Mine the Gaps

Evolution of Eukaryotic Protein Indels and their Application for Testing Deep Phylogeny
Insertions/deletions (indels) are potentially powerful evolutionary markers, but little is known about their evolution and few tools exist to effectively study them. To address this, I developed SeqFIRE, a tool for automated identification and extraction of indels from protein multiple sequence alignments. The program also extracts conserved alignment blocks, thus covering all major steps in preparing multiple sequence alignments for phylogenetic analysis.

I then used SeqFIRE to build an indel database, using 299 single copy proteins from a broad taxonomic sampling of mainly multicellular eukaryotes. A total of 4,707 indels were extracted, of which 901 are simple (one genetic event) and 3,806 are complex (multiple events). The most abundant indels are single amino acid simple indels. Indel frequency decreases exponentially with length and shows a linear relationship with host protein size. Singleton indels reveal a strong bias towards insertions (2.31 x deletions on average). These analyses also identify 43 indels marking major clades in Plantae and Fungi (clade defining indels or CDIs), but none for Metazoa.

In order to study the 3806 complex indels they were first classified by number of states. Analysis of the 2-state complex and simple indels combined (“bi-state indels”) confirms that insertions are over 2.5 times as frequent as deletions. Three-quarters of the complex indels had three-nine states (“slightly complex indels”). A tree-assisted search method was developed allowing me to identify 1,010 potential CDIs supporting all examined major branches of Plantae and Fungi.

Forty-two proteins were also found to host complex indel CDIs for the deepest branches of Metazoa. After expanding the taxon set for these proteins, I identified a total of 49 non-bilaterian specific CDIs. Parsimony analysis of these indels places Ctenophora as sister taxon to all other Metazoa including Porifera. Six CDIs were also found placing Placozoa as sister to Bilateria. I conclude that slightly complex indels are a rich source of CDIs, and my tree-assisted search strategy could be automated and implemented in the program SeqFIRE to facilitate their discovery. This will have important implications for mining the phylogenomic content of the vast resource of protist genome data soon to become available.

Keywords: indel, insertion/deletion, protein evolution, bioinformatics, non-bilateria, eukaryotes, phylogeny

Pravech Ajawatanawong, Department of Organismal Biology, Systematic Biology, Norbyvägen 18 D, Uppsala University, SE-75236 Uppsala, Sweden.

© Pravech Ajawatanawong 2014

ISSN 1651-6214
urn:nbn:se:uu:diva-220727 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220727)
To my family
List of Papers

This thesis is based on the following papers, which are referred to in the text by their Roman numerals.

III Ajawatanawong P., Baldauf S.L. An automatable method for high throughput analysis of evolutionary patterns in slightly complex indels and its application to the deep phylogeny of Metazoa. [Manuscript]

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion/Deletion</td>
<td>11</td>
</tr>
<tr>
<td>Indel versus gap</td>
<td>11</td>
</tr>
<tr>
<td>Mechanisms of indel formation</td>
<td>12</td>
</tr>
<tr>
<td>Classification of protein indels</td>
<td>13</td>
</tr>
<tr>
<td>Indels can be useful phylogenetic markers</td>
<td>14</td>
</tr>
<tr>
<td>Using indels as quantitative phylogenetic characters</td>
<td>15</td>
</tr>
<tr>
<td>Previous surveys of protein indels</td>
<td>16</td>
</tr>
<tr>
<td>Impact of indels on protein structure and interaction</td>
<td>17</td>
</tr>
<tr>
<td>Bioinformatic tools for protein indels</td>
<td>17</td>
</tr>
<tr>
<td>Animal Evolution</td>
<td>19</td>
</tr>
<tr>
<td>Phylum Porifera</td>
<td>20</td>
</tr>
<tr>
<td>Phylum Cnidaria</td>
<td>20</td>
</tr>
<tr>
<td>Phylum Ctenophora</td>
<td>21</td>
</tr>
<tr>
<td>Phylum Placozoa</td>
<td>22</td>
</tr>
<tr>
<td>Bilaterian animals</td>
<td>22</td>
</tr>
<tr>
<td>Hypotheses for early Metazoan phylogeny</td>
<td>23</td>
</tr>
<tr>
<td>Objectives</td>
<td>26</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>27</td>
</tr>
<tr>
<td>Software Development</td>
<td>27</td>
</tr>
<tr>
<td>Proteomic sources</td>
<td>27</td>
</tr>
<tr>
<td>Identification of orthologous proteins</td>
<td>27</td>
</tr>
<tr>
<td>Indel extraction and analyses</td>
<td>29</td>
</tr>
<tr>
<td>Expanded data sets used to search for metazoan CDIs</td>
<td>29</td>
</tr>
<tr>
<td>Summary of Paper I</td>
<td>30</td>
</tr>
<tr>
<td>SeqFIRE: an automated tool for indel analysis</td>
<td>30</td>
</tr>
<tr>
<td>Summary of Paper II</td>
<td>32</td>
</tr>
<tr>
<td>Identification of orthologous proteins</td>
<td>32</td>
</tr>
<tr>
<td>Evolutionary patterns of simple indels</td>
<td>33</td>
</tr>
<tr>
<td>Summary of Paper III</td>
<td>34</td>
</tr>
<tr>
<td>Evolutionary patterns in slightly complex indels</td>
<td>34</td>
</tr>
<tr>
<td>Insights into early Metazoan evolution based on indels</td>
<td>35</td>
</tr>
</tbody>
</table>
Future Prospects ... 36
Conclusions .. 37
Svensk sammanfattning... 39
บทสรุป (Summary in Thai) ... 42
Acknowledgements ... 46
References ... 51
Abbreviations

aa Amino Acid
BLASTp Basic Local Alignment Search Tool for Protein
CDI Clade-Defining Indel
DNA Dideoxyribonucleic acid
ECM Extracellular Matrix
EF-1α Elongation Factor 1α
EST Express Sequence Tag
G+C content Guanine + Cytosine Content
HTML Hypertext Markup Language
I:D ratio Insertion:Deletion Ratio
Indel Insertion/deletion
JGI Joint Genome Institute
LBA Long-Branch Attraction
LSU Large Subunit
MCIC Modified Complex Indel Coding
ME Minimum Evolution
mm Millimeter
MP Maximum Parsimony
MSA Multiple Sequence Alignment
NCBI National Center for Biotechnology Information
NJ Neighbor-Joining
OTU Operational Taxonomic Unit
PAUP* Phylogenetic Analysis Using Parsimony (* and other methods)
PDB Protein Data Bank
PDF Portable Document Format
PHP PHP: Hypertext Preprocessor
PHYLIP Phylogeny Inference Package
RGC Rare Genomic Change
rRNA Ribosomal Ribonucleic Acid
S Svedberg Unit
SeqFIRE Sequence Feature and Indel Region Extractor
SIC Simple Indel Coding
SSM Slipped-Strand Mispairing
SSU Small Subunit
URL Uniform Resource Locator
Insertion/Deletion

Insertions and deletions are common genetic mutations. When an insertion occurs, a string of nucleotides is received into a sequence. Deletions are the opposite genetic event from insertions, in which part of a sequence is removed. A technique that can identify and visualize insertions and deletions is a “sequence alignment”. However, to distinguish insertions from deletions in a sequence alignment requires a symplesiomorphic (ancestral) sequence as a reference. Without this, we cannot identify the type of mutation, so we use the more general term “indel” to refer to a length variation among sequences without specified directionality.

All indels occur at the level of nucleotide sequences. Indels are less frequently found in sequence regions that encode proteins, because they will cause a frame shift mutation unless they are made up of multiples of three bases. Frame shifts can often cause loss of protein function, which can reduce fitness of the organism. This is one reason that indels in protein coding sequences are generally much more rare than nucleotide substitutions. This thesis is aimed at understanding the evolution of protein indels, Therefore, the term “indel” will be used to refer to protein indels throughout the thesis.

All protein indels result in the gain or loss of protein size and content, which can have an effect on protein structure and function. This may also reduce fitness, and therefore is another reason why protein indels are rare. The analysis of indels is a relatively new area of research, so there is some indel terminology that must first be defined in order to avoid misunderstanding.

Indel versus gap

The goal of sequence alignment is to identify homologous positions among sequences. Addition of a gap (-) is a strategy used to deal with sequences that contain indels. It is important to clarify the difference between the term gap and indel. In the context of molecular sequence alignment, indel refers to a real genetic event, while gap refers to a space that is generated during sequence alignment, which seeks to reconstruct this genetic event (Giribet & Wheeler, 1999; Saurabh et al., 2012). However, if the alignment method is not accurate, gap and indel may refer to different positions, although they should be in the same place. In this case the gaps generated by the inaccurate methods are termed “pseudo-indels”.

Mechanisms of indel formation

There are a number of mechanisms that can generate indels in nucleotide sequences. One of the most common mechanisms is slipped-strand mispairing or SSM (Xing & Lee, 2006). SSM is initiated by the mispairing between nascent and template strands during DNA replication (reviewed in Levinson & Gutman, 1987; Garcia-Diaz & Kunkel, 2006; Fan & Chu, 2007). Mispairing usually occurs in nucleotide repeat regions, when the two DNA strands separate and then re-anneal out of alignment. The result will be a loop in one strand, and if DNA synthesis is continued, some bases will be gained or lost from the daughter strand. The consequence of the formation of a mispairing loop in the template strand is the generation of an insertion in the daughter strand. Alternatively, if the loop is formed in the template strand, the result will be a deletion in the daughter strand (Figure 1).

![Diagram of slipped-strand mispairing (SSM)](image)

Figure 1. Simple diagram of slipped-strand mispairing (SSM). The pairwise sequence on top of the figure shows the original sequences. If a loop is formed in the primer strand, it will cause an insertion in the daughter strand whereas if a loop is formed in the template strand, it will cause a deletion. The nucleotides with a black background show the polymerized regions.

Indels generated by SSM are relatively short (about 1-30 amino acids). There are a number of other mechanisms known to generate longer indels, such as DNA recombination (i.e., unequal crossing over between chromosomes) and transposition (Li & Graur, 2000; Qian & Goldstein, 2001).
Classification of protein indels

There is no universally accepted classification system for indels, particularly protein indels. Primarily, indels are classified into either insertions or deletions, but pairwise comparison of sequences makes it difficult to distinguish the ancestral state of those sequences. Li (1997) divided indels based on size and mechanisms into (i) short indels (around 20-30 bases), which are mainly caused by errors of the cellular machinery during replication, such as SSM, and (ii) long indels, which are caused mainly by unequal crossing over and transposition (Giribet & Wheeler, 1999).

In this thesis, I propose an alternative classification for protein indels using indel patterns and the number of implied genetic events. Based on these criteria, protein indels are classified into simple indels and complex indels (Ajawatanawong et al., 2012; Ajawatanawong & Baldauf, 2013). A simple indel comprises two clear states, present or absent. These indels appear to be caused by a single genetic event. On the other hand, complex indels are the results of multiple genetic events (Figure 2).

Another important criterion for indel classification that is also used in this thesis is the potential evolutionary information that the indel provides. Defining these indels depends on a reference phylogeny. Based on this rule, indels can be divided into four different types (Figure 3) as follows.

- **Clade defining indel (CDI):** these are supporting a particular clade. CDI characters are consistent with internal branches of the reference tree. These indels maybe useful for assigning additional taxa to the reference phylogeny or help to resolve controversial relationships within the tree.
- **Singleton indel:** this is an indel that is presented in only one sequence in the dataset. By definition this indel will be present only on a terminal branch of the tree.

![Figure 2](image-url)
• **Homoplastic indel:** These are indels that are in conflict with the reference phylogeny. If they map to regions of the tree that are confidently resolved by other data, then it can be assumed that those indels arose independently. However, if there are controversial relationships in the tree, these indels need to be considered as possible support for alternative hypotheses.

• **Ambiguous indel:** These indel cannot be interpreted due to a lack of sequences data from taxa that fall between taxa possessing the indel. These are particularly common for indels for deeper branches in the tree. Further taxon sampling is needed to identify the origin of the indel.

\[\text{Figure 3.} \] Examples of clade defining (CDI, red block), singleton (green block), and homoplastic (blue block) indels for the reference phylogeny shown on the left hand side. Correspondingly colored bars on the tree indicate the phylogenetic positions of respective indels.

Indels can be useful phylogenetic markers

Most molecular phylogenetic studies are based on substitutions found in DNA and protein sequences. The power of these phylogenies has advanced greatly, particularly with the development of improved evolutionary models (review in Whelan et al., 2001), phylogenetic noise reduction techniques (Townsend et al., 2012) and powerful search algorithms (Lewis, 1998; Hill et al., 2005; Stamatakis et al., 2005; Stamatakis, 2006; Ronquist et al., 2012). However, these analyses are still plagued by artifacts such as misidentification of homoplasy when substitutions are near saturation, long-branch attraction (LBA) and independent substitution among sites (Wägele & Mayer, 2007; Philippe et al., 2011; reviews in Moreira & Philippe, 2000; Bergsten, 2005).

As an alternative approach to avoid these problems, Rokas and Holland (2000) advocated the use of rare genomic changes (RGCs) for reconstructing phylogenetic relationships. RGCs are larger-scale mutational changes that
tend to involve multiple nucleotide positions and are much more rare than single nucleotide substitutions (Rokas & Holland, 2000). Examples of RGCs include indels, signature sequences, transposon insertions and gene duplication events.

It has been recognized for some time that indels are potentially powerful phylogenetic markers (Lloyd & Calder, 1991; Rokas & Holland, 2000). For example a ~12-aa insertion in the elongation factor 1α (EF-1α) protein was among the first evidence that animals and fungi are sister taxa (Baldauf & Palmer, 1993; Steenkamp et al., 2006). Six indels from four nuclear genes were used to root the phylogenetic tree of eutherian mammals (de Jong et al., 2003), and another insertion in EF-1α was proposed as support for the eocytes (extremely thermophilic, sulfur-metabolizing bacteria) as the sister group of eukaryotes (Rivera & Lake, 1992), an hypothesis that is receiving increasing support (Cox et al., 2008; Williams et al., 2013).

Rokas and Holland (2000) suggested the reason that RGCs such as indels should be such good phylogenetic markers is that they should be less prone to homoplasy than simple sequence substitutions. Theoretically, any character that occurs rarely should have lower rates of convergent and parallel evolution. In the case of protein indels, the complexity of the indel pattern should also make homoplasy (independent gain or reversal) easier to detect when it does occur.

Using indels as quantitative phylogenetic characters

Unlike many rare genomic changes, indels can be found in relatively large numbers and are much easier to find than other types of RGCs, especially when whole genome sequence data are available. This has led to interest in trying to reconstruct phylogeny based solely on indels. One problem in using indels as evolutionary characters is the lack of sophisticated models for weighting indels. The problem is complex enough with simple indels, which can be scored as presence/absence (0/1) in a simple character matrix (Ajawatanawong et al., 2012). However, even then, indels of all different lengths are weighted equally, which does not reflect their probabilities (Ajawatanawong & Baldauf, 2013). Incorporation of indels into phylogeny becomes even more difficult in the case of complex indels, where there are multiple states that may be related to each other in different ways.

A number of methods have been proposed to score indels for phylogeny, primarily using parsimony (Young & Healy, 2003; Müller, 2006; Simmons et al., 2007; Belinky et al., 2010). The three most commonly used methods are “5th state” gap coding (all gaps positions scored separately), simple gap coding (SIC, gaps scored as presence/absence only) and modified complex indel coding (MCIC, indels scored as multi-state characters corresponding to different indel states) (reviewed in Simmons et al. 2007). Simmons et al.
(2007) compared the performance of the six most commonly used methods of gap coding using simulated DNA alignments of varying accuracy. They found that 5th state coding out-performed all other methods, although this was largely because it over-weighted gaps (Simmons et al. 2007). Meanwhile, SIC and MCIC performed similarly and all methods out-performed ignoring gaps completely.

The only large analysis of protein indels in phylogeny is by Belinky et al. (2010). They extracted over 1,000 protein indels from 11 animal proteomes and examined the effects of taxon sampling, indel length and coding methods and the use of different ortholog subsets on parsimony tree reconstruction. Their results from these data show that indels are sensitive to the same artifacts as substitution based phylogeny, most notably LBA and taxon sampling effects. They also confirmed that indels are rich in homoplasy. These and other analyses are beginning to reveal the fact that the idea that RGCs, such as protein indels are phylogenetic characters with low homoplasy turns out to be quite naive (Bapteste & Philippe, 2002; de Jong et al., 2003; Paper III).

Previous surveys of protein indels

Most of the early work and even much of the current work on protein indels has been done by structural biochemists, because indels are the most challenging parts of the protein structure to solve and to model (Pascarella & Argos, 1992; Pang et al., 2005; Cherkasov et al., 2006; Hsing & Cherkasov, 2008; Tóth-Petróczy & Tawfik, 2013). These surveys have been aimed primarily at understanding protein structure, function and interaction. These analyses have shown that most protein indels occur in loops at the surface of the protein structure (Pascarella & Argos, 1992; Benner et al., 1993; Romero et al., 2006; Kim & Guo, 2010). Analysis of more than 5,000 indels from protein tertiary structure shows that single amino acid indels are the most common type (Pascarella & Argos, 1992). This observation has been confirmed with a number of analyses and surveys (Ajawatanawong & Baldauf, 2013). The frequency of indels also decreases exponentially with indel size (Ajawatanawong & Baldauf, 2013; Chong et al., 2013).

However, there are some indel-tolerant proteins that allow indels to occur within the secondary structure elements (α-helix and β-sheet), for example the maltose binding protein (Betton et al., 1993) and T4-lysozyme (Heinz et al., 1993). Structural study of the 12-aa insertion in human EF-1α shows a surface expose hairpin structure formed by 12-aa insertion, whereas the 12-aa insertion is nonexistent among eukaryotic parasites, such as Leishmania donovani, a species of intracellular parasitic protozoa that causes leishmaniasis (Nandan et al., 2007). The 12-aa indel in human EF-1α is found near a small inhibitor ligands binding pocket. Molecular docking shows that lig-
ands cannot bind to the inhibitor site of human EF-1α because of the indel. This makes indel is a potential drug target for parasitic eukaryotes that urgently need to investigate for new medicines (Cherkasov et al., 2005; Nandan et al., 2007). Based on this idea, there is a survey of protein indels as a drug target among several parasitic proteomes (Cherkasov et al., 2006).

Impact of indels on protein structure and interaction

Hsing and Cherkasov (2008) released a database of structural indels extracted from all pairwise alignments of highly similar protein (>50% similarity) found in the Protein Data Bank (PDB). Analysis of indels with the secondary structure of proteins shows the amino acid bias in indels that tend to locate on the surface of protein. Moreover, indels are not only commonly found in loop (undefined structures), they are also found in α-helix and β-sheet.

Interestingly, analysis of amino acid sequences flanking at both ends of any protein indel from IndelFR database demonstrated high amino acid substitution (poor amino acid similarity), particularly the nearest flank site has lowest similarity (Zhang et al., 2001a; Zhang et al., 2001b). Moreover, comparisons of protein structures also show high conformation distance in the high amino acid substitution sites. Both indels and amino acid substitution might play an important role in the evolution and diversity of protein structure and function (Zhang et al., 2010; Zhang et al., 2011a; Zhang et al., 2011b).

Recently, it was observed that protein indels tend to be more frequently found in essential proteins than in non-essential proteins (Chan et al., 2007). This observation was done using the complete knock out data for Bacillus subtilis 168, Escherichia coli K12 and Saccharomyces cerevisiae. The amounts of indels in essential proteins are significantly greater than in non-essential proteins in all three proteomes. Protein network analysis in S. cerevisiae shows that the indel containing proteins have higher potential to interact with other proteins (Chan et al., 2007). Furthermore, analysis of protein-protein interaction between S. cerevisiae and Drosophila melanogaster (fruit fly) shows that indel containing proteins have high variation of protein interaction. The result suggests that indels can have a significant influence on protein interaction and it has been suggested that indels an important method for rapidly and significantly modifying interaction networks (Hormozdiari et al., 2009).

Bioinformatic tools for protein indels

Computer software for indel analysis has been developed in the last decade. Most of them are developed for analysis of DNA indels in various purpose,
such as INDELSCAN for annotation of species-specific and non-species-specific indels from genome sequences (Chen et al., 2007), SeqState for annotation of character information for phylogenetic analysis (Müller, 2005) and SOAPindel for calling short indels from unmapped DNA sequences (Li et al., 2013).

There are two databases of protein indels, Indel PDB – the collection of closely related protein indels (Hsing & Cherkasov, 2008) and IndelFR – the collection of indel flanking regions of domain proteins (Zhang et al., 2001b). Indel PDB database

Recently, I developed SeqFIRE, an automated web application for identification and extraction of protein indels and conserved blocks (Ajawanawan et al., 2012). This program can also identify indels into simple and complex types. If the program detects simple indels in the alignment, SeqFIRE will score those indels in a NEXUS matrix as present (1) or absent (0). Moreover, the program will provide the indel mask alignment (no indels in the alignment) in FastA format.
Early morphology based phylogeny of animals suggested that Porifera is a monophyletic sister clade to the remaining animals, or “epitheliozoa” (Figure 4). This is based on the fact that sponges lack an epithelial layer, which is unique in this phylum. Among epitheliozoa, the Placozoans lack an extracellular matrix (ECM), whereas the remaining animals have this property. So, based on this feature it was inferred that the Placozoa should be the second branch of metazoa with the remainder of taxa with ECM referred to as eumetazoa. Cnidaria and Ctenophora have ECM but lack bilateral symmetry and therefore were assumed to branch next. These taxa are similar in nervous system (nerve net), extracellular digestion in gastrovascular carvity (bodu carvity), tentacles projection around the mouth, mostly diploblastic (mostly endoderm and ectoderm), etc. and some proposed they form a single clade (Philippe et al., 2009). However, Cnidaria spermatocytes lack acrosomes (an organelle locates at the head of sperm cells and containing enzymes for digesting egg cell coating), a common feature in Ctenophora and Bilatera (reviewed in Dohrmann & Wörheide, 2013).

![Figure 4. Animal phylogeny based on morphology (modified from Dohrmann & Wörheide, 2013).](image)

Early molecular phylogeny of animals based on the 18S small subunit (SSU) and 28S large subunit (LSU) rRNA sequences (Figure 5B) also suggested
the monophyly of bilateria, but the tree seems to be ambiguous in the deepest animal branches, commonly referred to as the “non-bilaterian animals” or “radiata”. Even sponge is the sister-taxon of the remaining animals, but the second deepest branch of animal tree becomes Ctenophore. Moreover, Trichoplax sp. and Cnidaria are form a clade and this clade be the sister taxa of bilateria (Bridge et al., 1995; Kim et al., 1999).

Non-bilaterian animals have radial symmetry, or as corals and sponges - no symmetry (asymmetry). They contains four major phyla: Porifera, Cnidaria, Ctenophora and Placozoa.

Phylum Porifera

Poriferea or “sponges” can be found in both fresh water and marine habitats. Sponges are very diverse in shape and mostly asymmetric. They are multicellular but lack organs, nerves, and a circulatory system. Basically, sponges possess a lot of tiny pores (ostia) around the body that are used to pump water into a canal-like structure (aquiferous system), and drain the water out from a larger pore (osculum). They develop a type of flagellated cell, called choanocyte (collar cell) that can catch food inside the water-pumping structure.

Sponges can be classified into four classes: Demospongiae (demosponges), Hexactinellida (glass sponges), Calcarea (calcareous sponges), and Homoscleromorpha. Phylogenetic analysis shows that every individual class is monophyletic group (Philippe et al., 2009; Pick et al., 2010). Although all sponges share the same basic morphology several molecular phylogenetic analyses still suggest the paraphyly of sponges (Borchiellini, 2001; Pennisi, 2003; Sperling et al., 2009). Topology of the paraphyly tree shows Dermospongia is the first branch, follow by Calcispongia. The Homoscleromorpha is the sister taxon of epitheliozoa (Sperling et al., 2009). Recently, the concept of sponge is a monophyletic group becomes again more popular (Thacker et al., 2013).

Phylum Cnidaria

Cnidaria are exclusively aquatic animals with >10,000 described species. They are diploblasts, i.e. they have two tissue types, endoderm and ectoderm, which are separated by a non-cellular layer of mesoglea, a gelatineous layer that separates inner and outer cell layers. They are named after the cnidocytes cells for capturing prey. They have radial symmetry and two basic body plans: either a polyp or a bell-like medusa. In some species, these are different stages in the life cycle, while in others one stage or the other appears to have been lost. There is a single opening into the body cavity,
which serves as both mouth and anus. The opening is surrounded by a number of tentacles that contain cnidocytes. The cnidocytes possess capsules, called nematocysts, which contain poisonous fluid that is used to paralyze or killed their prey.

The phylum is divided in to four major classes namely, Anthozoa (sea anemones, corals, sea pens), Cubozoa (box jellies), Hydrozoa (hydras), and Scyphozoa (jellyfish). Phylogenetic analysis of complete SSU sequences of Cnidaria shows Anthozoa as the sister group to the other three classes (together referred to as Medusozoa or Cubozoa + Hydrozoa + Scyphozoa) with 100% and 98% bootstrap supported in maximum parsimony (MP) and minimum evolution (ME), respectively (Collins, 2002).

Phylum Ctenophora

Ctenophora are commonly called “comb jellies” and live in marine habitats worldwide. Their main distinguishing characteristic is eight rows of comb strips, which are arranged vertically from top to bottom of the body. These combs consist of thousands of cilia that are used for locomotion and scatter light, giving a rainbow effect. Many species are un-pigmented and nearly transparent, but most species have bioluminescence, which is produced from photocytes under the comb plates (Pang & Martindale, 2008).

Similar to Cnidarians, the Ctenophore body consists of a mesoglea sandwiched between an outer layer of ectoderm and an inner layer of endoderm. They also possess a single opening to their body cavity. Due to such apparently strong resemblance to each other, the two groups were long classified together as phylum Coelenterata. However, this is no longer accepted, large due to the fact that ctenophores and cnidarians differ strongly in their modes of locomotion. The comb jelly moves by the movement of cilia at the comb plates, which are supported by a number of muscle cells, whereas jellyfish move by pumping water out of the medusa structure to force forward movement. Cnidarians also possess a string that is poisonous to prey, but ctenophores use sticky tentacles for catching prey (Pang & Martindale, 2008).

Only the genome sequence of Mnemiopsis leidyi is available for Ctenophora (Srivastava et al., 2010). Furthermore, ctenophore sequences show very long branches in multigene trees, suggesting that they may be affected by long-branch attraction (LBA) (Dunn et al., 2008; Kohn et al., 2012; Osigus et al., 2013). Thus there is considerable controversy regarding the exact position of ctenophores within the animal phylogenetic tree (reviewed in Dohrmann & Wörheide, 2013). Analysis of EST sequences from 150 genes and 77 taxa place ctenophores as the deepest branch of the metazoan phylogeny (Dunn et al., 2008). Likewise, Hejnol (2009) and his colleagues constructed a tree from a 1487-gene matrix, and the resulting tree also shows Ctenophora i placed at the base of the Metazoa. An analysis of 242 genes
including data from the genome sequence of the ctenophore *Mnemiopsis leidyi* also places ctenophores as the sister group of all other animals, including Porifera (Ryan *et al.*, 2013). Meanwhile a phylogenetic tree based on mitochondrial sequences places ctenophores as a sister clade of Hexactinellida sponges, within the phylum Porifera (Osigus *et al.*, 2013), an even more surprising position.

Phylum Placozoa

In 1883, a German zoologist, Franz Eilhard Schulze, discovered a novel organism on the wall of a marine aquarium in Austria (Syed & Schierwater, 2002). This animal was flatted and round like a small disk, about 1-2 mm in diameter. Because of the simple body plan, it was thought to be a cnidarian larva for a century. However, histological, embryological and cell cycle studies showed its uniqueness, which clearly placed it in a new phylum: Placozoa (Eitel & Schierwater, 2010 and and references therein). *Trichoplax adhaerens* is the only described placazoan, although there may be other yet undiscovered species (Voigt *et al.*, 2004). The body is flattened dorsal- and ventrally, and both surfaces are covered with cilia used for movement. Despite being multicellular, *Trichoplax* feeds by phagocytosis, gliding on top of its food (organic detritus) and engulfing it.

Phylogenetic analyses give very different results regarding the position of Placozoa. This is probably complicated by the fact that there is only a single taxon to represent the entire “phylum”, so its sequences tend to form long branches in phylogenetic trees. Trees of LSU and SSU rRNA genes suggest *Trichoplax* is a sister taxon of the Cnidaria (Kim *et al.*, 1999). However, analysis of the secondary structure of the SSU rRNA does not support this (Ender & Schierwater, 2003). Phylogeny based on 12 mitochondrial genes places *Trichoplax* as the deepest branch in the tree of animals (Dellaporta *et al.*, 2006). However, a phylogenetic tree reconstructed from 104 single-copy nuclear genes placed Placozoa as the first major branch after *Amphimedon queenslandica*, the only one sponge proteome at that time (Srivastava *et al.*, 2008).

Bilaterian animals

Bilaterians include the bulk of Metazoan diversity, and evidence supporting them as a monophyletic group is unambiguous (Philippe *et al.*, 2005; Lartillot & Philippe, 2008; Paps *et al.*, 2009; Simakov *et al.*, 2013). Mostly they have bilateral symmetry (except for phylum Echinodermata) and a coelom, a gut with two openings. The bilaterians are divided into two monophyletic groups: protostomes (develops mouth before anus) and deuterostomes (de-
velops anus before mouth) (reviewed in Erwin & Davidson, 2002; Baguñà et al., 2008; Lartillot & Philippe, 2008; DeSalle & Schierwater, 2008). Molecular data further divides protostomes into two monophyletic groups: Ecdysozoa (Arthropoda, Onychophora, Tardigrada, Nematoda, Nematomorpha, Kinorhyncha, Loricifera, Priapulida) and Lophotrochozoa (Annelida, Bryozoa, Mollusca, Nemertes, Entoprocta, Phoronida, Brachiopoda). Deuterostomes comprise the phylum Chordata, Hemichordata and Echinodermata. However, this thesis focuses on the earliest branches of Metazoa, which predate the deuterostome-protostome split.

Hypotheses for early Metazoan phylogeny

Molecular data analysis of animal evolution has generated a large amount of incompatible trees reconstructed from different datasets and/or methods of analysis. Sequences for non-bilaterian animals have been rare until quite recently, and except for rRNA, are still available from only a few taxa. The classical analyses using sequences of 18S rRNA (Bridge et al., 1995; Kim et al., 1999) showed a monophyletic Cnidaria + Placozoa (Figure 5B) as the sister-group of Bilateria. Traditional and recent analyses of morphology places Porifera as the first branch of Metazoa (Figure 5A) (Mallatt et al., 2010), which is also seen in the 18S rRNA tree (Figure 5B).

Dunn and his colleagues (2008) published the first large multigene phylogeny of Metazoa, comprising 150 genes from 77 animal taxa. Surprisingly, the phylogenetic tree placed Mnemiopsis leidyi (Ctenophora) as the first branch of the Metazoa with bootstrap support >90% (Figure 5C). This suggests early evolution of tissues, which must have been lost in Porifera or the complex morphology of M. leidyi evolved independently from the remaining animals. However, sequences for Placozoa were not available at the time.

Philippe et al., (2009) assembled a concatenated dataset of 128 protein coding genes from 55 taxa, including more outgroups (11), avoiding metazoa with long branches and including the Placozoa and nine taxa of sponges that cover four major groups of sponges. Their tree supports a monophyletic group of Coelenterata (Cnidaria + Ctenophora), and places this group as sister to Bilateria (Figure 5D). Most importantly, this phylogeny shows a monophyletic Porifera as the deepest branch of Metazoa, which is in agreement with morphology and 18S trees (Figure 5A and 5B).

Meanwhile, re-analysis of the dataset of Dunn et al. (2008) with 17 additional taxa, including Placozoa still places Ctenophora as the first split in Metazoa, and further shows the sponges as paraphyletic, which Demospongia branch first, then Homoscleromorpha (Hejnol et al., 2009) (Figure 5C). Alternatively, Schierwater et al., (2009) combined morphological characters along with 15 mitochondrial and 16 additional nuclear coding genes plus 18 genes from Dunn et al. (2008) study to build a phylogenetic tree. This tree
places all non-bilateria into a single clade, which they call urmetazoa, with *Trichoplax* as the deepest branch within the urmetazoan clade (Figure 5F; Schierwater et al., 2009).

Figure 5. Six hypotheses in metazoan evolution. The traditional point of view is based on animal morphology (reviewed in Dohrmann & Wörheide, 2013) (A). The most widely used molecular region for phylogenetic analysis is 18S rRNA (B). The third hypothesis suggests Ctenophora is the early branching of Metazoa (C). The fourth hypothesis suggests the monophyly of phylum Coelenterata, and shows that Porifera is the first branch of animals (D). The fifth hypothesis suggests that Placozoa is the sister-taxa of bilateria and still shows that Porifera is the sister-clade of the remaining animals (E). The last hypothesis suggests that the animal phylogeny is separated into two monophyletic groups: bilateria and radiate (F).

Pick et al., (2010) suggested that the position of Ctenophora as the deepest branch of Metazoa in the Dunn et al. tree (2008) is an artifact, due to
long-branch attraction. Using a new dataset with increased sampling of non-bilaterian animals and removal of the long-branch outgroups, they find Porifera to be the deepest branch of the animal tree. This is followed by separate branches for Ctenophora and Cnidaria. Placozoa in this tree is sister-taxon of bilaterian animals (Pick et al., 2010) (Figure 5E). However, phylogenetic analysis using the genome sequence of Mnemiopsis leidyi (Ctenophora) again placed Ctenophora as the deepest branch of animals (Figure 5C). The latter study also found genes for a set of neural components in the genomes of M. leidyi and Amphimedon queenslandica (Porifera). This supports the argument that Porifera may have evolved from more complex ancestors by loss of cell differentiation (Ryan et al., 2013).

All these disagreements between phylogenetic trees reconstructed from expanded matrix datasets lead some to suggest that different genes may have different evolutionary history (Nosenko et al., 2013). This led the latter authors to suggest that concatenated-genes phylogenies might not be appropriate to solve ancient phylogenetic questions, such as the relationships between major groups of Metazoa and instead there was a need for “development of new, sequence-independent genomic markers” (Nosenko et al., 2013).

Belinsky et al. (2010) extracted protein indels from 1,185 predicted orthologs. Those indels were non-single-aa indels for solving deep Metazoan phylogeny. The indel tree shows a monophyletic group of bilateria and Cnidaria as the sister-taxon of Bilateria. Nevertheless the tree seems to be sensitive to LBA and also have high homoplasy (Belinky et al., 2010).
Objectives

Aims of this thesis are

1. To develop a tool for automated identification and extraction of indels from protein multiple sequence alignments. The tool is meant to aid in the identification of potentially phylogenetically useful indels, be user friendly, and made available via a webserver and a downloadable form that can be implemented in a bioinformatic pipeline. (Paper I)

2. To analyze evolutionary patterns in a set of indels extracted from a broad taxonomic sampling of multicellular eukaryotes, focusing primarily on the simple (two-state) indels (presence/absence). This required the development of a semi-automated pipeline for identification of universal (among eukaryotes) protein orthologs and extraction of all indels using the tool developed for Objective 1 (Paper II).

3. To analyze general evolutionary patterns in the remaining, “complex” indels, extracted under Objective 2. (Paper III).

4. To analyze the full set of complex indels extracted under Objective 2 with respect to the deep phylogeny of Metazoa. (Paper III)
Materials and Methods

Software Development

In order to analyze general evolutionary patterns in protein indels, a bioinformatic tool for extraction and analysis of protein indels is needed in order to build a large database to work with. To address this issue, I developed SeqFIRE (Sequence Features and Indel Regions Extractors), a web application for the identification and extraction of protein indels from an alignment. The core program was written in standard Python language, and the web interface was developed using HTML and PHP. The program contains two analytical modules: an indel region module and a conserved block module (Paper I, and see details of algorithm in chapter 2 and 3 in Appendix I). The official SeqFIRE website is available at the URL: www.seqfire.org.

Proteomic sources

A set of 35 proteomes (Figure 6), representing a taxonomically broad sampling primarily of the three kingdoms of multicellular eukaryotes, namely plants, animals and fungi, were used for the identification of universal orthologous proteins. These proteomes comprise 15 animals, one choanoflagellate, eight fungi, nine Archaeplastida and two Amoebozoa. The complete proteome data were downloaded from the NCBI (Geer et al., 2010) and Joint Genome Institute (JGI) databases (Grigoriev et al., 2011). The evolutionary relationship of the 35 taxa is shown in Figure 6.

Identification of orthologous proteins

Using the complete proteomic data, I identified the universal orthologous proteins among those 35 taxa in a stepwise manner. I selected three starter proteomes, one each from plants (Arabidopsis thaliana, A), animals (Danio rerio, D) and fungi (Saccharomyces cerevisiae, S). The orthologous protein predictions between all possible pairwise combinations of those three proteomes (S-D, S-A, D-A) were carried out using the program InParanoid (O’Brien et al., 2005). Then, I used Python scripts to screen the clusters for ones that had a single member from each of the three proteomes. Sequences
shorter than 250 amino acid residues were discarded because they are too short for reliable control trees. All proteins in the resulting clusters are referred to here as seed orthologs.

Figure 6. Evolutionary relationships among the 35 eukaryotes used in this thesis (Hejnol et al., 2009; Parfrey et al., 2010).

For each cluster all seed orthologs were used as queries in protein similarity searches (BLASTp) against the remaining 32 proteomes. All hits above E-value < 1e-60 were collected and added to the appropriate clusters. Each
cluster was aligned using MUSCLE version 3.6 (Edgar, 2004a; Edgar, 2004b), and neighbor-joining (NJ) trees were constructed using SeaView (Gouy et al., 2010). Based on the NJ-tree, all out-paralogs were separated into a different file and all redundant (identical) sequences were discarded. In case of in-paralogs, only the shortest branch was retained. Long-branch sequences were discarded, as well as incomplete sequences (shorter than 250 amino acid residues). Each cluster was then re-aligned by MUSCLE before continuing to the downstream analyses.

Indel extraction and analyses

Protein indels were identified and extracted from all MUSCLE-aligned orthologous proteins using SeqFIRE standalone version 1.0 (Paper I). The indel extraction was run with a 50% similarity threshold, no amino acid substitution group (all changes weighted equally), and with three positions for inter-indel space. All indels in the indel list format were stored in a single file. The characters of the indels, such as the indel ID, indel length, number of indel states, type of indel, etc. were stored in a database.

SeqFIRE automatically scores the extracted indels as simple or complex. The simple indels were then further classified into four different types based on their evolutionary patterns: singleton indels (present in only one sequence), clade-defining indel (CDIs – consistent with a known phylogeny), homoplastic indels (inconsistent with a known phylogeny), and ambiguous indels (too much missing data to interpret). Complex indels also include one single dominant indels, which occur in one state plus singleton variants.

Expanded data sets used to search for metazoan CDIs

No CDIs for animals were found among the simple indels (Paper II). Therefore, to look for CDIs for deep branches of animals, I expanded the data sets to include sequences from the other four available non-bilaterian animal genomes. These are *Amphimedon queenslandica* (sponge, Porifera), *Nematostella vectensis* (sea anemone, Cnidaria), *Hydra magnipapillata* (hydra, Cnidaria), and *Mnemiopsis leidyi* (comb jelly, Ctenophora). These proteomes were searched using seed orthologs from *Danio rerio* (zebra fish) as a query for individual BLASTp searches on the genome web site of NCBI. Sequences were added to the appropriate protein cluster files, then the clusters were re-aligned using MUSCLE in SeaView (Gouy et al., 2010). All indels were extracted from the resulting alignments using the standalone version of SeqFIRE with the parameters stated previously.
Summary of Paper I

Multiple sequence alignment (MSA) is a common task in sequence analysis. Most work emphasizes collecting information from the conserved parts of an alignment, i.e. universally alignable gap-free regions. Variable parts of the alignment are usually ignored or discarded, i.e. regions with insertions or deletions (indels). However, indel regions can carry powerful markers for evolution. A number of indels have driven important discoveries in molecular evolution, such as the monophyly of animals and fungi (Baldauf, 1999), and the root of eutherian mammals (de Jong et al., 2003).

Part of what makes indels such potentially strong characters is that homoplasy is thought to be rare to occur, and relatively easy to detect when it does. The probability of two different fragments of DNA with the same sequences and same length integrating into the genome in the same spot is theoretically very low. The complexity of indel patterns should also make homoplasy easier to detect than for simple nucleotide substitutions. This complexity makes complete reversal of indels to the ancestral state also likely to be rare. However, phylogenetically useful indels are still expected to be rare. Therefore, their identification requires sifting through large volumes of data, which is not feasible to do manually. For these reasons, we decided to develop a program for high-throughput analysis of protein indels, to look for potentially good evolutionary markers.

SeqFIRE: an automated tool for indel analysis

For paper I, I developed SeqFIRE (Sequence Feature and Indel Region Extractor), a web application for identification and extraction of indel regions and conserved blocks from protein MSA. The main purpose of SeqFIRE is for identifying and extracting indels (“indel module”). However, in order to make the program more complete, I also included a module for the other major task of MSA analysis, i.e. data preparation for phylogenetic analysis (“conserved block module”).

The core program of SeqFIRE was written using standard Python language (without any special module). As a result, the user can run the standalone version of SeqFIRE or the pipeline standalone version of SeqFIRE in any process without installing any Python bundle modules. To make SeqFIRE easier to use for non-bioinformatician researchers, a user-friendly interface was developed to make it easy to adjust the parameter settings and view the output. The web interface was developed using HTML and PHP. The program comprises two modules: the indel region module and the conserved block module. It is freely available at www.seqfire.org/.

SeqFIRE provides two modes of analysis for both modules: single alignment and batch modes. The program was designed for analyzing aligned protein sequences, but nucleotide alignments can also be analyzed (requires setting substitution model to NONE). For the single alignment mode, the user can either copy the MSA and paste it into the input box or upload an input file. SeqFIRE also includes a standalone Python program for combining files as input for the batch mode. This program, called SeqFIREprep, also splits the resulting output back into several output files.

SeqFIRE generates several different types of output. The main output for the indel region module is a sequential list of indels that also marks the indels as simple or complex. In addition, there are four other outputs: an annotated alignment in JalView and in text mode, an indel matrix, and a masked alignment (alignment with indel regions removed). The conserved block module generates six types of output: an annotated alignment in JalView and text mode, a full alignment including a conserved block profile (in FastA and NEXUS format), and a masked alignment in both FastA and NEXUS formats. I also wrote a simple online help manual as well as a more comprehensive manual, which is downloadable as a PDF file from the website and also included here as Appendix I.

At the request of one reviewer, I also performed a benchmark analysis of the SeqFIRE conserved block module against the only other widely used multiple alignment editor available at the time, G-Blocks (Castresana, 2000; Talavera & Castresana, 2007). This showed that SeqFIRE is more flexible and consistently retains substantially more regions of high confidence alignment than G-Blocks. The SeqFIRE website has recorded 2,359 hits over 20 countries since it went online in December 2011.
Summary of Paper II

Most large-scale surveys of indels have been aimed at understanding protein structure, since indels are one of the hardest parts of protein structure to model (Chen et al., 2007; Hsing & Cherkasov, 2008; Zhang et al., 2011). These studies usually identify indels from pairwise alignments of sequences. As a result, all indels are recognized as two state characters, i.e. present or absence. However, the requirements for identifying evolutionarily informative indels are more complex. These indels must be identified from multiple sequence alignments, and their hosts must be orthologous proteins.

This led to the second objective of the thesis, using the bioinformatic tool SeqFIRE (Paper I) to analyze the phylogenetic potential of protein indels. To do this, I started by assembling a database of single or low copy number orthologous proteins from a set of largely multicellular eukaryotes, for which relationships among the major groups are well resolved. I then extracted all indels from this database using SeqFIRE and used the known phylogenies of the host organisms to evaluate evolutionary patterns in these indels.

Identification of orthologous proteins

To construct a dataset for protein indel analyses, I started by identifying orthologous proteins by all possible pairwise comparisons of three test proteomes. These included one representative each of the three major groups of multicellular eukaryotes, i.e. fungi (Saccharomyces cerevisiae), animals (Danio rerio), and plants (Arabidopsis thaliana). The universal proteins among these three proteomes were collected as potential ‘seed orthologs.’ The resulting seed protein clusters were automatically screened for two requirements - single copy in the three proteomes and >250 amino acids in length (Paper II).

The orthologous protein clusters was then expanded to include an additional 32 eukaryotic proteomes using BLASTp. Target species were selected to give a broad taxonomic sampling of three major multicellular groups, plus two Amoebozoa. After parsing the BLAST results, a total of 299 putative...
universal orthologous proteins among the 35 eukaryotic taxa of plants, animals and fungi were obtained (Paper II).

Evolutionary patterns of simple indels

In total, 4,707 protein indels were extracted from these orthologs. One fifth of them (901 indels) are simple indels, and the remainders are complex indels (3,806 indels). Because the number of simple indels was large enough to identify significant patterns and this could be done using largely automated methods, unlike complex indels, analyses in Paper II were focused primarily on the patterns of simple indels.

Indels were first analyzed in terms of basic patterns such as size-class frequency, host protein size. The simple indels were then divided into four categories based on their evolutionary patterns. These categories are (i) singleton indels, indels found in only one taxon, (ii) clade-defining indels or CDIs, indels that support a specific clade in the known phylogeny, (iii) homoplastic indels, indels that conflict with the known phylogeny, and (iv) ambiguous indels, indels that could be CDIs but cannot be classified because of missing data from within the potentially relevant clade(s).

The largest proportion of simple indels is singleton indels (about 61%). Their distribution varies widely across an expanded phylogenetic tree with no apparent pattern except that insertions are consistently more common than deletions. Although these ratios also vary widely across the tree, again with no apparent pattern, the average insertion:deletion (I:D) ratio across a wide sampling of eukaryotes is 2.31. This ratio contrasts with non-coding regions (Petrov, 2002), for which deletions are more common than insertions.

Mapping of the 901 indels onto the known phylogeny showed that 9.7% were homoplastic. Nonetheless a total of 69 CDIs were found to be consistent with the given phylogeny. Simple CDIs were found to support monophyly of all the examined supergroups (Metazoa, Fungi, Opisthokonta, Amoebozoa and Unikonta). Most of the CDIs supporting internal branches were for fungal clades (40 CDIs). A substantial number were also found for some Archaeoplastida clades (13 CDIs). However, no simple CDIs were found to support any of the internal branches of animals.

Overall analyses in this paper show that among simple indels, evolutionarily informative simple indels are very rare (4,707 indels from 299 proteins yielded 69 CDIs). Furthermore I found that CDIs are less frequent than homoplastic indels. Therefore, using indels alone to reconstruct phylogenetic trees may be a very error prone method.
Summary of Paper III

This paper consists of two parts. In the first half of the paper, I described analyses of general patterns in complex indels, similar to the analyses described in Paper II for simple indels. In the second half of the paper, I use this information to test some important questions in the early evolution of Metazoa using slightly complex indels.

Evolutionary patterns in slightly complex indels

Simple indels cover about one-fourth of all identified indels. In this paper (Paper III), I explored the evolutionarily patterns within the complex indels, which is the major group of indels. First I divided the indels by the number of states, which ranged from two to thirty-one states. However, it became apparent that two-state complex indels are really simple indels with additional alignment columns included because the alignment adjoining the indel was poorly conserved and therefore fell below the SeqFIRE indel region cut-off (50% consensus). Therefore the two-state complex and simple indels were combined into a single bin and called “bi-state indels”. The remaining complex indels (3-31 states) are then referred to as “multi-state indels”.

Analysis of I:D ratio in the bi-state singleton indels confirms the insertion bias pattern observed for simple singleton indels (compare to Paper II). Both indel types show a strong bias of insertions over deletions. In fact, the I:D ratio is even higher when the two categories are combined (2.66 versus 2.31 for simple indels alone, Paper II). I:D ratio continues to show wide taxon-specific variation from 1.0 to 6.9 (plus one outlier at 13.0). However, the distribution of these I:D ratios still shows no pattern across the phylogenetic tree, e.g. there is no apparent relationship to taxonomic group, lifestyle (parasitic vs free-living, photosynthetic vs heterotrophic, single vs multicellular), G+C content, or genome size.

Three- to nine-state indels make-up about 75% of the multi-state indels, and the rest of the work described in this paper focuses on these. Unlike simple indels, homoplastic indels are less common than CDIs in multi-state
complex indels. So, those indels (three-state to nine-state complex indels) are combined with bi-state indels, called "slightly complex indels". Analysis of CDIs in slightly complex indels shows a similar pattern with the CDIs from simple indels (Paper II). That is, a much larger number of CDIs are found to support branches of Fungi and Archaeplastida (506 and 289 indels, respectively). However, unlike with simple indels, among slightly complex indels, a number of CDIs are also found that support branches within Metazoa (99 indels). This confirms that slightly complex indels are a rich source of potential CDIs.

Insights into early Metazoan evolution based on indels

To further explore mechanisms for applying slightly complex indels to specific phylogenetic questions, I chose to focus on early metazoan evolution. This is because most of the OTUs in the dataset are metazoan proteomes, and because Metazoa are the most taxonomically broadly sampled of the three major groups of multicellular eukaryotes, especially for the deepest branches in the taxon. Furthermore, from the CDI analysis in the previous section, I identified 42 orthologs that might host useful indels for early metazoan evolution. Therefore, four more species were added to the dataset, representing early branches of Metazoa (non-bilateria), i.e. one poriferan - *Amphimedon queenslandica* (demosponge), two Cnidarians - *Nematostella vectensis* (sea anemone) and *Hydra magnipapillata* (hydra) and one Ctenophore - *Mnemiopsis leidyi* (comb jelly).

The total of 49 informative indels extracted from 42 orthologous proteins were scored as present/absent (0/1) and stored in a matrix. It was then used to reconstruct parsimony tree using PAUP* version 4.0 beta (Swofford, 2002). Six indels were identified in six different proteins that support Ctenophora as the earliest branch of Metazoa. This is consistent with recent large multigene phylogenies, but not with phylogeny based on morphology or mitochondrial genes. Three indels were also found that support *Trichoplax adhaerens* as the closest sister-group of Bilateria, and one indel was found suggesting that Cnidaria is paraphyle.

The early branching position of Ctenophora implies that the last common ancestor of Metazoa was more complex than traditionally postulated, and thus the morphological simplicity of Porifera represents a reduced state. It has been suggested that the early branching position of Ctenophora in large multigene phylogenies might be an LBA artifact, and phylogenetic analyses aimed at reducing possible LBA place Porifera as the earliest branch. However, LBA is a quantitative artifact and not relevant to indel presence/absence. On the other hand, there is abundant evidence for Cnidarian monophyly, suggesting that the indel discovered here is homoplasious.
The findings in my thesis are important for understanding indel evolution, particular with reference to their use as phylogenetic markers. There has also been a lack of a convenient tool to easily process the large amounts of data necessary in order to find and assess indels that are potentially useful for phylogeny. SeqFIRE version 1.0, which is presently available online, addresses some of these needs, by making it possible to find large numbers of simple indels. However, my subsequent research shows that much useful phylogenetic information, at least for deep evolutionary branches is found in slightly complex indels. Therefore, in the future I plan to implement a new algorithm for the identification of slightly complex indels. There are also a number of other planned improvements, such as recognizing different input file formats (not only FastA format), such as NEXUS and PHYLIP. I will also automate the alignment step to fast iterative alignment methods, so the user can start with unaligned sequences or possibly re-align regions of the alignment that look interesting.

In my thesis, there are several steps that were done manually, especially the analysis of slightly complex indels. To make the searching of indels faster, I plan to create an automated pipeline for indel identification, extraction and analyses, using a user-defined input tree. It may also be possible to automate steps in the analysis of slightly complex indels. This would be especially useful, as some of the most interesting indels seem to be slightly complex, especially for older evolutionary relationships.

As I show in this thesis, indels can be powerful evolutionary markers not only in animal evolution, but also in other groups of organism. This is undoubtedly true throughout the eukaryote tree of life. As more protist genome sequences become available, searching for the clade-defining indels (CDIs) for every supergroup of eukaryotes will be possible. These could be very useful for the study of deep eukaryotic evolution.
Conclusions

In my thesis, I developed an automated tool for identification and extraction of indels and conserved blocks, which are an important part of the preparation of MSAs for phylogenetic analysis. This will be a useful tool for phylogenetic research for many groups of organisms. All parameters in the program are fully adjustable, which allows the user to be able to extract indels and conserved blocks under a wide range of conditions. The core script is written in the standard module of Python language that is easy to modify, so that the pipeline can be adapted to any high throughput process (Paper I).

I have also explored the patterns of indel distribution, and as a result I propose that protein indels should be split into two basic types, simple and complex indels. This is based on the number of hypothesized genetic events that gave rise to the indel, but also on the practical consideration that it is easier to recognize evolutionary patterns in simple indels (Paper I). Because of this, it is possible to automate the search for simple indels, so that a large database can be assembled. As a result, analyzing the phylogenetic patterns of this simplest indel class can potentially yield a substantial amount of useful phylogenetic information with minimal user effort.

A survey of protein indels among plants, animals and fungi showed that complex indels are four times more frequent than simple indels in protein coding regions. In general these indels tend to be short (1-5 amino acid), and the most abundant indels are only a single amino acid long. The number of indels is linearly correlated with the length of the indel-host protein. Importantly, I found that insertions are more than twice as common as deletions for simple singleton indels. I also found potential CDIs for all examined major branches of Archaeplastida and Fungi, but none for Metazoa despite the fact that many more taxa were included in the study. This suggests that Metazoa have a slow evolutionary rate for universal single copy proteins (Paper II).

Exploration of complex indels suggested recategorization of all indels to bi-state and multi-state indels. Analyses of bi-state indels confirmed a string bias towards insertions in singleton indels, as well as a number of other patterns observed for simple indels as described in Paper II. CDIs supporting a number of important deep branches of Metazoa were also found in the pool of slightly complex indels. This confirms that complex indels are a reservoir of CDIs (Paper III).
Finally, I explored the early metazoan specific CDIs further, using additional proteomic data. Nearly all the CDIs identified were consistent with a single tree based on parsimony criteria. This tree places *Mnemiopsis leidyi* (Ctenophora) as the earliest branch of animals, branching before the single represent sponge, *Amphimedon queenslandica* (Porifera). The tree also supports *Trichoplax adhaerans* (Placozoa) as the sister taxon of bilaterian animals (Paper III).
Infogande (insertion) och borttagande (deletion) av nukleotider (geme-
samt indel) är olika typer av mutationer som ofta påträffas inom alla organ-
ismers DNA. Indeler kan hittas i alla delar av DNA sekvensen. Om en indel
sker i en proteinkodande region kommer det att leda till en förskjutning i
läsramen om den inte är tre nukleotider lång (eller en multipel av tre baser).
Om proteinet behåller sin funktionalitet kommer det att leda till ett tillskott
eller förlust av en del av proteinsekvensen, detta kallas en ”protein-
indel”. Denna avhandling fokuserar på protein-indeler. Termen indel syftar
här således främst på protein-indeler.

För decennier sedan så visade ett antal indel-studier påverkan av indeler
på proteiners struktur, funktion, och interaktion (Pascarella & Argos, 1992;
Romero et al., 2006; Chan et al., 2007; Hormozdiari et al., 2009; Zhang et
al., 2011a; Zhang et al., 2011b). Man började även använda indeler som
evolutionära markörer. Detta beror på att det är låg sannolikheten att två
delar av DNA kan integreras till samma region av värd-DNA med samma
sekvens. Det är också mer sällsynt med homoplasi för indeler, och de är
lättare att identifiera än substitutioner. De här anledningarna visar att indeler
är viktiga evolutionära markörer (Rokas & Holland, 2000). Även om man
har känt till indelmutationer i sekler så är förståelsen för evolutionen av in-
deler fortfarande begränsad och oklar (Benner et al., 1993; Wolf et al.,
2007). Dessutom så har det begränsade utbudet av bioinformatiska verktyg
för att analysera indeler gjort att kunskapen utvecklas långsamt. Därför är
första målet med min forskning att utveckla verktyg för att studera indeler.

Här utvecklar jag SeqFIRE (“Sequence Feature and Indel Region Ex-
tractor”), ett bioinformatiskt verktyg för automatiskt identifiering och extra-
ering av indelregioner och evolutionärt bevarade block från multipla protei-
nesekvensinpassningar. Programmet har två moduler: (i) ”Indel Region Mo-
dule” för att identifiera och extrahera indeler från proteininpassningar och
rapportera indelerna i en lista, vilket är behärdigt för fortsatt analys, och (ii)
”Conserved Blocks Module” för att identifiera evolutionärt bevarade block i
proteininpassningen och att producera en inpassning med endast bevarade
block i en följd, vilket lätt kan användas för fortsatt fylogenetisk analys.
SeqFIRE är skriven av en standard modul i programmeringsspråket Python.
Därför är det är lätt att bygga in och använda SeqFIRE i procedurer utan
krav på att behöva använda något annat programmåket. Användare kan bruka
programmet fristående eller som en web-applikation. Programmet har ett

Svensk sammanfattning
användarvänligt web-gränssnitt för ovana användare, och alla parametrar kan justeras manuellt (Artikel I).

Sextionio CDIer (7,7% av de enkla indelarna) blev identifierade. Fördelningen av CDIer visar att 16 CDIer stödjer de djupa förgreningarna av supergrupper bland eukaryoter. Alla grenar i svampkladen stödjs av indelar (totalt 40 indelar), och alla grenar bland de gröna växterna stödjs av indelar (totalt 13 indelar). Förvånande så finns det ingen indel som stödjer någon gren i djurkladen. Den tydliga skevheten i mönset av CDIer bland enkla indelar kan inte förklaras av skillnader i genomkomplexitet, livscykel eller evolutionär hastighet.

Nästa mål är att expandera sökningen efter CDIer till de komplexa indelarna, vilket är huvud delen av indelarna. Jag delade in de komplexa indelarna baserat på antalet varianter de bestod av. Resultatet visar att de komplexa indelarna har mellan två och 31 varianter. Komplexa indelar med två varianter kallas ”två-variants komplexa indelar”. Om komplexa indelar har tre varianter kallas de ”tre-variants komplexa indelar”. Detta system användes med alla komplexa indelar upp till 31-variant komplexa indelar. Både två-variants komplexa indelar och enkla indelar har endast två lägen. Så båda kombinerades och kallas ”bi-alleliska indelar” och de andra komplexa indelarna kallas ”multi-alleliska indelar”.

Analyser av bi-alleliska indelar med tidigare metod (Artikel II) bekräftar mönstret från enkel indel profilen, särskilt bland de allena indelarna. Resultaten visar samma distributionsmönster som de allena indelarna bland enkla

I 010 CDIer hittades i sökningen av ”något komplexa indeler” (tidigare endast 69 indeler). Profilmönstret från det nya datasetet med CDIer bekräftar mönstret från CDIer baserade på enkla indeler (Artikel II). Det vill säga, de flesta CDIerna (omkring 50%) stödjer grenar i svamp-kladen och alla grenar är stöda av minst en indel. Den näst största gruppen CDIer (omkring 29%) stödjer grenar i Archaeplastida-kladen och även här är alla grenar stödda av minst en indel. Endast djur-kladen avviker från den tidigare iakttagelsen. Omkring 12% av CDIerna stödjer grenar i djurgrupper. Detta bekräftar att komplexa indeler är en resurs av CDIer.

อินเซอชั่น (insertion) และดีลีชั่น (deletion) คือ การกลายพันธุ์ (mutation) ชนิดหนึ่งที่พบได้บ่อยในดีเอ็นเอ (DNA) ของสิ่งมีชีวิตทุกชนิด และสามารถเรียกการกลายพันธุ์ที่ส่งผลต่อการจัดเรียงลำดับของรหัสสิ่งมีชีวิตที่เรียกว่า "อินเดล" (indel) โดยปกติอินเดลมักปรากฏให้เห็นในดีเอ็นเอ ดีเอ็นเอและรูปแบบที่เกิดขึ้นในส่วนที่มีรหัสสำหรับการสังเคราะห์โปรตีน (coding sequence) ที่จะส่งผลให้ความยาวของโปรตีนนั้นเปลี่ยนแปลงไป เราจะเรียกอินเดลที่ปรากฏในโปรตีนนั้นว่า "โปรตีนอินเดล" (protein indel) การศึกษาอินเดลนั้นถูกศึกษาอินเดลที่เกิดขึ้นในโปรตีนเท่านั้น ดังนั้น เราจะเรียกอินเดลที่ปรากฏไปในจิ้งโจเมยจ pitches อินเดลนั้นเอง

ในช่วงทศวรรษที่ผ่านมา นักวิจัยได้ศึกษาอินเดลในแหล่งต่างๆ มากมาย ทั้งทำนายของอินเดลโดยโครงการร่วมหน้าที่ และ interaction ของโปรตีน (Pascarella & Argos, 1992; Romero et al., 2006; Chan et al., 2007; Hormozdiari et al., 2009; Zhang et al., 2011a; Zhang et al., 2011b) นอกจากนี้ มีงานวิจัยต่างๆที่รายงานว่า อินเดลเป็น marker ที่สำคัญในการศึกษาวัฒนาการและรีไฟล์ โคแทรกษ์เกี่ยวกับการสร้างสมบัติเป็น marker ที่ถูกจดแจ้งของอินเดลมีไว้ในเพลซ (homoplasys) แต่ในช่วงนี้ นักวิจัยต่างๆมีความกังวลว่า โอกาสที่เกิดขึ้นของหน่วยตัวเลขที่มีขนาดเท่านั้น นัยยมันจะมีผลลบกับการวิเคราะห์นี้ การกลับกันทุกประการนี้ทำให้โอกาสของอินเดลนี้มีฮีโมพลัง (homeoplasy) ต่ำขึ้นได้ นักวิจัยทำนายว่า โอกาสที่เกิดขึ้นของอินเดลนี้จะลดลงต่อสิ่งพันธุ์หนึ่งหรือที่เรียกว่า reversible นั้น เป็นไปได้สูงมาก เหตุผลนี้ทำให้ อินเดลมีคุณค่าในการใช้เป็น marker ทางวัฒนาการที่ดี (Rokas & Holland, 2000) ดังนั้นแล้ว นักวิจัยที่ได้ศึกษาอินเดลนี้เป็นจำนวน หลากหลายแหล่ง แต่ความรู้ในด้านวัฒนาการของอินเดลนั้นยังคงอยู่ในวงกว้าง รวมถึงการศึกษาเป็นผู้ดำเนินการศึกษา (Benner et al., 1993; Wolf et al., 2007) ที่เป็นเช่นนี้ พวกเขาได้สรุปเป็นแหล่งที่มีที่จัดให้สร้างสมบัติของโปรแกรมที่เชื่อมโยง (bioinformatic tools) ที่จะสามารถตัดการกลับคืนอินเดลได้ทุกขั้นตอนเช่น ดังนั้น การพัฒนาระหว่างพืชสิ่งมีชีวิตอาจเป็นการใช้เป็น marker ทางวัฒนาการที่ดี แต่ประโยชน์นั้นก็มีอยู่ไม่น้อย

ด้วยเหตุนี้ ผู้วิจัยจึงพัฒนาโปรแกรมคอมพิวเตอร์ชื่อ SeqFIRE (อ่านว่า ซีค-ไฟ-เออ) ซึ่งย่อมาจาก Sequence Feature and Indel Region Extractor ที่มีโปรแกรมประกอบด้วยโมดูล (module) หลัก 2 โมดูล นั่นคือ (1) Indel Region Module สำหรับจัดเรียงลำดับและแยกส่วนของอินเดลออกจาก sequence alignment และสร้างรายการของอินเดล (indel list) ว่าพบอินเดลจำนวนเท่าใด มีลักษณะเป็นอย่างไร เพื่อความสะดวกในการวิเคราะห์ข้อมูลต่อไป และ (2) Conserved Block Module สำหรับจัดเรียงลำดับของ conserved block ออกจาก alignment และสร้างรายการของ conserved block นั้นๆ แล้วจัดเรียงลำดับตามรูปแบบต่างๆ ที่สะดวกต่อการวิเคราะห์ข้อมูลต่อไป เช่น นำไปประมวลผล conserved blocks ที่แสดงถึงการกลับคืนของอินเดล โปรแกรม SeqFIRE ได้แสดงผลที่มีประโยชน์ที่จะใช้ในการวิเคราะห์ทางวิวัฒนาการที่ดีจิต (phylogenetic analysis) ด้วยโปรแกรมที่นั้นไปได้ง่ายเป็นต้น
โปรแกรม SeqFIRE ถูกพัฒนาขึ้นจากภาษาไพธอน (Python language) ผู้ใช้สามารถดาวน์โหลดโปรแกรมได้ในเครื่องคอมพิวเตอร์ของตน (standalone) หรือใช้ได้บนเว็บไซต์ (web application) www.seqfire.org/ ที่ได้ นอกเหนือจากผู้ใช้สามารถปรับ参数ได้ (parameter) ได้ทุกค่า เพื่อให้สอดคล้องกับข้อมูลที่ต้องการวิเคราะห์ และสามารถนำไปโปรแกรมไปใช้ประโยชน์ (pipeline) กับระบบงาน (process) ต่างๆ ได้อย่างง่ายดาย

หลังจากที่โปรแกรมเสร็จเรียบร้อยแล้วทุกการพิจารณาข้อมูลให้เกิดความชัดเจนอย่างต่อเนื่องถึงการสถิติย่อผลที่ปรากฏในโปรตีนของฤดีกวิทยาศาสตร์ (multicellular eukaryotes) ที่มีข้อมูลโปรตีนเป็นจำนวนมากกว่ากลุ่มนั้น นั่นคือ ฟิช สัตว์ และเชื้อรา โดยผู้วิจัยได้สร้างชุดข้อมูลอินเดล (indel dataset) จากโปรตีนอินเดล (orthologous protein) ซึ่งมีต้นกำเนิดมาจากบรรพบุรุษเดียวกัน มีเพียงส่วน (copy) เดียวกันในโปรตีนิมมันและความพยายามจะคัดคัดไปไม่ต่ำกว่า 250 ของมัน ซึ่งผู้วิจัยคัดคองโปรตีนในที่สุดพบ โปรตีนอินเดลจำนวนทั้งสิ้น 299 โปรตีน จากโปรตีนซอฟต์ที่มีชีวิตจำนวน 35 ชนิด จากนั้นได้ใช้โปรแกรม SeqFIRE เพื่อแยกโปรตีนอินเดลออกจากโปรตีนอินเดลที่มีจำนวนทั้งสิ้น 4,707 อินเดล โปรแกรม SeqFIRE สามารถจำแนกอินเดลเบื้องต้นด้วยความชัดเจนของอินเดลออกเป็น 2 ชนิดหลัก คือ (1) อินเดลเดี่ยว (simple indel) ซึ่งเป็นอินเดลที่มีสองสภาพ (state) คือ present หรือ absent จำนวน 901 อินเดล (19%) และ (2) อินเดลซับชิ้น (complex indel) หรืออินเดลที่มีหลายสภาพ (multistate) จำนวน 3,806 อินเดล (81%) ซึ่งส่วนมากส่วนจะส่งผลให้เกิดวันอินเดลซับชิ้น เป็นอินเดลที่พบมากที่สุดในโปรตีนของฤดีกวิทยาศาสตร์ (eukaryotes) การวิเคราะห์ข้อมูลทำให้ทราบว่าอินเดลส่วนใหญ่มีความยาว (หรือขนาด) อยู่ระหว่าง 1-7 กระยะ มะมัน แลกเปลี่ยนที่พบได้มากที่สุด คือ อินเดลขนาด 1 กระยะมัน จำนวนของอินเดลจะสอดคล้อง ตรงตามความยาวของโปรตีนที่ปรากฏในอินเดลต่างๆ ถ้าหากอินเดลซับชิ้นมีความชัดเจนมาก และอินเดลชนิดที่มากที่สุด ทำให้ผู้วิจัยเลือกอินเดลซับชิ้นคืออินเดลที่มีปริมาณมากที่สุดที่จะวิเคราะห์ได้ในแบบนี้บางอย่างได้เป็นอินเดลเดี่ยว ดังนั้น ผู้วิจัยจึงเลือกอินเดลซับชิ้นคืออินเดลที่มีความชัดเจนที่สูงที่สุดในโปรตีนต่างๆ เช่น (1) อินเดลซับชิ้นเดี่ยว (singleton indel) คือ อินเดลที่ปรากฏอยู่ในอินเดลที่ซ้ำได้จำนวน 550 อินเดล ซึ่งมีปริมาณมากที่สุดในจำนวนอินเดลซับชิ้นของซัมเมท (2) คลาดเดนนิงเดล (clade defining indel (CDI)) คือ อินเดลที่มีอินเดลล่าสุดเกี่ยวกับรูปแบบการแตกกิ่งของโปรตีน พบจำนวน 69 อินเดล (3) โปรตีนซับชิ้นเดี่ยว (homoplastic indel) คือ อินเดลที่ไม่สอดคล้องกับแบบแผนการแตกกิ่งของโปรตีน พบจำนวน 87 อินเดล และ (4) อินเดลซับชิ้นออแกมิค (ambiguous indel) คือ อินเดลที่ไม่สามารถจำแนกเป็นประเภทต่างๆ ได้ เท่าที่มีข้อมูลไม่เพียงพอ มีจำนวน 195 อินเดล

การวิเคราะห์ซับชิ้นเดี่ยวและซับชิ้นออแกมิคของอินเดลประภพสมมุติของฝูง 2.31 เท่าที่อิตาเลียน และพบการแตกกิ่งของคือซับชิ้นที่มีผลสำหรับอินเดลซับชิ้นเดี่ยวมากกว่า 4.0 ได้ พบในโปรตีนซับชิ้นซับชิ้น อีก nada CDI ทั้ง 69 อินเดล พบว่าเป็น CDI ที่สอดคล้องกับรูปแบบการแตกกิ่งของฤดีกวิทยาศาสตร์ (supergroup) จำนวน 16 อินเดล เป็นอินเดลที่ส่วนบุคคลในการวิเคราะห์ของซับชิ้นและสำหรับสิ่งชีว (Ar-
เชิงซ้อนสองสภ ถึงแบบแบ่งของ (non of สัตว์ซึ่งยังคงมีความคลุมเครืออินเดลเชิงซ้อน สีเขียวพบเพียงยัง ผู้วิจัยคาดว่า สัดส่วนของซิงเกิลต้อนอินเดลจะมีศักยภาพในการนํามาใช้เป็น marker ทางวิวัฒนาการได้。

วัตถุประสงค์หลักจะเป็นการค้นหา CDI จากข้อคิดชั้นท้ายได้แก่ มองจากรูปแบบ (pattern) ของอินเดลกลุ่มนี้มีความชัดเจนมากกว่ารูปแบบของอินเดลเชิงเดี่ยว ด้วยนั้น ผู้วิจัยจึงเริ่มต้นจากการจับแยกอินเดลเชิงซ้อนสองกลุ่มตามรูปแบบที่พบในอินเดลแต่ละตัว พบว่าสามารถแบ่งอินเดลเชิงซ้อนออกเป็นกลุ่มได้ 30 กลุ่ม แต่แต่กลุ่มที่มีรูปแบบเพียง 2 แบบ เรียกว่า “อินเดลเชิงซ้อนสองสภาพ” (two-state complex indel) ในการที่อินเดลเชิงซ้อนมีจำานวนรูปแบบมากกว่า 3 แบบ นั้นก็จะเรียกว่า “อินเดลเชิงซ่อนสามสภาพ” (three-state complex indel) เป็นเช่นนี้ไปจนกระทั่งอินเดลเชิงซ่อนสามสภาพสามรูปแบบ (31-state complex indel) แต่เนื่องจากอินเดลเชิงเดี่ยวของสภาพและอินเดลเชิงเดี่ยวที่มีรูปแบบเพียง 2 แบบเท่านั้น ผู้วิจัยจึงรวมอินเดลเชิงเดี่ยวข้างต้นกับอินเดลเชิงซ่อนสองสภาพ เรียกว่า “อินเดลเชิงซ่อนสองสภาพ” (bi-state indel) ส่วนอินเดลที่เหลือจะเรียกว่า “อินเดลเชิงซ่อนสามสภาพ” (multi-state indel)

เพื่อวัตถุประสงค์การกระจายของซิงเกิลตอนอินเดล ในอินเดลเชิงซ่อนสามสภาพตามวิธีการใน Paper II พบว่า การกระจายด้านของซิงเกิลตอนอินเดลนี้แบบแผนแน่นชัดเจนที่ที่หนึ่งในอินเดลเชิงเดี่ยว และในอินเดลเชิงเดี่ยว ตัดส่วนของซิงเกิลตอนติดเชิงเดี่ยวที่พบในอินเดลเชิงเดี่ยวทั้งหมด 2,66 เท่า (ใกล้เคียงกับผลที่ได้ในอินเดลเชิงเดี่ยว 2.31 เท่า) เมื่อพิจารณาอินเดลหลายสภาพที่เหลือ (ตั้งแต่อินเดลเชิงซ่อนสามสภาพสามรูปแบบ) พบว่า จำนวนอินเดลเชิงสามสภาพพบอินเดลเชิงซ่อนสามสภาพประมาณร้อยละ 75 ของอินเดลหลายสภาพ จึงน่าจะเป็นตัวแทนของอินเดลหลายสภาพได้ ดังนั้น ผู้วิจัยจึงเตรียมข้อมูลสําหรับค้นหา CDI โดยทำการรวมอินเดลหลายสภาพ เชิงอินเดลเชิงสามสภาพในอินเดลเชิงเดี่ยวและเรียกว่า “อินเดลเชิงข้างต้น” (slightly complex indel)

การเปรียบเทียบ CDI จากอินเดลเชิงข้างต้น พบว่า CDI จำนวน 1,010 อินเดล (จากเดิม พบเพียง 69 อินเดลจากต้นตอเดี่ยวใน Paper II) รูปแบบการกระจายข้างต้นของ CDI ที่พบใหม่มีขึ้นโดยทั่วไป แต่แนวคิดในการควบคุม CDI ที่พบเกิดจากกลุ่มเดี่ยว กล่าวคือ CDI ที่สนับสนุนวิวัฒนาการของเชื้อราจะมีปริมาณมากที่สุด (~50%) รองลงมาคือ CDI ที่สนับสนุนวิวัฒนาการของพืชและสาหร่าย สัตว์ (~29%) แต่ละชนิด CDI ที่สนับสนุนวิวัฒนาการของเชื้อราเป็นจำนวนมากระหว่าง 12 11 นั่นแสดงว่า อินเดลเชิงข้างต้นเป็นแห่ง CDI ที่สำคัญ

และวัตถุประสงค์สุดท้ายของงานวิจัยนี้ คือ การใช้ประโยชน์จาก CDI เพื่อทดสอบโปรตีนของสัตว์ซึ่งยังคงมีความคลุมเครือ โดยเฉพาะอย่างยิ่งวิวัฒนาการของสัตว์ที่มีระบบความเปรียบชั้น (non-bilateral animals) ดังนั้น ผู้วิจัยจึงพูดคุยกับบรรษัฐ CDI ที่สนับสนุนกลุ่มสัตว์ที่มีสมมาตรชั้นเดี่ยว (13 อินเดล) และสนับสนุนกลุ่มสัตว์ที่มีชีวิตในภาพจำประภัตถ์ (40 อินเดล) ทั้ง 53 อินเดล ปรากฏว่าอินเดลทั้งหมดบรรจุอยู่ในโปรตีนจำนวน 42 โปรตีน ดังนั้น ผู้วิจัยจึงเตรียมข้อมูลชุดใหม่โปรตีนจำนวน 42 ชนิด และค้นหาประโยชน์อีโ不含เพิ่มเติมในโปรตีนชุดขั้นตอนวิวัฒนาการที่สําคัญทั้ง 4
ชนิด คือ Amphimedon queenslandica (ฟองน้ำ) Nematostella vectensis (ดอกไม้ทะเล) Hydra magnipapillata (ไฮดร่า) และ Mnemiopsis leidyi (หวีวุ้น)

การค้นหาโปรตีนออร์โธลอกทั้ง 42 ชนิด พบว่า โปรตีนที่เหมาะสมต่อการวิเคราะห์ข้อมูลมีเพียง 40 โปรตีนออร์โธลอก จากนั้นผู้วิจัยใช้โปรแกรม SeqFIRE มาแยกอินเดลออกมาได้ทั้งสิ้น 765 อินเดล แต่ในจำนวนนี้มีอินเดลที่คาดว่ามีข้อมูลทางวิวัฒนาการเพียง 49 อินเดล ผู้วิจัยใช้อินเดลทั้ง 49 อินเดลมาสร้างไฟลัมออร์โธลอกใหม่ (parsimony method) ด้วยโปรแกรม PAUP* (Swofford, 2002) อินเดลที่ไม่ใช้เพียงกว่าที่คาดว่าจะมีอยู่ในไฟลัมที่ใช้ในฟอร์มว่า (Ctenophora) เป็นสิ่งที่มีกลุ่มหุ้นร่วมที่แยกกันออกมาจากวิวัฒนาการของสัตว์ด้วย bootstrap support 79% และ Trichoplax adhaerens ในไฟลัมปลาโคซัว (Placozoa) เป็น sister-taxon ของกลุ่มหุ้นที่มีสมาชิกแบบเครื่องซัดด้วย bootstrap support 90% นอกจากนี้ อินเดลที่ใช้ จัดแสดงว่าสัตว์ในไฟลัมในครั้ง (Cnidaria) ในชุดข้อมูลนี้ คือ N. vectensis และ H. magnipapillata ไม่ได้รับการมาจากบรรพบุรุษเดียวกัน (paraphyletic group)

ประโยชน์ที่ได้จากงานวิจัยชิ้นนี้ ประกอบแกะสลักโปรแกรม SeqFIRE เพื่อใช้ในการค้นหาและแยกโปรตีนออร์โธลอกออกจาก alignment ปรากฏการที่ส่งคือ การกำหนดลักษณะแบบเป็นระบบ (systematic search) เพื่อนำไปศึกษาวิวัฒนาการของอินเดลเป็นเครื่องสำคัญ ผลการศึกษาที่ได้ทำให้ทราบว่า โปรตีนออร์โธลอกที่มีประโยชน์ต่อการนี้ไปปรับปรุงวิธีการเรียงโปรแกรมสำหรับ alignment และอธิบายน้ำหนักไว้สำรองเป็นแบบ (model) เพื่อย่อยวิวัฒนาการของอินเดลได้ดี ประสบการสุทธิของโปรแกรม SeqFIRE นี้จะมีประโยชน์ต่อการศึกษาวิวัฒนาการของสัตว์อื่นที่ไม่มีสามารถแบบรุ่นชัด ผลการศึกษาที่ได้ทำให้เห็นว่าอินเดลมีศักยภาพสำหรับนำมาใช้เป็น marker ทางวิวัฒนาการได้ แต่ต้องคำนึงถึงข้อมูลอีกเพื่อเพิ่มจำนวนโปรตีนที่ใช้ในแผนผังข้อมูล นอกจากนี้ผลของการค้นพบของอินเดลมีประโยชน์ในการศึกษาวิวัฒนาการของสัตว์อื่นๆ
Acknowledgements

Spending times for production of my Ph.D. thesis is one of my best memories. Wow, it has been a long time since I started my Ph.D. at the University of York, UK. There are a lot of people get involve behind my success, even I have never met some of them, and just contact by e-mail.

First and Foremost I would like to express my profound gratitude and deep regards to Professor Sandra L. Baldauf, my supervisor, whose encouragement, understanding, and patience along the time of my study until I am ready to be a scientist. I have learned a lot from you particular in data interpretation, scientific writing, and also academic English. You are not only a supervisor, but also my good friend and mentor.

A very special thanks goes to people in Sandie’s Lab. You all are my great friends. I am really appreciated your friendship, Martin Carr, and thank you for introduce me to the English pubs. You surprised me a lot with your Thai language, and also Thai food. Thank you and rest in peace my friend, Johanna Fehling, I have never forgotten all of your helps and your kindly friendship. Thank you Gemma Atkinson for guide me about Python programing and several bioinformatic stuff. Thank you Nathan Watson-Haigh, I am thankful for your comments on the SeqFIRE’s Paper, and hope we can collaborate sometime in the future. Thank you Bryony Mackenzie for collaboration in the Paper I. I would like to give you a million of thanks, Nancy Irwin for offering me the whole afternoon advice! Around those day, I was so frustrated and very confused with my study life. Without you, I might give up my Ph.D. Your suggestions help me back to the right tract. Thank you Maria Romeralo, my lovely officemate, thank you for your friendship and a lot of motivations. To Omar Fiz-Palacios, I love your sense of humors and thank you for your encouragement. I will THINK BIG! Thank you Allison Perrigo, who always helps me improve my spoken and written English, and also help me editing English in this thesis and all manuscripts. Thank you again for introduce me the Pomodoro, I really like it. Importantly, thanks for sharing lots of good things, kindesses, friendships, and encouragements, particular in the last year of my Ph.D. life. I am really appreciated that. To Ding He, my first officemate in EBC, good luck with your thesis and future. Thank you Chengjie Fu for the good comments on my papers. Sanea Sheikh, I hope you will get a lot of papers and good luck with your study.
For people in the Department (Systematic Biology), you are parts of my success. Thank you Afsaneh Ahmadzadeh for your assistance and motivation along the several years in Uppsala. All of your helps are invaluable for me. I am greatly appreciated. Thank you Nahid Heidari for several tips of living in Uppsala. Chatting with you always makes me happy and more confident. Thank you Agneta Brandberg-Falkman, a good librarian, who teach me several Swedish words. Tack ska du ha, Agneta! Thank you Hugo de Boer and Anneleen Kool for introducing me a good Thai restaurant in Uppsala. Special thanks to Anders Larsson, the super-admin, for let me hold SeqFIRE web on the server. Thank you Magnus Lidén for lots of good comments in the paper II and III. Thank you Mikael Thollesson for the good explanation in bioinformatics courses. I learned a lot from you. Thank you Leif Tibell and Sanja Savić for the great lectures about the diversity of algae and fungi. Thank you Petra Korall for teaching me about plant diversity and evolution. It is so fun studied with you. Chanda Vongsombath (alanı) and Vichith Lamxay (alanı), I am glad to know you and hope to collaborate with you in the future. Thank you Martin Ryberg for kindly translation the summary into Swedish. Thank you Elisabeth Långström for your kindness and friendship. Keep in touch! Thanks John Pettersson for your friendship and hope to see you again in Thailand sometime. Every time I meet you, Sunniva Aagaard and Anja Rautenberg, I always happy and fun to chat with you. Stina Weststrand, nice to be your classmate (VEM course). I learn a lot from you. Karin Steffen, a little German girl who love all kinds of food, and Sarina Veldman, a mama with a cutie monkey, I hope you are good luck with your study and your life. You make me happy every time I talk with you. Thank you Paco Cárdenas, a sponge guy, for good discussion about sponges. Inga Hedberg, Mats Thulin, Thomas Jaenson, Åsa Kruys, thank you for make the fika times very nice. Even I did not chat with you much, but I do like you all.

I would like to give a special thanks to Pongsathon Phapurangkul (Ohm), Siriporn Saksornchai (Kat), Fon Nilkhate (Fon) and all friends in the society of Thai student in York, who made my life in York so happy and nice to join every parties.

For my Thai friends in Göteborg, you are good traveling companions to several European countries. I am also love the time we have great scientific discussion. Thank you for your great friendships. I am so fun and glad to be your friend. Thank you Pramote Chumnanpugen (Mote) for warm welcome to your place with the great dim sum and a huge watermelon. Thank you Wanwipa Vongsangnak (Am), your conversations always bring my self-confident back. A million of thanks have to go to Natapol Pornputtapong (Ball), one of my best friends. I am so appreciated your splendid hospitality every time I visit Göteborg. Thanks for being superpatient to me everytime when I am frustrated and self-willed. Talking with you always push me up when I lose self-esteem. When I think about it, I am so impressive! Thank
you Intawat Nookaew (In) for the fruitful scientific discussion. I learn a lot from you, and looking forward to be your collaborator. Sakda Khoomrung (Aey), I love your sense of humor, and very appreciated your optimistic way of thinking. You are a very good guy, indeed. Chatting and traveling with you, Kanokarn Kocharin (Bon), are one of my great pleasures.

Thank you very much for all Thai students in “ThaiSoc Uppsala”, who spend times in Uppsala with me. Thank you Pornjuk Srepusharawoot (Juk), Jariyanee Prasongkit (Pum), Wandared pokapanich (Jeab), and Jatesada Jiwakanon (pJate), you guys gave me a warm welcome to Uppsala in 2008. Cooking with you after playing badminton on every Sunday in SLU was so fun. Again, thank you for guiding me about Uppsala. Thank you Thanayut Kaewmaraya (M) for all of your helps, and good luck with your study. Thank you Thipaporn Munkong (Ae) for nice conversation. I wish you success in your life. Thank you Paweena Surapolbhidh (Coam) for the great friendship during I lived in Uppsala. Keep in touch, forever! Thanks to Panisara Kunkitti (Dew), Metasu Chanrot (Bow), and Supranee Jitpean (Tuk) for organizing the Meeting of Thai Student in Sweden in 2012, and good luck with your study too. Rongpong Plongla (Rong), I wish you get Master degree soon and admitted to be a doctoral student soon. Thank you Anongnad Ngamjariyawat (Ae) for your kindly help and always motivated me. I hope you will enjoy the last few months before graduation and see you in Thailand. Thank you Eakapol Wangkahart (Eak) to kindly helped me comment and improved the summary in Thai. Apiluk Watthanasurorot (Karn), I wish you good luck with your future. Kingkamon Junkunlo (Tik), a little Thai girl in EBC, thank you for your friendship. I always smile every time chatting with you.

Almost six years in Uppsala, Sweden, I have opportunities to meet people who make my life joyful. Thank you Shirlene Lim, one of my close friends in Uppsala, for introduction good biology documentaries and share several nice dinner with me. All the best for you and see you again sometime in Thailand or Malaysia. Sungkyu Park, a good friend and great housemate, thank you for your friendship. I am glad to be friend with you and very impress all of your health concerns. I wish you good luck in your study and future. I would like to thanks Vasili Hauryliuk for all great suggestions about studying in Uppsala. I did it! Thank you Germán Bonilla-Rosso for the fruitful scientific discussion. I am looking forward to collaborate with you. Thanks to Xiaoyan Qian and Yuyuan Xiong for the nice Chinese food. I glad to know you and thank for nice chatting. Thank you Fredrik Nilsson, you are a special Swedish guy I have met. I hope you are happy with your new apartment and your future. To the rest of members in Klangen, thank you that you make me happy during I lived their.

For Thai friends in Uppsala, you are so amazing! Your gentle hospitalities always make me feel at home. Your friendships usually warm my heart. You guys support and encourage me when I weak. Million thanks for all the best
things from you during six years in Uppsala. I would like to thanks Phraimane Daungthaoset (pNang) and Rungrudee Duangthaoset (pRung) for nice chatting in the lunchtime at the Blåsenhus. I am glad to know you and appreciated all of your helps. Without you, living in Uppsala will be so bored. Jirapa Halberg (pJang), I learn a lot from you. Thank you for all of your hospitalities and friendship. Special thanks to Maria Barguirdjian (pYa), I will remember the good moments and your friendship forever. I hope to see you sometime in Thailand. Thananchai Malasaem (pKän), thank you for the tasty food at GinnDee restaurant. Thank you Thirada Lund (Phung) for the joyful of karaoke singing and good food in several parties. Thank you Pornthip Saenmuang (Tip) for your friendship and all delicious food. Pranadda Phandech Lundin (Noi), you are so quiet, but super-friendly, I know. Kanokwan Söderlund (Tan), your heart is so warm. I love the time when all of us having dinner together. Knowing you is one of my best memories in my life. Thank you Waraphorn Bäckström (Tukki) for your entertainments. You are a very good person. Piyapan Phimwong (Nick), I am really enjoy your sense of humors and very appreciated your good friendship. I thank Linfa Tungjan (Fa) and Tida Chaisawat (pTom) for all of your helps. I wish you good luck in your life. Thank you Ruammit Chok sok (pRuam) for your delicious food and nice chatting. Thank you Rachaneekorn Phonpraisan (pTob) for the warmest welcome me to your restaurant, Amazing Thai. Thank you all staff in Amazing Thai Restaurant who always make me happy when I miss home and Thai food. Pitpiengpen Uddén (Party), I like to chat with you. Evetytime meeting with you are full of happiness and smiles. Thank you Piyawadee Srimuang (pTung) for kindly concern and caring my health. Malay Vichitjinda (pMalay), I like your sense of humor. Uraiwan Arvidsson (pAm), I wish you healthy soon. I would like to thanks Kronkanok Tharapat (pYui) for sharing nice educational theories and a good pedagogical tips. Thankit Lumlerdthum (pGuay), a party creative person, I am appreciated your ideas in my birthday party.

I would like to thanks the Office of the Higher Education Commission, Ministry of Education, Thailand, for their sponsorship of my Ph.D. studies via Strategic Scholarship for Frontier Research Network (SFR). Thank you all staff at the Office of Education Affairs (OEA) in London for kindly helping me in the processes of move from the University of York to Uppsala University, Sweden. Special thanks to Jittree Saithong (pPoupee) who gave me a great care during I stay in Europe. Thank you staff in the Thai Embassy in Stockholm who kindly take a good care and help me process the official letters to the Office of the Civil Service Commission (OCSC) in Bangkok, Thailand.

There is not enough room to express my feeling to thank you to you, Prof. Prasit Palittpangarnpim (my boss, my mentor, and my role model) for your kindly accepted me to join your research team and always give me
great suggestions and reassurances. You always cheer me up to study abroad and encourage me to work in science and research. I cannot imagine how can I succeed without you. I would like to give a special thanks to Kamolchanok Rukseree (pMod) for your encouragements and motivations. Every word that you cheer me up and fill my self-esteem will be never put out of my mind.

ขอขอบคุณคุณอัจฉริยะ มาลินิ วินิจฉัยการรู้ว่า ความหวังใจและความช่วยเหลือมาโดยตลอด ขอขอบคุณอัจฉริยะ ชนินทศ ลัทธิวิริย์หวิชัย ที่คอยอบรม มุ่งมั่นขยันสนับสนุนอย่างแข็งแกร่ง คอยหาขึ้นไปให้ตนเองกลุ่มกองทัพบนฝั่งมีวันนี้ได้ สมรักษัทหุลกจน นครปฐม

สุดท้ายนี้ ขอขอบคุณที่เป็นป้า ภรรยา วชิรญาณวงศ์ ที่มีวิจารณ์ไปตลอดไปแล้ว ที่คอยสนับสนุนให้ผมได้เรียนในสตรีที่แม่นไม่ในวิชาที่ผมชอบ และเป็นผู้สนองให้กับการเรียนของผมเสมอ ขอขอบคุณที่เป็นป้า รัชนิมา วชิรญาณวงศ์ ที่คอยดูแลมาตลอดมายื่นดีใจ เพื่อส่งเสริมให้ผมได้รับการศึกษาที่ดีมากในตลอด ความสำเร็จของผมนี้ ยอมให้ผมจะตอบแทนแม่เพียงสิ่งเดียวที่ pry ของ ผม มุ่งมั่นขยันสนับสนุนให้ผมเป็นคนดีของนักเรียนนี้ แม่ก็จะมีส่วนหนึ่ง ที่จะเป็นหลักในการเรียนการสอน และช่วยให้ผมมีความสุขที่จะมีที่อยู่ในครอบครัว ผมขอขอบคุณที่เป็นป้า ภรรยา วชิรญาณวงศ์ ที่คอยสนับสนุนในทุกเรื่องตลอดช่วงการเรียนอันยาวนาน ขอขอบคุณที่คอยสนับสนุน	ความอดทนใจ และขอขอบคุณที่เป็นก้านแก้วใจมาโดยตลอด
References

A doctoral dissertation from the Faculty of Science and Technology, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. (Prior to January, 2005, the series was published under the title “Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology”.)