This implies that the leaves’ output
massages are from the set {1, . . . , 2Rl} and the relays’ output
messages are from the set {1, . . . , 2Rr}. The FC using the
MAP rule (1) makes final decision uN from the set {H0, H1}.
In our simulations we initialized the relays with random

functions, while for Rl = 1 we initialized the leaves in all
methods with the optimal local decision functions. For Rl > 1
we uniformly quantized the two decision regions of the Rl = 1
initialization.
A performance comparison of the designed tree networks

for different rate pairs (Rl, Rr) and for different per channel
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SNRs is illustrated in Fig. 5. The results of the proposed
method are compared to the optimum un-constrained linear
detector (which is optimum for this problem) applied to the
set of all inputs and results due to Tay et al.’s method which
leads to the optimal error exponent for an r-symmetric tree
[13] for rate pair (1, 1). In that case, the relays use an AND
strategy and the leaves have the same threshold γ on their
observations. Using an exhaustive search, we found the best γ
which minimizes the error probability at the FC, given that the
FC uses the MAP rule. The simulation results in Fig. 5 show
that for rate pair (1, 1) the proposed method gives the same
result as the asymptotically optimum solution, and increasing
the rate of the links gives better performance. Also, note that
the performance of designed tree networks for rate pair (1, 2)
coincides with that for rate pair (2, 1) for equally probable
hypotheses. It should however be mentioned that it is not a
general result and for other a-prior probability assignments,
the resulting curves do not show the same performance.
The proposed method for the design of general tree network

can also be used for the design of parallel networks. It is a
well known statement that the performance of any optimum
tree network is dominated by the performance of an optimum
parallel network, for an equal number of observations [6].
Fig. 6 shows the error probability performance of designed
tree and parallel networks, where the rate of all the links in the
tree network and the rate of all the links in the parallel network
are equal to R. As is illustrated in Fig. 6, for the same channel
rates, the parallel network outperforms the corresponding tree
network. As the rate of the links increases, the performance
of the tree network and the parallel network converges to the
un-constrained (R = ∞) case and the performance of tree
network will asymptotically be the same as parallel network.
We can also see that the simulation results of the proposed

numerical method are in line with what can be expected in
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Fig. 6. Comparison of error probability performance of the designed tree
network with rate pairs (R,R) and parallel network with rate R.

situations where the optimal decision functions are obvious.
For example, consider a 2-symmetric 2-uniform tree network
with rate pair (1, 2), where the leaves send one-bit messages
to the relays and the relays send two-bit messages to the FC.
In this case, an optimal relay would simply put the one-bit
received messages from its predecessors together and send
the resulting two-bit message to the FC, which means the
performance of the (optimal) (1, 2) tree network is the same
as the performance the (optimal) parallel network with one-
bit channel rates. This is consistent with Fig. 5 and Fig. 6,
where using the proposed design method yields the same
performance in terms of error probability for both cases, which
indicates that the proposed method is working as expected.

V. CONCLUSION
In this paper, we have considered the distributed hypothesis

testing problem in a general tree network where the nodes
make observations which are, conditioned on the true hypoth-
esis, independent. We have shown that the design of nodes
under the person-by-person methodology is analogous to the
design of a two-node network, the restricted model, in which
the decision function can be designed efficiently (cf. [12]). We
also have shown how the parameters of the restricted model
for the design of a node in the general tree can be formed in
a recursive and computationally efficient manner.
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