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A maximum flow formulation of a multi-period

open-pit mining problem

Henry Amankwah∗, Torbjörn Larsson†, Björn Textorius‡

5 January 2014

Abstract

We consider the problem of finding an optimal mining sequence for

an open pit during a number of time periods subject to only spatial and

temporal precedence constraints. This problem is of interest because

such constraints are generic to any open-pit scheduling problem and, in

particular, because it arises as a Lagrangean relaxation of an open-pit

scheduling problem. We show that this multi-period open-pit mining

problem can be solved as a maximum flow problem in a time-expanded

mine graph. Further, the minimum cut in this graph will define an

optimal sequence of pits. This result extends a well-known result of

J.-C. Picard from 1976 for the open-pit mine design problem, that is,

the single-period case, to the case of multiple time periods.

Keywords: Open-pit mining, Integer programming, Scheduling, Maximum
flow, Maximal closure, Lagrangean relaxation

Mathematics Subject Clasification (2010): 90C10, 90C35, 90C90

1 Introduction

Open-pit mining is a surface mining operation whereby ore, or waste, is
excavated from the surface of the land, and in so doing a deeper and deeper
pit is formed. Before the mining begins, the volume of the ore deposit is
usually partitioned into blocks and the value of the ore in each block is
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estimated by using geological information from drill holes. The cost of mining
and processing each block is also estimated. A profit can thus be assigned
to each block of the mine model, as illustrated in Figure 1.

A fundamental problem in open-pit mine planning is to decide which
blocks to mine. This is known as the problem of finding an open-pit mine
design, or an ultimate contour for the pit. The only restrictions are spatial
precedence relationships, stating that in order to extract any given block, so
must all blocks immediately above and within a required wall slope angle.
Lerchs and Grossmann (1965) showed that the design problem can be stated
as the problem of finding a maximal closure in a mine graph which represents
the blocks and the precedence restrictions, as shown in Figure 1 (for a safe
slope angle of 45◦). Their algorithm for finding a maximal closure in the
mine graph has over the years been commonly used by the mining industry
for the design of open pits.
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Figure 1: A 2-D block model of a mine with block profit values and its mine
graph

The practical siginificance of the open-pit mine design problem makes it
an important instance of the maximal closure problem (Picard and Queyranne,
1982). As shown by Picard (1976), the problem of finding a maximal closure
in a mine graph can be solved as a maximum flow problem in a network de-
rived from the mine graph, and where a minimum cut determines an optimal
pit contour. Later, Hochbaum and Chen (2000) and Hochbaum (2001) de-
veloped efficient maximum flow algorithms for the open-pit mining problem.

In reality, the profit of a block depends on when it is mined, for example
due to discounting. This fact leads to another crucial issue in open-pit mine
planning, namely scheduling. This is the process of deciding how and when
to mine the blocks so as to maximize profit (typically the net present value),
while obeying the wall slope and precedence constraints, as well as various
mining capacity restrictions. Contributions within open-pit mine scheduling,
from the view of mathematical optimization, have been given by Gershon
(1983), Dagdelen and Johnson (1986), Caccetta and Hill (2003), Ramazan
(2007), Rafiee and Asghari (2008), Bley et al. (2010), and Cullenbine et al.
(2011), among others.
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We consider a multi-period open-pit mining problem with only spatial and
temporal precedence constraints. The latter simply state that once a block
has been mined, it shall remain mined. The spatial and temporal precedence
constraints are generic to open-pit mine scheduling and the multi-period
problem arises as a Lagrangean relaxed open-pit scheduling problem, when
capacity restrictions are Lagrangean dualized.

It will be shown that this multi-period open-pit mining problem can be
formulated as a maximum flow problem in a time-expanded mine graph,
which has a copy of the mine graph for each time period. The expanded graph
also contains directed arcs that model the temporal precedence relationships
between the corresponding nodes in successive copies of the mine graph; these
arcs are analogous to those that model the spatial precedence relationships
within each of the mine graphs. This maximum flow formulation extends the
result of Picard (1976) to the case of multiple time periods. Figure 2 shows
the time-expansion of the mine graph in Figure 1, for the case T = 3.
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Figure 2: A time-expanded mine graph with three time periods

In Section 2 we give the mathematical model of the problem considered.
In Section 3 we present the maximum flow problem in the time-expanded
mine graph and show that a minimum cut in this graph defines an optimal
solution to the multi-period open-pit mining problem. Section 4 presents
a small illustrative example. The last section gives a couple of concluding
remarks.

2 The mathematical model

The following notation will be used.
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T = number of time periods.
V = set of all blocks that can be mined.
A = set of pairs (i, j) of blocks such that block j is a neighbouring

block to i that must be removed before block i can be mined.
p̄ti = contribution to the objective value if block i is mined in time

period t or earlier, i ∈ V , t = 0, . . . , T .

Defining the decision variables for all i ∈ V and t = 1, . . . , T as

xt
i =

{

1, if block i is mined in time period t or earlier,
0, otherwise,

the multi-period open-pit mining problem is formulated as

z∗ = maximize
T
∑

t=0

∑

i∈V

p̄tix
t
i (1)

subject to

xt
i ≤ xt

j, (i, j) ∈ A, t = 1, . . . , T

xt−1

i ≤ xt
i, t = 1, . . . , T, i ∈ V

x0

i = 0, i ∈ V

xt
i ∈ {0, 1}, i ∈ V, t = 1, . . . , T.

The first and second sets of constraints are spatial respective temporal prece-
dence restrictions. As shall be shown, an optimal solution to this problem is
found by solving a maximum flow problem in the time-expanded mine graph.

3 The maximum flow formulation

In order to state the time-expanded maximum flow problem, we introduce
the sets of block nodes V +

t = {i ∈ V | p̄ti > 0} and V −

t = {i ∈ V | p̄ti ≤ 0},
t = 1, . . . , T , and further let σ and τ be the source and sink nodes respectively
of the network, which includes arcs from the source node to the nodes i ∈ V +

t ,
t = 1, . . . , T , and arcs from the nodes i ∈ V −

t , t = 1, . . . , T , to the sink node.
Letting J+

i = {j ∈ V | (i, j) ∈ A} and J−

i = {j ∈ V | (j, i) ∈ A}, i ∈ V , the
maximum flow problem is as follows.

f ∗ = maximize f
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subject to

T
∑

t=1

∑

i∈V
+
t

vtσi = f

∑

j∈J
+

i

y1ij −
∑

j∈J
−

i

y1ji + s2i − v1σi = 0, i ∈ V +

1

∑

j∈J
+

i

ytij −
∑

j∈J
−

i

ytji − sti + st+1

i − vtσi = 0, i ∈ V +

t , t = 2, . . . , T − 1

∑

j∈J
+

i

yTij −
∑

j∈J
−

i

yTji − sTi + vTσi = 0, i ∈ V +

T

∑

j∈J
+

i

y1ij −
∑

j∈J
−

i

y1ji + s2i + u1

iτ = 0, i ∈ V −

1

∑

j∈J
+

i

ytij −
∑

j∈J
−

i

ytji − sti + st+1

i + ut
iτ = 0, i ∈ V −

t , t = 2, . . . , T − 1

∑

j∈J
+

i

yTij −
∑

j∈J
−

i

yTji − sTi − uT
iτ = 0, i ∈ V −

T

−

T
∑

t=1

∑

i∈V
−

t

ut
iτ = −f

0 ≤ vtσi ≤ p̄ti, i ∈ V +

t , t = 1, . . . , T

0 ≤ ut
iτ ≤ −p̄ti, i ∈ V −

t , t = 1, . . . , T

sti ≥ 0, i ∈ V, t = 1, . . . , T

ytij ≥ 0, (i, j) ∈ A, t = 1, . . . , T

Here, f is the total flow, the quantity ytij is the flow from block node i to block
node j in time period t, and each sti corresponds to a forward arc between
corresponding block nodes in successive time periods. Further, vtσi is the flow
from the source node to block node i in period t, while ut

iτ is the flow from
block node i in period t to the sink node.

An example of the maximum flow network is given in Figure 3, with
9 blocks and 3 time periods (but with only some of the arcs shown).

Let (S, S̄) be a minimum cut in the time-expanded maximum flow net-
work. Then S = {σ} ∪ S1 ∪ . . . ∪ ST and S̄ = {τ} ∪ S̄1 ∪ . . . ∪ S̄T , where
(St, S̄t) is the cut through the mine graph copy for time period t.
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Figure 3: Example of the maximum flow network (with sample arcs)

Theorem 1. An optimal solution to Problem (1) is given by

xt∗

i =

{

1, i ∈ St

0, i ∈ S̄t , i ∈ V, t = 1, . . . , T,

and

z∗ =
T
∑

t=1

∑

i∈V
+
t

p̄ti − f ∗.

Proof. We study the linear programming dual of the above maximum flow
problem. Let lti, i ∈ V , t = 1, . . . , T , be the dual variables corresponding
to the block nodes in the network, and let qσ and qτ be the respective dual
variables associated with the source and the sink. By further introducing ht

i,
i ∈ V , t = 1, . . . , T , as the dual variables for the upper bound constraints,
the dual problem becomes

f ∗ = minimize
T
∑

t=1

∑

i∈V
+
t

p̄tih
t
i +

T
∑

t=1

∑

i∈V
−

t

(

−p̄ti
)

ht
i (2)

subject to

qτ − qσ = 1 (3)

qσ − lti + ht
i ≥ 0, i ∈ V +

t , t = 1, . . . , T (4)

lti − qτ + ht
i ≥ 0, i ∈ V −

t , t = 1, . . . , T (5)

lti − ltj ≥ 0, (i, j) ∈ A, t = 1, . . . , T (6)

lt−1

i − lti ≥ 0, t = 2, . . . , T, i ∈ V (7)

ht
i ≥ 0, i ∈ V, t = 1, . . . , T. (8)
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An optimal solution to the dual problem is then (e.g., Bazaraa and Jarvis,
1977) given by q∗σ = 0, q∗τ = 1,

lt
∗

i =

{

0, i ∈ St

1, i ∈ S̄t , i ∈ V, t = 1, . . . , T,

and

ht∗

i =

{

1, i ∈
(

V +
t ∩ S̄t

)

∪
(

V −

t ∩ St
)

0, otherwise
, i ∈ V, t = 1, . . . , T.

Then, for i ∈ V +
t , t = 1, . . . , T ,

i ∈ St =⇒ ht∗

i = lt
∗

i = 0
i ∈ S̄t =⇒ ht∗

i = lt
∗

i = 1

}

=⇒ ht∗

i = lt
∗

i , (9)

and for i ∈ V −

t , t = 1, . . . , T ,

i ∈ S̄t =⇒ ht∗

i = 1− lt
∗

i = 0
i ∈ St =⇒ ht∗

i = 1− lt
∗

i = 1

}

=⇒ ht∗

i = 1− lt
∗

i . (10)

It then holds that

f ∗ = minimize
T
∑

t=1

∑

i∈V
+
t

p̄tih
t
i +

T
∑

t=1

∑

i∈V
−

t

(−p̄ti)h
t
i (11)

subject to the constraints (3)–(8) and to

qσ = 0,

qτ = 1,

ht
i = lti, i ∈ V +

t , t = 1, . . . , T

ht
i = 1− lti, i ∈ V −

t , t = 1, . . . , T,

with the optimal solution to Problem (2) still being optimal, since restricting
qσ and qτ to their respective optimal values and enforcing the equalities (9)
and (10) to hold for any solutions will not affect its optimality.

As is easily verified, constraints (3)–(5) can be removed from Problem (11),
since they will always be fulfilled. By further eliminating the variables qσ,
qτ , and ht

i, i ∈ V , t = 1, . . . , T , from Problem (11) it is reduced to

f ∗ = minimize
T
∑

t=1

∑

i∈V

p̄til
t
i −

T
∑

t=1

∑

i∈V
−

t

p̄ti
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subject to

lti − ltj ≥ 0, (i, j) ∈ A, t = 1, . . . , T

lt−1

i − lti ≥ 0, t = 2, . . . , T, i ∈ V

lti ≥ 0, i ∈ V +

t , t = 1, . . . , T.

1− lti ≥ 0, i ∈ V −

t , t = 1, . . . , T.

Now, let xt
i = 1 − lti, for all i ∈ V and t = 1, . . . , T . Then the above

problem can be stated as

−f ∗ = maximize
T
∑

t=1

∑

i∈V

p̄tix
t
i −

T
∑

t=1

∑

i∈V
+
t

p̄ti

subject to

xt
i ≤ xt

j, (i, j) ∈ A, t = 1, . . . , T

xt−1

i ≤ xt
i, t = 2, . . . , T, i ∈ V

xt
i ≤ 1, i ∈ V +

t , t = 1, . . . , T.

xt
i ≥ 0, i ∈ V −

t , t = 1, . . . , T,

which is solved by

xt∗

i = 1− lt
∗

i =

{

1, i ∈ St

0, i ∈ S̄t , i ∈ V, t = 1, . . . , T.

Since this optimal solution is binary, it follows that it is also an optimal
solution to Problem (1). The expression for its optimal value follows directly
from the above objective function.

Since the forward arcs corresponding to the variables sti are not capaci-
tated, it follows that i ∈ St whenever i ∈ St−1, so that S1 ⊆ S2 ⊆ . . . ⊆ ST

holds. Hence, the sequence of cuts (St, S̄t), t = 1, . . . , T , define larger and
larger pits. The blocks mined precisely in the first time period are those cor-
responding to the nodes in the set S1, while for t = 2, . . . , T it is the blocks
corresponding to the nodes in the sets St \ St−1.

4 An example

As mentioned in the introduction, the problem under consideration is of
interest because it appears when an open-pit mine scheduling problem is
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Lagrangean relaxed. To illustrate this, we consider the following scheduling
model, which is a special case of the model considered by Bley et al. (2010).

maximize
T
∑

t=1

∑

i∈V

pti
(

xt
i − xt−1

i

)

(12)

subject to
∑

i∈V

bi
(

xt
i − xt−1

i

)

≤ ut, t = 1, . . . , T

xt
i ≤ xt

j, (i, j) ∈ A, t = 1, . . . , T

xt−1

i ≤ xt
i, t = 1, . . . , T, i ∈ V

x0

i = 0, i ∈ V

xt
i ∈ {0, 1}, i ∈ V, t = 1, . . . , T.

The decision variables are defined as above. (Note that the difference xt
i−xt−1

i

takes the value one when block i is mined in exactly time period t.) Further,
pti is the profit made from mining block i in time period t, bi is the tonnage
of block i, and ut is an upper bound on the tonnage mined in time period t.
Letting λt ≥ 0, t = 1, . . . , T , be multipliers associated with the constraints
on maximal tonnage mined in each time period and Lagrangean relaxing
these constraints, we get an instance of Problem (1), with the coefficients in
the objective function being the Lagrangean reduced profits











p̄0i = − (p1i − λ1bi) ,

p̄ti = (pti − λtbi)−
(

pt+1

i − λt+1bi
)

, t = 1, . . . , T − 1,

p̄Ti = pTi − λT bi.

The reader may note that Problem (1) would also arise as a column gen-
eration problem (or, pricing problem) if the linear programming relaxation
of Problem (12) is solved by a column generation scheme.

To illustrate the result of the theorem, we consider the block model in
Figure 1 and construct an instance of Problem (12) by letting T = 3, ut = 2
for all t, and bi = 1 for all i. Further, the profit values are discounted by
a factor 0.90 for each time period. To create an instance of Problem (1) we
Lagrangean relax the capacity constraints with the multiplier values λ1 =
0.48, λ2 = 0.18, and λ3 = 0. [These values come from the dual of the linear
programming relaxation of Problem (12).] The minimum cut for the time-
expanded maximum flow problem is shown in Figure 4. It indicates that
blocks 2 and 3 are mined in the first time period, blocks 4 and 6 in the
second, and blocks 1 and 5 in the last. The optimal profit is 12.21.
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Figure 4: Minimum cut that defines the mining sequence

5 Conclusion

We have given a maximum flow formulation of a multi-period open-pit mining
problem. It extends the classic maximum flow formulation of Picard (1976)
for a single time period by means of a time-expanded network. Picard’s
derivation is based on a reformulation of the open-pit mine design problem
into a quadratic binary program, while our proof of the validity of the time-
expanded maximum flow formulation is based on linear programming duality.

The problem under consideration in this paper arises naturally if all con-
straints of an open-pit scheduling problem but the spatial and temporal
precedence restrictions are Lagrangean dualized, or priced out in a column
generation fashion. For any values of the Lagrangean multipliers, the maxi-
mum flow solution in the time-expanded network will correspond to a mining
schedule that is feasible with respect to both the spatial and temporal prece-
dence restrictions. The Lagrangean multipliers can then be thought of as
parameters that shall be tuned such that the capacity restrictions become
fulfilled, in an optimal way. Because the prevalence of a duality gap, this
strategy cannot however be expected to be sufficient to optimally solve the
scheduling problem.

Opportunities for further research are clearly the study of Lagrangean
dual and column generation approaches based on the time-expanded maxi-
mum flow problem, as a vehicle for solving open-pit mine scheduling prob-
lems, heuristically or optimally.
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