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Abstract

We formulate a theory of analysis without limit concepts, using a model theoretic
construction known as the ultraproduct. It is exemplified by proofs of some classic
results in analysis. Topics covered are sequences, series, limits, continuity and
sequences of functions.
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1 Introduction

1.1 The Modern Approach to Analysis

The modern view of analytical concepts is that they are limiting processes: processes
which have no well-defined endpoint or stop. The process of adding one term after
another from some infinite sequence is one example, the derivative of a function at
a point is another; it is the limit of average velocity of a function over successively
smaller intervals around it.

Many will agree that the heart of analysis still lies in functions from a subset of R to
R. The modern concepts in analysis, such as differential forms and Banach spaces, are
generalizations of concepts from real analysis. Derivative is rate of change; integrals
correspond to area under the graph, and so on. The common denominator is the use
of limits.

The reason for taking a limit often is that the standard operations in R does not quite
suffice. As an example, take a series

∑
i ai and suppose we wish assign to it a value. If

the sequence is finite, there is no problem since the expression
∑n
i ai is computable.

However, if the sequence is infinite no straightforward computation exists which
solves our problem directly, since addition is only defined for finitely many terms.

Limits solves this problem by treating addition of any finite number of terms as an
approximation to the complete summation. If the approximations comes arbitarily
close to some value as the number of terms grows arbitarily high, we say that it
converges and assign a value the infinite sum. Otherwise it diverges, and we cannot
assign to it a real number.

The limit approach to analysis is popular for several reasons. One of them that it does
not demand the existence of other mathematical systems than R. In this formulation,
analysis with limits only uses real numbers and functions from the reals to itself.

Normally, when mathematicians discover that the number systems they work in does
not encompass everything which they are interested in, they find a larger system
which contains the original system as a substructure. For example, whenN did not
contain solutions to the equation x+ 1 = 0, they invented Z. When Z could not solve
2x − 1 = 0, Q was invented, and so on.

What keeps mathematicians from doing so when it comes to analysis, seems to be
the implausability of an enlargement existing. For such a system to be of interest, it
must contain numbers ”infinitely close” to each other, as well as numbers larger than
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any existing real number. Many view these properties as contradictory, or at least not
intuitive.

Historically, this was not the case. The foundations of calculus laid down by Newton
and Leibniz involved infinitesimals, at least implicitly, and for 150 years the modern
concept of limits did not exist. In those days, analysis was done exclusively using
infinitesimals. Even today some mathematicians have not given up the tradition of
using infinitesimals in analysis, especially in mathematics connected to physics.

Traces of it is found in the traditional notation dy/dx for the derivative of y with
respect to x. Here, dy stands for the change in y over some infinitesimally small
distance dx, and their quotient is the derivative.

Still, most of todays mathematicians thinks of analytical concepts in terms of limits,
and not as infinitesimals. Those who utilize infinitesimal, use them as a tool and try
to replace them with limits at some point. Many feel that infinitesimals are a ”bad”
way of doing analysis, a rigorous proof must involve a ε-δ argument at some point.

Advances in mathematical logic proves that this is false. Abraham Robinsons work
in the 1960’s exhibits an enlargement of R containing infinitesimals, using a model
theoretic construction called the ultraproduct, and shows how limits and related
concepts in R naturally translates into his new system [1].

The number system he developed was named the hyperreals (here denoted R, in other
places R∗ or ∗R), and the associated theory was called nonstandard analysis.

1.2 Outline and Prerequisites

This thesis is divided into two chapters. First, we cover the various set-theoretic and
model theoretic constructions (such as filters, boolean extensions, ultraproducts and
so on) which form the foundations of the hyperreals. We use this to construct the
hyperreals and formulate the Transfer Principle. This becomes our main tool for
proving that nonstandard and standard real analysis are equivalent. At the end of the
first chapter we take a look at the structure of the hyperreals, and how it relates to the
reals.

The second chapter investigates a few topics of analysis, and see how infinitesimals can
be used to formulate them without limits. We cover sequences, series, limits, continuity
and function sequences. Due to size constraints, we do not go into differentiation,
integration and other subject normally found in a book on calculus. The reader
interested in this are invited to read the first half of Goldblatt’s book Lectures on the
Hyperreals [2], from which the majority of proofs in Chapter 3 are derived.

We assume that the reader has basic knowledge of the model theory of first order logic.
In particular, syntax, semantics, substructures and embeddings are important. All this
material is found in Rothmaler’s Introduction to Model Theory [3], mostly in chapters
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1-3. For the reader completely new to logic, Hedman’s excellent book A First Course in
Logic is recommended [4].

It is convenient to have knowledge of basic real analysis, most importantly the role of
the Dedekind completeness property. The construction of R as equivalence classes of
Cauchy sequences of Q is similar to the ultraproduct, and is recommended for those
wishing to get a firmer grasp of the ultraproduct.

1.3 Terminology and Notation

For models of first order logic, we use letters in calligraphic style, such asM andN .
Their universes are denoted by the same letter in latin style, in our example M and
N . First order languages are considered triples L = (CL,FL,RL) of sets where CL are
the constant symbols, FL are the function symbols and RL are the relation symbols.
Every language is assumed to contain at least one binary relation symbol =, which is
interpreted as identity.

The letters R, Q, Z andN represents the reals, rational numbers, integers and natural
numbers, while the letter R denotes the hyperreals. The letter R+ denotes the set of
strictly positive reals. To separate R and R, we use greek letters α and β for arbitary
hyperreals and latin letters a and b for arbitary reals. The only exception from this
rule is the use of ε and δ to represent small real quantities, which is traditional.

The reader must be attentive to what a variable represents, since in many proofs real
numbers are first considered as reals and then as hyperreals. In this case, the variable
refering to the real number will not change.

Finally, some set theory is needed. If A is a set, the power set P (A) of A is the set of
subsets of A, i.e

P (A) = {X : X ⊂ A}.

Also, if A ⊂U , the complement Ac of A is the set

Ac =U \A = {x ∈U : x < A}.

Usually, what U is will be clear from the context.
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2 Construction of the Hyperreals

One of the first conclusions drawn from the Compactness Theorem of first order
logic is that there exists models of the (first order) theory of the reals which contains
infinitesimals; elements which are smaller than 1/n for any n ∈N yet different from 0.

Unfortunately, the compactness theorem gives us no clue to what such a model looks
like, since it only proves its existence. Thankfully, a model theoretic construction
called the ultraproduct gives us an explicit model displaying these characteristics (in
fact, it can be used to prove the Compactness Theorem, as Rothmaler does in [3],
Chapter 4). Here, we detail this construction and investigates its structure.

2.1 Filters and Ultrafilters

The ultraproduct is a product of models. That in itself is not very interesting. Our aim
is to find an equivalence relation on the product, and define a ”quotient model” which
behaves nicely with regards to satisfiability.

Elements of the product are thought of as I-tuples of elements from the factors (where
I is some set indexing them). It is natural to say that they are equal if they agree in a
”large” subset of I . What we consider as a large subset is described by the following
structure.

Definition 2.1.1. A filter (on U) is a set F ⊂ P (U ) such that

(i) ∅ < F

(ii) If A,B ∈ F , then A∩B ∈ F .

(iii) If A ∈ F and A ⊂ B ⊂U , then B ∈ F .

Remark. The points (i) and (iii) in this definition are pretty clear. Obviously, ∅ is
not a large subset and subsets of U which contain large subsets are themselves large.
Condition (ii) might seem unintuitive, but closure under finite intersections guarantees
that the relation we later define is an equivalence relation.

Definition 2.1.2. A subset A ⊂ U is called cofinite if Ac is finite. The set of cofinite
subsets of U is denoted U co. When U =N, the filter is called the Frechét filter.

Lemma 2.1.1. For any infinite set U , the set U co constitutes a filter on U .

6



Proof. (i) ∅c =U is infinite, so ∅ is not cofinite.

(ii) Let A and B be cofinite. Then (A∩B)c = Ac ∪Bc is finite. Hence A∩B is cofinite.

(iii) Let A be cofinite, and A ⊂ B ⊂U . Then Bc ⊂ Ac, so Bc is finite and B is cofinite.

Definition 2.1.3. An ultrafilter on U is a filter F on U such that for any A ⊂U , either
A ∈ F or Ac ∈ F (but not both).

Ultrafilters are maximal filters, in the sense that we cannot add any sets to them
without destroying the filter structure.

Definition 2.1.4. If x ∈ U , we call Fx = {A ⊂ U : x ∈ A} the principal filter (on U)
generated by x.

Lemma 2.1.2. For any x ∈U , the principal filter Fx is an ultrafilter.

Proof. (i) x < ∅, so ∅ < Fx.

(ii) If A,B ∈ Fx, then x ∈ A∩B. Therefore A∩B ∈ Fx.

(iii) If A ∈ Fx and A ⊂ B ⊂ Fx, we have x ∈ A ⊂ B. Thus x ∈ B, so B ∈ Fx.

(iv) For any A ⊂U , we have x ∈ A or x ∈ Ac. Thus A ∈ Fx or Ac ∈ Fx.

Sets of subsets in which finite intersections are nonempty play an important roles in
mathematics, for example in general topology and logic.

Definition 2.1.5. A collection of subsetsH has the finite intersection property if for any
A1, . . . ,An ∈ H, the intersection A1 ∩ · · · ∩An is nonempty.

Lemma 2.1.3. Any filter F , and in particular U co, has the finite intersection property.

Proof. A simple induction on the number of sets in the intersection yields that if
A1, . . . ,An ∈ F then A1 ∩ · · · ∩An ∈ F . It follows that their intersection is nonempty,
since ∅ < F .

So far, we have only encountered principal ultrafilters, which are rather mundane.
The following construction is used to generate other, more interesting ultrafilters.

Definition 2.1.6. Suppose H⊂ P (U ) has the finite intersection property. The set

F H = {A ⊂U : B1 ∩ · · · ∩Bn ⊂ A where Bi ∈ H}

is called the filter (on U ) generated by H.

Lemma 2.1.4. For any H⊂ P (U ) with the finite intersection property, F H is a filter.
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Proof. (i) LetA ∈ F H. By assumption, there exists setsA1, . . . ,An ∈ Hwith nonempty
intersection, such that A1∩ · · ·∩An ⊂ A. Thus A is nonempty as well and ∅ < F H.

(ii) Let A,B ∈ F H. By assumption, there exists A1, . . . ,An ∈ H so that A1∩· · ·∩An ⊂ A
and B1, . . . ,Bm ∈ H such that B1 ∩ · · · ∩Bm ⊂ B from H. Then the intersection

A1 ∩ · · · ∩An ∩B1 ∩ · · · ∩Bm ⊂ A∩B.

Consequently, A∩B ∈ F H.

(iii) Suppose A ∈ F H, and A ⊂ B ⊂ U . Then there exists A1, . . . ,An ∈ H so that
A1 ∩ · · · ∩An ⊂ A. Hence A1 ∩ · · · ∩An ⊂ B and B ∈ F H.

Our next theorem on ultrafilters requires a result known as Zorn’s lemma, which is
equivalent to the Axiom of Choice. Consequently, it is independent of the other
current axioms of set theory. To state Zorn’s lemma, we make a few definitions.

Definition 2.1.7. A partial order is a set U with a binary relation ≤ such that

(i) x ≤ x for all x ∈U ,

(ii) if x ≤ y and y ≤ z, then x ≤ z.
(iii) if x ≤ y and y ≤ x, then x = y.

If, in addition to this, x ≤ y or y ≤ x for every x,y ∈U we call U a total order.

Usually, total orders are seen as lying on a line, while the structure of partial orders
are more treelike. Classic examples of total orders are R and Q, and an example of a
partial order is P (N) under set-inclusion.

Definition 2.1.8. Suppose P is a partial order. A chain C in P is a subset of P which is
a total order.

Definition 2.1.9. A maximal element of a partial order P is an element x ∈ P such
that for no y ∈ P different from x, we have y ≥ x. An upper bound of a set S ⊂ P is an
element B ∈ P so that x ≤ B for every x ∈ S .

Zorn’s lemma connects all these concepts into one theorem, which is surprisingly
useful.

Theorem 2.1.1. Zorn’s lemma: If every chain in a partial order P has an upper bound,
then P contains a maximal element.

The equivalence of the Axiom of Choice and Zorn’s lemma is a standard result in
axiomatic set theory and is found in every textbook on the subject, for example
Moschovakis’ Notes on Set Theory [5].
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Theorem 2.1.2. Every H⊂ P (U ) with the finite intersection property is extendable to an
ultrafilter.

Proof. Consider the set S of filters F such that F H ⊂ F , partially ordered by set
inclusion. Suppose C = (Fi : i ∈ I) is a chain in S . We prove that

⋃
C =

⋃
i∈I Fi is a filter,

and thus an upper bound on C.

(i) Clearly, ∅ < Fi for any i ∈ I , so ∅ <
⋃
C.

(ii) Let A,B ∈
⋃
C. Then there are i, j ∈ I such that A ∈ Fi and B ∈ Fj , and since

⋃
C is

a total order either Fi ⊂ Fj or Fj ⊂ Fi . Without loss of generality, we can assume
Fi ⊂ Fj . But then A,B ∈ Fj , and since Fj is a filter, A∩B ∈ Fj . Hence A∩B ∈

⋃
C.

(iii) Let A ∈
⋃
C, and A ⊂ B ⊂ U . Then A ∈ Fi for some i ∈ I , and thus B ∈ Fi . Hence

B ∈
⋃
C.

Thus
⋃
C is an upper bound for C, and since C is arbitrary every chain in S has an

upper bound. By Zorn’s lemma, S has a maximal element U . It remains to prove that
U is an ultrafilter. The conditions (i)-(iii) of Definition 2.1.3 hold by construction.

To prove that U is an ultrafilter, suppose A ⊂U , and consider U ∪ {A}. If there exists
C ∈ U such that C ∩A = ∅, then C ⊂U \A and (iii) implies that U \A ∈ U . Otherwise,
U ∪ {A} has the finite intersection property and hence A ∈ U by the maximality of U .

Since A is arbitary, U is an ultrafilter.

Nonprincipal ultrafilters are crucial in the construction of the hyperreals, and we are
happy to conclude this section with a proof of their existence.

Theorem 2.1.3. There exists a nonprincipal ultrafilter on every infinite set U .

Proof. Consider the set U co. By Lemma 2.1.3, this set has the finite intersection
property and is extendable, by Theorem 2.1.2, to an ultrafilter U . Suppose that U is
principal. Then for some i ∈U , we have {i} ∈ U . But U \{i} is cofinite and consequently
belongs to U . Thus {i} ∩ (U \ {i}) = ∅ ∈ U , a contradiction. Hence, U is a nonprincipal
ultrafilter on U .

2.2 The Ultraproduct

In this section, L = (CL,RL,FL) is a fixed first-order language.

Definition 2.2.1. Suppose (Mi : i ∈ I) is a family of L-structures, and F a filter on I .
Let M =

∏
i∈IMi . For any L-formula ϕ(x1, . . . ,xn) and tuple a = (a1, . . . , an) ∈Mn, the

boolean extension of ϕ(a1, . . . , an) is defined by

‖ϕ(a)‖ = ‖ϕ(a1, . . . , an)‖ = {i ∈ I :Mi |= ϕ(a1(i), . . . , an(i))}.
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The following consequences are immediate.

Lemma 2.2.1. For any formulas ϕ and ψ and a ∈Mn, the following holds:

(i) ‖ϕ(a)∧ψ(a)‖ = ‖ϕ(a)‖ ∩ ‖ψ(a)‖
(ii) ‖ϕ(a)∨ψ(a)‖ = ‖ϕ(a)‖ ∪ ‖ψ(a)‖

(iii) ‖¬ϕ(a)‖ = I \ ‖ϕ(a)‖
(iv) For all a ∈Mn−1 and b ∈M, we have ‖ϕ(a,b)‖ ⊂ ‖∃xϕ(a,x)‖ and there exists c ∈M

such that ‖ϕ(a,c)‖ = ‖∃xϕ(a,x)‖.

Proof. The proof is immediate, except for the second part of (iv) where we define
c ∈

∏
i∈IMi as follows. For every i ∈ I , let c(i) ∈ Mi be such that Mi |= ϕ(a,c(i)) if

Mi |= ∃xϕ(a,x). Otherwise, pick c(i) arbitarily from Mi . By the definition of c, we
must have that ‖∃xϕ(a,x)‖ ⊂ ‖ϕ(a,c)‖, and hence ‖∃xϕ(a,x)‖ = ‖ϕ(a,c)‖.

A filter on I naturally induces an equivalence relation onM =
∏
i∈IMi , in the following

way.

Definition 2.2.2. Suppose (Mi : i ∈ I) is a family of models, M =
∏
i∈IMi and F a

filter on I . Suppose a,b ∈M. Then we say that a and b are equivalent modulo F , written
a ∼F b, if ‖a = b‖ ∈ F . Moreover, if a = (a1, . . . , an) and b = (b1, . . . , bn) belong to Mn, we
write a ∼F b if ai ∼F bi for each 1 ≤ i ≤ n.

Intuitively, we regard a subset of I as ”large” if it lies in F . Two elements a,b ∈M are
equal if their coordinates are equal in a ”large” subset of I . It turns out that this is an
equivalence relation.

Lemma 2.2.2. ∼F is an equivalence relation.

Proof. ‖a = a‖ = I ∈ F for every filter F . Hence a ∼F a. Furthermore,Mi |= a(i) = b(i)
if and only ifMi |= b(i) = a(i) so ‖a = b‖ equals ‖b = a‖ and thus a ∼F b implies b ∼F a.

Finally, let a ∼F b and b ∼F c. Then ‖a = b‖,‖b = c‖ ∈ F , and hence

‖a = b‖ ∩ ‖b = c‖ = ‖(a = b)∧ (b = c)‖ ∈ F .

Also,Mi |= ([a(i) = b(i)]∧ [b(i) = c(i)]) impliesMi |= a(i) = c(i), for every i ∈ I . Thus

‖(a = b)∧ (b = c)‖ ⊂ ‖a = c‖ ∈ F ,

so a ∼F c, and ∼F is an equivalence relation.

Since ∼F is an equivalence relation, it partitions M =
∏
i∈IMi into a set of equivalence

classes. The set of equivalence classes is denoted byM/F , and for any a ∈M we denote
the corresponding equivalence class by a/F . If a = (a1, . . . , an) ∈Mn, we can write a/U
for (a1/U , . . . , an/U ). This is helpful in the following definition.
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Definition 2.2.3. Suppose (Mi : i ∈ I) is a family of models, and F a filter on I . The
reduced product (modulo F ) of (Mi : i ∈ I), denoted M/F , is the model defined as
follows:

(i) The universe of M/F is the set of equivalence classes under ∼F .

(ii) For each c ∈ CL, we let cM/F = (cMi : i ∈ I)/F .

(iii) For each R ∈ RL and a ∈Mn, we letM/F |= R(a/F ) if and only if ‖R(a)‖ ∈ F .

(iv) For each f ∈ FL and a ∈Mn, we let fM/F (a/F ) = (fMi (a(i)) : i ∈ I)/F

Furthermore, if F is an ultrafilter callM/F the ultraproduct of (Mi : i ∈ I) (modulo F ).

It is not clear that this model is well-defined. The constant symbols are fine, but
it is not obvious that for all a,b ∈Mn so that a ∼F b, we haveM |= R(a) if and only
if M |= R(b) and f (a) ∼F f (b), where R ∈ RL and f ∈ FL. Fortunately, we have the
following lemma.

Lemma 2.2.3. The modelM/F is well-defined.

Proof. Suppose R ∈ RL is n-ary, and a,b ∈Mn with a ∼F b. SupposeM |= R(a). Since
a ∼F b, we know that ‖aj = bj‖ ∈ F for any 0 ≤ j ≤ n. Since F is a filter, we have that

‖a1 = b1‖ ∩ · · · ∩ ‖an = bn‖ ∈ F .

Hence Lemma 2.2.1 implies that
∥∥∥∥∧n

j=0(aj = bj )
∥∥∥∥ ∈ F . Moreover, ‖R(a)‖ ∈ F by defini-

tion and hence

‖R(a)‖ ∩

∥∥∥∥∥∥∥∥
n∧
j=0

(aj = bj )

∥∥∥∥∥∥∥∥ ∈ F .
However, ifMi |=

∧n
j=0 aj = bj , thenMi |= R(a) implies thatMi |= R(b). Hence

‖R(a)‖ ∩

∥∥∥∥∥∥∥∥
n∧
j=0

aj = bj

∥∥∥∥∥∥∥∥ ⊂ ‖R(b)‖ ∈ F .

SoM |= R(b). The case for function symbols is done similarly.

Remark. Note that we assumed from the outset that RL contained an identity relation
’=’. This is included in our definition of the reduced productM/F , which means we
must confirm that the induced relation ’=’ onM/F is the actual identity relation.

But this is immediate, since for any a,b ∈M =
∏
i∈IMi , we haveM/F |= a/F = b/F if

and only if ‖a = b‖ ∈ F if and only if a ∼F b if and only if a/F and b/F are the same
equivalence class (and hence the same element inM/F ).
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IfMi equals some L-structure N for each i ∈ I , we call the modelM/F = N I /F a
reduced power ofN (modulo F ). If F is an ultrafilter,M is called an ultrapower ofN .

The following theorem shows that ultraproducts behave nicely with regards to satisfia-
bility of formulas. It is named after Polish mathematician Jerzy Loś, who proved it in
1955.

Theorem 2.2.1. Loś Theorem: Suppose (Mi : i ∈ I) is family of models, U an ultrafilter
on I and M =

∏
i∈IMi . Then, for every n-tuple (a1, . . . , an) ∈Mn and formula ϕ(x1, . . . ,xn),

we haveM/U |= ϕ(a1/U , . . . , an/U ) if and only if ‖ϕ(a1, . . . , an)‖ ∈ U .

Proof. Note that throughout this proof, if a = (a1, . . . , an) ∈Mn = (
∏
i∈IMi)

n, then a(i)
refers to (a1(i), . . . , an(i)). We begin by proving the following claim.

Claim. For every n-ary term t(x) and tuple a ∈Mn,

tM/U (a/U ) =
(
tMi (a(i)) : i ∈ I

)
/U .

Proof. We proceed by induction on the complexity of the term t.

• Base case: If t is a constant it holds by definition, and if t is a variable, for
example if t = x, then for every a ∈M

tM/U (a) = a/U = (a(i) : i ∈ I)/U =
(
tMi (a(i)) : i ∈ I

)
/U .

• Induction step: Suppose that t(x) = f (t1(x1), . . . , tn(xn)), where tj(xj ) are mj-ary
terms such that for every b ∈Mmj , we have

tM/Uj (b/U ) =
(
t
Mi
j (b(i)) : i ∈ I

)
/U .

Then for any a = (a1, . . . , an), where aj ∈Mmj for all 1 ≤ j ≤ n, we have

tM/U (a/U ) = fM/U (t1 (a1/U ) , . . . , tn (an/U )) =

= fM/U
((
t
Mi
1 (a1(i)) : i ∈ I

)
/U , . . . ,

(
t
Mi
n (an(i)) : i ∈ I

)
/U

)
=

=
(
fMi

(
t
Mi
1 (a1(i)), . . . , tMi

n (an(i))
)

: i ∈ I
)
/U =

=
(
tMi (a(i)) : i ∈ I

)
/U

We use induction on the complexity of formulas.
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• Base case: Supposeϕ(x) is atomic, and that ϕ(x,y) = (t1(x) = t2(y)). Furthermore,
suppose a ∈Mn and b ∈Mm. IfM/U |= ϕ(a,b), the claim implies that(

t
Mi
1 (a(i) : i ∈ I

)
/U =

(
t
Mi
2 (b(i)) : i ∈ I

)
/U .

In other words, tM/U1 (a) ∼U tM/U2 (b) and therefore
∥∥∥tM/U1 (a) = tM/U2 (b)

∥∥∥ ∈ U . The
converse is proved similarly.

On the other hand, suppose that ϕ(x1, . . . ,xn) = R(t1(x1), . . . , tn(xn)) where R ∈ LR,
tj (xj ) are mj-ary terms and aj ∈Mmj for every 1 ≤ j ≤ n. Let a = (a1, . . . , an). Then

M/U |= ϕ(a1/U , . . . , an/U )

⇔ M/U |= R (t1(a1/U ), . . . , tn(an/U ))

⇔ M/U |= R
((
t
Mi
1 (a1(i)) : i ∈ I

)
/U , . . . ,

(
t
Mi
n (an(i)) : i ∈ I

)
/U

)
⇔

∥∥∥∥R((
t
Mi
1 (a1(i)) : i ∈ I

)
, . . . ,

(
t
Mi
n (an(i)) : i ∈ I

))∥∥∥∥ ∈ U
⇔

{
i ∈ I :Mi |= R

(
t
Mi
1 (a1(i)), . . . , tMi

n (an(i))
)}
∈ U

⇔ {i ∈ I :Mi |= ϕ(a1(i), . . . , an(i))} ∈ U
⇔ ‖ϕ(a1, . . . , an)‖ ∈ U .

• Induction step: We consider three cases. Let a ∈Mn.

– Suppose ϕ is a formula for which the assertion in the theorem holds. Then
M/U |= ¬ϕ(a/U ) if and only ifM/U 6|= ϕ(a/U ) if and only if ‖ϕ(a)‖ < U if
and only if I \‖ϕ(a)‖ ∈ U , since U is an ultrafilter. Lemma 2.2.1 implies that
‖¬ϕ(a)‖ ∈ U if and only ifM/U |= ¬ϕ(a/U ).

– Suppose ϕ and ψ are formulas for which the above assertion hold. Then
M/U |= ϕ(a/U )∧ψ(a/U ) if and only ifM/U |= ϕ(a/U ) andM/U |= ψ(a/U ).
By assumption, this is equivalent with ‖ϕ(a)‖ ∈ U and ‖ψ(a)‖ ∈ U .

If ‖ϕ(a)‖ ∈ U and ‖ψ(a)‖ ∈ U , then ‖ϕ(a)‖∩ ‖ψ(a)‖ ∈ U , and by Lemma 2.2.1
we have ‖ϕ(a)∧ψ(a)‖ ∈ U . On the other hand, ‖ϕ(a)∧ψ(a)‖ is contained
in ‖ϕ(a)‖ and ‖ψ(a)‖, so if ‖ϕ(a)∧ψ(a)‖ ∈ U , we must have ‖ϕ(a)‖ ∈ U and
‖ψ(a)‖ ∈ U .

ThusM/U |= ϕ(a/U )∧ψ(a/U ) if and only if ‖ϕ(a)∧ψ(a)‖ ∈ U .

– Suppose ϕ is a formula for which the above assertion holds. We have that
M/U |= ∃xϕ(x,a/U ) if and only if M/U |= ϕ(b/U , a/U ) for some b ∈ M =∏
i ∈ IMi , which is equivalent to ‖ϕ(b,a)‖ ∈ U . By Lemma 2.2.1, this is

equivalent to the fact that ‖∃xϕ(x,a)‖ ∈ U .
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Note that is only when dealing with negations that we need U to be an ultrafilter,
in all other cases if suffices for U to be a regular filter. Also, recall thatM/U is an
L-structure: hence Loś theorem holds for all formulas stated in the original language
of the factors and not for some new we might define onM/U . This is important when
M/U are the hyperreals and the factors are the reals.

For any ultrapowerM/U ofN , the function µ :N →M =
∏
i∈IMi sending a ∈N to the

constant sequence (a : i ∈ I) ∈M is an embedding. By Loś Theorem, this embedding
preserves formulas.

Corollary 2.2.1. Suppose µ is as above, and thatM/U is an ultrapower of N . Then for
every (a1, . . . , an) ∈ Nn and formula ϕ(x1, . . . ,xn) we have N |= ϕ(a1, . . . , an) if and only if
M/U |= ϕ(µ(a1), . . . ,µ(an)).

In other words, µ is an elementary embedding ofN intoM/U and we can regardN as an
elementary substructure ofM/U .

Proof. For every a = (a1, . . . , an) ∈ Nn and formula ϕ(x1, . . . ,xn) we have, by Loś Theo-
rem, thatM |= ϕ(µ(a1), . . . ,µ(an)) if and only if

∥∥∥ϕ(µ(a1), . . . ,µ(an))
∥∥∥ ∈ U .

Suppose that M |= ϕ(µ(a1), . . . ,µ(an)). Then
∥∥∥ϕ(µ(a1), . . . ,µ(an))

∥∥∥ is nonempty, and
consequently N |= ϕ(a1(i), . . . , an(i)) for some i ∈ I . Hence N |= ϕ(a1, . . . , an). On the
other hand, ifN |= ϕ(a), then

∥∥∥ϕ(µ(a1), . . . ,µ(an))
∥∥∥ = I ∈ U andM |= ϕ(µ(a1), . . . ,µ(an)).

Note that µ is surjective if and only if every x ∈ M is equivalent modulo U to some
constant sequence. This observation explains all the work to prove the existence of
nonprincipal ultrafilters.

Corollary 2.2.2. Suppose U is a principal ultrafilter on I . ThenMI /U is isomorphic toM.

Proof. Let a ∈MI /U . Since U is principal, there exists i ∈ I such that {i} ∈ U . Take b as
the constant sequence with value a(i) ∈M. Then a ∼U b (since {i} ⊂ ‖a = b‖ ∈ U ), which
implies that the embedding detailed above is surjective and an isomorphism.

2.3 The Hyperreals as an Ultrapower

In the previous chapter, we noted that an ultrapower is a model over same language
as the original model. In order to use Loś theorem to its full extent, we make the
language contain as much information as we can.

Definition 2.3.1. By L
R

we denote the language with

(i) constant symbols cr for every r ∈R, and

(ii) n-ary relation symbols RA for every A ⊂Rn, for every n ∈N.

14



Note that the language does not contain any function symbols. The reason for this is
that if we were to add a function symbol for every function defined on a subset ofR, we
would run into an issue with having undefined terms. Not that this is insurmountable
by any means, this approach is used in [2].

However, no such terms are needed. We can reduce each statement we make to L
R

,
since the language is quite powerful. A case in point, if fi (0 ≤ i ≤ n) are ni-ary
functions and R an n-ary relation, there exists a

∑
ni-ary relation R̃ so that the relation

R (f1(x1), . . . , fn(xn)) holds if and only R̃(x1, . . . ,xn) holds.

As an example, consider the sentence ϕ = ∀x∀y(exp(x + y) = expxexpy). If R is the
4-ary relation such that R(a,b,c,d) holds if and only if exp(a+ b) = expcexpd, then
∀x∀yR(x,y,x,y) is an L

R
-sentence equivalent to ϕ.

In general, we are not entirely explicit with reducing every first order-expression to
L
R

. Instead, we write more intelligible statements, safe in the knowledge that every
such expression is reducible to one with only relation and constant symbols.

The following abbreviations are used for clarity. Suppose ϕ(x1, . . . ,xn) is a formula,
A ⊂Rm and x1, . . . ,xn are m-tuples of variables. Then

• (∀x1, . . . ,xn ∈ A)ϕ(x1, . . . ,xn) abbreviates

∀x1 . . .∀xn(RA(x1)∧ . . .∧RA(xn)→ ϕ(x1, . . . ,xn)),

and

• (∃x1, . . . ,xn ∈ A)ϕ(x1, . . . ,xn) abbreviates

∃x1 . . .∃xn (RA(x1)∧ . . .∧RA(xn)∧ϕ(x1, . . . ,xn)) .

We usually use r instead of its related constant symbol cr , for the same reason. Having
decided upon a language to use, we can explicitly state what we consider as our ”base”
model of R.

Definition 2.3.2. ByM
R

we denote the L
R

-model with universe R, and

(i) cMRr = r for every r ∈R.

(ii) RMRA = A for every A ⊂Rn, for every n ∈N.

Note that if A ⊂R and x ∈R, thenM
R
|= RA(x) if and only if x ∈ A, andM

R
|= x = cr if

and only if r = x.

Definition 2.3.3. Suppose U is a nonprincipal ultrafilter onN containingNco. Then

MR =
∏
n∈N
M
R

/
U

is the (model of the) hyperreals. The universe ofMR is denoted R.
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Most of the time we identify, as per mathematical custom,M
R

with R andMR with
R. Hence for some L

R
-formula ϕ we write R |= ϕ and R |= ϕ when we meanM

R
|= ϕ

andMR |= ϕ.

At the moment, R and R are models of the same language, namely L
R

. This is a
consequence of the ultrapower construction, but is cumbersome to work with. Thus,
when we interpret L

R
-sentences over R we append a ∗-symbol as to make it clear over

which model we are interpreting it.

Definition 2.3.4. Supposeϕ is an L
R

-sentence. Thenϕ∗ is the sentence such that every
nonlogical symbol S is replaced by the symbols S∗, unless S is one of the following:

• A constant symbol.

• One of the relations =, <, >, ≤ or ≥.

• One of the functions | · |, ·, +, ÷ or −.

ϕ∗ is called the ∗-transform of ϕ. The resulting language is named LR, and as a result
R is considered an LR-model.

At the end of the previous section (more precisely, in Corollary 2.2.1 ), we proved
that there is an elementary embedding of N intoM wheneverM is an ultrapower
ofN . Hence we can regard R as a substructure of R. The fact that the embedding is
elementary implies the following principle.

Theorem 2.3.1. The Transfer Principle: Suppose (r1, . . . , rn) ∈Rn and ϕ(x1, . . . ,xn) is an
L
R

-formula. Then R |= ϕ(r1, . . . , rn) if and only if R |= ϕ∗(r1, . . . , rn).

Given a subset A of Rn, there exists a corresponding RA ∈ LR so that R |= RA(x) if and
only if x ∈ A. This naturally yields an extension A∗ ⊂R.

Definition 2.3.5. Suppose A is a subset of Rn. The extension of A is the set

A∗ = {x ∈ Rn :R |= R∗A(x)} ⊂ Rn.

Many important subsets ofR constructed this way, for example the set of hypernaturals
N
∗ is the extension of the natural numbersN. It has many interesting properties in

common withN, but contains a host of unlimited numbers in addition toN.

If A ⊂ R, any function f : A→ R can be regarded as a relation on R2 in a natural
way.

Definition 2.3.6. Suppose f : A→ R is a function where A ⊂ R. The graph of f is
defined as the set Gf = {(x,f (x)) : x ∈ A} ⊂R2.

The relation Gf can be extended to a relation G∗f on R, which is used to define the
extension of a function f : A→R.
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Definition 2.3.7. Suppose A ⊂R and f : A→R is a function, and Gf is the graph of
f , Furthermore, suppose that x ∈ A∗. The extension of f is the function f ∗(x) : A∗→R
defined by

f ∗(x) = the unique y such that R |= G∗f (x,y).

Remark. This is well-defined, by transfer of the sentence

(∀x ∈ A)(∃y)(Gf (x,y)∧ (∀zGf (x,z)→ y = z)).

Furthermore, if x ∈ A ⊂R we have f ∗(x) = f (x).

Note that this includes all the standard operations and functions, such as the absolute
value, addition, multiplication and their inverses. Also, since a sequence s = (sn : n ∈N)
is regarded as a function s :N→R it has an extension s∗ :N∗→R, which is called the
hypersequence.

Often, transfer is used to investigate properties of extensions, as in the following
example.

Example 2.3.1. For any x,y ∈ R, we have |x+ y| ≤ |x|+ |y|.

Proof. Transfer of the sentence ∀x∀y (|x+ y| ≤ |x|+ |y|).

Another example is the exponential function exp : R→ R which has an extension
exp∗ :R→R.

Example 2.3.2. The exponential function exp∗ : R → R is strictly increasing, and
satisfy the property that exp∗(x+ y) = exp∗ xexp∗ y. In addition, it is strictly positive.

Proof. Transfer of the sentence ∀x∀y(x < y → exp(x) < exp(y)) shows that exp∗ is
strictly increasing, transfer of the sentence ∀x∀y (exp(x+ y) = expxexpy) yields the
second part. Positivity follows from transfer of ∀x(expx > 0).

2.4 Hyperreals, Great and Small

We begin by examining some of the additions to R that R provide: infinitesimals and
unlimited numbers. First, note that there exists an elementary embedding of R into R
given by the constant sequences. Hence R is an elementary substructure of R, which
implies that R and R are elementarily equivalent.

Recall that every hyperreal is a sequence (or rather, an equivalence class of sequences)
and vice versa. In particular, the sequence α = (αn = n−1 : n ∈ N) is a hyperreal.
Consider the formula ϕε(x) = x ≥ ε. For each ε ∈ R+, we have ‖ϕε(α)‖ = ‖α ≥ ε‖, and
since α converges to 0 there is some N ∈N so that n > N implies αn < ε.
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Hence the set ‖α ≥ ε‖ is finite, and does not belong to the ultrafilter. Loś Theorem
implies that R |= α < ε, for all ε ∈ R+ (since it was arbitary). Also, αn , 0 for all n so
the set ‖α = 0‖ is empty, meaning R |= α , 0.

So α is a number different from 0, yet smaller than any real quantity: we have proven
the existence of infinitesimals in R, if we regard infinitesimals as those hyperreals
which are smaller than any real numbers. The same argument can be used to prove
that some hyperreals are greater than any real number, by letting α = (n : n ∈N).

Definition 2.4.1. A nonzero hyperreal α such that |α| < ε for every ε ∈ R+ is an
infinitesimal. The set of infinitesimals is denoted I.

Definition 2.4.2. A hyperreal α such that |α| > R for every R ∈R is called unlimited.

Definition 2.4.3. A hyperreal α such that |α| < R for some R ∈R is called limited. The
set of limited numbers are denoted L.

Lemma 2.4.1. The set I is closed under addition and multiplication.

Proof. Suppose α and β are infinitesimals. Then |α| < ε
2 and |β| < ε

2 for every ε ∈ R+.
Example 2.3.1 yields

|α + β| ≤ |α|+ |β| < ε

for every ε ∈R+, meaning that α and β are infinitesimal.

The proof for multiplication is similar, using that |α| and |β| are less than
√
ε.

In the above terminology, we can define precisely what it means when two hyperreals
α and β are infinitely close to each other.

Definition 2.4.4. Two hyperreals α and β are infinitely close, denoted α ' β, if |α − β|
is infinitesimal.

Lemma 2.4.2. ' is an equivalence relation.

Proof. Clearly, ' is reflexive and symmetric. To prove that it is transitive, note that
the triangle inequality by Example 2.3.1 holds in R and let ε ∈ R+. Suppose that
α ' β ' γ . Then |α − β| < ε

2 and |β −γ | < ε
2 , and we see that

|α −γ | = |α − β + β −γ | ≤ |α − β|+ |β −γ | < ε.

So ' is transitive and thus an equivalence relation.

The concept of infinite closeness is tightly connected with the idea of continuity, as
continous functions preserve infinite closeness in various ways.

Example 2.4.1. If α ' 0, then exp∗(α) ' 1.
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Proof. Let ε ∈R+. Then α < ln(1 + ε) = ln∗(1 + ε), since 1 + ε ∈R. Since exp∗ is strictly
increasing and positive, by Example 2.3.2, we get that

|exp∗(α)− 1| < |exp∗(ln∗(1 + ε))− 1| = |1 + ε − 1| = ε.

We conclude that exp(α) ' 1.

Definition 2.4.5. Let r ∈R ⊂R. The halo of r is the set

hal(r) = {x ∈ R : r ' x} .

Definition 2.4.6. Let r ∈ R and ρ ∈ R. If |r − ρ| is infinitesimal, we say that r is a
shadow of ρ.

When persuing an axiomatic approach to real analysis, a common way to do this is
to regard R as an ordered field imbued with the Dedekind completeness property. This
property separates R from other totally ordered fields such as Q.

Definition 2.4.7. A totally ordered field F has the Dedekind completeness property if
every A ⊂ F which is nonempty and bounded from above has a least upper bound.

It turns out that being Dedekind complete is a strong requirement: any field which
is Dedekind-complete is isomorphic to R (Appendix A in [5]). The following is a
nonstandard characterization of Dedekind completeness.

Theorem 2.4.1. R has the Dedekind completeness property if and only if each limited
α ∈ R has exactly one shadow a ∈R.

Proof. ”⇒”: Consider A = {r ∈ R : r < α}. Since α is limited, there exists r, s ∈ R such
that r < α < s, and we conclude that A is nonempty and bounded above. Hence there
exists a least upper bound a ∈R of A.

To show α ' a, let ε ∈R+. Clearly α ≤ a+ ε, and since a is the least upper bound of A,
must have α ≥ a−ε. Thus we conclude that a−ε ≤ α ≤ a+ε for all ε ∈R+. Hence α ' a.

For uniqueness, suppose α ' a1 and α ' a2. By Lemma 2.4.2 we have a1 ' a2 and
since they are real a1 = a2. In other words, the upper bound is unique.

”⇐”: Suppose A ⊂R is nonempty and bounded from above. Clearly, a number a is an
upper bound of A if and only if it is an upper bound of Â =

⋃
{(−∞, a) : a ∈ A}. Hence

it suffices to find a least upper bound of Â

By assumption, there exists p0 < q0 so that p0 ∈ Â and q0 < Â. We inductively define
sequences p = (pn : n ∈N) and q = (qn : n ∈N) by

pn+1 =

pn if (pn + qn)/2 < Â
(pn + qn)/2 otherwise
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qn+1 =

qn if (pn + qn)/2 ∈ Â
(pn + qn)/2 otherwise.

Clearly, pn ∈ Â and qn < Â for every n. Moreover, since every hyperreal is a sequence
of real numbers, p and q can be regarded as hyperreals.

Consider the sequence (pn − qn : n ∈N). We prove that this converges to 0. Let n ∈N.
If (pn + qn)/2 ∈ Â we have pn+1 = (pn + qn)/2 and qn+1 = qn. Then

|pn+1 − qn+1| =
∣∣∣∣pn − qn2

∣∣∣∣ =
1
2
|pn − qn|

and similar if (pn + qn)/2 < Â. By induction we have that

|pn − qn| =
1
2n
|p0 − q0| ,

which approaches 0 as n tends to infinity. Thus p/U −q/U ' 0, and by assumption they
have a common shadow L ∈ R. Clearly, pn ≤ L ≤ qn for all n ∈N. Also, both p and q
converges to L.

It remains to show that L is an upper bound of Â. Suppose there is a ∈ Â so that L < a.
Then qn < a for some n ∈N. Hence qn ∈ Â, which is a contradiction.

Also, L is the least upper bound of Â since if u is some upper bound of Â, we have pn ≤
u for every n ∈N, which implies that limn→∞pn = L ≤ u. Hence L is the supremum of
Â, and thus of A.

Definition 2.4.8. The mapping sh : L→ R which maps any α ∈ L to its shadow is
called the shadow mapping, and a is the shadow of α.

Remark. Note that L is closed under multiplication, addition and subtraction. Read-
ers familiar with abstract algebra notices that L is a subring of R. Furthermore, if α is
infinitesimal and ρ is limited, then αρ is infinitesimal. Thus I forms an ideal in the
ring L.

It is easy to see that I is a maximal ideal, since any limited α not in Imust be larger
than some ε ∈ R+, in which case α−1 < ε−1. Hence α−1 is limited, meaning that any
ideal containing α also contains αα−1 = 1, making it trivial.

This implies that the quotient ring L/I is a field, which turns out to be isomorphic to
R by the mapping sending each α ∈ L/I to sh(α).

Thus every limited hyperreal can be written as a real part plus an infinitesimal part.
The latter of these plays an important role in nonstandard analysis, concepts such as
limits and convergence are formulated using the shadow mapping and halos, as we
see in the next chapter.
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3 Analysis Without Limits

In this chapter, we utilize the tools furnished in the previous chapter, and find a
nonstandard theory of real analysis which is equivalent to the standard theory. Before
we do this, recall that every sequence s = (sn : n ∈N) is a function s :N→R. This yields
an extended function s∗ : N∗ → R∗, called the hypersequence. The hypersequence
contains a lot of information about the sequence itself.

3.1 Sequences as Hypersequences

Remember the standard definition of convergence for sequences.

Definition 3.1.1. Suppose s = (sn : n ∈ N) is a sequence and r ∈ R. We say that
s converges to r if for every ε ∈ R+, there exists Nε ∈ N such that if n > Nε, then
|sn − r | < ε.

The following theorem provides a nonstandard characterisation of convergence.

Theorem 3.1.1. A real sequence s = (sn : n ∈N) converges to the real number r, if and only
if s∗N ' r for each unlimited hypernatural N .

Proof. ”⇒”: Suppose s converges to r. For every ε ∈R+ there exists Nε ∈N such that

R |= (∀n ∈N)(n > Nε→ |sn − r | < ε).

By transfer, we get
R |= (∀n ∈N∗)(n > Nε→ |s∗n − r | < ε).

Suppose M is an unlimited hypernatural. Since M is unlimited, we have M >Nε for
every Nε ∈N and hence |s∗N − r | < ε for every ε ∈R+. Thus s∗M ' r.

”⇐”: Suppose s∗N ' r for every unlimited hypernatural N , and suppose N is an
unlimited hypernatural. Then for all hypernaturals n > N , we have s∗n ' r as well.
Thus we conclude that

R |= (∃N ∈N∗)(∀n ∈N∗)(n > N → |s∗n − r | < ε)

for all ε ∈R+. Transfer yields that

R |= (∃N ∈N)(∀n ∈N)(n > N → |sn − r | < ε)

Which is exactly the statement that sn converges to r.
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Sequences which grow arbitarily large are commonplace throughout mathematics, we
usually say that they tend towards infinity.

Definition 3.1.2. A sequence s = (sn : n ∈N) diverges to∞ (or −∞) if for every R ∈R+
there exists NR ∈N so that n > NR implies sn > R (or −sn > R).

The following theorem gives a similar nonstandard characterization of sequences
which tend to infinity.

Theorem 3.1.2. A real sequence s = (sn : n ∈N)

(i) diverges to infinity if and only if s∗N is positive unlimited for every unlimited hyper-
natural N .

(ii) diverges to negative infinity if and only if s∗N is negative unlimited for every unlimited
hypernatural N .

Proof. It suffices to prove (i), since (ii) is identical up to reversal of the order.

”⇒”: Since s diverges, for any R ∈R there exists NR ∈N such that

R |= (∀n ∈N)(n > NR→ sn > R).

By transfer we obtain
R |= (∀n ∈N∗)(n > NR→ s∗n > R)

Suppose M is an unlimited hypernatural. Then M >NR for all NR ∈N, so s∗M > R for
all R ∈R. Hence s∗M is positive unlimited.

”⇐”: Suppose that s∗N is positive unlimited for all unlimited hypernaturals N . Then
we have

R |= (∃N ∈N∗)(∀n ∈N∗)(n > N → s∗n > R)

for all R ∈R. Transfer gives us that

R |= (∃N ∈N)(∀n ∈N)(n > N → sn > R)

which is exactly the statement that s diverges to positive infinity.

It is clear that if s = (sn : n ∈N) converges, the difference between successive terms in
the sequence must grow arbitarily small. In other words, |sn+1 − sn|must approach 0.
Unfortunately, this is not a sufficient condition, as is evidenced by the harmonic series∑ 1

n . This series tend to infinity, and hence its partial sums also tend to infinity. But

|sn+1 − sn| =

∣∣∣∣∣∣∣
n+1∑
i=1

1
i
−

n∑
i=1

1
i

∣∣∣∣∣∣∣ =
∣∣∣∣∣ 1
n+ 1

∣∣∣∣∣
tends to 0. So |sn+1 − sn| approaching 0 does not guarantee that s converges. However,
there exists a similar requirement which do imply convergence, due to Cauchy.
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Definition 3.1.3. A sequence s = (sn : n ∈N) is a Cauchy sequence if for every ε ∈ R+
there exists Nε so that for every n,m ∈N such that n,m > Nε we have |sn − sm| < ε.

We show that a sequence converges if and only if it is a Cauchy sequence. First, we
prove the following lemmas.

Lemma 3.1.1. A real sequence s = (sn : n ∈N) is bounded if and only if s∗N is limited for
every unlimited hypernatural N .

Proof. ”⇒”: Suppose s is bounded. Then there exists B ∈R such that

R |= (∀n ∈N)(|sn| < B).

By transfer we have
R |= (∀n ∈N∗)(|s∗n| < B).

In other words, s∗n is limited for every n ∈N∗ and thus for every unlimited N as well.

”⇐”: Suppose s∗N is limited for every unlimited hypernatural N . Suppose B is any
unlimited hyperreal. Then |s∗N | < B for all unlimited N , and since s∗n = sn is limited for
any natural number n, we get that |s∗n| < B for all n ∈N∗. Thus

R |= ∃B(∀n ∈N∗)(|s∗n| < B)

and by transfer we obtain

R |= ∃B(∀n ∈N)(|sn| < B).

Thus, s is bounded.

Lemma 3.1.2. A real sequence s = (sn : n ∈N) is a Cauchy sequence if and only if s∗N ' s
∗
M

for all unlimited hypernaturals N,M.

Proof. ”⇒”: Suppose s is a Cauchy sequence. Then for each ε ∈R+ there exists Nε ∈N
such that

R |= (∀n,m ∈N)(n > Nε ∧m > Nε→ |sn − sm| < ε).

By transfer we obtain

R |= (∀n,m ∈N∗)(n > Nε ∧m > Nε→ |s∗n − s∗m| < ε).

Suppose N and M are unlimited hypernaturals. Then N,M > Nε for every Nε ∈N,
and we conclude that |s∗N − s

∗
M | < ε for every ε ∈R+. Thus s∗N ' s

∗
M .

”⇐”: Suppose that s∗N ' s
∗
M for all unlimited hypernaturals N and M. Since all hyper-

naturals greater than some unlimited hypernatural are also unlimited, we conclude
that

R |= (∃N ∈N∗) (∀n,m ∈N∗)(n > N ∧m > N → |s∗n − s∗m| < ε) .

for every ε ∈R+. By transfer we get

R |= (∃N ∈N)(∀n,m ∈N)(n > N ∧m > N → |sn − sm| < ε),

for every ε ∈R+. Hence s is a Cauchy sequence.
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Theorem 3.1.3. A sequence s = (sn : n ∈N) converges if and only if it is a Cauchy sequence.

Proof. ”⇒”: Suppose s converges to some L ∈R. Suppose N and M are two unlimited
hypernaturals. Then s∗N ' L ' s

∗
M and Lemma 2.4.2 implies that s∗N ' s

∗
M for all

unlimited hypernaturals N and M. By Lemma 3.1.2 the sequence s is a Cauchy
sequence.

”⇐”: Suppose s is a Cauchy sequence. By definition, there exists N ∈ N such that
|sn − sm| < 1 for all n,m > N . In particular, for all m > N , we have

|sm| ≤ |sm − sN+1|+ |sN+1| < 1 + |sN+1|.

This means that s is bounded from above by max {|s0|, . . . , |sN+1|,1 + |sN+1|}.

By Lemma 3.1.1 s∗N is bounded for every unlimited hypernatural N , and since s is
Cauchy s∗N ' s

∗
M for every unlimited hypernaturals N and M. Hence there exists L ∈R

such that s∗N ' L for every unlimited hypernatural N . Theorem 3.1.1 implies that s
converges.

The following theorem is an application of this.

Theorem 3.1.4. A real sequence s = (sn : n ∈N) converges in R if any one of the following
conditions hold:

(i) s is bounded above in R and nondecreasing.

(ii) s is bounded below in R and nonincreasing.

Proof. Since the proof of (ii) is identical to the proof of (i), up to reversal of the order,
it suffices to prove (i). Suppose s is bounded above by B and nondecreasing. Then

R |= (∀n ∈N)(s1 ≤ sn ≤ B)

and by transfer we get
R |= (∀n ∈N∗)(s∗1 ≤ s

∗
n ≤ B).

Suppose N is an unlimited hypernatural. Then s∗N is limited, and has a shadow L. We
prove that this is the least upper bound of the set S = {sn : n ∈N} in R. It is clearly an
upper bound, since

R |= (∀n,m ∈N)(n ≤m↔ sn ≤ sm)

and hence we obtain by transfer

R |= (∀n,m ∈N∗)(n ≤m↔ s∗n ≤ s∗m).

Since n < N for every n ∈N, we must have sn = s∗n ≤ s∗N ' L. Since sn and L are real, L
is an upper bound in of S. To prove that it is minimal, suppose r ∈R is another upper
bound. Then

R |= (∀n ∈N)(sn ≤ r)
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and by transfer
R |= (∀n ∈N∗)(s∗n ≤ r).

In particular s∗N ≤ r, so L ≤ r since L ' s∗N . Hence L is minimal, and it is clear that since
s is nondecreasing s∗N ' L for every unlimited hypernatural N . Thus s converges to
L.

The above theorem is useful to prove the convergence of a sequence, without knowing
the exact limit of it. Another application is calculation of the following limit.

Lemma 3.1.3. If 0 < c < 1 and c ∈ R, then the sequence sn = cn converges to 0. In other
words, cN ' 0 for every unlimited hypernatural N .

Proof. Since 0 < c < 1 and c ∈ R, the sequence sn = cn is nonincreasing and bounded
from below. Therefore, it converges to some L ∈R. In other words, if N is an unlimited
hypernatural cN ' L by Theorem 3.1.1. Also, note that

R |= (∀n ∈N)(sn+1 = csn)

and by transfer
R |= (∀n ∈N∗)(s∗n+1 = cs∗n).

Thus
L ' cN+1 = c · cN ' cL

and we conclude that L = cL (since both numbers are real), and as c , 1, we must have
L = 0.

Even though there exists sequences which neither diverges to infinity nor converges,
it is still possible to break down sequences into more manageble parts, by looking at
points to which the sequence comes ”infinitely close”. The following notion makes
this intuition precise.

Definition 3.1.4. A cluster point of a sequence s is a number L ∈ R such that for all
ε ∈R+ there are infinitely many n ∈N such that |sn −L| < ε.

Closely related concept is the idea of a subsequence.

Definition 3.1.5. A subsequence t = (tn : n ∈ N) of s = (sn : n ∈ N) is a sequence for
which there exists a strictly increasing sequence of natural numbers (nj : j ∈N) such
that tm = snm for all m ∈N.

The following connects the two concepts, and show that they coincide.

Lemma 3.1.4. A sequence s = (sn : n ∈N) has a cluster point at L if and only there exists a
subsequence t = (tn : n ∈N) of s which converges to L.
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Proof. ”⇒”: Suppose that s has a cluster point L. We inductively define a subsequence
t which converges to L. Let t0 = s0. Then set tn = sm, where m is the least m ∈N such
that |sm −L| < 1

n and such that m is greater than any number used in the first n steps
(existence of this m is ensured by the definition of a cluster point). By construction, t
converges to L.

”⇐”: Suppose that t is a subsequence of s converging to L. Then for every n ∈N, there
exists m ∈N such that tn = sm. Let ε ∈R+. By assumption there are infinitely many n
such that |tn −L| < ε. Hence there are infinitely many m such that |sm −L| < ε. Thus L is
a cluster point of s.

The following is a hyperreal characterization of cluster points, which showcases the
intimate connections between cluster points and points of convergence. Note that the
first implication uses the characterization of cluster points as points of convergence of
subsequences, while the other direction uses Definition 3.1.4.

Theorem 3.1.5. A real sequence s = (sn : n ∈N) has a cluster point at L ∈R if and only if
s∗N ' L for some unlimited hypernatural N .

Proof. ”⇒”: Suppose s has a cluster point at L ∈ R. Then there exists a subsequence
t = (tn : n ∈N) of s which converges to L. Since

R |= (∀n ∈N)(∃m ∈N)(n ≤m∧ tn = sm),

by transfer we obtain

R |= (∀n ∈N∗)(∃m ∈N∗)(n ≤m∧ t∗n = s∗m).

By assumption, t converges to L so there is some unlimited N such that t∗N ' L. Hence
there exists M ∈N∗ such that N ≤M (meaning that M is also unlimited) and s∗M ' L.

”⇐”: Suppose s∗N ' L ∈R for some unlimited hypernatural N . Then we have

R |= (∃n ∈N∗)(n > m∧ |s∗n −L| < ε)

for every ε ∈R+ and m ∈N. By transfer,

R |= (∃n ∈N)(n > m∧ |sn −L| < ε)

for every ε ∈R+. This is exactly the statement that L is a cluster point of s.

This yields a direct proof of the following famous theorem.

Corollary 3.1.1. Bolzano-Weierstrass: Every bounded sequence s has at least one cluster
point.

Proof. Since s is bounded, every s∗N is limited for any unlimited hypernatural N (by
Lemma 3.1.1). Theorem 2.4.1 implies that there exists L ∈ R such that s∗N ' L. Each
such L is by Theorem 3.1.5 a cluster point.
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3.2 Series and Convergence Test

In some circumstances, we wish to consider sums of infinitely many terms, or more
precisely a limit of partial sums. Such an expression is called a series. Just as before, a
series S =

∑∞
i=0 ai gives rise to a hyperseries by viewing S a function S :N→R where

S(n) is the partial sum of the first n+ 1 terms. In other words, S can be considered a
sequence. This yields a suitable concept of convergence.

Definition 3.2.1. We say that a series
∑∞
i=0 ai converges if the sequence of partial sums(∑n

i=0 ai : n ∈N
)

converges.

For some applications, it is not enough for a series to converge but a stronger criterion
is neccessary. For example, a series which converges in the ordinary sense can have its
terms arranged so that it diverges, or converges to any other number.

Definition 3.2.2. A series
∑∞
i=0 ai is said to converge absolutely if the series

∑∞
i=0 |ai |

converge.

Note that the partial sums of
∑∞
i=0 |ai | forms a nondecreasing sequence.

This section is dedicated to proving three standard convergence tests (the comparison,
ratio and alternating series tests). First, we prove two lemmas.

Lemma 3.2.1. For any hypernaturals n ≤m, we have

m∑
i=0

ai −
n∑
i=0

ai =
m∑

i=n+1

ai .

Proof. Suppose S1 :N2→R is defined by

S1(n,m) =
m∑
i=0

ai −
n∑
i=0

ai

and S2 :N2→R by

S2(n,m) =


∑m
i=n ai if n ≤m

0 otherwise

Then we have
R |= (∀n,m ∈N)(n ≤m→ S1(n,m) = S2(n,m)).

Transfer yields that

R |= (∀n,m ∈N∗)(n ≤m→ S∗1(n,m) = S∗2(n,m))
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and we conclude that for any hypernaturals n ≤m,

S∗1(n,m) =
m∑
i=0

ai −
n∑
i=0

ai = S∗2(n,m) =
m∑
i=n

ai .

Lemma 3.2.2. A series
∑∞
i=0 ai converges in R if and only if

∑M
i=N ' 0 for every pair

N ≥M of unlimited hypernaturals.

Proof. ”⇒”: Suppose N ≥M are unlimited hypernaturals, and
∑∞
i=0 ai a series con-

verging to L ∈R. Then
∑N
i=0 ai ' L '

∑M
i=0 ai by Theorem 3.1.1, so

N∑
i=0

ai −
M∑
i=0

ai =
N∑

i=M+1

ai ' 0

by definition of ' and Lemma 3.2.1.

”⇐”: We prove that the sequence s = (sn =
∑n
i=0 ai : n ∈N) of partial sums is a Cauchy

sequence. Suppose N ≤M are unlimited hypernaturals. s∗N =
∑N
i=0 ai and s∗M =

∑M
i=0 ai ,

so we conclude that s∗M − s
∗
N =

∑M
i=N+1 ai ' 0. Thus s∗N ' s

∗
M , and since N and M were

arbitary Lemma 3.1.2 tells us that s is a Cauchy sequence.

Now we are ready for the three convergence tests.

Theorem 3.2.1. Comparison Test: Suppose
∑∞
i=0 ai and

∑∞
i=0 bi are series consisting of

nonnegative terms, and suppose that ai ≤ bi for all i ∈N. If
∑∞
i=0 bi converges, then

∑∞
i=0 ai

converges.

Proof. Suppose
∑∞
i=0 ai and

∑∞
i=0 bi are as above. Then there exists L ∈ R such that∑N

i=0 bi ' L for all unlimited hypernaturals N . Furthermore, the sequences of partial
sums are nondecreasing, which implies that L is an upper bound of

∑∞
i=0 bi .

Finally

R |= (∀n ∈N)

 n∑
i=0

ai ≤
n∑
i=0

bi


and by transfer

R |= (∀n ∈N∗)

 n∑
i=0

ai ≤
n∑
i=0

bi

 .
In particular, L is an upper bound of

∑n
i=0 ai for all n ∈N∗. Hence

∑∞
i=0 ai is nonde-

creasing and bounded from above, so by Theorem 3.1.4 it converges.
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Theorem 3.2.2. Ratio Test: Suppose
∑∞
i=0 ai is a series, and that the limit

r = lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣
exists and is strictly less than 1. Then

∑∞
i=0 ai converges absolutely.

Proof. Since r exists and is strictly less than 1, we can take c ∈R such that r < c < 1. By
assumption there exists Nc ∈N such that for all n > Nc, we have∣∣∣∣∣an+1

an

∣∣∣∣∣ < c.
This is implies that

|an+1| < c|an|

for all n > Nc. Generalizing this, we have that |am| < cm−Nc
∣∣∣aNc ∣∣∣. In total, we have

∞∑
i=0

|ai | <
Nc−1∑
i=0

|ai |+
∣∣∣aNc ∣∣∣ ∞∑

j=0

cj .

Since Nc ∈ N, it suffices to prove the convergence of the series
∑∞
j=0 c

j . Recall the
geometric series:

R |= (∀n ∈N)
( n∑
i=0

ci =
1− cn

1− c

)
By transfer, this yields

R |= (∀n ∈N∗)
( n∑
i=0

ci =
1− cn

1− c

)
In particular, if N is any unlimited hypernatural we have (by Lemma 3.1.3)

N∑
i=0

ci =
1− cN

1− c
' 1

1− c
.

In other words,

N∑
i=0

|ai | <
Nc−1∑
i=0

|ai |+
∣∣∣aNc ∣∣∣ N∑

j=0

cj '
Nc−1∑
i=0

|ai |+
∣∣∣aNc ∣∣∣ 1

1− c
.

Hence
∑N
i=0 |ai | is bounded from above, and since it is nondecreasing we have by

Theorem 3.1.4 that it converges. Thus, the series converges absolutely.
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Theorem 3.2.3. Alternating Series Test: Suppose s = (sn : n ∈ N) is a nonincreasing
sequence (i.e sn ≥ sn+1 for all n ∈N) of positive real numbers, converging to 0. Then the
alternating series

∞∑
n=0

(−1)nsn

converges.

Proof. We prove that if n ≥m are natural numbers, then∣∣∣∣∣∣∣
n∑
i=m

(−1)isi

∣∣∣∣∣∣∣ ≤ |sm|.
Without loss of generality, we can assume that m is even, since∣∣∣∣∣∣∣

n∑
i=m

(−1)isi

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑
i=m

(−1)i+1si

∣∣∣∣∣∣∣
Suppose that n is odd. Then∣∣∣∣∣∣∣

n∑
i=m

(−1)isi

∣∣∣∣∣∣∣ = |sm − sm+1 + sm+2 − . . .− sn−2 + sn−1 − sn| ≤

≤ |sm − sm+1 + sm−1 − sm+2 . . .− sn+2 + sn−2 − sn| = |sm − sn| ≤ |sm|

and similarly if n is even.

By transfer of the sentence

(∀n,m ∈N)


∣∣∣∣∣∣∣
n∑
i=m

(−1)isi

∣∣∣∣∣∣∣ ≤ |sm|


this extends to the hyperseries as well. To finish this proof, it suffices to prove that the
sequence of partial sums s = (sn =

∑n
i=m(−1)isi : n ∈N) is a Cauchy sequence. Suppose

N and M are unlimited hypernaturals. Without loss of generality we can assume
N >M. Then ∣∣∣s∗N − s∗M ∣∣∣ =

∣∣∣∣∣∣∣
N∑

i=M+1

(−1)is∗i

∣∣∣∣∣∣∣ ≤ ∣∣∣s∗M+1

∣∣∣
But s converges to 0, so s∗M ' 0 for all unlimited hypernaturals M. Thus s∗M ' s

∗
N . But

N and M were arbitary, so Lemma 3.1.2 implies that s is a Cauchy sequence. Hence
the series converges.

As an application of the comparison test, we prove the following.

Theorem 3.2.4. If
∑∞
i=0 ai converges absolutely, then

∑∞
i=0 ai converges.
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Proof. Let
∑∞
i=0 ai converge absolutely to L ∈ R. Clearly, for any i ∈N we have that

0 ≤ ai + |ai | ≤ 2|ai |. Hence, for any n ∈N.

n∑
i=0

(ai + |ai |) ≤ 2
n∑
i=0

|ai | ≤ L

In other words, the sequence
(∑n

i=0(ai + |ai |) : n ∈N
)

is a nondecreasing sequence which
is bounded from above. By Theorem 3.1.4 it converges to some R ∈R. Moreover,

R |= (∀n ∈N)

 n∑
i=0

ai =
n∑
i=0

(ai + |ai |)−
n∑
i=0

|ai |


and by transfer

R |= (∀n ∈N∗)

 n∑
i=0

a∗i =
n∑
i=0

(
a∗i + |a∗i |

)
−

n∑
i=0

|a∗i |

 .
In particular, if N is any unlimited hypernatural, we have that

∑N
i=0 |a

∗
i | ' L and∑N

i=0

(
a∗i − |a

∗
i |
)
' R, so

∑N
i=0 a

∗
i ' R−L. Since N is arbitary, the series converges.

3.3 Limits, Continuity and Halos

From now on, we turn our attentions to functions. Throughout the rest of this thesis,
if f (without the star) denotes a function we will assume that it is defined on some
subset of R, and not of R. Many functions are analyzed in terms of behaviour near
that point. For example, the function f (x) = sinx/x is not defined at 0, but when we
approach x = 0, the value of f approaches 1.

Definition 3.3.1. Suppose f is defined in a punctured neighborhood of a ∈ R and
suppose L ∈ R. We say that f approaches L when x goes to a, or the limit of f in a is L,
written limx→a f (x) = L, if for every ε ∈R+ there exists δ ∈R+ so that |x−a| < δ implies
|f (x)−L| < ε.

The following is a nonstandard characterization of limits.

Theorem 3.3.1. Let a,L ∈R. For any function f defined in a punctured neighborhood of a,
we have limx→a f (x) = L if and only if f ∗(α) ' L for each α ' a.

Proof. ”⇒”: Suppose limx→a f (x) = L. For every ε ∈R+ there exists δ ∈R+ such that

R |= ∀x (|x − a| < δ→ |f (x)−L| < ε) .
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By transfer we obtain

R |= ∀x(|x − a| < δ→ |f ∗(x)−L| < ε).

Let α ' a. Then |α−a| ' 0, so |α−a| < δ for every δ ∈R+. Hence |f ∗(α)−L| < ε for every
ε ∈R+, and we conclude that f ∗(α) ' L.

”⇐”: Let a,L ∈ R, and suppose that for every α ' a, we have f ∗(α) ' L. Then for any
infinitesimal δ and x ∈ R, we have that if |x − a| < δ then x ' a. Thus

R |= ∃δ(|x − a| < δ→ |f ∗(x)−L| < ε)

for all ε ∈R+. Transfer yields that

R |= ∃δ(|x − a| < δ→ |f (x)−L| < ε)

for all ε ∈R+, which precisely means that limx→a f (x) = L.

Limits gives rise to an exact definition of a continuity, and naturally a nonstandard
account of continuity.

Definition 3.3.2. A function f defined in a neighborhood of a point a is continous at
a if limx→a f (x) = f (a).

Theorem 3.3.2. A function f defined in a neighborhood of a is continous at a ∈R if and
only if f ∗(α) ' f (a) for every α ' a.

Proof. Let L = f (a) in Theorem 3.3.1.

The following is an application.

Example 3.3.1. The function exp :R→R is continous at every a ∈R.

Proof. Let α ' a ∈R. Then there exists ε ' 0 such that α = a+ ε.

By Example 2.4.1 and Example 2.3.2, we get

exp∗(α) = exp∗(a+ ε) = exp∗(a)exp∗(ε) ' exp∗(a),

so exp is continous.

Recall that if a,b ∈ R, the notation [a,b] refers to the real, closed interval between
a and b, that is [a,b] = {r ∈ R : a ≤ r ≤ b} and (a,b) refers to the corresponding open
interval.

The Intermediate and Extreme Value Theorems are considered highlights of calculus.
In standard analysis, the most common proof involves proving that a continous func-
tion defined on a closed interval [a,b] is bounded, and then using the Completeness
property and Bolzano-Weierstrass to find a sequence which converges to the number
we seek.

In nonstandard analysis there is another way.
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Theorem 3.3.3. The Intermediate Value Theorem: Suppose that a,b ∈ R and f is
continous on a closed, nonempty interval [a,b]. For every d ∈ (f (a), f (b)), there exists a
number c ∈ (a,b) such that f (c) = d.

Proof. The basic idea behind this proof is quite appealing. We partition the interval
[a,b] into subintervals of infinitesimal length, and find an interval which endpoints
are on either side of d. Then c is the common shadow of these endpoints.

More explicitly, let n ∈N, and set

pk = a+ k
b − a
n

for 0 ≤ k ≤ n. Since p0 = a and pn = b, the set {pk : f (pk) < d} is nonempty and finite.
Hence it contains a maximal element. Take sn as this element. This way we obtain a
sequence (sn : n ∈N), for which we have:

R |= (∀n ∈N)
(
[a ≤ sn < b]∧

[
f (sn) < d < f

(
sn +

b − a
n

)])
.

Transfer yields

R |= (∀n ∈N∗)
(
[a ≤ s∗n < b]∧

[
f ∗(s∗n) < d < f ∗

(
s∗n +

b − a
n

)])
.

Suppose N is an unlimited natural. Then s∗N is limited, so it has a shadow c ∈ R.
Moreover, since b−a

N is infinitesimal, we have

s∗N +
b − a
N
' s∗N ' c.

Since f is continous and c is real, it follows that f ∗
(
s∗N + b−a

N

)
' f ∗(c) and f (s∗N ) ' f ∗(c).

However, we also have that

f ∗(s∗N ) < d < f ∗
(
s∗N +

b − a
N

)
.

In other words, d ' f ∗(c) = f (c), and since c and d both are real f (c) = d.

The other theorem is proved similarly.

Theorem 3.3.4. The Extreme Value Theorem: Suppose f is continous on a closed,
nonempty interval [a,b]. Then there exists c,d ∈ [a,b] such that for all x ∈ [a,b], we
have f (c) ≤ f (x) ≤ f (d).
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Proof. Since finding the minimum of f is equivalent to finding the maximum of −f , it
suffices to prove that f has a maximum. Let n ∈N, and set

pk = a+ k
b − a
n

.

where 0 ≤ k ≤ n. Since n is finite, the set {f (pk) : 0 ≤ k ≤ n} has a maximal element, and
we let sn equal this pk .

In this way, we obtain a sequence (sn : n ∈N) which is bounded. By Lemma 3.1.1 s∗n
is limited for all n ∈N∗. Suppose N is any unlimited hypernatural. Then s∗N has a
shadow d ∈R. By continuity of f , we have f ∗(s∗N ) ' f (d).

Thus, we have found a d such that f (d) is maximal among f (pk) for all k. However,
this does not prove in itself that f (d) is maximal for all x ∈ f ([a,b]). To show this, we
prove that

P =
{
a+ k

b − a
N

: k ∈N∗,0 ≤ k ≤N
}

is an infinitely close approximation of [a,b], in the sense that every x ∈ [a,b] is infinitely
close to a point from P .

Let x ∈ [a,b]. Then we have

R |= (∀n ∈N)(∃k ∈N)
(
k < n∧

[
a+ k

b − a
n
≤ x ≤ a+ (k + 1)

b − a
n

])
.

By transfer we have

R |= (∀n ∈N∗)(∃k ∈N∗)
(
k < n∧

[
a+ k

b − a
n
≤ x ≤ a+ (k + 1)

b − a
n

])
.

In particular, if N is an unlimited hypernatural, there exists K < N such that

a+K
b − a
N
≤ x ≤ a+ (K + 1)

b − a
N

.

However, the difference

a+K
b − a
N
−
(
a+ (K + 1)

b − a
N

)
=
b − a
N

is infinitesimal, and thus x ' a+K b−a
N . By the continuity of f ,

f ∗(x) ' f ∗
(
a+K

b − a
N

)
.

But f ∗
(
a+K b−a

N

)
≤ f ∗(s∗N ) by definition, and thus

f ∗(x) ' f ∗
(
a+K

b − a
N

)
≤ f ∗(s∗N ) ' f ∗(d).

Hence f (x) ≤ f (d) for all x ∈ [a,b], and f (d) is a maximum of f on [a,b].
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The notion of uniform continuity is important in real analysis. Unlike regular continuity,
which is defined both locally (as in continuous at a point) and globally (continous in a
set), uniform continuity is only defined globally.

Definition 3.3.3. A function f : A→ R defined on an open set A ⊂ R is uniformly
continous if for every ε ∈R+, there exists a δ ∈R+ so that for every x,y ∈ A, |x − y| < δ
implies |f (x)− f (y)|.

Remark. Uniform continuity implies regular continuity, the difference being that if
we fix a ε ∈ R+, then a function is uniformly continous if there exists a fixed δ ∈ R+
such |x − y| < δ forces |f (x)− f (y)| < ε for any x,y ∈ A.

Regular continuity only demands that for every x,y ∈ A, there should exist such a δ.
In other words δ may depend on the points x and y, as well as ε.

Here are two examples.

Example 3.3.2. The function f (x) = x is uniformly continous.

Proof. For every ε, take δ = ε. Then |x − y| < ε implies |f (x)− f (y)| = |x − y| < ε = δ for
any x,y ∈R.

Example 3.3.3. The function exp :R→R is not uniformly continous.

Proof. Suppose exp is uniformly continous, and let ε ∈ R+. Then there exists δ ∈ R+
such that |x − y| < δ implies |expx − expy| < ε for all x,y ∈R.

Let y = x+ δ
2 . Then |x−y| = δ

2 < δ. However, |f (x)−f (y)| = expxexp( δ2 −1) is unbounded,
so taking x large enough we have |f (x)− f (y)| > ε, a contradiction. Hence exp :R→R
is not uniformly continous.

The following theorem provides a nonstandard version of uniform continuity.

Theorem 3.3.5. A function f is uniformly continous on A if and only if f ∗(α) ' f ∗(β) for
all hyperreals α ' β in A∗.

Proof. ”⇒”: Suppose that f is uniformly continous on A. Then for all ε ∈ R+ there
exists δ ∈R+ such that

R |= (∀x,y ∈ A)(|x − y| < δ→ |f (x)− f (y)| < ε).

Transfer gives us

R |= (∀x,y ∈ A∗)(|x − y| < δ→ |f ∗(x)− f ∗(y)| < ε).

Suppose α ' β are hyperreals in A∗. Then |α − β| < δ for all δ ∈R+, which implies that
|f ∗(α)− f ∗(β)| < ε for every ε ∈R+. Hence f ∗(α) ' f ∗(β).
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”⇐”: Suppose that for every hyperreals α ' β in A∗, we have f ∗(α) ' f ∗(β). Then for
any infinitesimal δ and x,y ∈ A∗, we have that |x − y| < δ implies |f ∗(x)− f ∗(y)| < ε, for
any ε ∈R+. Hence

R |= (∃δ)(x,y ∈ A∗)(|x − y| < δ→ |f ∗(x)− f ∗(y)| < ε)

for every ε ∈R+. Transfer yields that

R |= (∃δ)(x,y ∈ A)(|x − y| < δ→ |f (x)− f (y)| < ε).

In other words, f is uniformly continous.

Remark. This theorem highlights the difference between regular and uniform conti-
nuity. A function f is regular continous at the real point a if and only if α ' a implies
that f ∗(a) ' f ∗(α). In other words, regular continuity demands that the relation ' is
preserved by f ∗ only if one of the points is real. Uniform continuity on the contrary
demands that ' is preserved at all points in the domain of f ∗, that is, between arbitary
hyperreals in the domain.

Of course, the two notions might coincide.

Corollary 3.3.1. If a function f is continous on a closed interval [a,b], then f is uniformly
continous on [a,b].

Proof. Let α,β ∈ [a,b]∗ and α ' β. Suppose c is the shadow of α. Since a ≤ α ≤ b, we
must have c ∈ [a,b]. Thus f is continous at c, and we have f (α) ' f (c) and f (β) ' f (c).
Hence f (α) ' f (β) and by Theorem 3.3.5, f is uniformly continous.

Some uniformly continous functions are better behaved than others, and of special
interest are those functions which satisfy the following condition.

Definition 3.3.4. A function f : R → R is a Lipschitz function if there exists c ∈ R
(called a Lipschitz constant) such that |f (x)− f (y)| ≤ c|x − y| for all x,y ∈R. A Lipschitz
function such that c < 1 is called a contraction mapping (or simply a contraction).

Here is an example of a Lipschitz function.

Example 3.3.4. The function f (x) = x
3 + 2 is a Lipschitz function, we can take c = 1

3 .

Remark. Every Lipschitz function is uniformly continous, which we see by taking
δ = ε

c . Then |x−y| < δ implies that |f (x)−f (y)| < c|x−y| < ε, so f is uniformly continous.

A contraction mapping f acts on any two points x,y ∈R by moving and them closer
together, since |f (x) − f (y)| < |x − y|. Intuitively, we can see that f contracts R by
”pushing it together”. By this reasoning, the function f (f (x)) contracts Rmore, and
f (f (f (x))) takes the points even closer together. This observation is at the core of the
following theorem.
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Theorem 3.3.6. Any contraction f :R→R has a unique fixed point.

Proof. Suppose c < 1 is a Lipschitz constant of f . Take x ∈ R, define a sequence
(sn : n ∈N) by

sn =

x if n = 0
f (sn−1) if n ≥ 1

Note that |sn − sn+1| ≤ c|sn−1 − sn| ≤ cn|s0 − s1|, which implies that

|s0 − sn| ≤
n∑
i=0

|si − si+1| ≤
n∑
i=0

ci |s0 − s1| =
1− cn

1− c
|s0 − s1|.

Since c ≥ 0, we have

|s0 − sn| ≤
1

1− c
|s0 − s1|.

Let N be some unlimited hypernatural. From the above inequality, we conclude that
s is bounded. Hence s∗N has a shadow L ∈ R. Since f is continous, f ∗(s∗N ) ' f (L). But
f (s∗N ) = s∗N+1 by definition, and hence

|s∗N − s
∗
N+1| ≤ c

N |s0 − s1|.

Since c < 1, we have cN ' 0 (by Lemma 3.1.3) and thus s∗N ' s
∗
N+1. Putting it all

together, we get
f (L) ' f (s∗N ) = s∗N+1 ' s

∗
N ' L.

Since both f (L) and L are real, we conclude that f (L) = L.

For uniqueness, suppose that S is a fixed point of f and recall that by definition

0 ≤ |L− S | = |f (L)− f (S)| ≤ c|L− S |

for some |c| < 1. Hence 0 ≤ (1− c)|L− S | ≤ 0, and consequently L = S.

3.4 Sequences of Functions

So far, we have focused on sequences and series of real numbers, and continous
functions. In this section, we consider sequences of functions and limits of these. First,
we define more precisely what the hypersequence of (fn : n ∈N) is.

Definition 3.4.1. Suppose (fn : n ∈N) is a sequence of functions defined on A. Then
the sequence (f ∗n : n ∈N∗) refers to the hypersequence determined by the extension of
F :N×A→R such that F(n,x) = fn(x). In other words, f ∗n (x) = F∗(n,x).
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There are different ways for a sequence (fn : n ∈ N) of functions to converge to a
function f . We handle the two of the most common: pointwise convergence and uniform
convergence.

Definition 3.4.2. A sequence of functions (fn : n ∈N) defined on A converges pointwise
to f : A→R if for all x ∈R we have limn→∞ fn(x) = f (x).

Remark. Equivalently, fn converges to f pointwise if for all x ∈ A and ε ∈ R+, there
exists Nε,x ∈N such that for any n ∈N for which n > Nε,x, we have |fn(x)− f (x)| < ε.

Our discussion on limits and convergence of sequences immediately yields the follow-
ing result.

Theorem 3.4.1. A sequence (fn : n ∈N) of functions defined on A ⊂R converges pointwise
to the function f : A→ R if and only if for each x ∈ A and unlimited hypernatural N we
have f ∗N (x) ' f (x).

Proof. Suppose (sn : n ∈ N) is the sequence defined by sn = fn(x). The result then
follows from Theorem 3.1.1.

The other convergence which we study is uniform convergence, a stronger condition
of which implies pointwise convergence. As with the notion of uniform continuity, a
sequence of functions cannot converge uniformly in a single point, but only on subsets
of R.

Definition 3.4.3. A sequence (fn : n ∈ N) defined on A ⊂ R converges uniformly to
f : A→R if for every ε ∈R+, there exists an Nε ∈N such that for all x ∈ A and n ∈N
such that n > Nε we have |fn(x)− f (x)| < ε.

Remark. The attentive reader notices the similarity between uniform convergence
and uniform continuity. Uniform continuity demands that there exists a δ ∈R+ which
works on the entire domain of f , while uniform convergence demands the existence
of an Nε ∈N which works for every x in the domain of fN .

This connection becomes clear in the following theorem.

Theorem 3.4.2. A sequence fn of functions defined on A ⊂R converges uniformly to the
function f : A→ R if and only if for each x ∈ A∗ and unlimited hypernatural N we have
f ∗N (x) ' f (x).

Proof. ”⇒”: Suppose that (fn : n ∈N) converges uniformly to the function f : A→R.
Then, for any ε ∈R+ there exists Nε ∈N so that

R |= (∀n ∈N)(∀x ∈ A)(n > Nε→ |fn(x)− f (x)| < ε).

By transfer we have that

R |= (∀n ∈N∗)(∀x ∈ A∗)(n > Nε→ |f ∗n (x)− f ∗(x)| < ε)
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If N is an unlimited hypernatural, then N > Nε for any Nε ∈N. We conclude that
|f ∗N (x)− f (x)| < ε for any ε ∈R+. Thus f ∗N (x) ' f ∗(x) for any x ∈ A∗.

”⇐”: Suppose that for every x ∈ A∗ and unlimited hypernatural N , the number
f ∗N (x) ' f ∗(x). Then

R |= (∃n ∈N∗)(∀x ∈ A∗)(m > n→ |f ∗m(x)− f ∗(x)| < ε)

for every ε ∈R+. Transfer yields that

R |= (∃n ∈N)(∀x ∈ A)(m > n→ |fm(x)− f (x)| < ε).

In other words, fn converges uniformly to f .

The final theorem of this thesis highlights one of the differences between uniform and
pointwise convergence; uniform convergence of a sequence assures us that the limit is
retains properties of the functions in the sequence.

Theorem 3.4.3. Uniform Convergence Theorem: If a sequence fn of continous functions
defined on A ⊂ R converges uniformly to the function f : A→ R, then f is continous as
well.

Proof. Let c ∈ A, and take any x ' c. Then, for any n ∈N we have

|f ∗(x)− f ∗(c)| ≤ |f ∗(x)− f ∗n (x)|+ |f ∗n (x)− f ∗n (c)|+ |f ∗n (c)− f ∗(c)|.

Let ε ∈ R+. Since fn is continous, f ∗n (x) ' f ∗n (c), in particular |f ∗n (x) − f ∗n (c)| < ε
3 for

all n ∈N. Since fn converges to f uniformly, we can find Nε so that m > Nε implies
|f ∗m(c)− f ∗(c)| < ε

3 for all c ∈ A. Fix such an m, for example m =Nε + 1. Then

R |= (∀y ∈ A)
(
|fm(y)− f (y)| < ε

3

)
and transfer yields

R |= (∀y ∈ A∗)
(
|f ∗m(y)− f ∗(y)| < ε

3

)
.

This implies that |f ∗m(x)− f ∗(x)| < ε
3 . Putting all this together,

|f ∗(x)− f ∗(c)| ≤ |f ∗(x)− f ∗m(x)|+ |f ∗m(x)− f ∗m(c)|+ |f ∗m(c)− f ∗(c)| < ε

In other words, f is continous.

Remark. The converse of the above theorem is false, the sequence (xn : n ∈N) consists
of continous functions and converges pointwise (but not uniformly) to the function
f (x) = 0, which is also continous.
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Also, there are sequences of continous functions which converge pointwise to discon-
tinous functions. As an example, take the sequence (fn : [0,1]→ R : n ∈N) defined
by

fn(x) =

1−nx if 0 ≤ x ≤ 1
n

0 otherwise

For all n ∈N, we have 1
n > 0 and thus fn(0) = 1. But for all x ∈ (0,1], there exists n so

that 1
n < x. This implies that fn converges pointwise to the function

f (x) =

1 x = 0
0 otherwise

which is discontinous.
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