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Abstract 

 
In	 this	 thesis,	 we	 employ	 optical	 flow	 features	 for	 the	 detection	 of	 the	 rigid	 or	
non‐rigid	single	object	on	an	input	video.		
For	optical	flow	estimation,	we	use	the	Point	Line	[PL]	method	[2]	(as	a	local	method)	to	
estimate	 the	motion	 of	 the	 image	 sequence	which	 is	 generated	 from	 the	 input	 video	
stream.		
Although	 the	 Lukas	 and	 Kanade	 [LK]	 is	 a	 popular	 local	 method	 for	 estimation	
of	 the	 optical	 flow,	 it	 is	 weak	 in	 dealing	 with	 the	 linear	 symmetric	 images	 even	
by	use	of	regularization	[e.g.	Tikhonov].	
The	 PL	 method	 is	 more	 powerful	 than	 the	 LK	 method	 and	 can	 properly	
separate	 both	 line	 flow	 and	 point	 flow.	 For	 dealing	 with	 rapidly	 changing	 data	
in	 some	 part	 of	 an	 image	 (high	 motion	 problem),	 a	 gaussian	 pyramid	 with	 five	
levels	 (different	 image	 resolutions)	 is	 employed.	 In	 this	 way,	 the	 pyramid	
height	 (Level)	 must	 be	 chosen	 properly	 according	 to	 the	 maximum	 optical	 flow	
that	we	expect	in	each	section	of	the	image	without	iteration.	
After	determining	the	best‐estimated	optical	flow	vector	for	every	pixel,	the	algorithm	
should	 detect	 an	 object	 on	 video	 with	 its	 direction	 to	 the	 right	 or	 left.	 By	 using	
techniques	 such	 as	 segmentation	 and	 averaging	 the	 magnitude	 of	 flow	 vectors	 the	
program	can	detect	and	distinguish	rigid	objects	(e.g.	a	car)	and	non‐rigid	objects	(e.g.	a	
human).	
Finally	 the	 algorithm	 makes	 a	 new	 video	 output	 that	 includes	 detected	 object	
with	 flow	 vectors,	 the	 pyramid	 levels	 map	 which	 has	 been	 used	 for	 optical	 flow	
estimation	and	a	respective	binary	image.	
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Chapter 1 

Introduction 

1.1 Problem Statement (Motivation)  
 
Image	analysis	techniques	are	used	to	detect	normal	and	abnormal	events	and	different	
types	 of	 visual	 objects	 (person,	 package,	 car,	 etc.)	 and	 extract	 their	 characteristics	
(speed,	direction,	disappearance/appearance,	position).	
Indeed,	event	detection	in	video	is	becoming	a	more	and	more	important	application	for	
computer	vision,	mainly	in	the	context	of	activity	recognition	[3].	
To	achieve	this	goal,	many	approaches	use	local	descriptors	on	desired	points	in	images	
[4]	and	video	[5].	These	techniques	are	based	on	expressing	the	local	region	around	an	
area	of	interest.		
However,	 these	techniques	rely	on	the	assumption	that	we	can	reliably	detect	enough	
stable	interest	points	in	the	image	or	the	video	(image	sequences).	This	means	that	for	
space‐time	interest	points	the	video	sequence	should	have	several	instances	of	motion	
critical	events	(regions)	where	 the	specific	object	changes	 its	direction	of	motion	(e.g.	
the	black	and	white	striped	circle	that	rotate	continuously	with	desired	speed(fig.	36)).	
One	of	the	methods	that	can	be	used	to	locate	stable	interest	points	is	the	estimation	of	
optical	 flow.	 The	 optical	 flow	 is	 the	 pattern	 of	 apparent	2D	 motion	of	 objects	 in	
sequences	of	time‐ordered	images.	In	every	video	frame,	every	pixel	is	associated	with	a	
two	dimensional	vector,	and	this	vector	tells	the	apparent	motion	of	that	pixel,	when	it	
moves	from	one	frame	to	the	next	[20].	
In	order	to	estimate	optical	flow,	we	face	some	difficulties,	including:	

a) Aperture	problem	
The	 homogeneous	 contour	 has	 ambiguous	 motion	 if	 the	 detector	 or	
motion	 sensor	 looks	 at	 it	 through	 a	 window	 or	 aperture	 that	 is	 smaller	
than	the	contour	that	it	observes.	

 

             Figure 1: Looking to the homogeneous contour through an aperture 
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Within	 that	 aperture	 problem	 we	 cannot	 distinguish	 between,	 different	
physical	motions	and	the	motion	can	be	towards	any	direction.	

                                        

Figure 2: Lines are moving from right to left                                                                   Figure 3: Lines are moving top to bottom 

The	 motion	 sensor	 is	 sensitive	 to	 the	 part	 of	 the	 contour’s	 motion	 that	 is	
perpendicular	to	the	edge	of	the	contour.			
In	 figures	 2	 and	 3	the	 lines	 moving	 top‐to‐bottom	 produce	 the	 same	
spatiotemporal	 structure	 as	 the	 lines	 moving	 right‐to‐left.	 As	 a	 result,	 the	
motion	 sensor	 cannot	 detect	 the	 correct	 movement	 of	 the	 contour	 unless	
the	ends	of	the	bars	become	visible	in	the	aperture.	
	

b) Motion	of	lines	problem	
For	 estimation	 of	 optical	 flow	 with	 full	 degree	 of	 freedom	 in	 a	 specific	
region,	 we	 should	 consider	 that	 this	 region	 should	 not	 be	 linearly	
symmetric.			
The	 degree	 of	 freedom	 (DOF)	 for	 moving	 lines	 such	 as	 in	 figures	 2	 and	 3	
is	the	amount	of	motion	perpendicular	to	the	orientation	of	the	line.	
If	 the	 region	 contains	 corners	 and	 well	 distributed	 structure,	 then	 we	
have	 a	 point	 motion	 and	 we	 can	 estimate	 two	 degrees	 of	 freedom	 of	
motion	 (displacement	 in	 x	 and	 y)	 but	 on	 the	 other	 hand,	 like	 the	 figures	 2	
and	 3	 if	 region	 contains	 linearly	 symmetry	 then	 we	 have	 a	 line	 motion	
and	 we	 can	 estimate	 only	 one	 degree	 of	 freedom	 (the	 degree	 of	 motion	
perpendicular	to	the	edges).		
This	 method	 will	 help	 us	 to	 solve	 aperture	 problem	 that	 we	 discuss	 in	 the	
next	chapter	[20].	

c) Problem	of	high	motion	
The	 image	 has	 a	 high	 frequency	 component	 when	 data	 is	 changing	
rapidly	 across	 a	 short	 distance	 and	 the	 image	 has	 a	 low	 frequency	
component	when	the	pixel	values	are	changing	slowly.	
The	 input	 video	 sample	 includes	 both	 high	 and	 low	 motion	 regions.	
Usually	 the	 estimation	 of	 optical	 flow	 for	 regions	 with	 high	 frequency	 or	
high	 motion	 (e.g.	 boundaries	 in	 a	 rotational	 spiral)	 are	 not	 accurate	
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because	 the	 data	 of	 those	 pixels	 in	 boundaries	 change	 faster	 than	 in	
others.	 We	 should	 handle	 this	 problem	 for	 all	 pixels	 in	 video	 that	 have	
high	frequency.	

	
The	 dense	 technique	 in	 optical	 flow	 algorithms	 is	 used	 for	 calculating	 motion	
vectors.	 It	 processes	 all	 the	 pixels	 and	 provides	 one	 flow	 vector	 per	 pixel.	 This	
technique	 is	 slower	 (in	 comparison	 with	 the	 sparse	 technique)	 [6]	 but	 it	 can	
provide	 more	 accurate	 results	 and	 it	 is	 fast	 enough	 to	 use	 in	 real‐time	
applications.	

The	 sparse	 technique	 processes	 only	 some	 pixels	 from	 the	 whole	 image,	 and	
generally	 executes	 feature	 tracking	 and	 it	 is	 usually	 used	 in	 time‐critical	
applications.	

As	 described	 above	 using	 a	 reliable	 and	 accurate	 method	 for	 estimating	 the	
geometry	 of	 each	 point	 (pixel)	 in	 an	 image	 sequence	 in	 general	 and	 desired	
point(s)	 in	 specific	 is	 one	 of	 the	 most	 important	 concerns	 for	 those	 working	 in	
this	 domain.	 This	 is	 also	 the	 basis	 for	 accurately	 detecting	 a	 desired	 object	 in	
video.	

1.2  Approach Chosen to Solve the Problem  
 
The	 optical	 flow	 of	 an	 image	 sequence	 is	 defined	 as	 a	 vector	 field,	 relating	 each	
image	to	the	next	image	(each	frame	to	the	next	frame).		
Each	 vector	 shows	 the	 apparent	 displacement	 of	 each	 pixel	 from	 image	 to	 image.	
Assuming	 that	 each	 pixel	 conserves	 its	 intensity,	we	 reach	 the”	Brightness	 Constancy	
Constraint”	equation,	(discussed	fully	in	chapter	2)	
	

, , dx	, y 	dy, t dt 			 	 	 	 	 	 	 						(1.1)	
	
In	 this	 formula	 F	 is	 an	 image	 sequence,	 dy	 and	 dx	 are	 the	 displacement	 vectors	
for	 the	 pixel	 with	 coordinate	 [x,	 y]	 and	 finally	 t	 and	 dt	 are	 the	 frame	 and	
temporal	displacement	of	the	image	sequence.	
The	 ideas	 of	 that	 optical	 flow	 and	 brightness	 conservation	 are	 first	 proposed	 by	
Fennema	 [7].	 One	 of	 the	 methods	 for	 solving	 the	 equation	 (1.1)	 is	 gradient‐
based	 method.	 This	 method	 solve	 the	 differential	 form	 of	 (1.1),	 derived	 by	
Taylor	expansion.	
	
	v v 	 	0	 	 	 	 	 	 	 	 	 						(1.2)		

	
Here,	 we	 have	 two	 unknown	 (v 	 and	v )	 in	 only	 one	 equation,	 for	 solving	 this	
equation	extra	constraints	must	be	imposed.	
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We	can	categorize	methods	 for	motion	estimation	 into	 three	 sections:	 the	differential	
based	methods	[8],	 the	energy	based	methods	[9],	and	the	correlation	based	methods	
[10].	
In	 our	 thesis,	 we	 use	 the	 gradient‐based	 optical	 flow	 algorithm	 proposed	 in	 [2],	
in	 order	 to	 deal	 with	 the	 issue	 of	 line	 motion,	 we	 have	 integrated	 the	 algorithm	
in	 multi	 level	 technique	 where	 the	 image	 is	 decomposed	 into	 Gaussian	
pyramid‐set	of	the	reduced	images	in	order	to	deal	with	high	motion	issue.	
For	 the	 optical	 flow	 estimation,	 we	 have	 equipped	 the	 PL	 method	 with	
multiscale	 computations	 because	 it	 allows	 the	 image	 to	 divide	 to	 the	 different	
scale	 of	 resolution	 in	 the	 form	 of	 gaussian	 pyramid.	 A	 gaussian	 pyramid	 is	
defined	 as	 a	 hierarchy	 of	 low	 pass	 filtered	 versions	 of	 the	 original	 image,	 and	
progressive	levels	correspond	to	lower	frequencies.		
	
The	 optical	 flow	 estimation	 for	 a	 specific	 pixel	 in	 the	 image	 sequence	 is	
calculated	 in	 five	 different	 pyramid	 levels	 within	 a	 program	 in	 the	 given	 work.	
By	 using	 these	 five	 levels,	 it	 makes	 a	 refined	 estimate	 (the	 best	 optical	 flow	
vector	 that	 has	 least	 error)	 that	 we	 use	 to	 detect	 the	 rigid	 or	 non‐rigid	 object	 in	
the	desired	video.	
We	 have	 tested	 this	 algorithm	 (the	 optical	 flow	 estimation	 algorithm,	 equipped	
with	 a	 five	 level	 gaussian	 pyramid)	 on	 a	 few	 video	 samples	 with	 different	
shapes	 (patterns)	 and	 speeds,	 which	 are	 detailed	 in	 chapters	 3,	 4	 and	 5.	 Results	
show	that	how	multiscaling	can	be	useful	to	reach	an	accurate	estimation.		
We	 selected	 MATLAB	 program	 as	 a	 suitable	 programming	 environment	 in	
which	 to	 calculate,	 compute	 and	 show	 the	 estimated	 optical	 flow	 within	 related	
error	vectors	for	all	pixels.	
	The	 implementation	 does	 not	 need	 any	 special	 hardware	 although	 c	 code	 was	
built	as	a	mex‐module	for	fast	calculation	of	the	gradient.	
MATLAB	 is	 widely	 used	 in	 image	 processing,	 control	 design,	 test,	 measurement,	
modeling	and	analysis. 
 

1.3  Limitations 
 
There	are	some	limitations	that	affect	the	estimation	of	optical	flow.	For	example:	
	
"No	structure"	problem	
	
If	 an	 input	 video	 (image	 frame)	 includes	 a	 spatio‐temporal	 region	 without	 structure	
(e.g.	a	plain	pattern)	 then	the	optical	 flow	cannot	be	estimated	except	by	using	global	
methods	 [15].	 When	 we	 were	 making	 sample	 videos	 or	 recording	 video	 in	 real	
situations,	we	tried	 to	control	conditions	 (noise)	 that	may	have	negative	effect	on	 the	
estimation	of	optical	flow.			
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Lighting	invariance	
	
Illumination	changes	can	harmfully	affect	the	estimation	of	the	optical	flow.	
If	 we	 assume	 that,	 due	 to	 automatic	 adjustments	 of	 the	 camera	 (in	 real	 time	
samples)	 or	 atmospheric	 conditions,	 the	 second	 image	 frame	 is	 brighter	 than	
the	 first,	 then	 as	 a	 result	 the	 brightness	 constancy	 assumption	 will	 fail	 since	
every	pixel	of	the	second	frame	will	be	brighter.		
Brightness	 constancy	 is	 the	 basic	 assumption	 for	 the	 algorithm	 that	 we	 use	 for	
the	 estimation	 of	 optical	 flow,	 but	 one	 can	 address	 lightness	 invariance	
obstacles	by	employing	methods	that	counteract	it	[22].	
	

 
Figure 4: The sample frame from input video 

 
In	 the	 figure	 4,	 if	 we	 assume	 that	 the	 car	 is	 fixed	 but	 the	 light	 source	 goes	 from	
the	 left	 to	 the	 right	 of	 the	 car,	 then	 although	 car	 does	 not	 move	 (no	 motion)	 but	
we	 have	 an	 optical	 flow.	 When	 we	 were	 making	 our	 video	 sample,	 we	 were	
trying	to	avoid	such	problems.	
 
AGC	(Automatic	Gain	Control)	
	
In	real	time	cases,	when	we	examine	the	webcam	output,	we	often	notice	that	the	entire	
image	temporarily	becomes	brighter	to	compensate	for	the	darkening	of	the	room.	This	
adjustment	can	be	seen	as	automatic	gain	control	circuits	in	the	camera.	It	is	also	result	
of	the	shutter	speed	adjustment	of	the	camera,	an	automatic	function	that	is	beyond	our	
control.	
When	these	global	changes	occur,	optical	flow	estimations	encounter	serious	problems.	
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Detecting	vehicle	or	human	
	
Since	 there	 is	 wide	 range	 of	 demands	 or	 studies	 in	 the	 event	 detection	 domain	
which	 individually	 serve	 wide‐ranging	 purposes,	 we	 decided	 to	 narrow	 the	
thesis	 work	 to	 limit	 our	 video	 analysis	 to	 detect	 moving	 objects	 in	 the	 shapes	 of	
vehicles	or	humans.	

1.4 Thesis Goals and Contribution 
 

The	 goal	 of	 this	 thesis	 work	 is	 to	 overcome	 the	 issues	 of	 speed	 (high	 motion)	
and	 line	 motion	 and	 test	 the	 method	 of	 Karlsson	 and	 Bigun	 [2]	 for	 motion	
based	 event	 detection.	 We	 ultimately	 plan	 to	 reach	 a	 reliable	 and	 useful	 optical	
flow	 estimation	 for	 each	 pixel	 in	 the	 input	 video.	 Result	 vectors	 are	 calculated	
and	 collected	 automatically	 from	 different	 levels	 of	 a	 multi‐scale	 pyramid	 and	
the	 results	 can	 be	 used	 for	 the	 event	 detection	 domain.	 To	 prove	 this	 method,	
we	 show	 the	 results	 of	 detecting	 and	 distinguishing	 between	 vehicles	 (rigid)	 or	
humans	(non‐rigid).	
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 Chapter 2 

Background, Definitions and Related works 
 

In	 this	 chapter,	 we	 provide	 the	 reader	 with	 some	 material	 on	 the	 domain	 of	 our	
thesis	 work.	 A	 description	 of	 the	 methods,	 algorithms	 and	 theoretical	 features	
that	 one	 involved	 in	 this	 domain	 will	 give	 the	 reader	 a	 better	 understanding	 of	
the	current	work.	
 

2.1 Optical flow and Motion 
 
Optical	 flow	 is	 the	 pattern	 of	 apparent	2D	 motion	of	 objects	 in	 sequences	 of	
time‐ordered	 images.	 Two	 dimensional	 image	 motions	 in	 an	 image	 plane	 is	 the	
projection	 three	 dimensional	 motion	 of	 object	 R → 	R 	 and	 each	 image	
consist	 of	 many	 pixels	 that	 all	 have	 unique	 coordinates	 so	 they	 can	 be	 describe	
as	a	2D	vector,	in	every	pixel	of	a	video.	
In	 time‐ordered	 images	 that	 can	 be	 video	 frames,	 these	 vectors	 show	 motion	 of	
that	pixel	from	image	1	to	image	2	or	video‐frame	1	to	video	frame	2.	
As	 it	 was	 mentioned	 above,	 image	 points	 (pixels)	 travel	 from	 one	 frame	 to	
another,	 which	 indicates	 optical	 flow.	 By	 definition,	 the	 apparent	 motion	 of	 the	
brightness	 pattern	 calls	 optical	 flow.	 In	 this	 point,	 it	 is	 important	 that	 motion	
field	 is	 not	 equal	 to	 optical	 flow	 because	 if	 we	 consider	 uniform	 sphere	 with	
existence	 of	 some	 shadow	 on	 the	 surface	 then	 if	 sphere	 rotates,	 shading	
pattern	 will	 not	 move	 at	 all	 so	 in	 this	 example	 motion	 field	 is	 not	 zero	 but	 the	
optical	flow	is	zero	because	the	processed	frames	are	identical.		
If	 shading	 pattern	 changes	 by	 moving	 the	 lighting	 source	 and	 sphere	 keeps	 fix	
then	the	motion	field	is	zero	but	optical	flow	is	not	zero.	
These	 example	 shows	 that	 these	 two	 subjects	 “optical	 flow”	 and	 “motion	 field”	
are	 not	 equal	 but	 one	 can	 assume	 that	 for	 most	 natural	 scenes	 they	 should	 be	
highly	correlated.	
	

 
Figure 5: The barber pole illusion 

	
	
The	 barber	 pole	 illusion	 has	 been	 shown	 in	 figure	 5.	 In	 fact,	 it	 is	 a	 visual	 illusion	
that	 shows	 biases	 in	 the	 estimating	 of	 visual	 motion	 in	 the	 observer's	 brain.	
When	 it	 rotates	 right	 or	 left	 in	 such	 a	 way	 that	 has	 been	 shown	 in	 figure	 5	 (that	

http://en.wikipedia.org/wiki/Motion_(physics)
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top	 and	 end	 are	 hidden),	 the	 observer	 perceives	 that	 stripes	 are	 moving	 up	 or	
down	(in	the	direction	of	its	vertical	axis).	
This	 illusion	happens	 because	 contour	 provides	 ambiguous	 information	 about	
its	 true	 direction	 of	 movement.	 This	 situation	 is	 referred	 to	 the	 aperture	
problem	that	is	discusses	in	details	in	next	section.		

2.2 Optical flow calculation and Aperture problem 
	
We	 assume	 an	 image	 F(x,	 y,	 t)	 representing	 spatio‐temporal	 image	 of	 moving	
particles,	and	velocity	of	an	image	pixel	V v , v 	moving	in	the	(x,	y):	
	
v 	 	 	 	 , 	 	 v , v 	 	 	 	 						(2.1)	
	
Where	 s=(x,	y 	 is	 the	 coordinate	 of	 a	 particle	 and	 t	 represents	 the	 time	
coordinates.	
	
If	 we	 assume	 that	 the	 intensity	 of	 S	 is	 the	 same	 during	 dt,	 we	 reach	 equations	
[1.1]	and	[1.2]	respectively	and	then:	
	
	
v . F 0		 	 	 	 	 	 	 	 	 	 						(2.2)	
	

where	 F 	 , 	 	 is	 image	 spatial	 intensity	 gradient	 at	 pixel	 S	 and	 this	
equation	 is	 called	 the	 optical	 flow	 constraint	 equation	 and	 it	 defines	 a	 single	
local	constrain	on	image	motion.	
But	 we	 need	 to	 find	 two	 real	 variables	 v 	 and	 v 	 with	 having	 only	 one	
constraint	 equation	 which	 means	 that	 we	 are	 not	 able	 to	 determine	 optical	
flow	with	only	one	observation.	
	

 

Figure 6: Geometrical explanation of the optical flow constraint equation 
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In	 figure	 6	 any	 point	 on	 the	 constraint	 line	 can	 be	 optical	 flow	 of	 given	 image	
pixel.	 Normal	 velocity	 is	 defined	 as	 perpendicular	 vector	 to	 the	 constraint	 line	
and	 it	 is	 smallest	 magnitude	 on	 the	 optical	 flow	 constraint	 line	 that	 is	 only	
velocity	 vector	 that	 can	 be	 estimated	 in	 the	 direction	 of	 local	 gradient	 of	 image	
intensity	function.	

As	 discussed	 in	 chapter1,	 the	 subject	 is	 known	 as	 “aperture	 problem”:	 we	
cannot	 determine	 those	 flows	 with	 direction	 perpendicular	 to	 the	 image	
gradient.	

 

 

 

 

 

 

 

 

	

Figure	 7	 shows	 that	 the	 vertical	 motion	 is	 dominant	 when	 there	 is	 a	 vertically	
elongated	 aperture	 whereas	 a	 horizontal	 motion	 is	 dominant	 when	 there	 is	 a	
horizontally	 elongated	 aperture.	 In	 aperture	 1	 only	 a	 motion	 that	 is	 orthogonal	
to	 the	 square’s	 border	 can	 be	 estimated	 (vertical	 motion	 to	 the	 up)	 and	
horizontal	 motion	 of	 border	 cannot	 be	 estimated.	 Indeed	 the	 perceived	
direction	 of	 the	 motion	 (normal	 motion	 or	 motion	 orthogonal	 to	 the	 moving	
line)	 relates	 to	 the	 termination	 of	 the	 line's	 end	 points	 with	 border	 (inside	
aperture).	

In	 aperture	 3,	 based	 on	 explanation	 above,	 only	 a	 horizontal	 motion	 (normal	
motion)	 that	 is	 orthogonal	 to	 the	 square’s	 border	 can	 be	 estimated;	 whereas	 in	
aperture	 2	 that	 shows	 the	 corner	 point,	 there	 is	 enough	 information(both	
vertical	and	horizontal	square’s	edges)	for	estimating	the	both	motion.			

	

V  

V

V

1 

2 

3

Aperture 

Figure 7: Apertures Problem [11]
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2.3 Optical flow methods 
 

There	 are	 some	 different	 techniques	 for	 solving	 this	 problem	 that	 all	 of	 them	 try	 to	
introduce	some	additional	condition	or	constraint	for	estimating	actual	flow.	

Classifications	of	these	techniques	based	on	Beauchemin	and	Barron’s	studies	[11]	are	
as	bellows:	

1. Intensity	based	differential	methods	
2. Frequency	based	methods	
3. Correlation	based	methods	
4. Multiple	motion	methods	
5. Multiconstraint	methods	 	
6. Temporal	refinement	methods	

Methods	that	are	using	the	equation	(1.1)	are	referred	to	as	differential	techniques.	

In	differential	techniques	image	velocity	is	computed	by	spatial‐temporal	derivatives	of	
image	intensity.	Therefore,	it	treats	the	image	sequence	as	a	continuous	(differentiable)	
function	 in	 time	 and	 space	 domains.	 Equation	 (2.2)	 is	 a	 basic	 formula	 for	 computing	
optical	 flow	 in	global	and	 local	 first	and	second	order	methods.	Except	equation	 (2.2)	
global	 methods	 use	 additional	 global	 constrains	 and	 also	 smoothness	 regularization	
term	 to	 estimate	 dense	 optical	 flow	 for	 the	 large	 image	 regions.	 Normal	 velocity	
information	 in	 all	 of	 the	 local	 neighborhoods	 is	 used	 in	 Local	 methods	 to	 perform	 a	
minimization	to	find	the	best	fit	for	 .	

A	 contour	 or	 surface	model	 can	 also	 be	 used	 to	 integrate	 normal	 velocities	 (that	 we	
have)	 into	 full	 velocity	 and	discontinuous	optical	 flow	 can	be	 analyzed	by	parametric	
models,	line	process	or	mixed	velocity	distribution.	These	techniques	which	mentioned	
above	do	segmentation	of	optical	flow	into	the	region	that	is	corresponding	to	different	
independently	moving	surfaces	or	objects.	

In	 this	 thesis	 we	 have	 chosen	 differential	 methods	 for	 estimating	 optical	 flow	 but	
differential	methods	also	have	some	different	subsets:	

 Global	methods	
 Local	models	
 Surface	models	
 Contour	models	
 Multiconstraint	methods	

Two	 well‐known	 differential	 methods	 are	 the	 Lucas‐Kanade	 and	 Horn‐Schunck	
techniques.	
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Local	 techniques	 for	 e.g.	 the	 Lucas	 and	 Kanade	 method	 [12]	 involve	 the	
optimization	 of	 a	 local	 energy	 functional	 or	 the	 frequency	 based	 minimization	
methods	which	can	be	found	in	[13]	and	[14].		
The	 global	 category	 as	 in	 Horn	 and	 Schunck	 [15]	 refers	 to	 methods	 that	
determine	optical	flow	by	minimizing	of	a	global	energy	functional.	
	Differential	 techniques	 are	 used	 widely	 because	 of	 their	 high	 level	 of	
performance	[16].		
Each	one	of	global	or	local	methods	has	their	own	advantages	and	disadvantages.		
Global	 techniques	 provide	 dense	 flow	 fields	 with	 the	 power	 to	 analyze	 "no	
structure"	 regions,	 but	 as	 a	 disadvantage	 they	 have	 a	 much	 larger	 sensitivity	 to	
noise	[16]	and,	on	the	other	hand,	local	methods	offer	robustness	to	noise.	
There	 is	 also	 an	 approach	 by	 N.Bauer,	 P.Pathirana	 and	 P.Hodgson	 that	 involves	
developing	neighborhood	selection	for	combined	Horn‐Schunck	/	Lucas‐Kanade	robust	
optical	flow	[17].	
	
Now	 we	 will	 explain	 two	 well‐known	 differential	 techniques	 and	 we	 will	 also	
clarify	the	techniques	that	we	have	chosen	to	do	our	thesis	after	them.		
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2.3.1 Local model and Lucas and Kanade method 
	
One	 of	 the	 classical	 approaches	 for	 estimation	 of	 the	 optical	 flow	 was	 suggested	 by	
Lucas	and	Kanade	(LK).	Originally,	they	did	not	formulate	an	analysis	of	spatio‐temporal	
volumes,	 but	 rather	 considered	 template	 matching/registration	 between	 two	 images	
[12].	
	
In	 this	 model	 we	 assume	 that	 we	 can	 use	 a	 constant	 model	 for	 estimation	 of	
optical	 flow	 in	 small	 window	 Ω	 that	Ω	 is	 spatial	 neighborhood,	 then	 we	 define	
window	function	w(s)	≻0	∈ Ω	.	
The	 weighted	 least	 square	 solution	 for	 optical	 flow	 constraint	 equation	 (Eq.	
2.2)	and	velocity	is	computed	by	minimizing:	
	
Min	E ∑ w s	∈ 	 	 v . F 	 			 	 	 	 or	

E ∬ F v F v F dxdy	 	 	 	 	 	 	 	 2.3 	

	

If	 we	 consider	 N	 points	 in	 an	 image	 (with	 the	 size	 of	 neighborhood	Ω)	 at	 t 	 then	
we	would	have	these	equations:	

	

, ,

, ,

⋮
, ,

	

, , , ,

, , , ,

⋮ ⋮
, , , ,

	 	 	 	 	 	 	 2.4 	

For	N>2,	this	is	an	over	determined	system	of	linear	equations	of	the	form:	

	
d= Dv	 	 	 	 	 	 	 	 	 	 	 	(2.5)	
	

That	v	is	unknown	and	

	

d=

, ,

, ,

⋮
, ,

	 	 	 	 	 	 	 	 	 	 (2.6)	
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and	

D=	

, , , ,

, , , ,

⋮ ⋮
, , , ,

		 	 	 	 	 	 	 	 (2.7)	

 

are	 to	 be	 assumed	 known.	 The	 equation	 (2.5)	 is	 solved	 by	 multiplying	 two	 side	 of	
equation	with	D 	(least	square	error	method)	for	the	2	×	2	system	of	equations	for	the	
unknown	 	(velocity)	so:	

 

D d D Dv	 	 	 	 	 	 	 	 	 	 (2.8)	

This	equation	has	solution	if		

S D D ∑ F F 	 	 	 	 	 	 	 	 	 (2.9)	

S	is	called	structure	tensor	matrix	and	it	looks	like	this:	

S 			 	 	 	 	 	 	 	 	 	 (2.10)	

The	elements	of	S	are	called	“Spectral	moments”	and	defined	as:	
m ∑wF F F 	 	 	 	 	 	 	 	 	 2.11 	

Eigenvalues	of	the	2D	structure	tensor	(matrix	S)	define	the	amount	of	linear	symmetry	
[1]	(a	region	where	gradients	are	linearly	dependent	is	called	linearly	symmetric	and	it	
is	 impossible	 to	 estimate	 flow	 locally	 except	 for	 one	 component:	 that	 of	 the	 aligned	
direction	(aperture	problem)).	 	

If	the	window	is	centered	at	x	we	can	write:	

S X 	 	 	 	 	 	 	 	 	 2.12 	

With	this	definition	of	matrix	S	we	can	rewrite	equation	(2.8)	like:	

v x 	 	 	 	 	 	 	 2.13 	

if		

b x 	 	 	 	 	 	 	 	 	 	 	 2.14 	

then	we	would	have:	
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b S v x 																				⇛									v x 	 S b 	 	 	 	 	 2.15 	

So	 the	 solution	 is	 optical	 flow	 for	 the	 image	 pixel	 “s”	 and	 we	 should	 consider	
that	 the	 reliability	 of	 the	 estimation	 of	 v	 is	 exposed	 by	 the	 eigenvalues	 of	 matrix	
S .	 Let	 us	 assume	 λ 	and	 λ 	 are	 eigenvalues	 so	 if	 both	 of	 them	 be	 large	 then	
the	 flow	 can	 be	 determined	 uniquely.	 If	 λ 	 is	 zero,	 but	 λ 	 is	 large,	 then	 it	 is	 a	
linearly	 symmetry	 case	 and	 only	 motion	 of	 lines	 can	 be	 determined.	 If	 both	
λ λ =0,	then	no	motion	can	be	inferred.	
The	 LK	 algorithm	 needs	 regularization	 (for	 e.g.	 Tikhonov	 regularization)	 to	
become	 stable	 in	 the	 outside	 of	 any	 region	 except	 that	 of	 point	 motion,	 but	 this	
adds	the	difficulty	of	choosing	the	regularization	parameter.		
Since	 Lucas‐Kanade's	 technique	 employs	 a	 local	 window	 to	 determine	 the	
optical	 flow	 of	 a	 specific	 image	 point,	 this	 is	 the	 cause	 that	 it	 is	 called	 a	 local	
method.	 Indeed	 in	 Lucas‐Kanade's	 technique,	 flow	 of	 points	 calculated	 by	
finding	 the	 intersection	 of	 all	 the	 flow	 constraint	 lines	 (fig.6)	 that	 are	
corresponding	 to	 the	 image	 pixels	 which	 are	 in	 the	 window	 of	 “w”.	 Those	 lines	
will	 have	 an	 intersection,	 since	 Lucas‐Kanade's	 technique	 assume	 that	 flow	 in	
the	window	is	constant. 	

2.3.2 Structure Tensor in 3D 
 

As	we	explained	above,	for	2D	Structure	Tensor	we	have:	
	

S x 	 	 	 	 	

	
Here	 we	 choose	 to	 express	 the	 2D	 structure	 tensor	 in	 3D	 spectral	 moments,	 so	 3D	
structure	tensor	is	defined	as:	
	

S x
m x m x m x
m x m x m x
m x m x m x

	 	 	 	 	 	 2.16 	

	
The	 3D	 tensor	 can	 be	 used	 to	 estimate	 optical	 flow	 directly	 by	 considering	 its	
eigensystem:	 v , λ 		of			λ λ λ .		
As	 a	 local	 algorithm	 for	 optical	 flow	 estimation,	 the	 structure	 tensor	 is	
advantageous	 because	 it	 easily	 differentiates	 between	 the	 three	 important	
cases	 of	 motion	 of	 points(distributed	 structure),	 motion	 of	 lines	 and	 presence	
of	higher	order	terms	(higher	order	motions	and/or	uncorrelated	noise).	
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2.3.3 Point, Line (PL) Method 
 

 

	
	
	
	
	
	
	
	
	

	
 
Intuitively,	 	describes	the	spatio‐temporal	volume	around	a	region.	
The	two	basic	translations	types	are	Point	motion	and	Line	motion.	The	uniform	motion	
of	 lines	 in	 figure	 8	 left	 generates	 isosurfaces	 (the	 set	 of	 points	 for	 which	 f(x,	 y,	 t)=	
constant.)	which	are	as	same	as	a	tilted	plane.	If	the	motion	plane	is	more	tilted,	then	the	
motion	 is	perceived	 faster.	 In	 figure	8	 right	 the	uniform	motion	of	points	generates	a	
line	 in	 the	 3D	 continuous	 image	 indeed	 in	 image	 plane	 when	 some	 points	 translate	
upwards,	the	result	is	many	parallel	lines.		
As	 described	 before	 (section	 2.3.1)	 we	 use	 window	 Ω	 for	 local	 neighborhood	 in	
Lucas	 and	 Kanada	 method.	 For	 every	 Ω	 that	 we	 choose	 (indexed	 by	x)	
eigenvectors	of	3D	structure	tensor	matrix	denote	as:	
v , λ 	of		λ λ λ 	 .	 Where	 v 	 is	 the	 x	 component	 of	 the	 i 	 eigenvector,	
and	γϵ 0, 1 is	a	threshold	then	we	would	have	one	of	these	conditions	[1]:	
If	 		λ λ λ 0	 then	 Ω	 contains	 no	 structure	 (it’s	 close	 to	 constant	 gray	
value)	
	

1)	If 		
		

 γ	then	Ω	contains	line	motion	given	by: 

 
 

u
v
v 	 	 	 	 	 	 	 	 	 				(2.17) 

 
 

2)	Else	if			
		

	 γ	then	Ω	contains	point	motion	given	by:	

	 u
v
v 	 	 	 	 	 	 	 	 	 				(2.18)	

 

Figure 8: The uniform motion of a set of lines (left) and points (right) [1]	

x
y x 

y 

tt 

Motion of lines  Motion of points 
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3)	Else	if	 1 	 	
		

	 	 	
		

	 γ		then	Ω	contains	higher	order	terms	or	noise					(2.19)	

The	usage	of	implementation	of	3D	structure	tensor	for	image	processing	applications	is	
to	 compute	 the	 optical	 flow	 or	 to	 detect	 local	 3D	 structures	 and	 their	 directions.	
	
	The	3D	structure	 tensor	algorithm	(3D‐STA)	 in	 compare	 to	LK	method	has	one	extra	
moment	m 	and	 eigenvalue	 analysis	 of	 local	 3*3	matrices;	 it	 consists	 of	 three	main	
parts:	 gradient,	 tensor	 and	 smoothing.	 This	 algorithm	 is	 computationally	 more	
expensive	 than	 LK	 method	 due	 to	 many	 multiplications	 and	 additions	 which	 are	
required	to	calculate	the	gradient,	the	tensor	and	to	smooth	every	pixel	of	the	image.		

The	 Point‐line	 method	 is	 the	 combination	 of	 LK	 and	 3D	 Structure	 tensor	
methods	for	the	aim	of	using	beneficial	properties	of	both.	
	
If	 the	 region	 of	 interest	 for	 estimation	 of	 optical	 flow	 is	 linear	 symmetric	 then 

  becomes	 singular	 and	 equation	 (2‐13)	 becomes	 undefined.	 In	 this	 case	 we	
desire	 to	 estimate	 motion	 of	 line	 patterns.	 However	 we	 don’t	 want	 to	 resort	 to	
the	full	eigenvalue	analysis	of	equation	(2‐16) 

Instead,	we	note	that	the	normal	flow	at	a	single	point	is	given	by:	

| |                      (2.20) 

If	region	is	linearly	symmetric	then	by	averaging	normal	flow	over	the	region	we	can	
estimate	line	flow	and	with	use	of	smoothing	window		 	,	we	reach	following	
expression:	

∑ 	 	 	 	 	 	 	 	 				(2.21)	

The	two	methods	Eq.(2‐15)	and	Eq.(2‐21)	have	distinct	domain	of	good	performance	
which	is	determined	by	α	and	it	is	the	reason	for	using	weighting	function	w α ∈ 0,1 : 

u w α u 	 	 	 	 	 	 	 	 	 	 	 				(2.22)	

u 1 w α u 	 	 	 	 	 	 	 	 	 				(2.23)	

u u u 	

We	 call	 the	 u 	 and	 u 	 point	 flow	 and	 line	 flow	 respectively.	 Consider	 to	 this	
point	 that	 the	 normal	 flow	 and	 line	 flow	 are	 two	 different	 issues	 and	 readers	
should	 not	 be	 confused. Normal	 flow	 is	 defined	 for	 every	 pixel	 in	 the	 image	 but	
the	 line	 flow	 is	 the	 average	 of	 normal	 flow	 if	 and	 only	 if	 the	 region	 is	 linearly	
symmetric.	
There	 are	 many	 possibilities	 for	 a	 weighting	 function.	 For	 example,	 if	 we	 use	
w α 	 for	 some	 threshold	 	 	 that	 is	 called	 using	 the	 brick	 wall	
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thresholding	 function	 then	 the	 output	 result	 is	 near	 the	 result	 of	 structure	
tensor	 method,	 concerning	 the	 differentiation	 between	 point	 and	 line	 flow.	
However,	using	the	following	weighting	function	has	promising	results	[2]	
	
w α 1 4 | | 	 	 	 	 	 	 	 	 	 				(2.24)	

And	by	substituting	equations	(2.22)	and	(2.23)	with	(2.24)	get:	

u 		 	 	 	 	 	 	 				 2.25 	

u 	 	 	 	 	 	 	 				(2.26)	

The	 combination	 of	 point	 and	 line	 flow	 by	 using	 the	 weighting	 function	 of	
(2.24)	 can	 be	 seen	 as	 a	 local	 regularization	 of	 the	 Lukas	 and	 Kanade	 method.	
Equation	 (2.15)	 in	 Lk	 method	 is	 ill‐posed	 for	 the	 case	 of	 linear	 symmetry.	 It	
would	 have	 more	 stable	 result	 by	 applying	 a	 diagonal	 Tikhonov	 regularization	
(in	 PL	 method	 means	 adding	 a	 small	 positive	 value	 to	 m and	m )	 but	 	 it	 still	
has	 the	 problem	 of	 separating	 the	 point	 flow	 from	 the	 line	 flow,	 this	 also		
causes	the	another	new	problem	of	how	to	define	the	regularizing	parameter.	
In	 this	 thesis	 because,	 the	 consistency	 of	 estimation	 and	 computational	
efficiency	 are	 in	 focus	 we	 choose	 to	 derive	 a	 local	 method	 so	 we	 use	 Point‐Line	
method	 and	 for	 solving	 the	 problem	 of	 large	 displacements	 in	 the	 sequence	
(high	 motions)	 we	 use	 a	 gaussian	 pyramid	 for	 processing	 images	 in	 multi	 scale	
pyramid	that	details	are	presented	in	next	section.	
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2.3.4 Global model and Horn-Schunck method 
	
The	 method	 assumes	 smoothness	 in	 the	 flow	 over	 the	 whole	 image	 and	 it	
introduces	 a	 global	 smoothness	 constraint.	 Indeed	 Horn	 and	 Schunck	 method	
assumes	 that	 the	 following	 quantity	 should	 be	 low	 in	 the	 image	 vary	 smoothly	
everywhere.		
	
So	we	have:	
	

∥ u ∥ ∥ v ∥ 	 	 	 	 	 				 2.27 	
	
	
Thus,	 it	 tries	 to	 minimize	 distortions	 in	 flow	 and	 prefers	 solutions	 which	 show	
more	smoothness.	
We	 can	 determine	 the	 optical	 flow	 velocity	 	 by	 minimizing	 the	 squared	 error	
quantity	of	the	brightness	equation	(2.2)	and	smoothness	constraint	(2.28).		
Then	the	error	to	be	minimized	is:	
	
	
E ∬ F u F v F α ∥ u ∥ ∥ v ∥ 	dx	dy	 	 	 	 				 2.28 	
	
In	 equation	 (2.28), the	 parameter	α	is	 regularization	 constant	 and	 identifies	 the	
influence	 of	 smoothness	 constraint	 on	 the	 optimization	 (larger	 values	 of	α		lead	 to	 a	
smoother	flow).	
Indeed,	 α 	is	 the	 weighting	 term	 and	 Horn	 and	 Schunck	 chose	 the	 magnitude	 of	
α 	to	be	almost	proportional	to	the	estimated	noise	in	F 	+	F 	.	
The	formula	(2.28)	can	be	minimized	by	using	calculus	of	variations	approach	[11]	
yielding	a	set	of	differential	equations	(Euler–Lagrange	equations).		
	

0	 	 	 	 	 	 	 	 	 			 2.29

	 	 	 	 	 	 	 	 	 	
0	 	 	 	 	 	 	 	 	 			 2.30 	

 
These	equations	can	be	solved	by	using	iterative	procedures.	This	means	that	it	is	in	
contrast	with	local	methods	(such	as	Lucas	and	Kanade)	which	can	be	estimated	with	
single	pass	approaches.	
 
  

http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equations
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2.3.5 Shi and Tomasi Feature Tracking 
	
The	 assumption	 of	 brightness	 constancy	 is	 essential	 and	 basic	 to	 the	 successful	
implementation	 of	 gradient	 or	 correlation‐based	 optical	 flow	 estimation	
algorithm.	 Many	 feature	 tracking	 algorithms	 need	 reliable	 optical	 flow	
estimation.	
One	 of	 gradient	 based	 methods,	 as	 has	 been	 explained	 above,	 is	 Lucas	 –	 Kanade	
which	 has	 been	 used	 in	 the	 feature	 tracking	 schema	 that	 introduced	 by	 Shi	 and	
Tomasi	[18].	
The	 algorithm	 uses	 Lucas‐Kanada	 as	 feature	 windows	 that	 can	 be	 selected	
based	 on	 some	 measure	 of	 texturedness	 or	 cornerness,	 such	 as	 high	 standard	
deviation	 in	 the	 spatial	 intensity	 profile,	 the	 presence	 of	 zero	 crossings	 of	 the	
Laplacian	of	the	image	intensity	and	corners	[18].	
It	 is	 clear	 that	 good	 features	 includes	 those	 with	 big	 spatial	 gradients	 in	 two	
orthogonal	 directions	 and	 since	 Lucas‐Kanade	 method	 solves	 optical	 flow	
equations	 assuming	 the	 displacement	 is	 characterized	 by	 constant	 velocity	 and	

(two	 by	 two	 spatial	 gradient	 matrix)	 is	 used	 to	 calculate	 the	 quality	 of	
corner	points	where	the	gradients	are	summed	across	n*n	blocks	[19].	
Tomasi	 suggests	 that	 reasonable	 criterion	 for	 feature	 selection	 is	 for	 examining	
the	 minimum	 eigenvalue	 of	 each	 (2	 by	 2	 spatial	 gradient	 matrix)	 to	 be	 no	
less	 than	 some	ƛ,	 and	 features	 are	 tracked	 using	 a	 Newton‐Raphson	 method	 of	
minimizing	the	difference	between	the	two	windows.	
This	 guarantees	 that	 the	 matrix	 	 is	 above	 the	 noise	 level	 of	 the	 image	 and	
well	 conditioned	 so	 that	 its	 inverse	 does	 not	 increase	 critical	 direction,	 i.e.,	
there	 are	 enough	 spatial	 gradients	 in	 two	 orthogonal	 directions.	 When	 this	
features	fulfilled,	the	Lucas	and	Kanade	algorithm	can	be	applied.	
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2.4 Gaussian Pyramid of Gradients 
 

A	 general	 way	 of	 solving	 optical	 flow	 equation	 (2.2)	 is	 to	 apply	 optical	 flow	
techniques	 in	 a	 hierarchical	 coarse‐fine	 framework.	 It	 allows	 the	 image	 to	
divide	 into	 different	 scale	 of	 resolution	 in	 the	 form	 of	 Gaussian	 pyramid.	 Indeed	
Gaussian	 pyramid	 is	 defined	 as	 hierarchies	 of	 low	 pass	 filtered	 versions	 of	 the	
original	image,	and	progressive	levels	correspond	to	lower	frequencies.		
Reducing	 image	 size	 is	 done	 although	 there	 is	 a	 fearing	 of	 loosing	 information	
because	 of	 the	 effectuated	 low	 pass	 filtering	 but	 the	 low	 pass	 filtering	 is	
executed	by	using	convolution	with	either	a	gaussian	filter	or	similar.	
 
 
 
 
 
 
 
 
 
 

Figure 9: Down sampling by an integer factor M=2 

In	this	thesis	we	applied	reduction	rate	2	on	image	that	is	taken	from	video	as	a	frame	
for	example	for	an	image	I	of	size	512*512,	the	pyramid	image	levels	will	be:	
	
 
    
 
 
 
 
  

 

 

 

 

Figure 10: Gaussian pyramid levels for image that first level has taken from video size 512*512 as a sample frame with 
reduction rate 2. 
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The	 sample	 image	 which	 is	 corresponding	 to	 each	 gaussian	 pyramid	 level	 is	
shown	 on	 figure10.	 The	 largest	 image	 of	 the	 gaussian	 pyramid	 contains	 all	
frequencies	that	are	marked	as	level	0	of	the	pyramid.	
Every	 single	 level	 is	 produced	 by	 low	 pass	 filtering	 the	 level	 below	 and	
retaining	every	second	row	and	column	of	the	result.	
In	 this	 thesis	 	 code	 was	 built	 as	 a	 mex‐module	 for	 fast	 calculation	 of	 the	
gradient	fields	based	on	extending	of	the	open	source	implementation	of	[20].	
In	 the	 next	 chapter	 we	 use	 this	 multi‐scale	 algorithm	 to	 estimate	 optical	 flow	
vectors.	
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Chapter 3 

Estimation of optical flow vectors 

3.1 Estimated Optical flow vectors for each pyramids’ level 
		
We	 make	 a	 specific	 video	 sample	 that	 includes	 both	 high	 motion	 (around	
boundaries)	 and	 low	 motion	 (center)	 sections,	 for	 estimation	 of	 optical	 flow	 in	
different	 pyramid	 levels	 to	 find	 out	 suitable	 pyramid	 level	 for	 each	 section	 of	
image(depends	 on	 their	 rotation	 speed)	 and	 we	 show	 the	 result	 before	 using	 it	
in	 our	 final	 video	 for	 detecting	 an	 object.	 Details	 of	 sample	 video	 such	 as	 speed	
factor,	radius	of	spiral	and	desired	program	code	exist	in	appendix	1.	
All	 the	 final	 estimated	 results	 (estimated	 optical	 flow	 for	 each	 level)	 are	 shown	
on	 the	 original	 image	 sample	 so	 the	 image	 in	 the	 background	 has	 no	 relation	
with	the	level	of	pyramid.	
	
Notice	that	the	length	of	vectors	in	below	figures	have	amplified	for	visualization	
purposes,	the	true	motion	has	smaller	length	vector.	
	

	
Figure 11: Estimated optical flow for the black and white striped circle video for pyramid Level 0, 510*510 pixels 
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Figure 12: Estimated optical flow for the black and white striped circle video for pyramid Level 1, 253*253 pixels

Figure 13: Estimated optical flow for the black and white striped circle video for pyramid Level 2, 125*125 pixels
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Figure 14: Estimated optical flow for the black and white striped circle video for pyramid Level 3, 61*61 pixels 

Figure 15: Estimated optical flow for the black and white striped circle video for pyramid Level 4, 29*29 pixels
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Now	for	estimating	how	accurate	results	are,	we	calculate	error	vectors	(displacement	
vector)	for	each	pixel	in	each	pyramids’	level.		
Given	 the	motion	 speed	 as	 a	 known	 variable,	we	 can	 estimate	 position	 of	 each	 point	
along	axis	x	and	y	and	save	them	in	matrix	UG,	VG	(blue	vectors	in	figure16)	and	with	
subtraction	of	U,	V	 (they	are	matrixes	 that	 include	estimated	position	by	optical	 flow,	
red	vectors	in	figure16)	we	can	reach	to	error	vectors	(displacement	vector)	and	show	
them	on	our	 video	 sample.	 (Code	 exists	 in	 section	2	 of	 appendix	 and	 figures	 exist	 on	
next	chapter)		

 

 

Figure 16: Two consecutive frames in Level 2, more figures are in appendix 
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3.2 Mean Squared Error (MSE)  
We	calculate	error	vectors	(displacement	vectors)	for	each	pixel	that	moves	from	image	
(video	frame)	I	to	image	(video	frame)	I	+	1	simultaneously	we	estimate	the	optical	flow	
vectors	and	at	the	end	we	calculate	mean	squared	error	(MSE).	
	MSE	measures	the	average	of	the	squares	of	the	errors	and	indeed,	it	is	one	of	the	ways	
to	quantify	the	difference	between	values	implied	by	an	estimator	and	the	true	values	of	
the	quantity	being	estimated	(see	section	2.1	of	appendix	for	related	code	and	pictures).	
The	 error	 vectors	 (blue	 vectors)	 are	 shown	 in	 one	 frame	 of	 each	 pyramid	 level	 as	 a	
sample;	magnitude	of	each	vector	shows	how	big	it	is:	
Level 0:	Image	size	is:	[510	510] 
	
 

 

 

 

 

 

 

 

 

 

 

Figure 17: Error vector, Pyramid Level 0 

Figure	17	has		been	taken	from	an	input	video	in	pyramid	level	0,	resolution	is	510*510	
pixel,	blue	vectors	are	error	vectors	 that	are	small	 in	center	and	become	bigger	away	
from	 center(on	 boundaries).	 We	 expect	 that	 find	 best	 pyramid	 level	 for	 the	 sample	
video	 that	has	 specific	 rotation	 speed(see	appendix	1	and	2.1).	 In	general	 those	parts	
that	 have	 more	 rotational	 speed	 should	 have	 lower	 errors	 in	 higher	 levels	 and	 vice	
versa.	However	we	consider	MSE	that	relates	to	the	whole	picture	and	not	specific	part	
of	it.	The	results	for	this	specific	video	samples	have	shown	in	table	1.	

	

	

	

http://en.wikipedia.org/wiki/Expected_value
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Level 1:	Image	size	is:	[253	253]	
 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
    

 

 

 

Figure 18: Error vector, Pyramid Level 1 

Figure18	has	been	taken	from	an	input	video	in	pyramid	level	1,	resolution	is	253*253	
pixel,	the	blue	vectors	are	error	vectors	and	MSE	numbers	show	that	they	are	smaller	
than	error	vectors	in	level	0	as	it	clear	in	some	parts	of	picture.		
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Level 2:	Image	size	is	[61		61]	
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Error vector, Pyramid Level 2 

Figure19	 has	 been	 taken	 from	 an	 input	 video	 in	 pyramid	 level	 2.	 Resolution	 is	
125*125	 pixel	 and	 as	 same	 as	 before	 blue	 vectors	 are	 error	 vectors	 and	 the	
magnetude	of	each	vectore	shows	how	big	it	is.		
Level 3:	Image	size	is	[61		61]	
 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Figure 20: Image has been taken from an input video in pyramid level 3; resolution is 61*61 pixels 
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Level 4:	Image	size	is	[29	29]	
 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

          Figure 21: Image has been taken from an input video in pyramid level (the latest level), resolution is 29*29 pixel. 

	

Comparing	mean	square	error	in	different	pyramid	levels:	
	 Level	

0	 1	 2	 3	 4	

Frame	No.	

1	 2.8639	 0.22361	 0.39086	 0.67654	 1.2009	
2	 2.8341	 0.22097	 0.20847	 0.68517	 1.1708	
3	 2.7992	 0.18931	 0.36031	 0.67936	 1.0845	
4	 2.7893	 0.20863	 0.86077	 0.77719	 0.9144	
5	 2.7319	 0.19628	 0.40873	 0.61007	 0.81587	
6	 2.7624	 0.19664	 0.37363	 0.68144	 0.81528	
7	 2.7007	 0.1914	 0.20894	 0.63658	 0.81653	
8	 2.7217	 0.19116	 0.22075	 2.2186	 0.81594	
9	 2.676	 0.17443	 0.21918	 0.70371	 0.81592	
10	 2.6882	 0.19053	 0.23887	 0.69214	 0.81599	
11	 2.7002	 0.18059	 0.1918	 0.71346	 0.81648	
12	 2.8983	 0.20237	 0.19962	 2.1585	 0.81525	
13	 2.8949	 0.21154	 0.22257	 1.7901	 0.81675	
14	 2.7514	 0.18899	 0.26669	 0.66456	 0.81636	
15	 2.8597	 0.20594	 0.20383	 0.72964	 0.81620	

Table 1: Some mean square error e.g.	
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In	 table	 2	 we	 compare	 error	 vectors	 magnitude	 in	 different	 pyramid	 levels	 in	
three	 important	 regions:	 boundaries	 that	 have	 high	 motion	 (high	 frequency),	
middle	 parts	 and	 center	 sections	 that	 have	 lower	 motion	 speed	 (low	
frequency).Consider	 to	 this	 point	 that	 error	 vectors	 have	 been	 shown	 on	 the	
original	 image	 sample	 (as	 a	 back	 ground	 image)	 and	 that’s	 why	 all	 pyramid	
levels	 that	 have	 different	 resolution	 have	 same	 image	 this	 help	 us	 to	 have	
better	overview	and	clear	distinguished	sections.		

3.3       Comparing of Error Vectors in Different Pyramid Levels  
 

Level MSE Boundaries Center Middle 
0 2.77809 

 

 

1 0.19816 

 

 

2 0.30500 
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3 0.86548 

 

 

 
 
 

 
4 0.88972 

 

 

 
Table 2: Comparing displacement vectors in different pyramid levels for all pixel 

 
By	 considering	 each	 specific	 picture	 section,	 we	 understand	 that	 the	 magnitude	
of	 error	 vectors	 (length)	 has	 a	 relation	 with	 the	 position	 of	 each	 point	 in	 frame	
and	 chosen	 pyramid	 level	 for	 estimation	 of	 optical	 flow.	 In	 center,	 because	 of	
lower	 rotational	 speed	 there	 is	 lower	 motion	 and	 as	 a	 result	 more	 stability	 and	
as	 an	 opposite	 in	 boundaries	 rotational	 speed	 is	 bigger	 and	 there	 is	 high	
motion	 so	 as	 a	 results	 it	 is	 more	 unstable	 so	 we	 reach	 to	 this	 conclusion	 that	
high	 pyramid	 levels	 has	 the	 good	 results	 for	 high	 motion	 video	 frames	 and	 low	
pyramid	 levels	 for	 low	 motion	 respectively	 but	 we	 consider	 the	 MSE	 in	 our	
algorithm	 to	 decide	 which	 pyramid	 level	 should	 be	 used	 for	 optical	 flow	
estimation.	
So	 in	 the	 next	 step	 we	 explain	 how	 we	 can	 use	 these	 results	 that	 have	 been	
shown	in	table2.  
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Chapter 4 

Optical flow algorithm’s results 

4.1 Capturing and Collecting best optical flow vectors 
 
In	 the	 previous	 section	 we	 explained	 displacement	 error	 vectors	 and	 estimated	
optical	flow	vectors,	and	we	showed	the	corresponding	results.	
Now,	 by	 writing	 programming	 code	 script,	 we	 plan	 to	 create	 an	 output	 video	
that	is	constructed	by	using	the	best	optical	flow	vectors	of	each	pyramid	level.	
Our	 sample	 video	 is	 the	 same	 as	 other	 desired	 videos	 that	 can	 be	 chosen	 as	
input	 videos,	 in	 that	 it	 is	 composed	 of	 different	 sections	 with	 differing	 motion	
speeds.	 One	 of	 the	 main	 reasons	 for	 pyramidal	 representation	 is	 that	 it	 helps	 us	
to	 handle	 large	 pixel	 motions.	 Thus	 the	 pyramid	 height	 (level)	 has	 to	 be	 picked	
properly	 according	 to	 the	 maximum	 optical	 flow	 that	 we	 expect	 in	 each	 section	
of	the	image	(for	e.g.	in	the	center,	middle	and	boundary).	
 
 

 
	
Figure 22: Output video is constructed from five different optical flow vectors which are taken from five different 
pyramid levels. 
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In	the	figure	22	we	try	to	show	how	our	output	video	is	made.	The	output	video	is	the	
black	and	white‐striped	circle	that	divides	into	five	parts	according	to	the	pyramid	level.	
Each	pyramid	level	provides	the	most	accurate	estimated	optical	flow	for	every	part	of	
output	video.		
	
	

 

Figure 23: It shows that which pyramids'level is used for building which part of output video 

	
	We	 know	 that	 the	 boundaries	 have	 high	 motion	 or	 high	 frequency,	 so	 at	 this	
stage,	 the	 program	 automatically	 chooses	 the	 estimated	 optical	 flow	 vectors	
that	are	produced	in	level	five	of	the	gaussian	pyramid.		
	
The	 motion	 speed	 becomes	 lower	 when	 we	 move	 from	 boundaries	 to	 the	
center	 of	 the	 circle.	 As	 a	 consequence,	 we	 understand	 that	 the	 gaussian	
pyramid	 level	 that	 is	 used	 by	 the	 program	 that	 estimates	 optical	 flow	 vectors	
becomes	less	respectively.	
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The	 final	 result	 of	 the	 program	 is	 similar	 to	 the	 shape	 depicted	 in	 figure	 24	
(image	that	is	taken	from	the	output	video):	
	
 

 
Figure 24: Collecting the most accurate estimated optical flow (down left) from different pyramids levels (top row) 

 
 
One	 of	 the	 most	 basic	 functions	 for	 optical	 flow	 is	 the	 computation	 of	 structure	
tensor	 and	 3D	 motion.	 Typically,	 the	 chosen	 algorithm	 and	 method	 play	
important	 roles	 in	 the	 accuracy	 of	 estimated	 optical	 flow	 and	 this	 issue	 is	
extremely	 important.	 Achieving	 accurate	 optical	 flow	 estimation	 requires	 the	
analyst	 to	 not	 only	 pay	 close	 attention	 to	 details,	 but	 also	 to	 take	 into	 account	
the	realistic	imaging	property	(input	video).		
In	 this	 report,	 we	 employed	 the	 PL	 method	 and	 the	 gaussian	 pyramid	 (for	 low	
pass	 filtering	 without	 fear	 of	 losing	 information)	 to	 achieve	 accurate	 estimation	
of	 optical	 flow	 vectors	 for	 input	 videos	 at	 any	 speed	 motion.	 In	 the	 next	
chapter,	 we	 use	 the	 PL	 method	 and	 a	 multi‐scale	 algorithm	 for	 event	 detection	
(finding	rigid	or	non‐rigid	object	on	input	video).	
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Chapter 5 

Event detection 

5.1 Making grayscale and binary image 
 

In	 Chapter	 4,	 we	 successfully	 estimated	 the	 motion	 of	 the	 image	 sequence	 by	
using	 the	 gaussian	 pyramid.	 Now,	 we	 employ	 the	 accurate	 algorithm	 for	
detecting	 the	 moving	 objects	 (which	 has	 an	 optical	 flow)	 and	 characterizing	 the	
object	 on	 the	 video,	 namely	 determining	 whether	 it	 is	 rigid	 (car)	 or	 non‐rigid	
(human).	
	
In	our	case,	we	work	on	video	with	particular	characteristics,	such	as:	
	

 The	 location	 of	 the	 camera	 is	 fixed.	 Thus,	 the	 background	 image	 can	 be	
easily	separated	from	the	desired	objects.	

 We	 observe	 two	 different	 types	 of	 visual	 objects:	 Vehicles	 (rigid	 objects),	 and	
Humans	 (non‐rigid	 objects).	 We	 subsequently	 extract	 some	 of	 their	
characteristics,	such	as:	direction,	appearance/disappearance,	speed,	position.	

	
After	 motion	 estimation,	 we	 change	 every	 image	 frame	 to	 a	 binary	 image.	 We	
accomplish	 this	 task	 by	 generating	 a	 magnitude	 of	 motion	 image	 and	 assigning	
a	 proper	 threshold	 to	 it,	 so	 that	 each	 pixel	 is	 assigned	 to	 the	 object	 (one)	 or	 to	
the	background	(zero).	In	this	way,	a	binary	image	is	created.	
	

 
Figure 25: Gray scale and Binary image for one image frame of rigid object	
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Figure 26: Gray scale and binary image of non‐rigid object 

In	figures	25	and	26	we	used	color	coding	in	optical	flow	images.	Based	on	figure	27,	if	
an	object	goes	toward	the	left	(angle	is	0),	then	the	optical	flow	estimation	is	shown	in	
red,	and	if	it	goes	toward	the	right	(angle	is	180),	then	it	is	shown	in	aqua.	

 

	
Figure 27: Color coding definition, the hue unit is degree  

  

http://en.wikipedia.org/wiki/Degree_(angle)
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5.2 Segmentation and Moment calculation 
	
Segmentation	 is	 completed	 by	 determining	 which	 pixel	 belongs	 to	 the	 object	 or	
to	 the	 back	 ground	 image;	 it	 determines	 the	 number	 of	 objects	 in	 each	 image	
frame.	 In	 an	 ideal	 situation,	 each	 image	 frame	 should	 consist	 of	 one	 uniform	
object,	as	is	the	case	in,	figures	26	and	27.	
	

5.2.1 Describe the objects shape 
 

With	 the	 help	 of	 moment	 calculation,	 after	 generating	 a	 binary	 image,	 one	 can	
describe	the	objects	shape	and	detect	it	in	every	image	frame.	
	A	moment	 	of	order	 	for	a	binary	image	is	defined	as:	
	

, ∑ , ∈ 																																																																																																														(5.1)	
	
The	 area	 of	 the	 object	 is	 the	 moment	 , 	 and	 (	 		 , 	 )	 is	 the	 center	 of	 the	

object	( , ).	
For	 orders	 higher	 than	 2,	 central	 moments	 are	 more	 useful	 for	 shape	
recognition[1],	and	are	defined	as	:	
	

∑ , ∈ 	 	 																			 																																(5.2)	

	
The	 central	 moment	 , 	is	 computed	 from	 coordinates	 that	 are	 related	 to	 the	
center	 of	 the	 object,	 and	 therefore,	 it	 is	 more	 useful	 than	 ordinary	 moments	

, 	as	indicators	of	a	shape's	features.		
When	 an	 object	 moves	 in	 video,	 it	 changes	 position	 in	 every	 frame.	 If	 it	 is	 a	
rigid	 body,	 then	 we	 expect	 a	 change	 in	 its	 central	 moments	 only	 if	 its	 view‐
point	changes	.	
A	human	performs	frame‐by‐frame,	so	non‐rigid	transformation	is	expected	to	change	
its	central	moments	radically.	
A	 simple	 detector	 that	 is	 based	 on	 central	 moments	 of	 the	 binary	 image	
performs	 poorly,	 and	 to	 get	 more	 reasonable	 results	 we	 analyze	 on	 the	 original	
flow	field.	
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5.2.2 Rigidity Detector 
 

In	 a	 rigid	 object,	 the	 motion	 flow	 vectors	 have	 the	 same	 direction,	 and	 they	 do	
not	 omit	 or	 cancel	 each	 other.	 In	 contrast,	 in	 non‐rigid	 objects,	 some	 motion	
flow	 vectors	 do	 not	 have	 same	 direction	 in	 image	 frames.	 In	 the	 other	 words,	
when	 the	 mean	 of	 the	 motion	 flow	 vectors	 in	 every	 image	 frame	 is	 calculated,	
the	 motion	 flow	 vectors	 omit	 or	 attenuate	 each	 other.	 For	 example,	 when	 a		
human	 walks,	 one	 hand	 goes	 forward	 and	 the	 other	 goes	 backward;	 the	 same	 is	
true	for	human's	feet.	The	mean	of	the	flow	vector	is	calculated	as:	
 

∑ ,
, ∈ 	 	 	 	 	 	 	 	 	 						(5.3) 

 
		is	the	area	of	the	object.	A	non‐rigidity	measure	is	calculated	by:	

	

∑ | , |
, ∈ 	 	 	 	 	 	 	 	 						(5.4)	

	
	
This	 equation	 makes	 intuitive	 sense	 if	 one	 considers	 the	 fully	 rigid	 object	
moving	 under	 a	 pure	 translation	 in	 the	 image.	 For	 a	 perfect	 flow	 algorithm,	 all	
vectors	 are	 equal	 to	 v ,	 and	 thus	 NR	 is	 zero.	 A	 thresholding	 of	 the	 NR	 forms	 the	
basis	 of	 a	 simple	 classifier	 that	 discriminates	 between	 human	 and	 car.	 The	
quality	 of	 such	 a	 classifier	 can	 only	 be	 as	 good	 as	 the	 underlying	 optical	 flow	
algorithms	allow	it	to	be.	
In	 the	 image	 of	 the	 guassian	 pyramid	 levels	 in	 figures	 28	 and	 29	 (top	 right	 of	
the	 left	 side),	 every	 part	 of	 the	 moving	 object,	 based	 on	 its	 speed,	 is	 collected	
from	 different	 pyramid	 levels.	 As	 the	 right	 side	 of	 these	 figures	 shows,	 the	
program	 can	 correctly	 detect	 the	 moving	 object	 (which	 is	 shown	 by	 the	 red	
circle	in	the	figures).	

   



‐ 43 ‐ 
 

 
Figure 28: Detecting of moving rigid object 

	
Figure 29: Detecting of moving non‐rigid object 
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5.3 Results on Events Detection 
 

The	flow	chart	used	for	detection	of	the	object	can	be	simplified,	as	seen	below:	

	

	

	

	

	

	

	

	

	

Figure 30: Flow chart of object recognition 	

The	 flow	 chart	 shows	 that	 the	 algorithm	 tries	 to	 find	 an	 object	 in	 the	 frame,	 and	
if	 the	 object	 exist	 the	 algorithm	 will	 find	 it	 and	 use	 the	 procedures	 in	 sections	
5.1	 and	 5.2	 to	 recognize	 the	 object	 (determine	 if	 it	 is	 rigid	 or	 non‐rigid).	 If	 there	
is	not	any	moving	object	in	the	frame	the	algorithm	goes	to	the	next	frame.		

We	 tried	 to	 test	 the	 algorithm	 by	 using	 ten	 different	 input	 videos	 (each	 with	
different	 speeds)	 to	 produce	 the	 reliable	 results	 graph.	 This	 graph	 indicates	 the	
percent	of	correct	object	detection	at	different	speeds,	as	seen	below:	

	 	

Generating of the new frame 

Is there a moving object? 

Is it the Rigid object?  Is it the Non‐Rigid object? 

Yes  No 
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Figure 31: Car detection's graph	

The	 graph	 in	 figure	 31	 shows	 the	 function	 of	 the	 five	 gaussian	 pyramid	 levels	
[see	 Fig.23]	 at	 different	 speeds	 for	 videos	 that	 include	 cars.	 Figure	 32	 provides	
the	same	graph	for	those	input	videos	that	include	humans.	

 

Figure 32: Human detection's graph 
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In	 these	 figures,	 the	 orange	 graphs	 are	 the	 result	 of	 our	 object	 detection	
algorithm,	 which	 automatically	 chooses	 the	 suitable	 pyramid	 levels	 for	 the	
input	video.	

Figure	 31	 shows	 that	 level	 4	 of	 the	 pyramid	 outperforms	 all	 other	 levels,	 and	
even	 does	 slightly	 better	 than	 the	 combined	 flow	 measure	 for	 detecting	 cars.	
This	 is	 expected,	 because	 the	 coarser	 scale	 is	 better	 adapted	 to	 capture	 the	
motions	 of	 a	 large	 solid	 object.	 Level	 4	 has	 a	 bias	 for	 detecting	 cars.	 Conversely,	
in	 figure	 32	 we	 see	 that	 level	 0	 performs	 best	 because	 the	 fine	 level	 is	 better	
adapted	 to	 the	 motions	 of	 a	 smaller	 object	 (compared	 to	 a	 car,	 a	 human	 is	
small);	 with	 lots	 of	 non‐rigid	 motion.	 The	 important	 result	 is	 that	 the	 proposed	
method	 overcomes	 the	 bias	 of	 the	 individual	 levels;	 and	 yields	 a	 method	 that	
more	reliably	distinguishes	between	car	and	human. 

5.4 Conclusions and suggestions for future works 
 

In	 this	 thesis,	 we	 tried	 to	 develop	 a	 reliable	 algorithm	 able	 to	 handle	 high	
motion	 for	 optical	 flow	 estimation	 and	 detect	 rigid	 or	 non‐rigid	 objects.	 To	
reach	 these	 goals,	 we	 used	 five	 gaussian	 pyramid	 levels	 based	 on	 the	 PL	
method	 which	 has	 already	 been	 introduced	 [2].	 As	 a	 conclusion,	 these	 points	
can	be	noted:		
	

 The	 multi‐scale	 algorithm	 accurately	 estimates	 the	 optical	 flow	
compared	to	the	two‐scale	algorithm	(fine	and	coarse	scale).		
	

 The	 PL	 algorithm	 has	 been	 tested	 to	 be	 useful	 in	 a	 multi‐scale	 algorithm.	
The	results	are	promising,	because	of	it	is	a	fast	optical	flow	algorithm. 	
	

 A	 simple	 method	 of	 scale	 selection	 has	 proven	 successful	 for	 the	 task	 of	
classifying	 human	 versus	 rigid	 body	 movements.	 Future	 work	 will	
possibly	 extend	 this	 application,	 using	 a	 higher	 order	 statistical	 measure	
that	 picks	 up	 on	 the	 dynamics	 of	 moving	 objects,	 to	 further	 precision	
than	just	rigidity.	
	

 The	 method	 of	 calibrating	 the	 scale	 selection	 using	 synthetic	 image	
sequences	 has	 proven	 effective,	 even	 though	 the	 test	 data	 looked	 nothing	
like	the	final	recorded	video.	

	
In	this	report,	the	subject	has	been	narrowed	by	only	including	one	moving	object	in	the	
video	and	trying	to	detect	it	correctly.	In	future	works	it	will	be	possible	to	develop	this	
algorithm	for	detection	of	a	specific	object	in	a	video	that	includes	two	or	more	different	
objects.	Through	this	method,	the	efficiency	and	accuracy	of	our	developed	optical	flow	
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estimation	algorithm	can	be	examined	one	more	 time,	 especially	 for	 videos	 that	 have	
more	than	one	fast	moving	object	simultaneously.	
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Appendix  

1. Developing of the “PL” algorithm

1.1 Starting with making video samples 

In	 this	 thesis	 we	 work	 with	 some	 different	 video	 examples	 that	 we	 made	 by	
different	patterns	and	specifications,	such	as:	

1.1.1 'Aliased Disk' Video 

	It	displays	test	image	with	common	Aliasing	error.	

1.1.1.1 Aliasing Error 

When	we	make	reconstruction	process	for	at	make	digital	image	,if	the	image	data	is	not	
correctly	proceed	during	reconstruction	or	sampling	then	the	result	
image(reconstructed	image)	will	be	different	from	the	original	image	and	can	be	
recognizable	easily.	

Let’s	look	at	the	code	briefly:	

 General	Configurable	Parameters	:

 DispFramerate	=	30(frames/second),
 vidObj.Quality	=100;

 Image	generation	Parameters:

 spdMotion	=	0.55;			(speed	of	motion	of	the	patterns	generated)
 cen1						=	0.55;			(centre	of	circle	1(x	offset))
 cW								=	0.9;			(radius	of	big	circles)
 cW2								=	0.3;			(radius	of	small	circles)
 cFuz						=	2;					(fuzziness	of	the	boundary)
 rotAn					=	0;						(angle	of	rotation)

spdRot	=	0;spdRot2	=	0;cDetail			=	0.7;L	=	12;thet	=	pi/8;imSize	=	250;		
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1.1.2 ’Fuzzy Disk’ 

	Displays	same	disk	as	above,	but	with	a	method	of	proper	anti‐aliasing	

1.1.3 ‘Check board 
It’s	a	moving	circle	check	board	pattern		

Figure 33: video sample with aliase error (without anti‐aliasing filter) 

Figure 34: video sample without aliase error (with anti‐aliasing filter) 

checkboard	=	(	checkerboard(16,16,16)	>.5);	512	*	
512	
I=imread('checkboard512.jpg');		
m=size(I,1);	
n=size(I,2);	
j=1;	
radius=m/2;	
[xx,yy]	=	ndgrid((1:m)‐radius,(1:n)‐radius);	
mask	=	(xx.^2	+	yy.^2)<radius^2;	
b	=	cast(mask,'uint8');	
J(:,:,3)=b;	
J(:,:,2)=b;	
J(:,:,1)=b;	
I=I.*J;

          Figure 35:  Circle check board “video sample”
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1.1.4  ‘MazMoh’ 

	It	is	a	radial	line	of	different	scale	with	simple	rotation	

   thet=pi/2;	

%The	log‐spiral	

IMS=256*(1+cos((L/abs(sin(thet)))*(cos(thet)*	
log(sqrt(iX.^2+iY.^2))+sin(thet)*atan2(iY,iX))))/2;	

%Anti‐alias	cut	off	

IMS=IMS.*sig(cW^2‐iX.^2‐iY.^2,	cFuz*cW/50);	

Figure 36:”Radial lines” video sample 

%Speed	of	rotation,	when	activated	

spdRot=spdRotMax;	 %(spdRot=‐pi/80)	

apdRot2=spdRotMax;	

One	 can	 find	 details	 of	 making	 these	 video	 samples	 such	 as	 Motion	 speed,	
number	 of	 frame	 per	 second,…	 in	 attached	 Matlab	 file	 that	 calls	
Generatrmotionstimulus.m	 ,	 we	 use	 them	 for	 generating	 frames	 (from	
video)and	building	Gaussian	pyramids	levels	.	

Way	 we	 do	 is	 to	 estimate	 optical	 flow	 of	 desired	 sampled	 that	 exist	 in	 video	 clip	
in	 different	 levels	 of	 Gaussian	 pyramid	 and	 find	 error	 between	 estimated	
optical	 flow	 and	 calculated	 flow	 which	 will	 find	 with	 knowing	 of	 speed	 of	
frames	 and	 thus	 specific	 pixel	 in	 next	 frame	 and	 comparing	 the	 results	 in	 each	
level	 to	 find	 and	 collect	 best	 pixel	 in	 each	 level	 and	 using	 them	 to	 build	 a	 new	
video	that	is	constructed	from	best	pixel	of	each	pyramid	level..	

The	main	Matlab	file	(m	file)	which	we	made	is	“Vidprocessing”	that	we	explain	it	step	
by	step	in	next	section.	
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1.2 How to set input parameters 

The	input	parameters	of	the	“PL”	algorithm	set	as	below:	

Function	[dx,	dy,	dt,	gradInd]	=	vidProcessing	(movieType,	method,	
spdFactor,bFineScale,nofTimeSlices)		

It	generates	a	sequence	of	test	images,	with	estimated	flow	over	a	sequence,	indicated	
by	‘movieType’.	

‘movieType’:	It	is	the	path	to	an	avi	file	in	the	current	folder	for	generating	images	
indeed	it	can	be	‘filename.avi’(file	on	disk	in	current	folder),	

	'synthetic'(manufactured	test	sequence)	or	'camera'	(setups	the	default		

	video	input	device	for	capturing	video	for	this	application).	

For	example:	VidProcessing	('sample.avi')	assumes	sample.avi	file	that	is	in	the	current	
folder	as	input	video	which	is	used	to	generate	images.	

Output	dx,	dy	and	dt	are	all	WxHxT	matrices	containing	the	x,	y,	and	t		

That	is	partial	derivatives	over	time	also	W	and	H	are	the	height	and	width	of	the	input	
video,	and	T	is	"nofTimeSlices"	.		

For	example,	dx(:,:,1),	will	hold	one	of	the	last	x	derivative	images	of	

the	video	and	together	with	dy(:,:,1)	makes	up	the	2D	gradient	of	one	of	the	

last	images	of	the	video.	

Method	:It	is	the	method	that	calculate	optical	flow,	for	example	it	can	be:	

	"LK"						(Lukas	and	Kanade	method)	

"TS"						(3D	structure	tensor	method)		

"PL"			(Point,	Line	method)	

These	will	not	give	flow	output:	

"gradient"				Displays	the	gradient	values	

"edge"								Displays	the	2D	edge	detection	
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1.2.1 Speed Factor 

It	is	to	change	the	speed	of	the	sample	video	generation	(if	spdFactor=2,	then	the	
sample	sequence	is	twice	as	fast)	

1.2.2 Scale 

It	determines	that	in	what	scale	the	differential	operations	would	take	a	place(which	
pyramid	level)	

0:	Fine	Scale		

1:	Coars	Scale 2:Third	level	of	pyramid	

3:Fourth	level	of	pyrmid 4:Fifth	level	of	pyramid	

Figure 37: Gaussian Pyramid 

Scales	can	be	made	as	follows:	

If	Scale=0,	It	means	original	image	for	example:	Image’s	Height:	512	pixel	and	Image‘s	
width:512	pixel	
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If	Scale=1,	It	means	image	level	1	and	Image’s	Height:	 256	pixel	and	Image‘s	

width:	 256	pixel	

If	Scale=2,	It	means	image	level	2	and	Image’s	Height:	 128	pixels	and	Image‘s	

width:	 128	pixel	

If	Scale=3,	It	means	image	level	3	and	Image’s	Height:	 64	pixel	and	Image‘s	width:	

64	pixel	

If	Scale=4,	It	means	image	level	4	and	Image’s	Height:	 32	pixel	and	Image‘s	width:	

32	pixel	
Then	 by	 using	 matlab	 “mex”	 interface	 a	 C	 file	 that	 calls	 “Grade	 3D	 “is	 used	 for	
calculation	 of	 convolution	 of	 each	 level	 and	 out	 puts	 (derivatives)	 send	 back	 to	
matlab	file	“VidProcessing”.	
	
The	idea	is	to	iterate	through	the	video,	frame	by	frame,	calculate	3D	gradients	at	each	
point	and	then	use	those	3D	gradients	to	calculate	the	flow.	The	flow	is	displayed	at	
each	new	frame.	
	
As	it	has	described	before,	for	calculation	of	optical	flow,	3D	structure	tensor	matrix	
Eq.(2.16)	should	be	solved,	so	after	getting	the	results	from	C	file(Grade	3D)	matlab	file”	
Vidprocessing”	starts	to	calculate		moments	(elements	of	3D	structure	tensor	Matrix)by	
running		this	script	[U1,	V1,	UG,	VG]	=	DoFlow(dx,dy,dt,method)	and	as	a	result	calling	‘	
Doflow.m’	file	:	
	
m :	This	moment,	calculated	in	three	steps	explicitly:	
	
make	element	wise	product,	and	sum	along	time	direction	(time	integration):	
momentIm	=	sum(double	(dx).^2,3);	
smooth	with	large	separable	Gaussian	filter	(spatial	integration)	
momentIm	=	filter2(gg',filter2(gg,	momentIm));	
down	sample	to	specified	resolution:						
m =imresize(momentIm,[TensorRes	TensorRes],'nearest')/normFactor;	
	
That	means:	
	
m =	imresize(filter2(gg',filter2(gg,(sum(double(dx).^2	,3)))),[TensorRes	
TensorRes],'nearest')/normFactor;						
	
The	remaining	moments	are	calculated	in	exactly	the	same	way:	
	
	m =imresize(filter2(gg',filter2(gg,(sum(double(dy).^2										,3)))),[TensorRes	
TensorRes],'nearest')/normFactor;					



 ‐ 54 ‐

m =imresize(filter2(gg',filter2(gg,(sum(double(dt).^2										,3)))),[TensorRes	
TensorRes],'nearest')/normFactor;	

	m =imresize(filter2(gg',filter2(gg,(sum(double(dx).*double(dy),3))))	,[TensorRes	
TensorRes],'nearest')/normFactor;	

	m =imresize(filter2(gg',filter2(gg,(sum(double(dx).*double(dt),3))))	,[TensorRes	
TensorRes],'nearest')/normFactor;	

	m =imresize(filter2(gg',filter2(gg,(sum(double(dy).*double(dt),3))))	,[TensorRes	
TensorRes],'nearest')/normFactor;	

The	calculated	flow	will	be	held	in	matrices	U1,	V1	:	

U1	=	(	m101.*m110	‐	m011.*m200)./tensDet;	
V1	=	(‐m101.*m020	+	m011.*m110)./tensDet;	
tensDet	=	(m020.*m200	‐	m110.^2);	

The	formulation	of	Lucas	and	Kanade	calls	for	an	inversion	of	the	2nd	moment	matrix	
multiplied	with	the	2D	vector	(‐m101,‐m011).	
Indeed	moments	as	defined	above	are	sums	of	products	of	derivatives.		
Then	we	can	show	calculate	optical	flow	on	each	video	frame	by	following	scripts:	
		set(hImObj	,'cdata',curIm);	
	This	Paints	the	line	and	point	flow:	
	set(hQvObjLines	,'UData',	sc*U1,	'VData',	sc*V1);		

2. Calculation of error vectors (displacement vector) for each pixel
vDx	=‐	spdRotMax*y.*disk;	
vDy	=		spdRotMax*x.*disk;	
vDy	=		imresize(	vDy	,[TensorRes	TensorRes],'nearest');	
vDx	=		imresize(	vDx	,[TensorRes	TensorRes],'nearest');	
UG=vDx‐U1;	
VG=	vDy‐V1;	
Set	(hQvObjErrs,'UData',	sc*UG,	'VData',	sc*VG);	
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2.1 Estimated Optical flow Vectors (Red) and Calculated flow motions 
(Blue) with desired speed 
	

As	 we	 describe	 it	 above	 (sction2)	 for	 estimating	 how	 accurate	 results	 are,	 we	
calculate	 error	 vectors	 (displacement	 vector)	 for	 each	 pixel	 in	 each	 pyramids’	
level.		
Given	 the	 motion	 speed	 as	 a	 known	 variable	 so	 we	 can	 estimate	 position	 of	
each	 point	 along	 axis	 x	 and	 y	 and	 save	 them	 in	 matrix	 UG,	 VG	 and	 with	
subtraction	 of	 U,	 V	 (they	 are	 matrixes	 that	 include	 estimated	 position	 by	 optical	
flow)	 we	 can	 reach	 to	 error	 vectors	 (displacement	 vector)	 and	 show	 them	 on	
our	video	sample.	(Code	exists	in	section	2.2	of	appendix)	

 

Figure 38: Two consecutive frames in level 4 of pyramid, motion speed pi/10	
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Figure 39: Same frames as Fig.38 but motion speed is pi/50	

 

2.2 Calculation of MSE (Mean Squared Error). 
Code	is:	
MSEu	=	mean	(mean	((UG).	^2,	2),	1);	
MSEv	=	mean	(mean	((VG).	^2,	2),	1);	
	 	

http://portal.acm.org/ft_gateway.cfm?id=212141&type=pdf&coll=GUIDE&dl=GUIDE&CFID=72158298&CFTOKEN=85078203
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
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