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ABSTRACT

The recent development for multimedia applicatioms mobile terminals raised the need for
flexible and scalable computing platforms that @apable of providing considerable (application

specific) computational performance within a lovstcand a low energy budget.

The MPSoC with multi-disciplinary approach, resolyi application mapping, platform

architecture and runtime management issues, pravitieh multiple heterogeneous, flexible
processing elements. In MPSoC, the run-time manaaglkes the design time exploration
information as an input and selects an active Bapeint based on quality requirement and
available platform resources, where a Pareto pantesponds to a particular parallelization

possibility of target application.

To use system’s scalability at best and enhancdicappn’s flexibility a step further, the
resource management and Pareto point selectioriolegineed to be adjustable at run-time. This
thesis work experiments run-time Pareto point dwiiig for MPEG-4 encoder. The work
involves design time exploration and then embeddifigwo parallelization possibilities of
MPEG-4 encoder into one single component and emgbtun-time switching between
parallelizations, to give run-time control over wtjng performance-cost criteria and allocation
de-allocation of hardware resources at run-timee fibwer system has the capability to encode
each video frame with different parallelization.eTbbtained results offer a number of operating
points on Pareto curve in between the previous anegquence encoding level. The run-time
manager can improve application performance up0fb Br can save memory bandwidth up to

15%, according to quality request.
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Chapter 1 Introduction

1.1 Background

The multiprocessor system-on-chip introduced in ntatkecope with emerging market challenges
regarding performance and power for mobile ternsinllPSoC is able to deliver aggressive performance
at low power costs, but there are still some issitebe addressed before successful and efficient

implementation of multimedia applications.

Firstly, currently it is the application designer&sponsibility to map the application to the reses and
services provided by platform. As the number ofsiuifities is huge, so best possible mapping walt n

be possible without a tool help.

Secondly, the platform architecture should meetiegjion requirement as close as possible by piogid

right amount of service at right time.

Thirdly, in presence of multiple applications omgibrm, an arbiter is required to distribute andcte
resources between applications and reduce thefdrdace. The arbiter will be working as run-time

manager. The MPSoC activity is to combine theseiplines and produce effective solutions[1].

Design-time
Application Mapping
Exploration

Platform Architecture
Exploration

Figure 1 MPSoC — Combination of Disciplines[2]

1.1.1 Design Time Application Mapping

For design time application mapping, manual worky femad to sub-optimal solution. Moreover, with
modification in platform or run-time circumstance@sapping needs to be done from scratch again. The
design time exploration helps application designerform of methodologies and tools, to achieve

optimal mapping solutions.
Pagel of 55
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Design time exploration may cover many importastiés about the system[1]:

x Estimation and Reservation of memory bandwidth
X Functional and data-level split exploration foradkalization opportunities.
x Exploration for shared data copy candidates findiata reuse and pre fetch.

X Exploration for instruction memory reuse possilgt
1.1.2 Platform Architecture Exploration

Platform architecture exploration takes task-ogdntommunication at application level and triegirid

out solution on multiprocessor platform with memaigrarchy and interconnect network. The aim is to
[3]:

x ldentify required communication services by apgi@aand provide support to them.
X Optimize the communication mapping according tdfpian resources (e.g. NOC).

x Ensure run-time management for the communicatiovicss.

The run-time management is quite necessary as bdtindallocation decision need to be done at ruretim
when new applications start. Fast heuristics ageired to find possible route for data communiaatio

through NOC aiming low cost as well as guarantéeslughput.
1.1.3 Run-time Platform Management

The run-time manager works as a resource arbitgeré@sence of multiple applications on platform.
During Design time exploration and profiling, sealeworking Pareto points are defined for each
application. While the run-time manager selectaetive Pareto point for application based on resglir
application quality. The exploration informationdgsign time helps run-time manager, effectivelystd

application’s quality according to user requirement

Currently, run-time manager is able to explore glesime information regarding application at tharst
of run-time. When decision is taken and a Paretotp® selected for an application. The decisiofi be
irreversible until the end of this execution. Tlesaurces once allocated to an application instaned)

be inaccessible until that instance release ressufter execution.

The objective of this thesis work is to enable tiume switching between different Pareto points dar
application according to change in user requiremettrun-time. Ultimately, run-time manager will
provide control over resource management at rue-tmd user will be able to tune the applicationityua

desired from each application in presence of mleltipnning applications.
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Application Specification and
Design-Time Exploration Information

User RH'H""“ . Platform
constraints ST Information
Management
contains contains
r--lr---! --I--I--IF1
| [Pareto Polnt | Task Assignment and
i| Selection = Run-Time Task
! Algorithm | | Migration Algorithms
! i Communication
i mi 'mm' ! Allocation and
L — !:_,__.___h_i Rerouting Algorithms
Memory Allocation
Algorithms

Figure 2 - Run-time Management[4]

The thesis work also includes the estimation ofeextorkload to tolerate for Pareto point switchiigy
run-time. One also need to evaluate the definedt®amoint at design time and profile the efficierafy

each Pareto points in terms of performance andviatid usage.
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Chapter 2 MPSoC Programming Model

Using ordinary sequential code of any applicatiom diacilitating to run on multi-processor parallel
execution environment needs many modification stegsllow. The ordinary sequential C code will be
using full breadth of C environment, but some @nthare not suitable for multiprocessor platformsti
job is to detect, correct and follow such guidddin® make sequential code more compliant with
hardware platform. The code will be provided witatfiorm processor information, to optimize for terg
hardware, in form of pragmas. The ordinary seqakctide does not care about the memory hierarchy
present, but for efficient usage of target memaeyarchy the code need to be analyzed for its mgmor
accesses, identify extensive accesses to some sialland making it available to local memory.
Optimizing code for target hardware improves overpplication performance and offers efficient eyer
consumption. The proposed programming model iseptesl in Figure 3. Each part is discussed in detail

in this chapter.

Sequential ANSI C code
|

MPSoC Cleaning-assist toolsuite
=

IMEC Programming model

= Sequential C
= Shared memory

= Sequential C +
pragmas

* Shared memory

* Threaded parallel
programming on RTLib API

» Memory model:

*Shared memory and
message passing

*Mixed to have best of
both worlds

MPSoC Run Time Manager

Platform Services

Platform services

Figure 3 MPSoC Programming Model[5].
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2.1 ADRES

ADRES(Architecture for Dynamically ReconfigurablenBedded System) tightly couples a VLIW
processor and a coarse-grained reconfigurable maDRES provides single architecture integration fo
VLIW processor and coarse-grained reconfigurablérirarhis kind of integrations provides improved
performance, simplified programming model, redu@@nmunication cost and substantial resource

sharing [6].

2.1.1 ADRES Architecture

|' !
! Instruction feich |
: Instruction dispatch DATA Cache '
: Instruction decode '
A — S S N o
- o
I RF |
] i 1
b ~+ FL FU L |FU FU FU r+ FL FU ~+| FU E i
! i
[ 1 T : !
0 o e, e s ol A B
! FU | FU| [ FU | — FU | —) FU || FU | —L[FU - FU !
TRE] [TTRE] [TRE] [[RE]| [[TRE] [[ [RE rE| ['[RE] !
I E 3 b ol T 1 ]
X I I_LL 1T hl i 1 T jall ' _
U LLEY ol FU T [FU J | FU Jeie] FU et PU | fh] FU L FU PWLIW view
SINCERINGS RF| |[RF RF RF RF RE|
I ' i il [r IT 51 Tl :
WrFo] WFo) Wro) Wro) Wro erro) RO RO
| [RF}—|RF|—|RE]—|RE|—|RE|—|RE|*—|RF|RF] |
S I g 1T el I 1t o 1] :
' [FU—s[FU] s [FUJ[FU]—[FU—[FU]—[FU}[FU]
' [[=E] [REl [[RFE [[RF| [[RE] [IRE RE| [[RE] !
. I In L[ Ir 1f T el !
| FU | FU o | FU b—f | FU || FU L[ FU |, LJFU | LJFU !
'R TRe [ =] [RE] [[TRE] [[1RE RF| [[[RE] |
| i H i jul [ 1t i in| 1
] L || == T
' LFu Lo AL POl L PO Lo AL FO AL[FO L PO |
(ANeE] [[TrE] ([ [RE] [[TRE] |[TRE] [TRE re| |[RF| !
I H i h[ I if i k] :
B[FO LFo] ‘=[Fu] HFu] 'Hro] HFu] YHFu] HFU]
| [RF]—[RF] *—[RF|*—|RF|—|RE |~—|RF|~—|RFE | —|RF|

Reconfigurable array view
Figure 4 Architecture of the ADRES Coarse Grain Recofigurable Array[3]

The ADRES core consists of many basic componentduding mainly FUs, register files(RF) and
routing resources. The top row can act as a tigitlypled VLIW processor in the same physical entity.
The two parts of ADRES share same central regigéeand load/store units. The computation-inteasiv

kernels, typically dataflow loops, are mapped othi® reconfigurable array be the compiler using the
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module scheduling technique[7] to implement sofewvpipelining and to exploit the highest possible

parallelism, whereas the remaining code is mappéal the VLIW processor[6-8].

The two functional views of ADRES, the VLIW processand the reconfigurable matrix, share some
resources because their executions will never apeslith each other because of processor/co-processor
model[6-8].

For VLIW processor, several FUs are allocated amthected together through one multi-port register
file, which is typical for VLIW architecture. The$&Js are more powerful in terms of functionality and

speed compared to reconfigurable matrix's FUs. Sai¢hese FUs are connected to the memory
hierarchy, depending on available ports. Thus thta daccess to the memory is done through the

load/store operation available on those FUs[6].

For the reconfigurable matrix, there are a numbberconfigurable cells (RC) which basically compris
FUs and RFs too. The FUs can be heterogeneous rsugpdifferent operation sets. To remove the
control flow inside loops, the FUs support predictperations. The distributed RFs are small withefe
ports. The multiplexers are used to direct data fobfierent sources. The configuration RAM stores a
few configurations locally, which can be loaded aytle-by-cycle basis. The reconfigurable matrix is
used to accelerate dataflow-like kernels in a lyiglarallel way. The access to the memory of the matrix

is also performed through the VLIW processor FUs.[6

|
ADRES core wyy
\ﬂ;ﬂ/ \.rM:ch \E?’
‘ t pred srcl src il out
FuI EF
I Cache D Cache P:?] pmi dst2 dst / :n
Main Memory BN [

Figure 5 - ADRES system (left) Reconfigurable Celright)[8]

In fact, the ADRES is a template of architecturastéad of a fixed architecture. An XML-based
architecture description language is used to defirecommunication topology, supported operatidn se

resource allocation and timing of the target asdiire[7].
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2.2 Memory Hierarchy

Using a memory hierarchy boosts performance andcexienergy by storing frequently used data in
small memories that have a low access latency and a low energy cost per actiess@kiest approach
is to use hardware-controlled caches, but caclesey energy consuming so not suitable for poetabl

multi-media devices. Moreover, cache misses may tegerformance losses[9].

In multimedia applications, access patterns amngfredictable, as they typically consist of nestegps
with only a part of data heavily used in the inteps[9]. Using closer memories to processor fig th
heavily used data, can leverage faster and endfigient processing. In this case, Direct Memorgess
will transfer between background memories and thteeser memories in parallel with computation

executions.
2.2.1 Scratch Pad Memories

The software controlled scratch pad memories (SEM) produce better performance and efficient
energy consumption. Memory hierarchy utilizatiom ¢ improved by design-time analysis. Scratch pad
memories are difficult to implement, as analysingplecation and then selecting best copies and
scheduling the transfers will not be easily manbgegb. To handle this issue IMEC has developed a

tool called Memory Hierarchy (MH)[9].
2.2.2 THE MH TOOL

The MH tool uses compile-time application knowledgel profiling data to first identify potential and
beneficial data copies, and secondly to derive bmevdata and the copies have to be mapped onto the

memory architecture for optimal energy consumpéod/or performance[9].

The figure below shows the inputs and outputs efNtH tool. The platform description describes which
memory partitions exist, their properties and hbeytare connected. Cycle count information is $etec
for all computational kernels by running automdticanstrumented code on an instruction-set sinarlat
Memory access and loop iteration counts are celteseparately by source-code instrumentation and
subsequent execution. The data-to-memory assigndestribes data-structures allocation to memory.

The MH tool is responsible for data-reuse analgaid its optimization[9].
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¢ Inputs i i Memory Hierarchy Tool | : Feedback to designer

' : ' Data re—use : Copy candidate :
: C code L o . _

: ] analysis T graph

- Memory access o L Life-time
: DA analysis

& cycle profile L |
\\ Copy selection &

transfer scheduling

Platform / ............................... : Cycle & energy

description : : estimates

Transformed Data to memory
C code assignment

. Outputs

Figure 6 MH overview[9].

2.2.2.1 Data-reuse analysis

In first step code is analyzed for re-use oppotiesi All global and stack arrays are considered alao
a limited class of dynamically allocated arraysr Bata-reuse analysis, loop boundaries are importan
places to explore. If in a nested loop, a small pha large array is being accessed heavily, theril be

better to move that part to local memory to savergyi9].

2.2.2.2 Optimization

MH takes into account two cost factors: the cydst@nd the energy due to memory accesses. Thgre ma
be several optimal solutions each targeting diffecdmjective. These solutions can be connected ¢irou
a Pareto curve. Optimization phase may target twoess first, how to traverse the solution space of

possible assignments; the second is how to minithie@verhead of transferring data[9].
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CPU SPM

o

L2

Figure 7 Scratch pad based platform architecture

The tool searches heuristically, starts by caloujathe potential gain, in terms of energy, protess
cycles or a combination of these, for each copy-cktd if it was assigned to the SPM (Scratch Pad
Memory). The copy candidate with highest gain isntkelected for assignment to the SPM. The next
most promising copy candidate is selected by rewtating the potential gains, as the previous s$ielec

may influence the potential gains of the remairdogy-candidates[9].

For MPEG-4 encoder application, the MH tool evadgaabout 900 assignments per minute, of which 100
are valid[9].

For transfer scheduling, the MH tool will try tosige block transfers as soon as possible and to
synchronize them as late as possible. This mayrnekgiee life-span of the copy buffers, and may agise
trade-off between buffer size and cycle cost. Toimize process stalls, a DMA unit will transfer ¢o

in parallel with the processing by the processdocB transfer issues and synchronizations can laéso
pipelined across loop boundaries, to exploit evemenparallelism. This kind of pipelining will alsmst

for more extended copy buffer life span.
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2.3 The Run-time Manager

For a multiple advanced multimedia applicationsnse®, running in a parallel on a single embedded
computing platform, where each application’s reigeauser requirements are unknown at design time.
Hence, a run-time manager is required to match gplligation needs with the available platform
resources and services. In this kind of scenarie, application should not take full control of resmes,

so one need a platform arbiter. Here run-time managdll act as platform arbiter. This way multiple
applications can coexist with minimal inter-applioa interference. The run-time manager will nattju
provide hardware abstraction but also give sufficiespace for application-specific resource
management[10].

Quality
Manager

Application(s)

Run-Time

Resource leraw

Manager

External Interface

|s,,

MPSoC Hardware Services

Figure 8 the run-time manager[10].

The run-time manager is located between the apjgitaand platform hardware services. Run-time

manager components are explained below.
2.3.1 Quality Manager

The quality manager is a platform independent campbthat interacts with the application, the st

the platform-specific resource manager. The go#t@iquality manager is to find the sweet spot betw

The capabilities of the application, i.e. what aydevels do the application support.
The requirements of the user, i.e. what qualitglg@rovides the most value at a certain moment.
The available platform resources.

The quality manager contains two specific sub-fiumst aQuality of Experienc€QoE) manager and an

operating point selection manager[10]
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The QoE Manager deals with quality profile managetnée. what are, for every application. The

different supported quality levels and how are thaked[11, 12].

The operating point selection manager deals witdctag the right quality level or operating pofat all
active applications given the platform resource amah-functional constraints like e.g. available

energy[10]. Its overall goal is to maximize theatatystem application value[13].
2.3.2 Resource Manager

The resource requirements of an application aré kmelwn after selecting operating point. The rundi
resource manager gives flexibility in mapping tgs&ph to MPSoC platform. Application tasks need to
be assigned to processing elements, data to meamatythat communication bandwidth needs to be
allocated[10].

For executing the allocation decisions, the resoumanager relies on ithechanismsA mechanism
describes a set of actions, their order and reisjgepteconditions or trigger events. To detectgeig

events, a mechanism relies on one or more monitdnige one or more actuators perform the actions[10
2.3.3 Run-Time Library

The run-time library implements the primitives ARIsed for abstracting the services provided by the
hardware. These RTLib primitives are used to createapplication at design-time and called by the
application tasks at run-time. The run-time ligralso acts as interface to the system manager on

different levels[10]. RTLib primitives can be categed as under[10]:

Quality management primitivdsk the application or the application specifisoarce manager to the
system-wide quality manager. This allows the ajgilin to reinitiate the selected quality.

Data management primitivesre closely linked to programming model. The RTk#én also provide

memory hierarchy primitives for managing a scratchp@mory or software controlled caches.

Task management primitivedlow creating and destroying tasks and manage th&ractions. The

RTLib can also provide primitives to select a sfiegcheduling policy, to invoke the scheduler or t

enable task migration and operating point switching

The run-time cost of the RTLib will depend on itsplementation: either in software executing on the
local processor that also executes the applicasisks or in a separate hardware engine next tadtual

processor[10].
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2.4 Clean C

The C language provides much expressiveness tgragsibut unfortunately, this expressiveness makes
hard to analyze C program and transform to MPSa&ifggim. Clean C provides designers with
capability to avoid constructs, which are not weklgmable. The sequenti@lean Ccode will be derived

from sequential ANSI C. This derivation gives bettepping results[14].

Clean C gives a set of rules, can be divided i ¢ategories as codestrictionsand codeguidelines.
Code restrictions are constructs that are not altbwo be present in the input C code, while code

guidelines describes how code should be writteactoeve maximum accuracy from mapping tools[14].

If existing C code does not follow the Clean C sula complete rewrite is not necessary to cleap.itA
code cleaning tool suit will help to identify thelevant parts for clean-up and will try to cleanmpst

frequently occurring restrictions[14].

While developing new code, the Clean C rules carfollewed immediately. But as following rules
related to code structure are difficult to followhie evolving code, the code cleaning tool suitl wil

support the application for Clean C rules duringecevolution[14].
Some of the proposed guidelines and restrictioagamnder: details can be found in [15].

o0 Overall code architecture
0 Restriction: Distinguish source files from headkssf
o0 Guideline: Protect header files against recursicéusion
0 Restriction: Use preprocessor macros only for @mistand conditional exclusions
0 Guideline: Don’t use same name for two differeimdls
0 Guideline: Keep variable local
o Data Structures
0 Guideline: Use multidimensional indexing of arrays
0 Guideline: Avoidstruct andunion
0 Guideline: Make sure a pointer should point to aig data set
o Functions
0 Guideline: Specialize functions to their context
Guideline: Inline function to enable global optimiion
Guideline: Use a loop for repetition

Restriction: Do not use recursive function calls

O O O o

Guideline: Useswitch instead of function pointer

Pagel2 of 55

TRIAL MODE - a valid license will remove this message. See the keywords property of this PDF for more information.



2.5 ATOMIUM / ANALYSIS (ANL)

Multimedia applications are mostly data dominar.ré&alize efficiency of such applications data $fan

and storage is crucial to explore[16]. For a compiadtimedia application like MPEG-4 encoder this

high level analysis is essential input for effidibardware/software partitioning[17].

The huge C code complexity of multimedia applicasionakes a complexity analysis tedious and error-

prone. Atomium/Analysis gives additional supporthtandle such complexities. This tool consists of

scalable set of kernels and tools providing funetiiby for advanced data transfer and storage aizalys

and pruning[17].

Atomium/Analysis can be mainly used for three psgs)18].

Analyze memory usage of array data in data dominated C programs andtify ttlenmemory

related bottlenecks.

Prune unused parts of C code based on profilirgynamétion.

Accurate cycle count information for parts of C epdalled ‘kernels’.

~,

instumented
Cs+

Atomium
include
file(s)

c
mpm E----\
Atornium
~ Analysis
Atomium /
gystem include
file(s)
J/
C++ compiler
Atomium —=
run time G4+ linker
library
J

executable

J

Figure 9 Atomium/Analysis Instrumentation Process[8]
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2.5.1 Atomium/Analysis Process Flow

Atomium/Analysis tool will take C files as inputpé then it will insert some C preprocessor macnts i
the code and write code again in C++ style. Asdligput is C++ files, so we need C++ compiler antll wi

be linked with ATOMIUM run time library.

When run, besides performing its normal functidredi generate access statistics for the arrageptrén
the code[18].

Atomium/Analysis on given C program involves sigs[18]:

Prepare program for ATOMIUM.

Instrument the program using Atomium/Analysis.
Compile and link instrumented code.

Generate instrumentation results.

Generate an access count report.

S o

Interpret the instrumentation results.

"

stirmuli L |  executable

R

instrumentation
normal output data

- - ,f’

post processing ——*. ..

Figure 10 Atomium/Analysis Generating Results[18]

Atomium/Analysis will be explained stepwitéethodology and Implementatichapter.
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2.6 MPA TOOL

The MPA tool assists the user in parallelizing sadial code for running it on multi processor phaih.
The general idea of the MPA tool is that the ugentifies the parts of sequential code that areilyea
executed and should be executed by multiple partieads to improve the performance of the

application. The pieces of the code that will beapalized are called parsections[19].

For each parsection, the user specifies how mamadls must execute it and what part of each of these
threads must execute. The user can divide the wadkinh terms of functionalities, loop iterations both

depending on what is most appropriate for givesgaion[19].

Sequential C code
Platform specs Parallelization directives

\ /

Extract parallel model

Analyze scalar dependencieg

Analyze array dependencies m

MP-MH iy

Optimize memory hierargh?

Add synchronization

Dump parallel code

/ N\

Multi-threaded code with FIFOs, Meta data
BTs. and synchronization

Figure 11 MP-MH Tool Flow[19].

These parallelization directives have to be writitera file provided by Atomium/MPA tool. The main
reason for using directives instead of pragmasieden the input code, is that it simplifies exition

of multiple parallelizations for the same sequédrtitale[19].

Given the input code and parallelization directjé® tool will generate a parallel version of ttwle

and insert FIFOs and synchronization mechanismseuieeded.
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The tool settles the dependencies between thrébmgever, designer has optional control over shared
and private variables. By specifying a variable shasedrivate, the designer will take care of its

communication and synchronization mechanism.

The generated parallelized code must be compileldiiaked with MPSoC Run Time Library (RTLib).
The user may go for high-level functional simulatiwf parallelized code or may compile code foral re
MPSoC platform.

Finally, when the parallelized code is compiled amd, it can dump aact.vcdfile containing traces of
the parallelization run in “Value Change Dump” famThis feature requires that the input code use

Atomium Record Playback (ARP) functions.

In addition to provide parallelization, The MP-Midal will also optimize the storage and data in the
hierarchical distributed memaory architecture of theltiprocessor platform. It will decide where arahh
each array must be stored in the memory hierarelhich local copies have to make to increase

efficiency, where these local copies must be staed,when they must be made.
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2.7 High Level Simulator (HLSIM)

When combined with Atomium Record & Playback fuantlity, the parallelized code linked with the
functional version of the MPSoC RTLib can be ussdadigh-level simulator for the parallel code.sThi
allows quickly getting an idea how well the partdiation will perform. The user will supply some
platform parameters to the high-level simulatositnulate the delays introduced by the communication

and synchronization functionality[19].

The HLSIM reads the platform architecture as inflet fvhich describes physical resources available on
platform, such as processors, memories, DMAs. Eixtigrmation regarding memories and DMAs is
provided e.g. read/write ports, size of memory,eage. Such kind of information is used by HLSIM

while simulating application[20].

Currently, only FIFO delay parameters are implemented, but in theefatso thread spawning/joining,

and block transfer delay will be added.

Tsourca Ttarget

pre get delay
pre put delay

wait on FIFO empty

transfer

post put delay
delay

wail on data transfer

copy delay

post got dalay

Figure 12 lllustration of FIFO delay[19].

The delays shown in blue are fixed delays whilesid are proportional to FIFO element size. Thelbla
hashed line indicates that thread has to wait donething. If FIFO is full when the put is issuelet

source thread will have to wait until a FIFO slecbmes available again[19].
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Typical multimedia application code will containsted loops for which most of processing time imspe
These nested loops are callaginels.The Atomium Record & Playback introduce timing infation for

these kernels, which are important timing-accuratsing[20].

Atomium analysis tool [18] profiles the applicatioade and inserts ARP instrumentation calls totadd
timing information around identified kernels in trepplication code. The exact execution time
information for these kernels is then obtained tayning these kernels on a stand-alone Instructetn S

Simulator for the processor used in the platform[20

HLSIM first reads information about the platfornchitecture. With this information, it becomes aware
of platform resources. When application starts iguming RTLib component information, HLSIM
accumulates that information with already knowrtfplan information. ARP instrumentation information

and BT information are also read and accumulatdxktaccessed during simulation run[20].

RTLib API uses FIFOs and/or BTs to do thread compation and uses loopsyncs to do thread
synchronization. Currently BTs are modeled as feansver a connection between two platform nodes
whereas FIFOs and loopsyncs are modeled in HLSikbughared memory[20].
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Chapter 3 Previous Work

The MPEG-4 encoder is one of resource hungry bumneoonly used multimedia applications for
handheld devices. The application consists of afkérnels, and each kernel consumes and produces
large amount of data to be communicated betweeferdift memory hierarchy levels. Furthermore,
application is computationally extensive, thus thstribution of the kernels across several procgssi
elements is wishful[21]. Thus, MPEG-4 encoder iteptal application to be explored. The sequential
MPEG-4 encoder’s implementation is processed thrqugviously explained programming model and
tools, to generate several parallelization possdsl
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3.1 Experimental workflow and code preparation

The experimental workflow is depicted in figure.eTimput code must be clean according toGhean C
rules (on page 12). The MH tool (on page 7) iniies copies and Block TransfeBT( in the code.
Minor manual modifications are needed to prepaig ¢bde such that MPA (on page 15) can produce

correct output code. This code is executable ondigh Level Simulator (on page 17) [22].

Clean/prepare code

¥
Code instrumentation (amp)

v -

—

Atomium/MH . Automatic kernel optimization
] r
Manual changes for MPA Compilation (dresc)
' y
Atomium/MPA Simulation (ccs)
v '
Seript (assignment) Timing behavior of kemels
p (data.arp)
(parallel code) :
Optionally manually
adapt prefetching
¥
HLSim

l

Timing behavior of
parallel execution

Figure 13 Experimental tool flow[22].

The MH and MPA have been modified to make it easigrenerate a consistent code[23].
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3.2 MPEG-4 Encoder Experiment

The experiments are performed for the “crew” segaeat 4CIF resolution. The sequence is first pedfil
with Atomium Record PlaybackARP) profiling data. From these profiling results, wey conclude a
rough decision about how load is distributed betwaenctionalities inside application. The MPA (on
page 15) and MH (on page 7) refinement and exetwiothe HLSIM (on page 17) enables to quickly
iterate over these rough directions and get seméi@dback[22]. This kind of iterations leads teesal

solutions for different performance requirements.

The top-level cycle distribution over the variousdtionalities inside mpeg-4 encoder is shown guFe
14.

es (2dig-ceiled)

Mcycles sum in function
[
o

R
(e
Total=210MCvycl

Figure 14 Top-level cycle distribution for 10 frameof crew 4CIF sequence[22].

The motion estimation and texture coding are equally dominant and form the majority of @ltles.
Based on the cycle count distribution over theeddht functions, a rough decision can be deduced
regarding parallelization options for balanced pssor load. Some functionalities here are highly
sequential in nature, so cannot be parallelizedas level. Therefore, it will be better to keeprth
sequential and combined with other functionalitiesking small contributions, which are not worth to
make their own thread. This kind of sequential ratfinctionalities limits the maximum performance

gain to a factor of 6.
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Figure 15 MPEG-4 Encoder parallelization options fo various processor count[22].

Figure 16 MPEG-4 Encoder parallelization options fo various processor count[22].
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A number of parallelization options were derivedgging in mind maximum speedup factor, ranging
from 1 processor to 9 processor. The 3 threadedllptization (me.mcZic.tuZic.bs) is a pretty
balanced functional pipeline of three stages, dnelsga noticeable performance gain over sequential

A bit more gain can be achieved by further pipelinme and mc. Furthermore, we may exploit the
coarse data parallelism. A data split for the mo#stimation is complicated due to dependencidkan
motion vector prediction. First half of firMB line should be processed first, and then secolidhfirst

line and first half of second line can be procesaquhrallel.

3.3 Platform Template

<—p  Memory port
Virtual connection (L1 -= L2)

L2
- Virtual connaction (L2 == L1)
1[ “" "4 Virtual cennection (L1 - L1 for fifos)
e
——— {1\
r 4—_—\—{_ 4——_: s e ~ 4-'/_'\' /i \\
DMA21a || DMAZ21b DMA21c || DMA21d | /| N \\
. \ VAN _

DV N N —y \ \

| omatze [N e | DMA12Z |
LS I A /
} 1

Lia Lib Lic [ 3 ] L1Z

procO proci proc2 procN

Figure 17 Platform Instantiation[22].

The delays of the system are always expressedveelad one processor cycle. All processors have
currently same speed. Each processor has a ldcaldmory and there is one shared L2 memory. Each
L1 has a local DMA. The DMA reads from the localmey and can write via a connection to remote

memory[22].

The virtual connections are not a platform chargstie but an application implementation detail.

Therefore, these connections are setup inside cahipin. These connections are unidirectional.
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Moreover, L1/H 1 connections are FIFO communication, must be sfepy application too. At L2 side,
separate DMAs are instantiated for each L1 menmietp a fast response. If only one DMA deal with
all BT requests from L1 memories, a small BT frone adhread can be blocked for a long time by a large
BT from one of the other threads. Instantiating 8/ per L2/.1 connection provide more

predictability and improves speedup[22].
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Chapter 4 Methodology & Implementation

The parallelizations proposed in [22] have usednmfitin Record & Playback profiling to obtain
simulation cycles. The parallelizations are deriviealsed on the criterion of possible maximum

performance gain. That work has a number of isthetshave been targeted by this chapter.

First, we need to profile sequential code with eetpto memory accesses to have insight regarding
memory bandwidth usage by the application. Thigrmiation will be useful to analyze and support

previous work and propose new parallelization pokses.

Second, proposed parallelization solutions neetietqorofiled and criticized. This will be helpful to

understand the application’s behavior when it pepined with multi threads.

Third, until now we may decide our parallelizatiah compile time. Therefore, once application is
allocated hardware resources, a designer has rtoocem re-configure the resources of CPU/memory.
Our target is to delay a designer’'s decision umtii-time. A successful implementation will provide
designer with the run-time switching from one pliaation to another. Briefly, one will be able set

performance/cost parameters at run-time and magat and de-allocate hardware resources at rim-tim
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4.1 ANL Profiling for Sequential MPEG-4 Encoder

Atomium Analysis Tool instruments data-dominategyr@grams with the purpose of obtaining various
kinds of profiling information. ANL [18] can be uddo access counting, dynamic pruning and kernel
profiling. Here our target is to profile for accessunt, as we are interested in array accessefidy t
MPEG-4 encoder.

ANL inserts some C-preprocessor macros into thgiral code, which enables the program to generate

access statistics for the arrays used in the code.

Instrumentwith ATOMIUM

Compile& Link

GeneratelnstrumentingResults

GenerateAccesountReports

Figure 18 Profiling Steps for ANL.

ANL profiling involves following steps:
4.1.1 Preparing the program for ATOMIUM

First, the program should adapt ATOMIUM C restoas (on page 12). ATOMIUM comes with a pair of
auxiliary pre- and post processing scripts to azelyode of Clean C restrictions. For current seéenpre
processing will be enough to the job. The pre-pser®y script namepreato will generate the new code
in a new directoryatoready. Thepreato will combine all header files to one header AlInOne.h.

The newly generated cleaned code will be use@xt step for Instrumenting with ANL.
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4.1.2 Instrumenting the program using ATOMIUM

Instrumenting will be done by invoking the apprapei ANL command. We could instruct the tool to
instrument the .c files found in thec directory for detailed local access statistics gutting the

instrumented code ioutdir directory.
4.1.3 Compiling and Linking the Instrumented program

The instrumentation process will result in instrumieel code dumped ioutdir . The directoryoutdir will
contain ANL header files anstc directory contains the instrumented code. ANL sakecode as input
and output instrumented is in C++ format (Figure Bpr compilation, we will use C++ compiler anaki
it with ATOMIUM runtime library.

After successful compilation and linking, execugalfiile for application will be created. Running ghi
executable will generate access statistics betsdeormal output (Figure 10). Beside producing radrm

output, a new file will be generated nanadd.data by default.

In the instrumented program, data may end up irrgbfaces in memory than is the case in the ofiigina
un-instrumented one. The buggy program that happevork by accident, may fail unexpectedly when
instrumented. The RTLib (on page 11) sometimes tstath errors e.g. array being accessed outside its

boundary. Still such accesses will be reportedport[18].
4.1.4 Generating an Access count report

The Atomium data file can generate a variety obrep The generated report can be in form of HTML,
TABLE or TREE format. The HTML format gives betteavigability but requires a lot of hard disk

space.

The report may include array access count, peakanemmsage and function & block activation. For
current application, we will go through all threiads of reports to explore application in depth haste

comprehensive profiling results.
4.1.5 Interpreting results

The reports generated for current application gehtontaining 145 functions/blocks accessing 78yatr
Therefore, we need some criteria here. We canraififiitne the criteria as the arrays being accessmest
or functions whose execution time is longer. Istficriteria, we can identify arrays but trackingdtion
inside application for these accesses is bit tri€lor second criteria, if we take function execatime as
starting point, we can easily identify arrays beamgessed by these functions. We can also notite tha

function’s execution time is higher because of lyearay accesses or intense functional procesBing.
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identifying such functions, we can analyze the paag behavior and can investigate parallelization
possibilities.

main
| 2563

|
—

encodeChip
| 2560

|

{ sequenceProcessing

frameProcessing
2492

MotionEstimateMB_hpme
407

textureUpdateMB viccoding |

113

MotionEstimateMB_fpme
874

MotionCompensate

714 222

intDCTcolumn2 | intiDCTrows
151 | | 102

65

textureCodingMB‘

FullPelMotionEstimation
858

HalfPelMotionEstimation?2
343

|

Figure 19 Execution Time Distribution for MPEG-4 Encoder (in microseconds)

The hierarchical view of execution time shows timainly execution is done dyameprocessingand its
sub-functions. The time shown for each functiosus of its own execution time and its sub-functson’
execution time. We further explore in hierarchicpth to find functions mainly contributing in
execution time e.gMotionEstimateMB_fpme having execution time as 874 microseconds builits
function FullPelMotionEstimation takes 858 microseconds, so parent function take bess time for

self execution.

After identifying these functionalities, we will gia detail for arrays being accessed by these teelec
functionalities and how much accesses are beingredvinside this small group of functionalities

compared to total accesses by application.

Access count statistics for these functionalitiess explored and explained one by one in next chapte
(Error! Reference source not found).
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4.2 Discussion on Previous Parallelizations

Several parallelization possibilities were proposed MPEG-4 encoder on basis &RP profiling
(Figure 15, Figure 16). Each parallelization pogigibis intended for a particular cost-performance
criterion and a specific processor count. First ey would be to profile each of these parallélire
and evaluate their performances. As in next stepyillery to switch between two parallelizations at
runtime. Therefore, this profiling will be usefd select optimal parallelizations, i.e. parallelizas that

give us considerable gain in form of performance me@mory bandwidth usage.

Profiling will be done one by one for each paratiation possibility. MPA (on page 15) will be dited
to generate each parallelization followiMP-MH tool flow (Figure 11). Dumped parallelization code

will be run onHigh Level Simulator (on page 17).

The High Level Simulator output will be profiling results for current sinatiéd parallelization. Profiling
results are in very much detail about each platfoomponent. This report gives detailed informafion
each thread simulation cycles, FIFO data transdeairel physical memory accesses & data transfeored f

each thread.

Results are explored thoroughly for each paraldilin and calculated for total performance and mrgmo

accesses.

The Figure 20 shows total simulation cycles and orgnaccesses (FIFO & L2 transactions) for all
parallelization entries. The first entry namHtiread is sequential execution as there is only thre&e T
“ " separates one thread’s functionality from othbr general, we can see that as the number of
processors involved increases, number of simulatjmtes decreases and memory bandwidth utilization

increases.

We can see that shifting from sequential executidhthreaded parallelizatiomemc_tctu_vicbs gives
50 percent reduction in simulation cycles consuomtiWhile using5 threaded parallelization,
2memc_tctu_vic_bsgives 63 percent performance gain. In the samg imareasing involved processor

count to7, 3memc_2tctu_vic_bssaves 70 percent of simulation cycles.

The parallelizationme_mc_tctu_vicbs and me_fpmemc_2tctu_vic_bsshow deviation from this
generalization. Thane_mc_tctu_vicbsis 4 threaded parallelization, but gives just 1milliaycle
advantage oves threaded parallelizatiomemc_tctu_vlcbsbut memory utilization is around 50 million
accesses more. Similarlyme_fpmemc_2tctu_vic_bsis 6 threaded parallelization but behaves much
verse tharmemc_tctu_vic_bs(5 threaded). These sub-optimal parallelizationsientare marked with

red circles.
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Figure 20 Profiling results for proposed Parallelizégions (crew 4CIF 10 frames sequence).

A close analysis shows that separating functionality fromme can be a reason for this deviation. The
code generated from MPA tool shows that as we agparc functionality fromme in separate thread,
platform has to duplicate some memory blocks frotnth each thread processor that causes enormous

increase in memory bandwidth utilization.

This critical analysis shows that decision regagdirepingme andmc functionalities in separate threads
to improve performance isn't a good solution andsthe avoided as it causes huge memory bandwidth

utilization and gives an insignificant performaraci/antage.
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4.3 Choosing optimal parallelizations for run-time switching
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Figure 21 Optimal Parallelization Selection.

Next experiment step is to enable run-time appboé switching from one parallelization to anothtr
have control over platform resources allocationekatflocation and to adjust performance-cost cetati
run-time. For this experiment, we need to selea potential parallelizations, which can provide us

considerable switching advantage.

The selection criteria involve two main aspectststi-i number of processors involved in both
parallelizations should be so distinct that we eaperience benefit in terms of spare processorgewhi
shifting from greater processor count to lesser. @exond, cycle utilization for both parallelizaiso
should be so different that we can experience pmdace gain while shifting from lesser processamto

to greater one and can explore run-time switchohgaatages in best way.

Looking at the profiling results closely, showsttBahreaded parallelizatiormemc_tctu_vicbg and7
threaded parallelization3fnemc_2tctu_vic_b}¥ suits best to this criteria. We have a considerab
difference in terms of processor count on one ramd secondly we will be able to explore 30 million

simulation cycle and 20 million memory bandwidtltegses difference between two parallelization.
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The HLSIM while reporting other profiling detailorf each parallelization also reports performance
speedup factor in comparison with sequential execufor3 threaded parallelization speedup factor is
reported as 2.37x and far threaded parallelization it is 4.39x. These faktprovide minimum and

maximum performance gain from the resultant switglitomponent based on these two parallelizations.
4.4 Run-time parallelization switcher

Now after selecting potential parallelizations, wan proceed to next step i.e. embedding two
parallelizations in one component and then enabéiwiiching between them at run-time. The new
component will consist of threads belonging to bpdnallelizations, at one time only one set of ddre
will be active, and other will be inactive. One o be noted here is that as our case studycapioln is
MPEG-4 encoder, so our switching decision will bada at start of each frame. In other words, we are
experimenting inter-frame switching. Inter-frameitshing is decided to keep the experiment simplg an

focus on exploiting tools capability.

A limitation introduced by RTLib is that executiaf individual threads in a Parsection is uncondiio
i.e. all threads in a parsection are spawned dolig. Our target here is to spawn threads thirgeto
current selected parallelization and not to ovetladth idle threads belongs to inactive paralldiiaa
Therefore, these two parallelizations will lie iepsrate parsections and at one time only parseatibn

be active.

Another limitation by RTLib is that only master &ad can spawn one or more slave threads, but @ slav
thread cannot spawn other slave threads. So ouchsmg mechanism will be monitored by master
thread. At start of each frame, master thread agtlvate the desired parallelization and after dimap
current frame, control will be given back to madteread. Master thread will deactivate all initthte

threads, wait for next frame input, and follow #sme procedure.
4.4.1 Configuring new component

We need to configure new component consisting tif lparallelizations. We will use the same platform
template as used in previous work (on page 23). @atform template consists of virtual memories
corresponding to physical memories, virtual conioast established to LA.1 transfers and FIFO

transfers, and virtual processors correspondimnysical processors.
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Switching Decision

Parallelization End

Figure 22 Parallelizations integration overview.

Figure 23 Component with both parallelizations.
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For newer integrated component, we need to cordigll of these elements according to our new
platform structure. One parallelizatianemc_tctu_vicbs consists of three slave threads and other
parallelization3memc_2tctu_vic_bsconsists of seven slave threads. There will be roaster thread
controlling these slave threads. So in total newemponent will consists of 11 threads, each
corresponding to a physical processor. At one tiong; 4 of them or 8 of them will be active. Fortuial
memories, there will be a virtual memory correspngdo a physical memory for each thread and one
virtual memory will be shared memory correspondind-2 memory. Each L1 virtual memory will be
having communication to L2 through this shared mgmG@ommunication channel is established through
virtual connections, which are unidirectional. Mplk FIFOs can be established on same virtual
connection, if source and destination nodes areesMoreover, the last thing to configurdasp_syng

which will be configured for both parallelizations.

Each of these components: virtual memories, virtoahections, virtual processors, DMAs are addresse
through their respective IDs. Each thread belongsactly one parsection, and all threads in agoéien

will be activated at once.

The component configuration is static and it is fir&t job to do at when application is run. Thevee
component will include all FIFOs and virtual contieas configured for both parallelizations previlyus
but here we need to adjust them according to cupkriform component IDs. Each FIFO & virtual
connection personal IDs, source IDs and destindbsnwill be properly adjusted to keep paralleliaat

equivalent to individual parent parallelization.
4.4.2 Switching decision spot

As it has been decided that switching, decisiot lvégl made by master thread, so now we need to elecid
where we should take this decision for best respofisgose analysis of code and application control

flow shows that all slave threads are spawned irfsiglee Processingfunction.

As current implementation is targeting inter-fraperallelization switching, ssequencProcessings
best place for switching decision. TkequencProcessinghoose parallelization by a variable name
sel_para The input parameters finrameProcessingare also edited and a new parameteisek.parais
added.
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Component

configured here Parallelization

done

switching

here bysel_para

Figure 24 MPEG-4 Encoder application control flow.

/ if (sel_para == 0) \

{
Parallel_Section_01:
{
/I Master will spawn all thread in this parallel se ction and
/I pass arguments to each thread and then activate threads
/I after encoding current frame, threads will be de activated
by /I Master thread
}
}
else if (sel_para==1)
{
Parallel_Section_02:
{
/I Master will spawn all threads in this parallel s ection and
/I pass arguments to each thread and then activate threads
/I after encoding current frame, threads will be de activated
by // Master thread
}

\__ J

Figure 25 Parallelization spawning model
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4.4.3 Manual adjustment to code and tools

Our programming model and tool support ends tifiegation of parallelization codes, dumping code and
simulating it on HLSIM. The experiment regarding ledding two separate parallelizations into one
component is completely handled through manual agmgr. Automatic embedding the two
parallelizations can be a next step after succkssgferiment results. At this stage, we need toexinb
both parallelizations codes manually and adjust gheviously generated codes according to newer

component. This manual setup contains many diffexspects to cover and will be covered one by one.

We will dump both parallelizations codes, then take parallelization code as basic, and start gddin

second parallelization code into first.

4.4.3.1 Adding new threads and naming convention

The C file frameProcessing.ccontains definition for all threads. Previouslye were having just one

parallelization so thread’s function naming coni@mivas like
T1_memcfunctionality(), T2_tctufunctionality(), T3_ vicbsfunctionality()

Now we need to accommodate two parallelizationsa s@w naming convention informing both about

thread ID and parallelization ID.

P1_T1_memcfunctionality(), P1_T2_tctufunctionality( ),
P1_T3_vlcbsfunctionality()

Similarly for second parallelization,

P2_T1 memcfunctionality(),P2_T2_ memcfunctionality() ,P2_T3_memcfunctionality()
P2 T4 tctufunctionality(), P2_T5_tctufunctionality( ),
P2_T6_vicfunctionality(), P2_T3_bitstreamFunctional ity()

First step is to dump all threads definition frameProcessing.cand then to apply new naming

convention.
4.4.3.2 Parsection switching & parallelization spaw  ning

As discussed before, for each video frame slavatlsrare spawned frameProcessingfunctionality.
We need to add spawning mechanism of second pdaratien thread in awitch or if-else statement.
Code will be following previously discussed programedel (Figure 25). The parsection 02 will spawn

threads, pass argument and activate threads betptagsecond parallelization.
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4.4.3.3 Replicating and Adjusting functionalities ¢ alled by threads

MPA generated code has a naming convention fortifumalities directly called by thread functions or
related to a single specific thread e.g. functioalled by or related td1_memcfunctionality will be

having prefix “T1_".

For new component, as both parallelizations haweestunctionality and access same functions form
different thread, so we need to replicate all tHfagetionalities and introduce same naming conwendis

used for newer threads i.e. “T1_" will be replaced'®y_T1” or “P2_T1".
These functionalities mainly lie in:

X motionCompensation.c
X textureCoding.c

X textureUpdate.c

X entropyCoding.c

x textureCoeffCoding.c
X bitstreamPacketsizing.c

X motionCompensation_sep.c

Functionalities from these files will be simply éeg to directed files and will be renamed according

new naming convention.

A reason to this replication is ARP instrumentati@RP instrument each functionality and kernelsdeas
with arp_enter() andarp_leave() to keep track of execution path i.e. from whet@gpam terminated to
this specific kernel and which parts are executedHis run. If we do not replicate these functidies

and we are going to terminate to same functionéidayn different thread from both parallelizatioreh

for ARP profiling, we will be having no clue fromhich thread we come to this kernel and what we
execute for that thread. Therefore, ultimately wi## e unable to calculate processing and memories

accesses hy each thread (processor).

Another reason iblocktransfer calls. Forblocktransfer, we need to mention its source and destination
nodes so proper DMA will be assigned the job. Withceplication, thesélocktransfer calls will be

unable to work with existing implementation.

As we know, all functional definitions are combinedone header fileAlllnOne.h (on page 26). All
these changes to threads naming convention, régdiclinctionalities and changes for their naming

convention should be echoed with newer functioedihitions.
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4.4.3.4 Adjusting ARP instrumentation

As explained before, Atomium Record & Playback imstentation is necessary for our profiling
intentions. To keep track of all execution path&®kFArecords all these paths followed by running
application. ARP points to its path nodes or kesngy arp_enter() and arp_leave() functionalities.
These functionalities keep track of originatingetid id, se we need to adjust for newly added tisraad
replicated functionalities for these threads. ThePARalls inside these functionalities should mankex

originating thread id to avoid bogus profiling réésu
4.4.3.5 Updating platform information

The MPA tool consumes sequential code, paralléimatirectives and platform specs as input to
generate parallelization code (on page 15). Theégpia specs are later on used by High Level Sinoulat
to simulate parallelization for the specific platfo details (on page 17). To simulate new embedded

component on High Level Simulator, we need to upédtform specs with accordance to newer details.

Platform specs are described in a file narpétform.plaf. The description will include number of
processors, memories, DMAs. Each memory will becidiesd in terms of id, read page hit, read page
miss, write page hit, write page miss, page sizadwdepth, and number of ports. Similarly, a DMA
specification will be described with its id, maximupending, humber of channels, DMA overhead,
processor overhead, cycles per word, line setup pldtform.plaf will reflect all changes and alterations
made while configuring the newer component. DMAgsemaot configured at that stage, so now need to

create DMASs for each virtual connection establisbadier.
4.4.3.6 Block Transfers and FIFO communication

Block transfer are used to communicate data fod.2 and L2/H.1 transactions. We dumped threads
and their relative functionalities codes here, iegd to settle down all block transfers, becausegssor

id will be different. Secondly, block transfer idauild be unique and may now have a clash with other
parallelization block transfer. Therefore, for tkdcansfer we need to adjust block transfer idrse@and

destination ids and virtual connection id the blgoing to use.

For FIFO communication, FIFOs are configured fulile configuring component, so at this stage
while communicating through a FIFO one just neednention FIFO id. Therefore, here we need to
adjust the FIFO ids so communication can be doraugh proper FIFO.

4.4.3.7 Execution and Profiling

After all these major adjustments and some otheromadjustments, we are ready with our newer

component having two parallelizations coupled. irter-frame switching, we will select parallelizati
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before start of each frame processing for inputieege. Now we have choice to encode complete or par
of sequence with any parallelization. By encodingiplete sequence with only one parallelization, we
will receive same results, as achieved earlier whtit parallelization. Each frame takes around B to
million cycles for encoding and cycles required thread spawning, thread activation and argument
passing will require few thousand cycles. Therefdoe total sequence encoding, cycles required for
thread spawning and activation are negligible aaml lse ignored. For a 10 frames sequence, we either
switch for each frame or switch just once afterarfes, both parallelization will encode half of segce
frames and profiling results will be same. Evenvimasly generated parallelization, spawn and atgiva
thread for each sequence frame, so switching freenparallelization to other at start of each fradoes

not affect much total simulation cycles utilizatidrhe profiling results shows that, we are not plge to
switch between previous Pareto points formed b Ipatrallelization, but may also have as many Pareto

point to settle down in between these points asyrframes the input sequence consists of.
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Chapter 5 Results

The ANL profiling provides detailed insight to MPEGencoder application. These results are helpful t
understand application behavior. From overall cydistribution presented in Figure 19, it can be
concluded that identified potential functionalities parallelization in previous work are quite priging.

While proposing parallelization possibility, keegime andmc functionality on two separate thread was
not supportive because of large memory accessks.tvlo selected parallelizations are embedded o on
component to access performance-cost correlatiomotif parallelizations at run time. The successful
experiment shows that we are not just able to acpesvious performance-cost instant on Pareto ¢urve

but may also mix up both instants and generaté @f instances to offer in-between previous ones.
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5.1 Interpreting ANL profiling results

The profiling results generated by ANL are hugeyirg detailed array accesses of around 150
functionalities. Functionalities consuming mosttofal simulation cycles are filtered and their grra

accesses are analyzed. The detailed cycle distiburt form of code flow is shown in Figure 19.
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Figure 26 Total array accesses for selected functialities (read + write).

The Figure 26 shows local array accesses done Ipcteg functionalities. Previously decided
parallelizations which are based on simulation eydiktribution, are in agreement with memory access

distribution too.

One important point to notice here is how much mgnazcesses we are covering within these selected
functions, which are in numbers 8% of total functiities. The Table 1 shows that above selected
functionalities cover 80% of total memory accessdse ANL profiling gives us a deep insight into
application behavior, simulation cycle distributiand memory accesses distribution. This informaison
very crucial to for deciding parallelization opparities available for target application and carhbipful

for adding more possibilities to previous parafiation proposals.
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Total Array Accesses 146,506,002 | | |

Accesses Covered in Selected Functions Jl:L7,805,054 | | |
Accesses not covered | 28,700,948 | % Accesses Covered |80.40971182 |

Total Array Writes 1 50,296,305 | | |

Writes Covered in Selected Functions 40,582,892 | | |
Writes not covered ‘ 9,713,413 | % Writes Covered ‘ 80.68762109 ‘

Total Array Reads | 96,209,697 | | |

Reads Covered in Selected Functions |77,222,162 | | |
Reads not covered | 18,987,535 | % Reads Covered | 80.26442698 |

Table 1 Total memory access coverage by selecteadtionalities

5.2 Profiling Parallelization switcher component

The parallelization switcher component needs texpored for all possible combination of
parallelization selection. For a 10-frame sequeneecan profile with 11 different combinations ame
always want to compare our performance gain witiusatial execution of application to have a better

observation about speedup factor.
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Figure 27 Profiling Results for Parallelization $hing Component (Crew 4CIF sequence)
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In Figure 27 “0” represents no parallelization, meaequential or one thread execution. The “1”
represent 3-threaded parallelizatioremc_tctu_vicbs while “2” represents 7-threaded parallelization
3memc_2tctu_vic_bs The numbers under each entry represent order rafnef execution by
parallelization option e.g. “22 22 11 11 11" shothat first 4 frames are encoded by 7-threaded
parallelization and rest 6 are encoded by 3-thr¢@deallelization.

The starting Pareto points are marked with redestcThe resultant curve offers many more points in
between previously defined points, as our resulEmtoding process can be a combination of both
parallelizations. For experimental point of viewe ook 10-frame sequence but in practical, the rarmb
of frames can be in hundreds. The number of newert pn between previous points is n-1, where n
represents number of frames in the sequence. Tnerdbr a long sequence we will be able to explore
curve more smoothly. The above experiment givesingime control over platform resources. One can
adjust the memory bandwidth utilization by applicatat run-time and subsequently set the desired
performance. In a nutshell, we can improve appboaperformance to 39% at run-time by utilizing 15%

extra memory bandwidth.

Here, a point needs to emphasis that we do not teeexplore for possible permutations but just paes

combinations are enough.
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Figure 28 Switching parallelizations cost negligibl
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We have two strong reasons to support this arguriést, all frames are of almost equal data sipe,
does not make much difference which parallelizatboencoding which frame but how many frames are
being encoder by which parallelization. Second;ast for switching from one parallelization to atle
almost negligible in comparison to cost consumedfiplication execution. Therefore, if we are
encoding half of sequence with one parallelizadod half with other, it does not matter either wteh

after each frame or switch just once in the middigeriment shown in

Figure 28.

Same experiment is repeated with another sequenoake results non-dependent to input sequence and
stress on obtained results. The profiling reswdtsharbor sequence are very much in line with pnesly
generated crew sequence results. For this sequéntteéecaded parallelization gives much better

performance than 3-threaded parallelization anelcetfan be seen by extra steepness in simulatida cy

curve.
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Figure 29 Profiling Results for Parallelization Swiching Component (Harbor 4CIF sequence)

Previously known operating points are marked wéti circles. Again, sequence was 10-frame sequence
and we can find n-1 extra Pareto points to opaérabetween previously defined operating points. Bhe
threaded parallelization consumes 86 million cyelbidle 7-threaded parallelization consumes 45 onilli

cycles for encoding complete 10-frame sequence.ciSely, we have control to improve our

application’s performance to 48% at run-time byizitig 16% extra memory bandwidth.

5.3 The Final Pareto Curve

From the above figures, we may extract the Paneteecin proper form showing performance and cost

relationship. The Pareto curve shows trade-off betwperformance and cost.
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Figure 30 Performance-Cost Pareto Curve (Crew 4CIRO-frame Sequence)

The Figure 30 shows performance- cost relation&iprew 4 CIF sequence. One can explore this trade

off curve at run-time. The performance of applicatcan be improved or trimmed from 40 to 50% and in

this way memory bandwidth utilization can be conedror saved to 15-16%.
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Page47 of 55

TRIAL MODE - a valid license will remove this message. See the keywords property of this PDF for more information.



Chapter 6 Conclusions and Future Work

In MPSoC environment running multiple applicatioressource management (Distribution, allocation and
arbitration) plays a key role in system flexibiliffhe platform should be able to recognize the ghan
user priorities for running applications and acdaagty reflect change in application run-time gualithe
run-time parallelization switching enables the folah to echo modification in user

requirements/constraints at run-time.
6.1 Conclusions

The results presented shows that parallelizatiotckimg enables us to tune application performaatce
run-time. Adjusting application performance at time also enables to have control over bandwidth

utilization by application.

Test application and selected parallelization shives switching between two parallelization of same
application does not consume extra cost and a margidjustment in form of performance and

bandwidth utilization is possible.

Figure 32 The run-time manager[10]

The figure above shows that thesis work targetesiesy manager part of run-time manager and both

guality & resource manager are capable to arbfipli@ation’s quality at run-time.
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6.2 Future Work

As thesis work was experiment for run-time contreérosystem resources. Further dig into system is

required to achieve the ultimate benefits of thesisk. The future goals can be:

1. As with current research two parallelization gme application were selected to experiment
parallelization switching, further goal can be watsh between more than two Pareto points. This
will give more flexibility to control application’performance and application quality can be
tuned more smoothly.

2. For current work, parallelization were embedded Bingle executable through manual work. To
avoid this tedious work for each application, whidn't a favorable option for practical
implementations, parallelization embedding can beerfully automatic or semi-automatic. So at
design time, developer will select preferred Papetints and resultant executable will contain all
those parallelization with automatic generation.

3. As the final goal is to run multiple applicationa MPSoC and run-time manager is resource
arbiter among running applications. So parallelaratswitching can be experimented with
multiple applications, each application have migtipareto points to switch. In this way, at run-
time user may provide priority to any applicatiamdaun-time manager will mirror this priority
by tuning high performance Pareto point for sel@cpplication and similarly other running

application will be switched to lower performancaé€to points.
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