Helical Propensity in an Intrinsically Disordered Protein Accelerates Ligand Binding**

Vytautas Iešmantavičius¹, Jakob Dogan¹, Per Jemth, Kaare Teilum, and Magnus Kjaergaard*

Abstract: Many intrinsically disordered proteins folds upon binding to other macromolecules. Secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The Activation Domain of the Activator for Thyroid Hormone and Retinoid Receptors (ACTR) is intrinsically disordered and folds upon binding to the Nuclear Coactivator Binding Domain of CBP (NCBD). Here we have designed a number of mutants that selectively perturbs the amount of secondary structure in unbound ACTR without interfering with the intermolecular interactions between ACTR and NCBD. Using NMR spectroscopy and fluorescence monitored stopped flow kinetic measurements we show that the secondary structure content in helix 1 of ACTR indeed influences the binding kinetics. Our results thus support the notion of preformed secondary structure as an important determinant for molecular recognition in IDPs.

Intrinsically disordered proteins (IDPs) play important roles in protein interaction networks due to their ability to bind many other proteins and thus to work as signaling hubs. The dynamic nature of living cells means that ligand recognition must be fast, and intrinsic disorder is thus often cited as contributing to rapid molecular recognition.¹ It is, however, an unresolved controversy whether protein disorder enhances or slows the rate of molecular recognition, and the discussion is largely theoretical due to a lack of good experimental data. Systematic comparisons of binding kinetics reported for disordered and folded systems suggest that IDPs have slightly faster association rates than folded proteins, although conditions that are known to affect binding kinetics such as temperature and ionic strength vary significantly across the interactions compared.² The unbound states often contain transient secondary structure resembling the secondary structure in complexes with other proteins. This observation has fostered the notion that pre-formed structural elements speed up binding.² This theory is based on the conformational selection mechanism for molecular recognition, where only a small fraction of folded conformers are binding competent, and increasing this fraction thus enhances the effective association rate. In contrast to this, the fly-casting theory suggests that disordered proteins bind their partners faster than their folded counterparts.³ This kinetic advantage of disorder has been suggested to derive from weak contacts between the disordered protein and the ligand that is subsequently “reeled in” to the folded complex. This gives the protein a greater effective capture radius and increases the chances of binding. It has proven difficult to test these theories experimentally as it is challenging to vary the degree of pre-formed structure without changing other variables.

In this study, we demonstrate unequivocally that increased helical propensity in an IDP promotes its binding to a protein ligand, although we cannot resolve if the helix is most critical for the initial encounter or for the transition state for binding. We use the nuclear coactivator binding domain (NCBD) of CBP and the intrinsically disordered activation domain of ACTR as a model system. Each protein contributes 3-α-helices to the complex, where ACTR wraps around NCBD making several intermolecular, but few intramolecular tertiary interactions.⁴ In absence of their binding partner, NCBD is mostly folded with a structure resembling that in complex with ACTR,⁵ whereas ACTR is mostly disordered but with transient helix formation, in particular for the N-terminal helix (H1).⁶ The binding between the two domains is rapid and electrostatically steered, and can be followed by stopped-flow fluorimetry.⁷ Hydrophobic contacts mainly form after the rate-limiting transition state as was demonstrated by kinetic Φ-value analysis of mutants removing hydrophobic side chains in the intermolecular interface.⁸ One residue in H1 was a notable exception and was found to be important for the association reaction.⁹ The H1 of ACTR is thus a well-suited system for testing the effect of pre-formed structure on molecular recognition.

To vary the degree of pre-formed helicity in H1 of ACTR, we generated a set of helix modulating mutants. To avoid perturbing intermolecular interactions in the complex, we selected only mutation sites for which all atoms of the side chain arc >4 Å away from NCBD in the structure of the complex (PDB:1KBH).⁴ For these residues, we predicted the bulk helicity of all potential mutations using AGADIR.⁹ To avoid affecting electrostatic interactions and disruption of the hydrogen bonding, mutations that change the charge of the protein or introduce proline residues were excluded. Four positions were selected for experimental characterization: The three mutants predicted to stabilize the helix the most (S1043M, D1050E, T1054Q) and one mutation predicted to disrupt the helix the most (A1047G) (Fig. 1). By combining helix inducing mutants into double and triple mutants, a series of mutants was predicted to have average helical populations of H1 ranging from a few percent to approximately 50%.

¹ V. Iešmantavičius,¹ Prof. K. Teilum, Dr. M. Kjaergaard
Department of Biology
University of Copenhagen
Ole Maaløes Vej 5, 2200 København N (Denmark)
Fax: (+45) 3532 2128
E-mail: mk710@cam.ac.uk

Dr. J. Dogan¹,¹ Dr. P. Jemth
Department of Medical Biochemistry and Microbiology
Uppsala University
BMC Box 582, 75123 Uppsala (Sweden)

* These authors contributed equally to this work.
** This work was supported by the Lundbeck Foundation, the Swedish Research Council and a J. C. Jacobsen memorial scholarship from the Carlsberg Foundation. The authors thank Sarah L. Shammas and Joseph M. Rogers for critical comments to the manuscript.
A1047G to 69% in the S1043M/D1050E/T1054Q triple mutant. all residues in the region 10
use as a measure of the helicity in helix 1 the average propensity for
as a step towards the C
simulations.
slightly larger helical population. In the following we use the
propensities
structure propensity
was determined using
kinetics, the average helical population for each of the 9 mutants
changes in the
affected the helicity roughly as predicted by AGADIR
circular dichroism spectra (Fig. S1)
stopped
recorded the backbone chemical shifts of
conditions suitable for kinetic measurements. Therefore we re
range helix
this series of mutations using NMR as a method for detecting long
interactions.
may be seen in the secondary structure propensity plot
chemical shifts based on the
appropriate random coil chemical
Propensities were generally very similar for the two
sequences.
important to obtain reliable secondary structure
from NMR
The secondary chemical shifts and
intersubunit interactions or
The dissociation constant
fold difference between A1047G and
between A1047G and
intermolecular interactions or
The binding kinetics of the mutants of ACTR were characterized
stopped-flow fluorimetry using a pseudo wild type variant of
NCBD (Y2108W), in which a tryptophan residue was introduced as a
fluorescent probe.[7] Introduction of the tryptophan residue does
not affect the binding kinetics or the stability of the mutant and is
thus a valid representative for the wild type protein.[7]
the observed
association rate constant, k_{obs}, was measured as a function of ACTR
concentration (Fig. 2a) and the off-rate constant, k_{off}, was measured
directly by mixing preformed ACTR:NCBD_{Y2108W} complexes with a
large excess of wild type NCBD (Fig. 2b). The second-order rate
constant for the association reaction, k_{on}, was extracted from the
dependence of k_{obs} on [ACTR] (Fig. 2c). k_{on} increases monotonically
with increasing helical propensity with a 2.1-fold difference
between A1047G and the triple mutant (Fig. 2d). Likewise, k_{off}
decreases monotonically with increased helical propensity with a
2.5-fold difference between A1047G and the triple mutant. This
dependence of the rate constants on the helicity across a range of
mutants suggests that the kinetic effect is indeed an effect of
modifying the helical propensity and not unintended modifications
of intermolecular interactions or changes to the binding mechanism.
The dissociation constant K_d was obtained from the ratio
between k_{off} and k_{on} which is appropriate for this experimental
system.[8] A Bronsted plot reveals a linear correlation (with slope
0.84) between the free energy of helix formation in the free state,
which is proportional to $\log K_{\text{heli}}$, and the overall free energy for the binding process, which is proportional to $\log K_d$ (Fig 2c). This shows that the helix propensity translates directly into a stabilization of the complex. Similarly, a linear correlation is observed between the free energy of the transition state for binding, which is proportional to $\log k_{\text{off}}$, and the overall free energy for the binding process (Fig 2f).

This linear free energy relation suggests that all helix modifying mutants in ACTR have a similar degree of native interactions formed in the transition state for binding. The slope of the Bronsted plot (-0.47) shows that 47% of the stabilizing effect of the mutations occurs on k_{on}. In a related study, hydrophobic residues from the interface between ACTR and NCBD were systematically investigated by conservative deletion mutations.[8] The mutations probed mainly tertiary interactions since the predicted effect on helicity is only 3-16% (Table S1). On average, 86% of the destabilizing effect of these mutations was in k_{off}, (average ϕ-value = 0.14), thus suggesting that hydrophobic packing occurs mostly after the rate limiting transition state.[8] In contrast to this observation, our present results suggest a significant fraction of native helical interactions in the transition state, and thus that formation of helix 1 is more important for the initial events of the binding reaction than native hydrophobic interactions. Similar results were seen for the cMyb-KIX system, in which a high degree of helix formation was observed in the TS for binding-induced folding.[14] In contrast, low phi values for helix formation was observed for the S-peptide:S-protein system.[15]

The usual interpretation of ϕ-values is that a value of 0 reflects that the perturbed structure is absent in TS and a value of 1 reflects that the structure is fully formed. The value of 0.14 for the hydrophobic mutations in the ACTR:NCBD interface suggests that the hydrophobic interactions between ACTR and NCBD are mostly not formed in the TS for binding. It is plausible to interpret the value of 0.47 as H1 in ACTR being 47% helical in the TS for binding. Increasing the helical propensity thus directly lowers the rate limiting transition state (Fig 3a). A model that would be able to account for this is a scenario where a rate limiting folding step occurs after an initial association of a transient complex, and the energy barrier decreases with increased helix propensity (Fig 3a). In this case, it is not the helical population per se, but the helical propensity of the peptide chain that matters. This model resembles the classical induced fit mechanism. In structural terms, this corresponds to a higher success-rate for transiently associated complex(es) evolving into the fully formed complex. Intriguingly, this is the opposite of what was found in simulations of pKID and KIX for which the binding reaction was simulated with a range of pre-formed helicity.[2] The association rate increased for more disordered species because they had a higher fraction of binding events resulting in productive binding.[2] There is, however, no reason to think that every binding reaction should behave identically, as the kinetic effects of helix propensity will depend on the proteins’ ability to make non-native interactions with the binding partners and the barriers to interconversion between different bound forms.

The fractional slope of the Bronsted plot may also be interpreted as several parallel pathways for formation of the NCBD-ACTR complex.[15] The simplest such scheme has two pathways - one with H1 in ACTR fully helical and one with it fully disordered (Fig 3b). The two pathways in this model resemble the induced fit and the conformational selection models. Such a model will still result in apparent two-state kinetics if the equilibrium between helix and disorder in ACTR is fast compared to the formation of the complex with NCBD. With the protein concentrations used here the rate of complex formation is below 500 s$^{-1}$. This is considerably slower than helix formation, which is expected to occur on the ns-μs timescale.[17] In this model, the observed k_{on} and k_{off} values are weighted averages of the rate constants of the two parallel pathways. A mechanism as the suggested with two parallel pathways is expected to result in a non-linear correlation between log K_d and log k_{on}. However, the variation in K_d from 31 nM to 161 nM, corresponding to an interval in ΔG^*_{bind} of only 3.8 kJ mol$^{-1}$ is too small to identify curvature in the free energy.[18] In the absence of changes to the barrier heights of the rate limiting transition states, an increased helix population will increase the flux of the conformational selection like pathway. Simulations suggest that for the increase in k_{on} to be fully explained by increased flux through the conformational selection pathway, the microscopic association rate constant for this mechanism will have to be approximately ten-fold greater than that of the induced fit pathway (Fig S3). In this model, the increased rate is due to the increased population of pre-formed helix that shifts the flux due to mass action. It is inherently difficult to conclusively prove a multi-step mechanism from kinetic data, and it is thus likely that molecular simulations are required to distinguish these two models.

Our data could in principle also experimentally test the fly-casting hypothesis, which predicts that disordered species bind their partners faster due to an increased capture radius. To assess how our mutations affect the capture radius of the protein, we undertook NMR diffusion experiments on wild type ACTR and the triple mutant (Fig S4). The diffusion coefficient of the triple mutant is essentially identical to that of wild type ACTR. The compaction caused by the increased helicity is thus insignificant and unlikely to lead to a change in the rate of intermolecular encounters. Fly-casting is thus not likely to contribute significantly to the changes we observe. The proposed effect of the fly-casting effect is relatively small, and may be offset by the slower diffusion of more extended species.[24] Any putative fly-casting effect is thus easily masked by a stronger perturbation of other microscopic rate constants as seen in this example.

![Figure 3](image.png)

Figure 3. a) Free energy diagram and kinetic scheme for the binding of ACTR to NCBD via an induced fit mechanism with a rate limiting folding-after-binding step. The red line represents a mutant with increased helix propensity. b) Free energy diagram and kinetic scheme for parallel pathways, initiated from either a disordered state, ACTR$_{\text{dis}}$, or a state with preformed H1 helicity, ACTR$_{\text{heli}}$. The increase in k_{on} is caused by a shift in flux to a faster conformational selection pathway (red arrow).

The experimental data reported here unambiguously demonstrate that helical propensity in ACTR modulates its binding to NCBD, both in terms of association and dissociation, which will provide an optimal experimental benchmark for future
computational studies attempting to assign the effect to different microscopic processes. Furthermore, the surprisingly clean data set achieved, suggests that our approach for selecting mutants and our experimental strategy combining NMR spectroscopy and stopped flow is worth emulating for other systems to determine if the effects of pre-formed helicity observed here can be generalized to binding of other IDPs.

Experimental Section

Expression and purification of the ACTR and NCBD mutants were described previously. All NMR and stopped flow experiments were performed in 20 mM sodium phosphate, 150 mM NaCl, pH 7.4 at 277 K. C' and C' chemical shifts of each ACTR mutant were determined from sets of HNCO, HNCA and HNCOCA spectra recorded on a 750 MHz Varian Inova NMR spectrometer using 0.5 mM protein. The shifts were referenced to DSS.

Binding kinetics were measured on an upgraded Applied Photophysics SX-17MV stopped-flow device. Trp was excited at 280 nm and fluorescence was measured with a 320 nm long-pass filter. Observed rate constants used to deduce k_{on} were measured with [NCBD$_{218S60}$] = 1 µM and [ACTR] from 0.5 to 10 µM. Dissociation rate constants were measured by mixing approximately 1 µM preformed NCBD$_{218S60}$/ACTR complex with varying concentrations (up to 35 µM) of wild type NCBD. The kinetic data were analyzed as previously described.\[1\]

Helical Propensity in an Intrinsically Disordered Protein Accelerates Ligand Binding

Intrinsically disordered proteins frequently have transient secondary structure, although its functional consequences are not well understood. By modulating the helical propensity of an intrinsically disordered protein domain and monitoring the structural and kinetic changes by NMR and stopped-flow kinetics, the effects on ligand binding can be deduced. For ACTR, increased helical propensity accelerates the binding to its protein ligand.
Supplementary online material for:

Helical Propensity in an Intrinsically Disordered Protein Accelerates Ligand Binding**

Vytautas Iešmantavičius†, Jakob Dogan†, Per Jemth, Kaare Teilum, and Magnus Kjaergaard*

[†] V. Iešmantavičius, Prof. K. Teilum, Dr. M. Kjaergaard
Department of Biology
University of Copenhagen
Ole Maaløes Vej 5, 2200 København N (Denmark)
Fax: (+45) 3532 2128
E-mail: mk710@cam.ac.uk

Dr. J. Dogan, Dr. P. Jemth
Department of Medical Biochemistry and Microbiology
Uppsala University
BMC Box 582, 75123 Uppsala (Sweden)

[+] These authors contributed equally to this work.

Contents:

Figure S1: Circular dichroism spectra of ACTR mutants.

Figure S2: Comparison of the influence of the choice of random coil chemical shift data set on helical populations.

Figure S3: Simulation of the expected on-rate constant for a reaction scheme with parallel conformer selection and induced fit pathways.

Figure S4: Determination of diffusion constants of wt and triple mutant of ACTR by NMR spectroscopy.

Table S1: Contribution of the free energy change due to altered helix propensity ($\Delta \Delta G_{H}$) to the difference in the experimental free energy of binding, $\Delta \Delta G_{obs}$ for mutants of ACTR that probe tertiary structure.
Figure S1: Circular dichroism spectra of ACTR mutants. a) CD spectra of the ACTR wild type (WT) and mutants recorded in 20 mM sodium phosphate buffer pH 7.4 with 150 mM NaCl at 4°C. The small changes in the spectra due to the mutations are partly obscured by small variations in the protein concentration, as it is inherently difficult to determine accurate concentrations of dilute samples of proteins without aromatic residues. b) To avoid contributions from the protein concentration, the CD spectra were normalized by considering the ratio between the α-helix band at 222 nm and the random coil band at 199 nm. This ratio correlates excellently to the helical populations of the mutants as determined by chemical shifts, and thus supports the conclusions drawn from the NMR analysis.
Figure S2: Comparison of the influence of the choice of random coil chemical shift data set on helical populations. 13C secondary chemical shifts for all variants of ACTR using either (a and c) peptide based (http://www.bio.ku.dk/randomcoil/) or (b and d) data base derived (http://proteinnmr.org/) random coil chemical shifts. e) secondary structure propensity similar to those presented in Fig. 1b, but calculated by the database derived chemical shifts. f) Correlation between average secondary structure propensity scores for the helical region based on the two different random coil chemical shifts. Use of the database derived random chemical shifts systematically leads to slightly higher helical populations.
Figure S3: Simulation of the expected on-rate constant for a reaction scheme with parallel conformer selection and induced fit pathways. a) k_{on} as a function of helix content at different ratios of the microscopic on-rate constant for the conformer selection path, $k_{\text{on,CS}}$, and the apparent on-rate constant for the induced fit path, $k_{\text{on,IF}}$. The lines represent best fits to the experimental data of the equation $k_{\text{on}} = p_{\text{helix}} \cdot k_{\text{on,CS}} + (1 - p_{\text{helix}}) \cdot k_{\text{on,IF}}$ with $k_{\text{on,CS}} / k_{\text{on,IF}}$ set to the value indicated in the legend. b) χ^2 from the fits in panel a). The best fit is for $k_{\text{on,CS}} / k_{\text{on,IF}} = 10$.
Figure S4: Determination of diffusion constants of wt and triple mutant of ACTR by NMR spectroscopy. Diffusion decays were measured on 13C filtered aliphatic protons in ACTR by the pulsequence of Nesmelova et al.\cite{4} at 5 °C on a Varian Inova 750 MHz spectrometer. The diffusion constants of ACTR were calculated relative to a diffusion decay of HDO measured on the same spectrometer at 25 °C with the pulse sequence of Jones et al.\cite{5} The resulting diffusion constants at 5 °C are $4.37 \pm 0.01 \text{ m}^2\text{s}^{-1}$ and $4.40 \pm 0.01 \text{ m}^2\text{s}^{-1}$ for the wild type and triple mutant, respectively.
Table S1: Contribution of the free energy change due to altered helix propensity ($\Delta \Delta G_H$) to the difference in the experimental free energy of binding, $\Delta \Delta G_{obs}$, for mutants of ACTR that probe tertiary structure.\(^6\) Helicities of the ACTR variants were predicted using AGADIR.\(^7\) $\Delta \Delta G_H$ values were then calculated using the linear relationship between $\Delta \Delta G_{obs}$ and changes in helicity (predicted using AGADIR) of the mutants used in the present work, for which the whole effect in $\Delta \Delta G_{obs}$ is assumed to be due to the change in helix propensity. The calculated values suggest that the contribution of $\Delta \Delta G_H$ to $\Delta \Delta G_{obs}$ is small for the conservative deletion mutations probing tertiary interactions used in a previous study.\(^6\)

<table>
<thead>
<tr>
<th>ACTR variant</th>
<th>$\Delta \Delta G_{obs}$ (kcal/mol)</th>
<th>$\Delta \Delta G_H$ (kcal/mol)</th>
<th>$\Delta \Delta G_H / \Delta \Delta G_{obs}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1048A</td>
<td>1.02 ± 0.02</td>
<td>0.07 ± 0.06</td>
<td>0.07 ± 0.06</td>
</tr>
<tr>
<td>L1049A</td>
<td>1.30 ± 0.02</td>
<td>0.09 ± 0.06</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>L1055A</td>
<td>0.46 ± 0.05</td>
<td>0.07 ± 0.06</td>
<td>0.16 ± 0.13</td>
</tr>
<tr>
<td>L1056A</td>
<td>2.09 ± 0.06</td>
<td>0.06 ± 0.06</td>
<td>0.03 ± 0.03</td>
</tr>
<tr>
<td>I1067V</td>
<td>0.62 ± 0.02</td>
<td>0.06 ± 0.06</td>
<td>0.09 ± 0.09</td>
</tr>
<tr>
<td>I1073V</td>
<td>0.68 ± 0.03</td>
<td>0.03 ± 0.06</td>
<td>0.04 ± 0.08</td>
</tr>
<tr>
<td>V1077A</td>
<td>-0.19 ± 0.02</td>
<td>0.03 ± 0.06</td>
<td>-0.16 ± 0.30</td>
</tr>
</tbody>
</table>

$\Delta \Delta G_{obs}$ values are from Dogan et al.\(^6\). Errors for $\Delta \Delta G_H$ are propagated from linear regression curve fitting errors. For $\Delta \Delta G_H / \Delta \Delta G_{obs}$, errors are propagated from errors in $\Delta \Delta G_H$, and $\Delta \Delta G_{obs}$.

References