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Abstract. Many geophysical phenomena are characterized by properties that evolve
over a wide range of scales which introduce difficulties when attempting to model
these features in one computational method. We have developed a high-order finite
difference method for the elastic wave equation that is able to efficiently handle vary-
ing temporal and spatial scales in a single, stand-alone framework. We apply this
method to earthquake cycle models characterized by extremely long interseismic pe-
riods interspersed with abrupt, short periods of dynamic rupture. Through the use
of summation-by-parts operators and weak enforcement of boundary conditions we
derive a provably stable discretization. Time stepping is achieved through the implicit
θ-method which allows us to take large time steps during the intermittent period be-
tween earthquakes and adapts appropriately to fully resolve rupture.
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1 Introduction

Earthquake rupture is one example of many geophysical phenomena that are character-
ized by properties that evolve over many orders of magnitude in both time and space.
Modeling these phenomena with full temporal and spatial resolution is thus quite diffi-
cult and it is often the case that simplifying assumptions are made in numerical studies.
Because the initial conditions prior to an earthquake are not well understood, many stud-
ies of earthquake rupture for example, impose artificial initial conditions in the form of
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a stress perturbation in order to immediately nucleate dynamic rupture [10], [14], [33].
These methods capture the fine details of the rupture process and wave propagation, but
are limited to single-earthquake simulations without realistic initial data.

Obtaining self-consistent initial conditions would require modeling the interseismic
loading period prior to rupture, but this is computationally infeasible with the explicit
time-stepping techniques generally used. Since stability considerations with explicit
methods limit the size of the time step to fractions of a second, these methods are not ap-
propriate for modeling the tectonic loading period characterized by tens to hundreds of
years. In order to model full earthquake cycles however, these multiple time scales have
been handled with several different techniques. The methods of [29] and [34] involve an
abrupt switching between solving the static problem (in which inertia is neglected) and
the dynamic problem. The method in [11] disregard inertia entirely and assume that the
rupture is quasi-dynamic and therefore do not simulate wave propagation. The authors
of [19] present a method that is able to simulate long interseismic periods punctuated by
dynamic events within one computational framework, but the method is based on the
boundary integral method and make the simplifying assumption of rupture occurring in
a homogeneous, linear elastic whole or half-space.

In this work we simulate both the interseismic period and fully dynamic rupture in
one-computational setting, with a volume discretization which allows the method to in-
corporate variable material properties. The method applies high order finite difference
operators which provide an efficient approach, and yields a semi-discrete problem which
is provably stable. The efficiency can be used either to increase the accuracy for a fixed
number of mesh points or to reduce the computational cost for a given accuracy by reduc-
ing the number of mesh points [16], [41]. In the past, the main drawback with high order
finite difference methods was the complicated boundary treatment required to obtain a
stable method. However, the development during the last two decades has removed this
obstacle. Finite difference operators which satisfy the summation-by-parts (SBP) prop-
erty [17, 18, 36], are central difference operators in the interior domain augmented with
special stencils near the domain boundaries. These SBP operators in combination with
weak well-posed boundary conditions lead to energy stability [4, 6, 12, 13, 21, 30, 31]. The
preferred boundary treatment is the simultaneous approximation term (SAT) method [5],
which linearly combines the partial differential equation to be solved with well-posed
boundary conditions [3,6,25,28]. A complete description of the SBP-SAT method is given
in the review article [40].

Time-stepping is done through the implicit θ-method which yields a first or second-
order accurate (in time) method and is A-stable [2]. The time step adapts according to
an estimate of the local truncation error, and can be quite large during the interseismic
period while still maintaining stability. Although the main drawback compared to ex-
plicit methods is that a nonlinear system of equations must be solved at every time step,
efficiency is gained by the ability to take large time steps, and we make no simplify-
ing assumption of inertia being negligible during the interseismic period. Through this
technique we obtain self-consistent initial conditions prior to rupture which reflect many
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Figure 1: Physical and computational setting for 1D elastic wave equation in first order form on an unstaggered
grid. The system, initially essentially at rest, is loaded at the remote boundary y= H by a velocity boundary
condition intended to capture the effect of slow tectonic loading. Periodic earthquakes nucleate at the fault,
which lies at the boundary y=0 and is governed by a stress boundary condition. The domain is discretized at
N+1 points with grid spacing h=H/N.

years of tectonic loading. In this initial development we focus on the development of an
efficient and stable time-stepping method for a high-order accurate spatial discretization.
We consider the one-dimensional problem which contains all of the difficulties present
in the multi-dimensional problem (such as varying temporal and spatial scales, and ex-
treme stiffness), while providing the simplest possible framework in which to introduce
the method. The extension to multi-dimensions is straight forward.

2 Continuous Formulation and Well-posedness

2.1 Preliminaries

We simulate multiple earthquake cycles where events nucleate at a frictional fault at one
boundary of the domain. The material off the fault is governed by the elastic wave equa-
tion in first order form, see Fig. 1. In addition to the varying time scales governing
geophysical phenomena, as described in the introduction, there are also computational
challenges introduced through varying spatial scales. Faults can be hundred of km long,
with frictional properties on the order of microns. These features often lead to very large
problems in order to fully resolve multiple length scales.

2.2 Governing Equations and Well-posedness via the Energy Method

Assuming linear elasticity in first order form, the governing equations and boundary
conditions are:

∂w
∂t

=B
∂w
∂y

, B=

[
0 1/ρ
µ 0

]
, w=

[
v
σ

]
, y∈ [0,H] (2.1a)

Lo(w)=σ(0,t)=F(V(t)), L1(w)=v(H,t)=Vp. (2.1b)
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The parameters ρ and µ are the material density and shear modulus and the boundary
operators Lo and L1 act on the shear stress σ and particle velocity v, respectively. We
assume that a frictional fault lies at y= 0 and is governed by a boundary condition that
equates shear stress with fault strength given through an experimentally-motivated fric-
tion law F dependent on the particle velocity at the fault V(t) = v(0,t) (known as the
“slip velocity”), discussed in section 4.3. The system is initially at rest and undergoes an
interseismic period where it is loaded at the remote boundary. We set the velocity at the
remote boundary y= H to a slow “plate rate” Vp, intended to capture the effect of slow
tectonic loading. Measurements of typical values of Vp are around 32 mm/a (e.g. the
San Andreas Fault in southern California). This remote boundary condition will load the
system and increase the stress at the fault, which will eventually cause earthquakes to
initiate at the fault, sending waves through the medium.
To analyze problem (2.1) we symmetrize the equations to

∂u
∂t

=A
∂u
∂y

, A=

[
0 cs
cs 0

]
, u=W−1w=

[√
ρ

2
v,

1√
2µ

σ

]T

, (2.2)

where cs =
√

µ/ρ is the shear wave speed and B=WAW−1, W =diag(
√

2/ρ,
√

2µ). The
eigenvalues of A are ±cs, which implies that one boundary condition is required at each
end of the domain.

The non-conventional nonlinear boundary condition in (2.1b) forces a check of well-
posedness, see [15, 22]. Letting ||·|| denote the standard L2 norm we may now consider
the total mechanical energy of the system ||u||2 as a sum of the kinetic and strain energies.
Taking the data Vp =0, the energy method applied to equation (2.2) yields

d
dt
||u||2=2

∫ H

0
uT Audy= 2csu1u2|H0 = vσ|H0 =−VF(V)≤0, (2.3)

with the assumption that the friction law F has the physically relevant property that it
takes the sign of its argument, i.e. F(V)V≥0.

Uniqueness is obtained by considering the difference problem of the form (2.2), i.e.

∂∆u
∂t

=A
∂∆u
∂y

(2.4)

where ∆u=u−û is the difference between two solutions satisfying the boundary condi-
tions ∆u1(H,t)=0 and ∆u2(0,t)= 1√

2µ
(F(V)−F(V̂)).

The energy method thus yields:

d
dt
||∆u||2=2

∫ H

0
∆uT A∆udy= 2cs(u1−û1)(u2−û2)|H0

=−(V−V̂)(F(V)−F(V̂))=−∆V2F′(V∗)≤0, (2.5)
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where V≤V∗≤V̂ and the intermediate value theorem is applied. We can summarize this
result in the following proposition [15]:

Proposition 1. The problem (2.1) is well-posed if the friction law F in (2.1) satisfies
VF(V)≥0 and F′(V)≥0.

3 Spatial Discretization and Stability

3.1 Semi-Discretization

For the discrete problem we will make use of the kronecker product

A⊗B :=

 a0,0B ··· a0,N B
...

...
aN,0B ··· aN,N B


which has the following properties:

(A⊗B)T =(AT⊗BT), (A⊗B)−1=(A−1⊗B−1), A⊗(B+C)=(A⊗B)+(A⊗C).

We discretize (2.1) using high-order summation-by-parts (SBP) finite difference opera-
tors for first derivatives [35]. The boundary conditions are imposed weakly through the
simultaneous-approximation-term (SAT) [5] which penalizes the solution at the bound-
aries for not satisfying the boundary conditions.

The semi-discrete form of the equations (2.1) using the SBP-SAT framework is

(P⊗ I2)wt =(Q⊗B)w+

(
e0⊗Σ0

[
σ0−F(v0)
σ0−F(v0)

])
+

(
eN⊗ΣN

[
vN−Vp
vN−Vp

])
(3.1)

where bold quantities refer to grid vectors: w=[v0, σ0, v1, σ1, ..., vN , σN ]
T and I2 is a 2×2

identity matrix. We will often refer to the vector wi = [vi, σi]
T, i= 0,...,N. The operators

P and Q are building blocks that form the finite difference SBP operator ∂/∂y≈ P−1Q
where P is a matrix norm defining the discrete norm ||u||2P =uTPu for any grid vector u.
The 2×2 matrices Σ0 and ΣN are penalty matrices that enforce the boundary conditions
weakly

Σ0 :=
[

δ1 0
0 δ1

]
, ΣN :=

[
δ3 0
0 δ4

]
. (3.2)

We symmetrize the matrix B=WAW−1 as before. By letting IN denote the N×N identity
matrix, equation (3.1) becomes

(P⊗ I2)ut =(Q⊗A)u+
(

e0⊗Σ̃0

[
σ0−F(v0)
σ0−F(v0)

])
+

(
eN⊗Σ̃N

[
vN−Vp
vN−Vp

])
(3.3)
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where Σ̃0=W−1Σ0, Σ̃N =W−1ΣN and u=
(

IN⊗W−1)w is the scaled vector of grid data,

u=
(

IN⊗W−1
)

w=
[√

ρ/2vo, (1/
√

2µ)σo, ...
√

ρ/2vN , (1/
√

2µ)σN

]T
(3.4)

which allows us to consider the total semi-discrete energy of the system

E= ||u||2P⊗I2
. (3.5)

3.2 Semi-Discrete Stability via Discrete Energy Method

The penalty matrices Σ̃0 and Σ̃N will be determined such that we get a discrete energy es-
timate. We will also make use of matrices C0 and CN in order to map vectors [v0,N , v0,N ]

T

and [σ0,N , σ0,N ]
T back to w0,N . We define

C0=

[
0 1
0 1

]
and CN =

[
1 0
1 0

]
, (3.6)

so that

C0w0,N =

[
σ0,N
σ0,N

]
=C0Wu0,N and CNw0,N =

[
v0,N
v0,N

]
=CNWu0,N . (3.7)

By multiplying equation (3.3) by uT and adding the transpose, we obtain

d
dt
||u||2P⊗I2

=uT
[
(Q+QT)⊗A

]
u+uT

0

(
Σ̃0

[
σ0−F(v0)
σ0−F(v0)

])
+

(
Σ̃0

[
σ0−F(v0)
σ0−F(v0)

])T

u0+

+uT
N

(
Σ̃N

[
vN−Vp
vN−Vp

])
+

(
Σ̃N

[
vN−Vp
vN−Vp

])T

uN . (3.8)

Using the fact that Q is almost skew-symmetric and taking Vp=0, equation (3.8) simplifies
to:

d
dt
||u||2P⊗I2

=−uT
0 Au0+uT

N AuN+uT
0 W−1Σ0C0Wu0−uT

0 W−1Σ0[F(v0) F(v0)]
T

+uT
0 WTCT

0 ΣT
0 (W

−1)Tu0−[F(v0) F(v0)]ΣT
0 (W

−1)Tu0+uT
NW−1ΣNCNWuN

+uT
NWTCT

NΣT
N(W

−1)TuN (3.9)

where matrices C0,CN are given by (3.7). Collecting terms yields

d
dt
||u||2P⊗I2

=−uT
0 [A−W−1Σ0C0W−WTCT

0 ΣT
0 (W

−1)T]u0

+uT
N [A+W−1ΣNCNW+WTCT

NΣT
N(W

−1)T]uN

−uT
0 W−1Σ0[F(v0) F(v0)]

T−[F(v0) F(v0)]ΣT
0 (W

−1)Tu0 (3.10)



7

which we can express as

d
dt
||u||2P⊗I2

=−uT
0

[
0 cs−Zδ1

cs−Zδ1 −2δ2

]
u0+uT

N

[
2δ3 cs+δ4/Z

cs+δ4/Z 0

]
uN+

−uT
0 W−1Σ0[F(v0) F(v0)]

T−[F(v0) F(v0)]ΣT
0 (W

−1)Tu0 (3.11)

where Z=
√

ρµ is the shear impedance and δ1,δ2,δ3,δ4 correspond to the penalty matrices
defined in (3.2). Taking

δ1=1/ρ, δ2=0, δ3=0 and δ4=−µ (3.12)

equation (3.11) simplifies to

d
dt
||u||2P⊗I2

=−wT
0 (W

−1)TW−1Σ0[F(v0) F(v0)]
T−[F(v0) F(v0)]ΣT

0 (W
−1)TW−1w0

=−v0F(v0)≤0, (3.13)

which is the discrete analog to estimate (2.3). We can summarize the result in the follow-
ing proposition:

Proposition 2. The semi-discrete equation (3.1) with the penalty matrices determined by
(3.12) is a stable approximation of (2.1).

4 Time Stepping

4.1 Preliminaries

For a preliminary analysis on which time stepping method to use, we consider a linear
friction law of the form F(v0)=αv0. This allows us to express equation (3.1) as

wt =Ew. (4.1)

We diagonalize matrix E=X−1ΛX, where the diagonal matrix Λ stores the eigenvalues
of E. Thus (4.1) can be expressed as yt=Λy (where y=Xw) which has the solution y(t)=
eΛty0, where y0 is the initial condition. Thus the eigenvalues of E must have negative real
part in order for the ODE (4.1) to be stable. The explicit form of equation (4.1) with zero
boundary data is

wt =(P⊗ I2)
−1
[

Q⊗B+E0⊗
(

Σ0

[−α 1
−α 1

])
+EN⊗

(
ΣN

[
1 0
1 0

])]
w (4.2)

where the value of α influences the eigenvalues of the Jacobian matrix of system (4.2):
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Figure 2: (a) Most of the eigenvalues of J for α= 1, 1e3, 1e6, 1e9 lie on or near the imaginary axis, characteristic
of hyperbolic PDEs. Not visible in (a) is the eigenvalue with largest (in magnitude) real part shown in (b) whose
real part tends towards −∞ with increasing α.

J=
∂E
∂w

=(P⊗ I2)
−1
[

Q⊗B+E0⊗
(

Σ0

[−α 1
−α 1

])
+EN⊗

(
ΣN

[
1 0
1 0

])]
(4.3)

In [15] it was found that α/Z can range over tens of orders of magnitude during a sin-
gle earthquake rupture and leads to numerical stiffness. As Figure 2 shows, if the fric-
tion law exhibits a linear relationship with slip velocity through a coefficient α which
varies temporally over many orders of magnitude, then the Jacobian matrix J will have
an eigenvalue with increasingly large negative real part. Thus, in order to not have to
take prohibitively small time steps, our time stepping scheme should be both implicit
and A-stable (the region of absolute stability contains the left half of the complex plane).

4.2 θ-Method

The θ-method for solving a general ODE given by u′= g(t,u) is given by

un−un−1

∆t
= θg(tn,un)+(1−θ)g(tn−1,un−1).

For θ=1 we have the 1st order backward Euler formula, and θ=1/2 corresponds to the
2nd order trapezoidal method. Both methods are implicit, A-stable, and the backward-
Euler method is also L-stable (an A-stable method where, when applied to the test equa-
tion y′=λy, the amplification factor→ 0 as ∆tλ→∞. See [2]). We apply the backward-
Euler method (θ=1) for its desirable stability properties. To derive an adaptive backward-
Euler method we compare the first order approximation with that of a higher order
method. Thus two numerical approximations to the solution are computed at each time
step with both θ = 1 and θ = 1/2. The norm of the error made between the first (θ = 1)
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and second order (θ = 1/2) accurate solutions yield an estimate EST to the local trun-
cation error. The error estimate is used to decide whether to accept the results from the
first order method, or to redo the step with a smaller step size, according to whether
or not EST < ETOL, a desired integration tolerance. Therefore the resulting method
has a discontinuous change in time step. For a method of order p, the new step size
hn+1 = rhn is chosen conservatively so that the estimated error is a fraction of ETOL,
|rp+1EST|= f rac ETOL, with f rac=0.9, for example. Thus

r=(
f rac ETOL

EST
)

1
p+1

determines the next time step, see [2] for more details.

4.3 The Friction Law

The specific form of the friction law we use is the aging law in rate-and-state friction [7],
[8], [9], [20], where the shear stress on the fault τ(t)=σ(0,t) is equated with fault strength

τ=F(V,ψ), (4.4)

where fault strength F is the normal stress σn times the friction coefficient f . In the rate-
and-state framework, the fault strength is a function of slip velocity V(t)= v(0,t) and a
state variable ψ in the following form:

F(V,ψ)=σn f (V,ψ)=σn asinh−1
(

V
2V0

e
ψ
a

)
(4.5)

where ψ undergoes its own time evolution according to

dψ

dt
=G(V,ψ)=

bV0

Dc

(
e

f0−ψ
b − V

V0

)
. (4.6)

Here f0 is a reference friction coefficient for steady sliding at slip velocity V0, a and b are
dimensionless parameters characterizing the direct and state evolution effects, respec-
tively, and Dc is the state evolution distance. For commonly used frictional parameters
(which we state in sections 5 and 6.2) and for all values of the state variable ψ, (4.5) sat-
isfies the conditions of Proposition 1. The relevant time scale introduced by friction in
equation (4.6) is Dc/V, which means we may take large time steps during the interseis-
mic period, when the slip velocity V is quite small.

5 Method of Manufactured Solutions

In order to test the spatial accuracy of our method as well as the ability to time step
quickly through regions characterized by varying time scales we proceed by the method
of manufactured solutions [32]. We construct an exact solution to (2.1) and use the exact



10

2 4 6 8 10 12 14 16 18

10 5

100

105

1010
T

im
e

S
te

p
,
∆

t
(s

)

2 4 6 8 10 12 14 16 18

10 10

10 5

100

S
li
p

V
el

o
ci

ty
,
V

(t
)

(m
/
s)

Time (yr)

Figure 3: Time step and slip velocity as a function of time for the manufactured solution. Time steps (blue)
are quite large while slip velocity V(t) (green) remains around vmin for a 10 year interseismic loading period.
At t̄= 10 years, a dynamic “event” occurs where the slip velocity increases over 10 orders of magnitude to a
value vmax over the time scale tw. Parameters used in this simulation are given in Table 1. We allow ∆t to be
as large as 107 seconds ∼ several months, and it adapts accordingly during the event (decreasing to values on
the order of fractions of a second) in order to resolve rupture.

solution to specify the initial and boundary conditions, as well as source terms. Because
we want to be able to capture both the slow loading period as well as the dynamic rupture
(fast variations in time), we choose a time dependence for the solution that ranges over
many orders of magnitude. For the velocity component of the exact solution, we want
the velocity at the fault (y= 0) to remain “locked” for a long period of time, that is, at a
value close to zero (denoted vmin) followed by an “event” or “earthquake” where its value
increases over many orders of magnitude to a value vmax over a short time scale, seen in
Fig. 3. We also want the stress component to mimic what we often see in simulations
where, during this event, the stress drops from a background level σb to a lower, residual
value σr. This event occurs at a time centered at t̄ and over a time scale characterized by
tw. The exact solution is given by

v(y,t)=R(t)φ(y)+Vp(1−φ(y)) (5.1)
σ(y,t)=−S(t)φ(y)+σb (5.2)

where

R(t)=
vmax

1+( t−t̄
tw
)2
+vmin, S(t)=

(σb−σr)

1+( t−t̄
tw
)2

, φ(y)=
1√

2πyw
e
−y2

2y2
w . (5.3)
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period leading up to event time t̄. Time increases with darker shades of blue. Essentially at rest v(y,t)=vmin
during the interseismic period, the system undergoes and event where slip velocity V(t)=v(0,t) increases to a
new value vmax, and stress at the fault σ(0,t) drops from a background value σb to a residual value σr.

Thus the velocity at the remote boundary remains set at the slow plate rate Vp and during
the long interseismic period the velocity at the fault remains at a low value vmin, but
increases to vmax at which point the velocity profile takes the shape of a Gaussian centered
at the fault. The stress mimics this behavior, as seen in Figure 4.
The exact solution solves the following problem

∂w
∂t

=B
∂w
∂y

+

[
f1(y,t)
f2(y,t)

]
, B=

[
0 1/ρ
µ 0

]
, w=

[
v
σ

]
, y∈ [0,H] (5.4a)

Lo(w)=σ(0,t)=F(V(t),ψ(t)), L1(w)=v(H,t)=Vp. (5.4b)

where again, the slip velocity V(t)=v(0,t). The source terms in (5.4a) are

f1(y,t)=R′(t)φ(y)+(1/ρ)S(t)
∂φ

∂y
, f2(y,t)=−S′(t)φ(y)−µ[R(t)

∂φ

∂y
−Vp

∂φ

∂y
]. (5.5)

We must also add a source term to equation (4.6). Enforcing boundary conditions at fault
lets us solve for the exact, known solution for the state variable ψ(t):

ψ(t)= aln
[

2V0

V(t)
sinh(

σ(0,t)
σna

)

]
(5.6)
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Parameter Value Parameter Value

H 10 km Vp 10−9 m/s
vmin 10−12 m/s vmax 1 m/s

t̄ 10 yr tw 100 s
σb 30 MPa σr 20 MPa
yw 1/

√
2π km Vp 10−9 m/s

f0 0.6 V0 10−6 m/s
a 0.015 b 0.02
cs 3 km/s µ 30 GPa
σn 100 MPa Dc 0.2 m

Table 1: Parameters used in manufactured solution convergence tests.

which we insert into

dψ

dt
=G(V,ψ)+s(y,t) (5.7)

and solve for the source term s(y,t). Although this manufactured solution does not ex-
plicitly generate waves which propagate through the medium, it is sufficiently complex
in that it evolves over 12 orders of magnitude for the parameters we consider. We test the
spatial accuracy of our method by performing convergence tests with SBP operators of
order p=2,4,6 and 8, using the time stepping method detailed in section 4. The SBP oper-
ators are order p in the interior of the domain, but due to how they transition to one-sided
differences near the boundary, accuracy is lost, and the global order of accuracy obtained
is p/2+1 (i.e. global accuracy of 2,3,4 and 5, respectively) [38], [24], [37], [1], [26], [27].
Specific values for the parameters used in convergence tests are given in Table 1.

For the numerical solution w to equation (5.4), we let w∗ denote the exact solution
(evaluated at the grid points), and calculate the error in the discrete energy norm defined
in (3.5). The error is thus given by

E= ||u−u∗||P⊗I2 , where u=(IN⊗W−1)w, u∗=(IN⊗W−1)w∗ (5.8)

We expect to see convergence rates of (p/2)+1, due to the lower accuracy at the bound-
ary, see [39]. The convergence results are shown in Table 2.
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N E (2nd) Rate E (4th) Rate E (6th) Rate E (8th) Rate

25 1.822×10−2 −− 8.850×10−3 −− 1.977×10−3 −− 1.906×10−3 –
26 4.894×10−3 1.897 1.204×10−3 2.877 8.913×10−5 4.471 8.584×10−5 4.473
27 1.099×10−3 2.155 1.452×10−4 3.052 3.997×10−6 4.478 3.005×10−6 4.836
28 2.833×10−4 1.955 1.754×10−5 3.048 2.080×10−7 4.264 9.043×10−8 5.054
29 7.106×10−5 1.995 2.166×10−6 3.018 1.063×10−8 4.290 2.833×10−9 4.996

Table 2: Error computed in the discrete energy-norm. We expect to achieve convergence rates of 2, 3, 4, 5 for
the 2nd, 4th, 6th and 8th order operators, respectively.

6 Application Problem

Having verified that our numerical method converges to the true solution under mesh-
refinement, we apply our time-stepping method to solve equation 2.1 in order to simulate
multiple earthquake cycles.

6.1 Stiffness in the Interseismic and Dynamic Rupture Periods

Our implicit time-stepping method is capable of efficiently integrating through both the
interseismic loading period as well as the dynamic rupture itself, with the full, nonlinear
friction law given by equation 4.5. Fig. 5a shows slip velocity and time step during the
interseismic period (when slip velocity V(t)<<1 m/s) and during the dynamic rupture
period where the slip velocity increases over 10 orders of magnitude. The time step is
quite large during the slow loading period, and adapts accordingly in order to resolve
rupture.

As pointed out in section 4.1, a linearized friction law of the form F(V) = αV, was
shown to introduce stiffness in single event simulations (modeling just the earthquake
itself) due to the fact that α= ∂F/∂V was seen to range over many orders of magnitude.
We calculate the Jacobian matrix of the right hand side of equation 2.1 with the full non-
linear friction law and with state variable evolution given by equation 4.6. As shown
in Fig. 5b, the Jacobian matrix exhibits an eigenvalue with large (negative) real part on
the order of 1010 during the interseismic period for commonly used frictional parame-
ters, listed in table 3. During the earthquake itself, the real part of the eigenvalue drops
to values on the order of 102, suggesting that in addition to the dynamic rupture period,
stiffness is even greater during the interseismic period. Fig. 5b echoes the linearized anal-
ysis, in that the relevant eigenvalue of the Jacobian matrix depends directly on the partial
derivative ∂F/∂V, which ranges over 10 orders of magnitude during the cycle. While
explicit time-stepping methods with a very small time step (∼fractions of a second) in
order to maintain stability might be able to integrate efficiently through the short rupture
period (∼ seconds), to use them to simulate the interseismic period (∼ 100 years) with
any efficiency is not possible.
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Figure 5: (a) During a cycle consisting of an interseismic period (when slip velocity V(t)<<1 mm/s) followed
by a dynamic event, our method integrates efficiently through both periods. Large time steps are taken during
the slow loading period until the event takes place and the time step reduces to ∼fractions of a second in
order to fully resolve rupture. (b) During the same cycle, we calculate the Jacobian matrix of the system
at each time step for the full, nonlinear friction law. Here we show that during the interseismic period, this
eigenvalue assumes absolute values of around 108−1010, and decreases abruptly during rupture. The eigenvalue
is influenced directly by the partial derivative of the friction law ∂F/∂V.

6.2 The Multiple-Penalty Technique for an Absorbing Boundary

In order to apply our method to a model problem and generate multiple events in our
simulation, we need a technique for deriving non-reflecting boundary conditions so that
waves emitted at the fault do not reflect off the remote boundary. We do this through
the use of the so-called multiple-penalty technique, which will draw the velocity of the
outgoing wave at the remote boundary towards the slow plate rate Vp. This technique is
described in detail in [23]. The semi-discrete form of the equations (2.1) with m additional
penalty matrices is

(P⊗ I2)wt =(Q⊗B)w+

(
e0⊗Σ0

[
σ0−F(v0)
σ0−F(v0)

])
+

(
eN⊗ΣN

[
vN−Vp
vN−Vp

])
+

+
m

∑
j=1

(
eN−j⊗ΣN−j

[
vN−j−Vp
vN−j−Vp

])
(6.1)

The penalty matrices will be determined such that we get a discrete energy estimate. It
can be shown by similar analysis through the discrete energy method that the additional
penalty matrices are

ΣN−j =

[
β j 0
0 0

]
, β j≤0, j=1,2,...,m (6.2)
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Parameter Value Parameter Value

H 10 km Vp 10−9 m/s
f0 0.6 V0 10−6 m/s
a 0.015 b 0.02

σn 50 (MPa) Dc 8 mm
µ 36 GPa cs 3 km/s

Table 3: Parameters used in model application problem.

and lead to a stable scheme if β j≤0. In summary, the approximation (6.1) of (2.1) in com-
bination with (6.2) is stable. To test this technique, we apply our time-stepping technique
outlined in section 4 to the semi-discrete equation given in (6.1). The model parameters
used are listed in Table 3.

We take β j =−1 for j = 1,2,...,m, where m is the number of penalties in the vicinity
of y= H. For this simulation we take N = 400, and m = 80, corresponding to a penalty
domain of 2 km. The penalties β j are turned on when the wave hits the remote boundary,
damping the outgoing wave (see [23] for more details).

As seen in Figure 6, the system initially undergoes an interseismic period lasting ∼
125 years, where the fault remains essentially locked with slip velocities lower than 10−15

m/s. The system is loaded at the remote boundary at the rate Vp =32 mm/yr which
increases the stress on the fault until an earthquake nucleates at which point slip veloc-
ity increases over 10 orders of magnitude during one of these dynamic events. These
events nucleate periodically every ∼ 125 years, each event sending a wave from the fault
and through the medium. The multiple penalties damp this outgoing wave and another
interseismic period ensues. The time-stepping method outlined in section 4 adapts ap-
propriately, with long time steps taken during the interseismic period followed by very
small time-steps during each earthquake in order to resolve wave propagation during
rupture, as illustrated in Figures 3 and 5a. The method is extremely efficient and allows
for the simulation of the full earthquake cycle where initial conditions are generated from
capturing the effect of slow, tectonic loading. The interseismic period and the dynamic
rupture itself are characterized by vastly different time scales and our method incorpo-
rates both regimes within a single computational framework.

7 Conclusions

We have derived a provably stable, high-order accurate discretization to the elastic wave
equation and used an A- and L-stable time-stepping method capable of integrating through
regimes characterized by time scales that vary over many orders of magnitude. The stiff-
ness of the problem is present during the interseismic loading period in addition to dur-
ing the dynamic rupture, thus explicit methods cannot be used. Our method efficiently
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Figure 6: Slip velocity V as a function of time for the application problem. Large time steps are taken during
the interseismic period lasting approximately 150 years. Periodic events nucleate during which slip velocity
increases over 15 orders of magnitude.

handles stiffness and multi-scale temporal features, taking large time steps during the in-
terseismic period and adapting the time-step accordingly when an earthquake nucleates.

We have tested our numerical method through the method of manufactured solu-
tions and shown that the numerical solution converges to the true solution at the ap-
propriate rate. Finally, we have utilized the multiple-penalty technique that mimics a
non-reflecting boundary in order to effectively damp outgoing waves. Rather than im-
posing artificial initial conditions, our method generates multiple cycles of earthquakes
with self-consistent initial data obtained through interseismic loading.
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multi-block method for the compressible Navier-Stokes equations. Journal of Computational
Physics, 228:9020–9035, 2009.

[27] J. Nordström and R. Gustafsson. High order finite difference approximations of electro-
magnetic wave propagation close to material discontinuities. Journal of Scientific Computing,
18:215–234, 2003.

[28] J. Nordström and M. Svärd. Well posed boundary conditions for the NavierStokes equa-
tions. SIAM Journal of Numerical Analysis, 43(3):1231–1255, 2005.

[29] P.G. Okubo. Dynamic rupture modeling with laboratory-derived constitutive relations. J.
Geophy. Res., 94:12321–12335, 1989.

[30] P. Olsson. Summation by parts, projections, and stability, i. Mathematics of Computation,
64(211):1035–1065, 1995.

[31] P. Olsson. Summation by parts, projections, and stability, ii. Mathematics of Computation,
64(212):1473–1493, 1995.

[32] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa
Publishers, Albuquerque, first edition, 1998.

[33] Z. Shi and S. M. Day. Rupture dynamics and ground motion from 3-D rough-fault simula-
tions. J. Geophy. Res., 118(3):1122–1141, 2013.

[34] B. Shibazaki and M. Matsu’ura. Spontaneous processes for nucleation, dynamic propaga-
tion, and stop of earthquake rupture. J. Geophy. Res., 101:13911–13917, 1996.

[35] B. Strand. Summation by parts for finite difference approximations for d/dx. J. Comput.
Phys., 110((1994)):47–67, 1994.

[36] Bo Strand. Summation by parts for finite difference approximations for d/dx. Journal of
Computational Physics, 110(1):47–67, 1994.
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[39] M. Svärd and J. Nordström. On the order of accuracy for difference approximations of
initial-boundary value problems. Journal of Computational Physics, 218(1):333–352, 2006.
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