Implementation of a Generic Gateway as a Multipurpose Communication Node

Hesam Moshiri

Information Science, Computer and Electrical Engineering, 30 Credits

Halmstad 2014-03-12
Implementation of a generic gateway as a multipurpose communication node

Master Thesis in Embedded and Intelligent Systems Design

Hesam Moshiri

School of Information Science, Computer and Electrical Engineering
Halmstad University
Box 823, S-301 18 Halmstad, Sweden

March 2014
Acknowledgement

This report is the result of a thesis work within the master’s program: Embedded and Intelligent Systems at Halmstad University.

I thank my supervisor Mr. Stefan Lundgren, Hardware team manager at CPAC for his sympathetic leadership, help and providing project equipment and material, Dr. Urban Bilstrup and Professor Mohammad Reza Mousavi, respectively, my university supervisor and examiner for their helpful comments and guidance, Fredrik Karlemon, Magnus Johansson, Michael Petterson, Bo Ericsson, Marco Monzani, Viktor Stensson, Steve Brown and Martin Jangeberg for guiding me through the project.

I especially thank my parents for their financial and spiritual supports.

This is the concluding part of my two years education at Halmstad University, Sweden.

Hesam Moshiri
Abstract

Steering and navigation systems play an essential role in governing today's leisure boats. CPAC Systems AB, a subsidiary of Volvo AB, satisfies a large part of the global market needs for this kind of products. CPAC Systems, among others, manufactures a well-known "steer-by-wire" (SBW) control system, the “Electronic Vessel Control” (a.k.a. EVC). The need to connect the EVC to systems and devices designed by other companies resulted in the development of “gateway” devices, which have a primary role in preserving the integrity of the overall system architecture. Whenever the SBW communicates with external products, gateways are used as electric isolators and protocol translators, in order to protect the integrity of the SBW function. Today, a number of different gateway devices are required to match the different interfaces to which the CPAC's EVC system has to be connected. This thesis aims to tackle the huge diversification of the requirements and evaluates the possibility of designing a “single” product that satisfies most of the requirements. In addition to that, the work aims to design a flexible device that could be easily updated to comply with the potential needs of the incoming applications. This is beneficial in terms of both technology and cost-efficiency.

Existing gateway products are designed to fulfill the assigned tasks or just to do a specific protocol conversion and apart from this significant difference with a generic gateway, they have some limitations concerning environmental conditions and prospective upgrades. Therefore designing, testing and implementation of one multifunctional gateway to be applicable as a multipurpose communication node to cover several functionalities, would be beneficial.

Several challenges arose in designing the generic gateway device, such as: hardware design with a limited number of connection I/Os (solution is limited to 20 I/Os, whereas current gateway products require as many as 35 I/Os), robustness, final cost and power consumption.

The contribution of the thesis was to analyse current gateway products, to design the hardware (Schematic and PCB), to implement the software, to debug the operation, to verify of the designed hardware to ensure the operation of each part. For gathering test results and investigation of communication or instruction signals, industrial equipment like digital oscilloscope and CAN analyser have been used to prove the operation of the device which are demonstrated in the “design tests" part. In addition, robustness of the gateway has been tested against several industrial test parameters, such as temperature variations, isolation, power supply robustness and typical power consumption. The results of these tests are discussed in the “robustness tests” part.

By fulfilling all of these steps and collaboration with the company team, satisfactory results have been achieved.
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General block diagram view of a Gateway</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Typical application of the gateway. The green lines represent the CPAC's</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>proprietary protocol while the red lines represent external protocols.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>All CPAC gateway product, which should be combined in the Generic Gateway</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Implementation of CAN Bus wiring</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>CAN Bus logic bits</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>CAN Bus voltage thresholds vs. logic levels</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Bit timing of the CAN messages</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Standard CAN frame</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Extended CAN frame</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EIA-422 physical connection diagram</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>Master and Slave connections of the LIN network</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Block diagram of the Autopilot gateway</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Insertion Loss factor, α ε and frequency response, dashed line is related to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>symmetrical (differential mode) and ordinary line is asymmetrical (common mode)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reference: Component Datasheet)</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Current response of the component (Iop/IR) in terms of temperature</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(Reference: Component Datasheet)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pulse width distortion parameter in accordance with temperature changes,</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(Reference: Component Datasheet)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Thermal characteristics of the voltage regulator, output voltage VQ, in</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>accordance of increasing the temperature TJ, (Reference: Component Datasheet)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Block diagram of the AGI gateway</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>The relation between forward voltage drop and instantaneous forward current</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>of rectifier diode, (Reference: Component Datasheet)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Block diagram of the CAN to Serial level converter, (Reference: Component</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Datasheet)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Block diagram of the AGI output driving IC, (Reference: Component Datasheet)</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>Block diagram of the DSAG Gateway</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>ACTISENSE NGW-1 gateway (Reference: Product datasheet)</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>MARETRON EMS100 gateway (Reference: Product datasheet)</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>AIRMAR U200 gateway in application (Reference: U200 Product datasheet)</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>Application of AMEC NK-80 in boat’s communication architecture</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>(Reference: NK-80 gateway datasheet)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Block diagram of the generic gateway</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>The block diagram of the power supply of the generic gateway</td>
<td>51</td>
</tr>
<tr>
<td>29</td>
<td>Response time vs. Voltage level of the GDT at input protection stage of the</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>power supply block (Reference: Component datasheet)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Generic Gateway power supply input protection part</td>
<td>52</td>
</tr>
</tbody>
</table>
Figure 31 required robustness of the generic gateway power supply input line, against sudden voltage glitch (Black vs. Blue line) ... 53
Figure 32 Generic Gateway CAN input filtering ... 54
Figure 33 Generic Gateway 1587 (Serial) input interface .. 55
Figure 34 PCB Layers stack demonstration of generic gateway (Top-GND-Power-Bottom) ... 59
Figure 35 Isolated PCB copper ground planes (one and two) with proper insulation gap 60
Figure 36 Block diagram of the generic gateway software ... 63
Figure 37 Flowchart diagram of the generic gateway software ... 64
Figure 38 The temperature of the heart of the power supply (voltage regulator) 10 seconds after +48V injection to the inputs .. 65
Figure 39 The temperature of the heart of the power supply (voltage regulator), 2 minutes after +48V injection to the inputs ... 66
Figure 40 The level of the output voltages of the generic gateway power supply block, in front of input voltage variation .. 67
Figure 41 The provided signal isolation by the optocoupler and the test points in the generic gateway.. 68
Figure 42 Test room of the temperature chamber, a PC and a digital oscilloscope are connected to the generic gateway to record the events .. 70
Figure 43 Temperature chamber software and related adjustments, dark red line shows the adjusted temperature and the normal red line shows the real time temperature inside the chamber (Adjustments are done inside analogue channels box in the software) .. 71
Figure 44 The received text message from the generic gateway, which shows healthy communication between the generic gateway inside the chamber and the PC outside (Temperature: 25°C) .. 72
Figure 45 Signal demonstration of the UART messages between the generic gateway inside the chamber and the digital oscilloscope outside (Temperature: 25°C) 72
Figure 46 Temperature chamber adjustments for 85°C, dark red line shows the adjusted temperature and the normal red line shows the real time temperature inside the chamber (Adjustments are done inside "analogue channels" box in the software) .. 73
Figure 47 The received text message from the generic gateway, which shows healthy communication between the generic gateway inside the chamber and the PC outside (Temperature: +85°C) ... 74
Figure 48 Signal demonstration of the UART messages between the generic gateway inside the chamber and the digital oscilloscope outside (Temperature: +85°C) 74
Figure 49 Temperature chamber adjustments for -20°C, dark red line shows the adjusted temperature and the normal red line shows the real time temperature inside the chamber (Adjustments are done inside analogue channels box in the software) 75
Figure 50 The received text message from the generic gateway, which shows healthy communication between the generic gateway inside the chamber and the PC outside (Temperature: -20°C) ... 76
Figure 51 Signal demonstration of the UART messages between the generic gateway inside the chamber and the digital oscilloscope outside (Temperature: -20°C) 76
Figure 52 Assembled PCB board of the generic gateway (TOP) ... 78
Figure 53 Assembled PCB board of the generic gateway (Bottom) 79
Figure 54 Signal overview of CAN on microcontroller output pin 80
Figure 55 Analysis of the CAN data signals on communication wires (influence of wires and filters are noticeable) ... 81
Figure 56 Demonstration of the Figure 32 signal, in a shorter period (1μS) 82
Figure 57 Short time frame cut of CAN communication signal on line wire (200nS) 83
Figure 58 Demonstration of CAN data transmission with the CAN analyzer software (Black boxes show baud rate: 500Kb/s and the Data) ... 84
Figure 59 Reception of transmitted CAN data on related receive interrupt event (Green highlight, Data: Black rectangle in the debug window) ... 85
Figure 60 Demonstration of serial 1587 communication signal on output lines 85
Figure 61 Typical current consumption of all existing gateways (Average=73mA, generic gateway=90mA) .. 86
Figure 62 A comparison between the design performance of the generic gateway and others existing ones in terms of the I/O multiplexing ... 87
Table of Tables

Table 1: ISO11898 Electrical Requirements ...25
Table 2: Suggested cable length vs. signaling rate ..26
Table 3: NMEA2000 communication protocol Characteristics30
Table 4: Temperature & humidity tests (chamber room) ...43
Table 5: Overview of the existing functionalities of the CPAC gateways and the summation of all separate I/Os which the generic gateway supports49
Table 6: Instrumentation I/Os of Generic Gateway ...56
Table 7: CAN and Power demonstration of Generic Gateway56
Table 8: Characteristics of the all Input/output signals (CAN and power lines are excluded because their I/Os are fixed) ...57
Table 9: Some examples of STM32 interrupt and priorities ..61
Table 10: The test results of the generic gateway’s power supply against the variable inputs ...66
Table 11: Isolation test results of the generic gateway ..68
Table 12: Typical current consumption test of the Generic Gateway69
Table 13: Temperature test results of the generic gateway ..77
Table 14: The price difference between the suggested and the selected components of the generic gateway and its influence on the total material price88
Table of Contents

1 **Introduction** ... 13
 1.1 Motivation .. 13
 1.2 Goals ... 13
 1.3 Problem Statement & Approach ... 13
 1.5 Structure ... 15

2 **Background** .. 16
 2.1 Block Diagram of a Gateway ... 16
 2.2 Description of the CPAC Gateways 18
 2.2.1 AGI .. 18
 2.2.2 NMEA0183 .. 18
 2.2.3 NMEA2000 .. 18
 2.2.4 Autopilot ... 18
 2.2.5 DSAG .. 18
 2.2.6 PFM .. 18
 2.2.7 LZGW .. 19
 2.2.8 DPS ... 19
 2.2.9 TJSGW .. 19
 2.2.10 ACU ... 19
 2.2.11 MOTORSIM .. 19
 2.3 CAN Interface ... 21
 2.3.1 Physical Layer .. 22
 2.3.2 Bit Timing ... 26
 2.3.3 CAN Message frame description 27
 2.4 NMEA0183 .. 28
 2.5 NMEA2000 .. 29
 2.6 Local Interconnect Network (LIN) 30
 2.7 Hardware analysis of the existing gateways (CPAC) 32
 2.7.1 Autopilot Gateway .. 32
 2.7.2 Internal CAN Interface ... 32
 2.7.3 External Isolated CAN .. 35
 2.7.4 Power Supply .. 36
 2.7.5 Main Controller .. 37
5.4 Temperature ..69

6 Results (Design Tests) ..78

6.1 Hardware Test Results ..78

6.2 Software Test Results (Joint test with the hardware) ...79

6.2.1 Power consumption ..86

6.2.2 Multiplexing Factor (Design Performance) ...87

6.2.3 Cost Efficiency ..88

7 Conclusions ...89

8 References ...90
1 Introduction

1.1 Motivation
In the modern boats, the navigation control unit is a main part of the boat’s controlling system. There are few companies in the world that produce navigation control units and CPAC Systems AB as a subsidiary of VOLVO AB is one such company, which designs, develops and produces electronic controlling systems for vehicles; including steer by wire (SBW) for boats. In the whole controlling system, when the SBW communicates with external (Non-CPAC) products, gateways are used as isolators and protocol translators to protect the integrity of the SBW system.

Gateways are designed to accomplish several tasks based on their assigned operation, environmental and/or end customer needs. In practice, for every connection establishment request, like NMEA2000 (CAN based) protocol to NMEA0183 (Serial based) or internal CAN (CPAC CAN) to external CAN (non-CPAC CAN), a proper connection is made just by having a “Gateway”. It means for each connection, a proprietary gateway is to be developed, which is not acceptable in product development for the manufacturer in the long term.

1.2 Goals
Currently, the CPAC Systems produces 10 different gateways [1]. They are named: NMEA2000, NMEA0183, Autopilot, DPS, PFM, ACU, DSAG, AGI, MOTORSIM, LZGW and TJSGW [1]. Each of these gateways is designed to accomplish a specific task, which mainly includes CAN interface and some instruction lines. The goal of the thesis work is to combine all existing gateways in a universal product, which must have the capability to handle the functionalities of all gateways in a limited number of I/Os.

In this project, we design and implement a pertinent hardware and modify and write some segments of the embedded software to test and verify the designed hardware. The hardware design should be according to the industrial requirements, in order to be considered as a first prototype of the final product.

1.3 Problem Statement & Approach
The hardware design of the generic gateway that could cover all functionalities of the existing gateways, requires 35 I/O lines, but the generic gateway should be designed with 20 I/Os. In other words, the designer should design the hardware in a way that most of I/O lines could handle several functionalities, instead of just one. For example, if there is an output I/O line that controls the boat’s trim level gauge through a PWM signal, it should also handle the LIN connection as its second functionality (Multiplexing). The device should be designed from scratch and the gateway’s MCU must be selected from the types which could deliver enough processing power (at least double in performance (MIPS) compared to the existing gateway MCUs) as well as enough internal flash memory size (at least 64Kbyte), SRAM (minimum 64Kbytes) to process signal processing functions and filters and providing sufficient embedded facilities to complement the functionalities of the existing gateways as well, such as UART and CAN [1, 10].
The gateway is an important part in the boat controlling system. It connects unknown customer devices (Mainly CAN-based) to the CPAC-designed boat controlling products. The designer should consider how and what he designs and how each part of the design may perform in the real environment.

The main challenges, which have been investigated, are:

- Designing a gateway hardware with the multiplexed I/Os, which covers all existing gateways’ functionalities within a limited number of I/Os (20 I/Os).

 All of the I/O lines which must be included are: Internal CAN (CPAC CAN, 4 lines), External CAN (Non-CPAC CAN, 2 lines), Select1, Select2, TempAlarm, Tachometer, PowerTrimAngle, OilAlarm, UART (3 Lines), StatusOut, Enable (2 Lines), PositionIN, GearStatus+, GPSUART (3 Lines), 1587 (2 Lines), LIN, Internal power (CPAC supply, 2 lines) and external power (non-CPAC supply, 2 lines).

- Reliability and robustness of the gateway, which is derived into four categories:

 - Isolation (Physical and signal): according to the requirements, the resistance between two test points should be at least 1MOhm in 60V.
 - Power supply robustness: The power supply should tolerate short circuit and 48V injection for the duration of 2 minutes. In addition, it should bear with the reverse polarity.
 - Temperature: the gateway should perform flawlessly in the temperature boundaries. The up and down temperature test points are +85C and -20C.
 - Power consumption: the current consumption of the gateway should not exceed 150mA.
1.5 Structure
The thesis contains six main parts. In the background section (Section 2), the main blocks of a gateway, description of the several existing gateways, investigation and studies of the most important implemented communication protocols, analysis of hardware of the existing gateways in addition to the roles of the key components and blocks are discussed. In addition, the major requested standards for the implementation of the generic gateway are introduced briefly. In the related work section (Section 3), similar products of different non-CPAC companies have been investigated and compared with the generic gateway and at the end, a comparison between all CPAC gateways and the Generic Gateway has been made. In the methodology section (Section 4), the major contribution and description of the hardware and software blocks in addition to the associated challenges have been discussed and demonstrated. The results section (Section 5) consists of the investigation of the major communication lines in accompany with some signal images, CAN analyser results and design achievements in comparison with existing gateways. The conclusions part (Section 6) consists of a brief description of the motivation of the project, the main challenges, contribution and the outcome of the thesis.
2 Background

2.1 Block Diagram of a Gateway
In principle, the block diagram of a gateway product is a combination of a Microcontroller, one or two CAN bus communication interfaces, some discrete hardware circuits and instruction I/Os. The gateway block diagram view is shown in Figure 1.

![Gateway Block Diagram](image)

Figure 1 General block diagram view of a Gateway

Figure 1 demonstrates all possible hardware blocks of one gateway (existing CPAC gateways). In some gateways, all blocks have not been implemented and in some of them the instrumentation I/Os and/or the external isolated CAN have been not implemented. For example, the AGI gateway has 6 instrumentation I/Os and the internal CAN ("Internal" refers to the CPAC devices, design blocks, communication interfaces and all related equipment and "External" term refers to the non-C PAC design blocks and communication interfaces). It is designed to connect customers’ products to the internal communication interface [1]. A typical setup of the gateways is illustrated in Figure 2 where different protocols share information. The device that enables the protocol translation is a node that is called Gateway [10].
Figure 2 Typical application of the gateway. The green lines represent the CPAC’s proprietary protocol while the red lines represent external protocols.
2.2 Description of the CPAC Gateways

The description and an overview of the existing CPAC Company’s gateway products are given in this section.

2.2.1 AGI
AGI is a gateway that provides a connection between the analogue gauges monitoring interface of the customer’s marine monitoring dashboard and the internal controlling unit (CPAC side) [1]. It consists of an internal CAN block, an internal power block and six instrumentation I/Os. It is equipped with a PIC Microcontroller [1].

2.2.2 NMEA0183
NMEA0183 provides a connection between all non-internal products, which are using CAN, NMEA0183 serial communication protocol and the internal controlling unit (CPAC devices). It consists of an internal CAN block, an internal power block, an external power block and a serial NMEA0183 communication interface [1]. It is equipped with a PIC Microcontroller [1].

2.2.3 NMEA2000
NMEA2000 provides a connection between customer devices which use CAN to connect the GPS navigation unit to the main internal controller (NMEA2000 is a newer version of the NMEA0183 which is mainly based on CAN bus) [1]. The gateway consists of an internal CAN block, an external isolated CAN block, an external power block and one internal power block. It is equipped with a PIC Microcontroller [1].

2.2.4 Autopilot
The autopilot is a gateway that provides a connection between the customer GPS devices, which use CAN or serial communication for data transaction and the internal controlling unit [1]. It consists of an internal power block, an internal CAN block, an external power block, an external isolated CAN block and an isolated UART interface [1]. It is equipped with a PIC microcontroller [1].

2.2.5 DSAG
DSAG is a gateway which provides a connection between the boat steering system and the internal controlling unit (boat steering unit can operate manually or in automatic mode) [1]. It consists of an internal CAN block, an internal Power block and 4-four I/O instrumentation interface. It is equipped with a PIC Microcontroller [1].

2.2.6 PFM
PFM is a gateway that transfers both CAN and power in the longer distances in the boat [1], in other words, it acts like a network repeater for both power and the CAN bus [1]. It connects the secondary power supply unit also, because the boat’s dashboard colourful graphical displays consume high current and the dissipation in the power line is significant, so this gateway should be used in such circumstances [1] (This gateway has been removed from the combination list).
2.2.7 LZGW
LZGW is a gateway that provides a connection between the boat’s gearbox and the internal controlling unit [1]. It consists of an internal CAN block, an internal power block, an external power block and one instrumentation I/O. It is equipped with a PIC Microcontroller [1].

2.2.8 DPS
DPS gateway is used to connect the VOLVO PENTA GPS navigation module to the internal controlling devices. The intention of such design is implementation of a “digital anchor”; when the boat needs to be stationary for a short time, for example when the boat is waiting for a bridge movements to be able to pass through the channel [1]. It consists of an internal CAN block, an external isolated GPS CAN block, an internal power block and an external power block. It is equipped with a PIC Microcontroller [1].

2.2.9 TJSGW
The TJSGW gateway provides a connection between the external CAN-based devices and the internal CAN [1]. It consists of an internal CAN block, an external isolated CAN block, an internal power block and an external power block. It is equipped with a PIC Microcontroller [1].

2.2.10 ACU
The ACU gateway provides the connection between CAN based GPS navigation module and 1587 serial communication interface to the internal controlling devices. This feature also has enhanced with embedding a high quality inclinometer inside the gateway [1]. The gateway consists of an internal CAN block, an external isolated GPS CAN block, an internal power block and 5-five instrumentation I/Os. It is equipped with a PIC Microcontroller [1].

2.2.11 MOTORSIM
MOTORSIM is a product that is used to simulate the several boat engines for testing and simulation purposes [1]. When there is an intention to test the gateways or similar products in the laboratory, first, they must be tested in the virtual environment and one essential key element in the real operation of the marine products is the influence of the boat engine [1]. MOTORSIM consists of an internal CAN block, an internal power block and 2-two instrumentation I/Os (1587 interface). The selection between several boat engines is done in a real time by one miniature PCB-mounted switch [1]. The MOTORSIM does not act like a gateway, but the function of this device should be considered in the design of the generic gateway. Therefore, the communication protocols and other I/Os of the MOTORSIM have been analysed and implemented in the generic gateway.

A brief overview of all gateways and their physical connection are demonstrated in Figure 3. The limitations in the existing gateway products include their inefficient use of cable harnesses, insufficient processing power (because of using an 8bits PIC MCU), non-upgradable hardware (in connection with the software), and lifetime limitation of some of the components in their construction.
Figure 3 All CPAC gateway product, which should be combined in the Generic Gateway
2.3 CAN Interface
The CAN (Controller Area Network) is an asynchronous serial communication protocol (CSMA/CD) for industrial networks. It supports real-time communication (bit rate up to 1Mbps) with very high level of the security and noise immunity. There is no central transceiver in the CAN protocol, so a direct connection allows data transfer between any two or more nodes without a master node [2, 3]. The CAN communication protocol was initially created within 1980s as a solution for automotive applications. Since 1990, CAN has become operational in automotive applications as well control design in industrial applications. This development was due to its robustness and good performance. In addition, low development cost is another significant feature for the CAN [2, 3]. ISO11898 standard defines CAN bus as differential two wires based reliable protocol for high-speed applications. The identifier field length of CAN 2.0A protocol has 11 bits [3, 4].

Data frames are used to transmit up to 9 bytes of information from one specific CAN node to one or more CAN nodes. The 11 bits identifier field length allows up to 2048 available identifiers or logical addresses, where each one can be assigned as a specific functional node [4]. In the practical condition, up to 64 nodes could be connected to the bus and 127 nodes on a CANOpen (CANOpen has some differences in the higher OSI model in terms of the method of transmission and interpretation) [2, 4]. The minimum of two nodes are required to build one CAN connection. High-Speed ISO-11898 standard specifications are delivered for a maximum transmission rate of 1Mbps with a bus length of 40 meters and a maximum number of 30 nodes. The kind of the cable is specified to be chosen from shielded or unshielded twisted-pair with 120Ω impedance (Figure 4). The reason of why two resistors are used is for avoiding the signal reflection from bus (EMC limitation). There are three methods of bus termination. In this application, the most common termination technique, which is based on two 120Ω termination resistors, has been used [3, 4].
The CAN protocol, as many network protocols, is structured in the following layers [2]:

- **Application Layer**
- **Data Link Layer**
- **Physical Layer**

2.3.1 Physical Layer
The CAN physical layer will be discussed in more details, because it has been considered more in the design of the “generic gateway”. The physical layer is the basic hardware requirement for the CAN network, based on the ISO-11898 electrical specifications. The physical layer converts logic-1 and Logic-0’s into the corresponding differential electrical pulses which leave a node [3, 4]. Although other communication layers may be implemented in software or within hardware as integrated embedded parts, the *Physical Layer is always implemented in the hardware*. The standard architecture of the layered ISO 11898:1993 has been shown in the Figure 5.
The electrical aspects of the physical layer such as the voltage, the current, and the number of the conductors are specified in the ISO11898-2:2003 standard [3, 4], which is widely accepted. However, the mechanical characteristics of the physical layer such as the connector type and number of pins, colours, labels and pin-outs diagram are not formally specified.

The CAN protocol specifies two logical level states: recessive and dominant. The ISO-11898 standard, defines differential voltages to represent recessive and dominant states (Logic Bits), as shown in Figure 6 [3, 4].
In the recessive state (logic ‘1’), the differential voltage on CANH and CANL is less than the minimum threshold (<0.5V on receiver input and <1.5V on transmitter output). In the dominant state (Logic ‘0’), the differential voltage on the CANH and CANL is greater than the minimum threshold (Figure 7) [3, 4].
According to the ISO11898-2 specification, compatible transceiver must meet a specific number of electrical requirements. Some of these specifications are intended to ensure that the transceiver can survive in the harsh electrical conditions and with the aim of protecting the communications of the CAN. These requirements have been demonstrated in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage on CANH and CANL</td>
<td>-3V</td>
<td>+35V</td>
</tr>
<tr>
<td>Transient voltage on CANH and CANL</td>
<td>-150V</td>
<td>+100V</td>
</tr>
<tr>
<td>Common Mode Bus Voltage</td>
<td>-2.0V</td>
<td>+7.0V</td>
</tr>
<tr>
<td>Recessive Output Bus Voltage</td>
<td>+2.0V</td>
<td>+3.0V</td>
</tr>
<tr>
<td>Recessive Differential Output Voltage</td>
<td>-500V</td>
<td>+50V</td>
</tr>
<tr>
<td>Differential Internal Resistance</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Common Mode Input Resistance</td>
<td>5.0</td>
<td>50</td>
</tr>
<tr>
<td>Differential Dominant Output Voltage</td>
<td>+1.5V</td>
<td>+3.0V</td>
</tr>
<tr>
<td>Dominant Output Voltage (CANH)</td>
<td>+2.75V</td>
<td>+4.5V</td>
</tr>
<tr>
<td>Dominant Output Voltage (CANL)</td>
<td>+0.5V</td>
<td>+2.25V</td>
</tr>
<tr>
<td>Permanent Dominant Detection (Driver)</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>Power-On Reset and Brown-Out Detection</td>
<td>Not required</td>
<td>Not required</td>
</tr>
</tbody>
</table>

Table 1 ISO11898 Electrical Requirements

In the generic gateway design, generally two types of CAN must be implemented. The internal CAN and the external isolated CAN [3, 4]. The internal CAN is the company’s defined and modified CAN bus [3, 4]. The External CAN establishes the connection between the customer side devices and it has unknown characteristic for the internal side devices, because every company has its own specific design [3, 4]. The internal CAN must be protected and isolated for any kind of noise and unwanted disturbances that may penetrate from the external CAN, in both hardware design and implementation and regarding the software filters.

The CAN cable length is another technical issue that should be considered. Table 2 provides to check the cable length information against data rate.
Table 2 Suggested cable length vs. signaling rate

As a rule of thumb, the bus wire length in meters (for busses over 100m) multiplied by the baud rate in Mbps, should always be always less than or equal to 50 (Equation 1).

\[
\text{Data communication Rate (Mbps)} \times \text{Bus Length (m)} \leq 50 \quad (1)
\]

In the gateway communication, the maximum signalling rate is 0.5Mbps and hence, up to 100 meters cable length is permitted [3, 4].

2.3.2 Bit Timing

In the CAN network, no clock is sent during the transmission. Synchronization is earned by dividing each bit of the frame into a number of segments, which are: synchronization, propagation, Phase 1 and Phase 2 (Figure 8). Synchronization helps to read the correct message on the receiver side [2].

![Figure 8 Bit timing of the CAN messages](image-url)
2.3.3 CAN Message frame description

Four different types of the messages are defined by the CAN protocol. Data Frame is the first one and the most common form and it is made of arbitration field, CRC field and ACK field. The data field varies between zero to 8 bytes, the RTR bit (Figure 9) is dominant [2] and the length of data part is defined by the DLC parameter [2]. The next frame is remote frame, which is essentially a data frame with the RTR bit set to signify that there is Remote Transmit Request. The other two frame types are used in error handling [2]. One of them is called Error Frame and another one is named overload frame [2]. The active nodes on the bus that detect protocol errors are defined by CAN, generate error Frames. Overload errors require more time to process the messages, which have already received [2].

Because CAN was the protocol that was initially designed for use in automobiles, error handling was critical to acquire the market acceptance. With the official introduction of version, 2.0B of the CAN protocol, communication rate was increased 8 times more [2]. At this rate, there is no problem for most time-critical values to be transmitted without any latency concerns. Furthermore, to guarantee the integrity of messages, the CAN protocol has a comprehensive list of error detection [2]. In Figure 9, the standard CAN frame and in Figure 10, the extended CAN frame has been demonstrated [2].

![Figure 9 Standard CAN frame](image)

![Figure 10 Extended CAN frame](image)

The identifier part of the frame is not only used for the priority purposes, but also helps the receiver to filter the messages [2, 10]. Before starting to transmit, each node will check if the bus is idle. The nodes, which are going to access the bus, will contend for the access simultaneously, the higher the priority, the lower binary message identifier [2, 10]. The nodes that are sending their identifier, listen to the bus at the same time [2]. If one node sends a recessive bit and another one sends a dominant bit, the one with the dominant bit will win and the other one will stop sending the identifier [2]. This is realized by AND operation. Since the dominant bit overwrites the recessive bit, and the node monitors its own transmission by listening to the bus, it can see if the bus has the same value as what has been sent or not, if so it will continue with the rest of the message frame [2].
2.4 NMEA0183

NMEA0183 is a standard, which defines both the electrical interface and the data communication protocol for transmission/reception among marine instrumentation and devices [6]. NMEA0183 is an industry standard, first released in the March-1983. The electrical standard of NMEA0183 is EIA-422 although most hardware with NMEA0183 outputs are also capable to drive single EIA-232 port. NMEA0183 can handle single talker and several listeners on one bus. Interconnect wiring is recommended to be a shielded twisted pair, with the grounded shield only at the talker [6]. The specification of serial communication is:

- **Baud rate**: 4800
- **Number of data bits**: 8 (bit 7 is 0)
- **Stop bits**: one (or more)
- **Parity**: none
- **Handshake**: none

The recommendation is that the talker output complies with the RS-422 standard. It is differential based with two signal lines, "A" and "B". These differential drive signals have no reference to ground and therefore the signal has more immunity to noises.

EIA422 (Full duplex: EIA-485): The standard is published by the ANSI Telecommunications Industry Association/Electronic Industries Alliance (TIA/EIA) [6]. The devices based on EIA-485 communication standard can be used widely for long distances and in noisy and harsh environments. These characteristics make EIA422 more practical in industrial applications. EIA-485 (RS485) offers data transmission speeds of 35 Mbit/s up to 10m and 100Kbit/s up to 1200m, because it applies differential balanced line over twisted pair wire and one optional ground wire for more convenient matching balance and noise reduction (like EIA-422) (Figure 11). One easy rule could be used in this case: the speed in bit/s multiplied by the length in meters should not exceed than 10^8. Thus, for example on a 50-meter cable, one should not signal faster than 2Mbit/s.
2.5 NMEA2000

NMEA2000 can be considered as a successor of NMEA0183. NMEA2000 is a bi-directional, multi-transmitter, multi-receiver and serial based data communication network. There is no central controller; it is multi-master and self-configuring. NMEA2000 connects devices using CAN bus which is originally developed for the automotive industry [7].

Several instruments that meet the NMEA2000 standard could be connected to one main cable, known as a backbone. The backbone enables power for each instrument and conveys data among all instruments on the network bus. NMEA2000 is used as "plug and play" to allow devices, which are constructed by different manufacturers, to talk and listen to each other. There are two types of cabling defined by the NMEA2000 standard. The larger one is denoted as "Mini" (or "Thick") cable, and is rated to be able to carry up to 8Amp. The smaller sizes is known as "Micro" (or "Thin") cable and it is rated to handle up to 3Amp current of power supply [7].

The mini cable is mainly used as a "backbone" for networks of larger vessels (minimum of 20 meters). The micro cable is used for connections between network backbone and individual nodes. Networks of smaller vessels are often constructed mainly based on the micro cable and connectors [7].

NMEA2000 network is not compatible with an NMEA0183 network in terms of electrical characteristics; therefore, an interface device is needed to send messages between devices on different types of network. In Table-3, a brief look of the NMEA2000 network characteristic is provided [7].
Network Architecture

- Bus wiring configuration using four conductor twisted pair wires to transfer power for the operation of the interface and data signals.
- Linear network with end terminators and multiple short-length cables. It connects the cable backbone to the individual nodes.

Network Operation

- Multi-master network operation, ie., there is no central node.
- Self-Configuring.

Network Size

- Physical nodes: Max 50 connections.
- Functional nodes: Max 252 network addresses.
- Length: Max 200 meters (at 250kbits/second bit rate).

| Network Architecture | Bus wiring configuration using four conductor twisted pair wires to transfer power for the operation of the interface and data signals.
| Network Operation | Multi-master network operation, ie., there is no central node.
| Network Size | Physical nodes: Max 50 connections.

Table 3 NMEA2000 communication protocol Characteristics

2.6 Local Interconnect Network (LIN)

Two dominating factors for a technical choice in the networking technology are cost and the transaction speed. At the field level, we are more concerned about controlling actuators, small electrical motors and reading data from sensors. At this control level, the challenge is in dealing with mechanical components with low speed requirements (several kbit/s) [8]. In the vehicle industry, the request for a protocol with low computational power, small amount of memory and low cost along with the simplicity of the communication controllers always exists and LIN satisfies these requirements. The LIN communication is based on the master-slave mechanism. Each cluster in LIN consists of one master and some slaves connected to a common single serial bus. Due to EMI limitation, it is not possible to achieve a data rate higher than 20kbps [8].

LIN is a time-triggered network and the master node to manage the message transmission uses a schedule table. The table contains a list of frames and their frame slots, which ensure determinism in the sequence of transmission [8]. A data frame can contain up to eight bytes of data. The master broadcasts data and all the nodes can listen and the one which possesses the identifier (one byte length) can respond. The identifier is made of a six-bit address field and a two-bit check field [8]. If there is no update for the requested data, then there will be no response and the bandwidth will be saved. By providing the sleep mode in nodes, energy is saved in time of no data transaction [8].
The LIN nodes could be wired in two ways: master and slave modes. In Figure 12, the requirements for each connection type are demonstrated.

Figure 12 Master and Slave connections of the LIN network
2.7 Hardware analysis of the existing gateways (CPAC)

2.7. Autopilot Gateway
The block diagram of the autopilot gateway is demonstrated in Figure 13. It consists of two power blocks, an internal (CPAC) CAN and the external CAN (non-CPAC) blocks, a serial (UART) interface and a Microcontroller [1].

![Block diagram of the Autopilot gateway](image)

Figure 13 Block diagram of the Autopilot gateway

2.7.2 Internal CAN Interface
At the first stage, the input is protected by the ZENER diodes; additionally some capacitors as well as one RC filter are used to decrease the low frequency interferences. The next stage is based on one CAN specified choke filter. It is double winded (CAN+ and CAN-) common mode choke with a ferrite core. It has the duty of suppression of asymmetrical and symmetrical interference which are coupled-in on communication lines. The high frequency portions of the symmetrical data signals are decreased so far that EMC problems can be significantly reduced. The noise reduction factor is named “insertion loss, \(\alpha_e \)” of which the effect is demonstrated in Figure 14. The temperature threshold of the choke for the normal current flow is 60 degrees (centigrade). In Figure 15, this phenomenon is shown by the rate of the input current \(I_{op} \) to the output current \(I_R \) of the component.
Figure 14 Insertion Loss factor, α_e and frequency response, dashed line is related to symmetrical (differential mode) and ordinary line is asymmetrical (common mode) (Reference: Component Datasheet)
At the next stage, a CAN converter chip has been used to convert CAN to TTL level serial interface to be able to be connected to the microcontroller. It is capable of transaction of 1MB/s data rate and up to 110 node connection capability [1]. The chip could be Enabled or Disabled at any time depending on whether the device needs to be connected to the BUS. With this method, the power consumption will be reduced, because when data transaction is considered through the bus, it should be kept active also. One 120Ω resistor is implemented on the CAN bus wiring terminal to guarantee the impedance matching for each node (in practice, two 60Ω in series) [1].
2.7.3 External Isolated CAN

The first stage of the external isolated CAN (non-CPAC CAN) is the same as the internal CAN (CPAC CAN), but it has an extended filter at next stages, also one optocoupler IC has been used for isolation and noise immunity. Due to handle the data transaction speed (500Kbit/s), an optocoupler is selected from the types to show proper response during data transaction and does not make distortion in signals (Minimum operation frequency of 1MHz). The temperature rate of the component should be between -40°C to 125°C. In Figure 16, the pulse width distortion in relation with temperature has been shown [1].

To increase the noise immunity, this component will give clear square pulses as an output, which could be one of the ideal methods to have both isolation and noise reduction.

![Figure 16 Pulse width distortion parameter in accordance with temperature changes.](image)

Figure 16 Pulse width distortion parameter in accordance with temperature changes, (Reference: Component Datasheet)

To build a data interface for MCU, one CAN to SPI interface converter chip has been used. With just a very few discrete components, it accomplishes the CAN to SPI conversion. It feeds up with a clock line of the gateway microcontroller. It consists of five operation modes: Configuration mode, Normal mode, Sleep mode, Listen only mode and Loopback mode. All of
these configurations are addressed through appropriate commands from SPI line. It uses CRC for error detection and it supports several interrupts for several conditions. In this design one interrupt pin is used to be able to detect and pick up available data on BUS and avoid unnecessary loop to check the condition of the BUS every time [1].

2.7.4 Power Supply
The power of the gateway is provided from the vehicle battery (14-28V). Therefore, because the battery itself is one pure source of the electrical energy, some sort of low frequency filters would be sufficient to suppress unwanted noises. The next step is power regulator. This regulator has been selected from the types with low voltage drop feature and also lower thermal dissipation. One additional benefit of the low voltage drop feature is for the conditions like engine start-up time that high level of voltage drop will occur on the power supply line. The total voltage drop, in addition to the voltage drop of the regulator itself will not come to one level to decrease the logical component voltage level (fixed 5V after regulator) and therefore no MCU reset or whole device malfunction will happen. Unwanted high voltage noises could be suppressed by using a varistor in parallel with the power lines; this is one of the most important safety issues in case of harsh conditions like lightning. In Figure 17, the thermal characteristics in relation with the output voltage of 5V regulator has been demonstrated [1].

![Figure 17 Thermal characteristics of the voltage regulator, output voltage VQ, in accordance of increasing the temperature TJ, (Reference: Component Datasheet)](image-url)
2.7.5 Main Controller
The main controller of the device consists of one PIC MCU. It controls all of the data flows and commands and all instructions come from this unit. It is equipped with 4MHz crystal oscillator, which supplies the MCU clock itself and the clock of the CAN chip. The whole system is designed in an efficient way and the noise immunity factor is also considered in all areas [1].

2.7.6 AGI Gateway
The block diagram of the AGI gateway has been demonstrated in Figure 18. It consists of an internal power source block, one internal CAN block, controlling instrumentation and a Microcontroller.

![Figure 18 Block diagram of the AGI gateway](image-url)
2.7.7 Power Supply
At the first stage of the power supply, a network of capacitors have been implemented to reduce unforeseen low frequency noises. Similar to other industrial circuits, the input in the first stage should be protected by a varistor component. At the next stage, a bipolar diode is used to protect against voltage overloads. Its breakdown voltage is ordered as 58V [1].
In the next stage, for the maximum protection, a schottky rectifier has been used in series with the power lines. Of course its current drive capability should be rated higher than the current consumption of the circuit (in practice near to two times more). Another benefit of the schottky diodes is that they have a low forward voltage drop. In Figure 19, the relationship between forward voltage drop and forward current is demonstrated [1].
Some other techniques have been used for the battery protection and for sensing its voltage level. Two main supply sources have been implemented. One is designed to supply the circuit components, another is engaged to supply the CAN BUS, and output related devices [1].

\[V_{FM} - Forward Voltage Drop (V) \]
\[I_F - Instantaneous Forward Current (A) \]

Figure 19 The relation between forward voltage drop and instantaneous forward current of rectifier diode, (Reference: Component Datasheet)
2.7.8 Internal CAN Interface
At the input level of the internal CAN interface, one common-mode coupling choke is the fundamental component. It is double wounded and ferrite core based (because of high frequency operation). It can suppress unwanted high frequency noises. At the next stage, line protection zener diodes have been used [1]. The next stage is CAN to serial converter that is implemented by using an appropriate chip. It also supports RS (Request to Send) pin to avoid unnecessary loops inside the embedded software. RS pin defines the operation mode: High speed, Slope control and Standby. For high-speed operation, the transistors in the transmitter output are switched on and off as fast as possible. This line has been isolated from any noise by a fast opto-coupler. In Figure 20, the whole block diagram of the level converter chip is demonstrated [1].

![Figure 20 Block diagram of the CAN to Serial level converter, (Reference: Component Datasheet)]
2.7.9 Instrumentation
This unit supports several analogue inputs and outputs. A SPI controlled PWM driver chip has been used to handle requests. In Figure 21, the block diagram of this specific IC has been demonstrated.

![Figure 21 Block diagram of the AGI output driving IC, (Reference: Component Datasheet)](image)

In addition, inputs of the analogue devices are also isolated safely and converted by the MOSFETs and Zener diodes.
2.7.10 DSAG Gateway
The block diagram of the DSAG gateway is demonstrated in Figure 22. It consists of an internal power source block, an internal CAN block, controlling instrumentation and a PIC microcontroller [1].

![Block diagram of the DSAG Gateway](image)

Figure 22 Block diagram of the DSAG Gateway

2.7.11 Power Supply
The internal side (CPAC) supply at the first stage is protected by using a Varistor against possible surge charges. Then two parallel ceramic capacitors have been used for the low frequency noise reduction. In addition, one square burst suppression resistor (1R) has been used in series with the positive supply line. Several capacitors have been used for the low frequency noise reduction as well. The next significant part is one high end low voltage drop and +5V fixed output regulator component. It has immunity against short circuit, also it has very low quiescent current consumption and the exceeded thermal protection of the component is supported internally by this component [1].
2.7.12 Internal CAN Interface
Like other before-mentioned gateways, this product also uses almost the same circuit diagram. It is also based on the CAN line filtering, protection and conversion stages. By using a specific chip, protocol conversion is done from CAN to Serial (RX, TX signals) to be connected directly to the MCU [1].

2.7.13 Instrumentation
Within instrumentation I/Os, two lines come from the steering system that contain analogue positive and negative voltages that should be converted to digital TTL voltage “levels” to be applicable to be connected to MCU's ADC. Therefore, circuit is mainly based on several resistors-based voltage conversion circuit and two capacitors in parallel with the line for noise reduction. There is an “Enable” signal line as well which indicates that an external device wants to be connected to the DSAG dongle. It passes through opto-coupler for the maximum isolation and noise immunity, and then it is applied to the MCU. Last instrumentation line is an output signal and conveys the information of the external device connected (activated) or disconnected. The remaining line is ground but it is the ground of the external device, which comes just with the external device activation signal line [1].

2.7.14 Main Controller
This part consists of a PIC microcontroller that works at 4MHz clock. It is equipped with two LED indicators that show the condition of the gateway operation for the user.
2.8 General and exclusive standards
Considering the requirements and standards was one of the most challenging parts of this gateway design. We considered how we could design the hardware to satisfy tests, as much as it is necessary. The main sources for these requirements are [11, 12, 13, 14]:

Environmental Tests (General)

Vibration: the device is vibrated with the frequency of 13.2Hz, with amplitude of ±1mm and 13.2Hz to 100Hz and the acceleration of ±0.7g [11]. Second, the device is vibrated with the periods of 2Hz to 25Hz and amplitude of ±1.6mm, and with the frequency period of 25Hz to 100Hz with the acceleration of ±4g.

Temperature: In general, the device is tested at three temperature points: -20°C, 25°C and +85°C, otherwise it is tested under more detailed temperature conditions in relation with the humidity (Table 4).

Humidity: In general, the device is tested under 60% ± 30% of the humidity level, otherwise, the device is tested under more detailed condition (Table 4).

EMC (Electro Magnetic Compliance) [12]

Customer Requirements (Exclusive)

VOLVO PENTA: In general, the current leakage between power lines and the isolated signal lines are tested. Under 60V to 100V, two testing points should not show the resistance (R) lower than 1MΩ (R = V/I) [12].

The standards which have been considered are a combination of IEC60068, IEC60945 (external customer), IACS E10 and TR21354582 (VOLVO). The temperature tests are written in the Table 4 [12, 14]. These tests are accomplished inside a chamber room [11].

<table>
<thead>
<tr>
<th>Condition</th>
<th>Temperature Range (°C)</th>
<th>Humidity (%)</th>
<th>Air Pressure (KPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>+25 ± 10</td>
<td>60 ± 30</td>
<td>96 ± 10</td>
</tr>
<tr>
<td>Dry Heat</td>
<td>+55 ± 2 (16 hour test)</td>
<td>-</td>
<td>96 ± 10</td>
</tr>
<tr>
<td></td>
<td>+70 ± 2 (2 hour test)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Damp Heat</td>
<td>+55 (2 * 12 hour test)</td>
<td>95</td>
<td>96 ± 10</td>
</tr>
<tr>
<td>Cold</td>
<td>+5 ± 3 (2 hour test)</td>
<td>60 ± 30</td>
<td>96 ± 10</td>
</tr>
<tr>
<td></td>
<td>-25 ± 3 (2 hour test)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Temperature & humidity tests (chamber room)
The EMC is one of the most important requirements. EMC environment of a ship is generally different from other EMC contained areas [13]. A ship is a machinery with one or several engines as propulsion that can generate high power electrical pulses and charges in terms of noise energy dissipation. A ship is also equipped with navigation, communication and control equipment [12, 13]. The radio communication frequencies that can be produced on a ship cover a wide band range from 90 KHz to 9GHz for radar. A ship is a dense concentration of radio navigation, radio communication and machinery control equipment which all have to work together [12, 13]. In addition, at least from the EMC point of view, a ship is a system with the equipment, which are connected with, cables for power or communication that can introduce interfering signals. Therefore, they should be well separated from all sources of radiated interferences, even in port junctions; otherwise, many of the boat’s devices will not operate normally [13]. A ship could be near than 500m from residential antennas, commercial or industrial environments and 1Km from radio transmission sites. As a result, all external and internal sources of EMC in a boat should be deeply analysed and all precautions should be considered [12, 13].

The EMC factors are that the components themselves should have limited emission and communication ports like CAN and Serial. In terms of signal routes on the PCB board, the emission will be reduced dramatically if a low value resistor is connected in series with a signal line which will reduce the current flow and the signal emission. The PCB board plays a significant role to reduce the EMC. These subjects will be explained on the result and the generic gateway description [12].

In terms of the robustness of I/Os, three rule have considered: The power supply should bear reverse polarity, short circuit and the possibility of confronting a loose power connection. The device must not power on by the other I/Os rather than power supply lines and all I/Os should be able to bear 40V injection on each line for the duration of 5 minutes [11, 12].
3 Related Work

3.1 ACTISENSE NGW-1 Gateway (non-CPAC)
This gateway is designed to make a proper connection and protocol conversion between NMEA2000 CAN based protocol and the older serial NMEA0183 protocol [21]. It provides Opto-isolation between input and output up to 2500V to the ground. The output is protected against short circuit and ESD. The input is protected against continuous -15V to +15V voltage injection and is protected for the voltage range of -35V to +35V but in a short time period (less than one second). It consumes 85mA supply current [21]. The data transaction speed is defined up to 250Kbps [21]. It does not provide visual interface (LEDs) for the user to verify the operation. Figure 23 demonstrates the NGW-1 gateway.

![Figure 23 ACTISENSE NGW-1 gateway (Reference: Product datasheet)](image)

3.1.1 Generic Gateway and ACTISENSE NGW-1
The generic gateway that was designed in this thesis covers all communication protocols of the Actisense gateway as just one part of its architecture. In other words, it is designed to be general and multipurpose. The power consumption of the generic gateway in the worst condition is about 90mA and it is almost the same as the Actisense gateway which covers much less features and functionality. The generic gateway is protected against lightning but this feature is missing in the Actisense gateway. Both gateways are optically isolated. The Actisense gateway does not provide a proper connector to harness I/Os as the generic gateway. Finally, the generic gateway provides LEDs as a user interface but this feature is also missing in the Actisense designed product. The size of the Atisense gateway is smaller than the generic gateway but it should be mentioned that this size in accordance with more complex hardware design which obviously needs more space.
3.2 MARETRON EMS100 (non-CPAC)
The EMS100 is a gateway that harnesses and converts diesel engine analogue signals like Oil pressure, and water temperature to the new CAN based NMEA2000 protocol [22]. It mainly has the duty to convert engine’s instrumentation two level signals or analogue lines to the NMEA2000 interface [22]. The visual user interface (LEDs) is missing in this product. The power consumption of the device is ranked less than 150mA. The EMS100 claims that it has passed a certain number of industrial tests and standards like temperature and vibration as well [22].

3.2.1 Generic Gateway and EMS100
The same as ACTISENSE gateway, a main difference and advantage of the gateway which was designed in this thesis work and EMS100 is that the EMS100 functionalities mainly just covers some of the functionalities of the generic gateway. Furthermore, the generic gateway is more compact and it is equipped with visual user interface for the investigation of gateway operation. In addition, generic gateway makes proper isolation between the external CAN and power lines as well, but this important feature is missing in EMS100. Altogether, the generic gateway consumes much less power in comparison with EMS100. Figure 24 demonstrates the EMS100 gateway.

Figure 24 MARETRON EMS100 gateway (Reference: Product datasheet)
3.3 AIRMAR U200 (non-CPAC)
This gateway is designed to convert the NMEA2000 marine CAN based communication protocol to the USB protocol to be plugged to a computer or similar smart devices [23]. It is used to transfer all related boat information such as speed, GPS data, oil level and water temperature [23]. It is designed with a small size, but a visual user interface is missing. It supports up to 115,200Kbps data transaction rate [23]. Figure 25 demonstrates AIRMAR U200 gateway in its application which converts NMEA2000 to USB.

![Figure 25 AIRMAR U200 gateway in application (Reference: U200 Product datasheet)](image)

3.3.1 AIRMAR U200 and Generic Gateway
The U200 gateway functionalities are not like the generic gateway because generic gateway does not support USB; it does not need to be connected to a PC, because the type of operation and place of the function is different. However, in case of the request, it will be possible to have a USB connection in generic gateway in the future. Visual inspection for user is also missing in the U200. It is also does not have standard connectors on the enclosure for NMEA and USB and cables are fixed which is another disadvantage of the U200, while the generic gateway is equipped with a standard connector and proper wire harness mechanism.

3.4 AMEC NK-80
This gateway is mainly designed to convert the NMEA0183 to the NMEA2000 protocol [24]. The communication baud rate could be changed during operation by sending related commands. User interface LEDs are included in this design. The NK-80 has a compact size and a well-designed enclosure. Proper ground isolation is also considered for this product [24]. Figure 26 demonstrates NK-80 in the boat communication architecture which is used to
convert NMEA0183 to NMEA2000 that establishes a proper connection to rest of the devices which use NMEA2000.

![Diagram of boat communication architecture](image)

Figure 26 Application of AMEC NK-80 in boat's communication architecture (Reference: NK-80 gateway datasheet)

3.4.1 AMEC NK-80 and Generic Gateway

The main difference between the generic gateway and NK-80 is that NK-80 similar to the above-mentioned gateways, just covers one part of the functionalities of the generic gateway. Furthermore, the generic gateway provides a better harness and a connection mechanism for I/Os. In addition, the generic gateway include an embedded inclinometer for the boat level that is missing in the NK-80. In terms of similarities, the NK-80 has considered user interface and input/output are properly isolated. The selectable baud rate of the NK-80 makes it unique in its function but if required, it could be implemented in the generic gateway as a software upgrade. In comparison with the generic gateway, NK-80 consumes lower power, which is natural because of its few supported functionalities (NMEA0183 to NMEA2000).
3.5 Comparison Analysis

In Table 5, a comparison between existing gateway product (CPAC) and the generic gateway has been made which gives a wider overview of the design achievements in terms of the existing challenges. The “functionalities” of the Non-CPAC gateways used for comparison are presented in sections 3.1 to 3.4 and they have not been included in this Table.

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Number of I/Os</th>
<th>Different Functionalities (Excluding Power Lines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGI</td>
<td>12</td>
<td>TempAlarm, Select1, Select2, Tachometer, PowerTrimAngle, OilAlarm, Internal CAN</td>
</tr>
<tr>
<td>NMEA2000</td>
<td>10</td>
<td>Internal CAN, External CAN</td>
</tr>
<tr>
<td>Autopilot</td>
<td>13</td>
<td>Internal CAN, External CAN, UART(3)</td>
</tr>
<tr>
<td>NMEA0183</td>
<td>10</td>
<td>Internal CAN, UART(3)</td>
</tr>
<tr>
<td>DSAG</td>
<td>10</td>
<td>Internal CAN, StatusOut, Enable(2) PositionIN</td>
</tr>
<tr>
<td>LZGW</td>
<td>7</td>
<td>Internal CAN, GearStatus+</td>
</tr>
<tr>
<td>DPS</td>
<td>10</td>
<td>Internal CAN, External CAN</td>
</tr>
<tr>
<td>TJSGW</td>
<td>10</td>
<td>Internal CAN, External CAN</td>
</tr>
<tr>
<td>ACU</td>
<td>11</td>
<td>Internal CAN, GPSUART (3), 1587(2)</td>
</tr>
<tr>
<td>Generic Gateway</td>
<td>20</td>
<td>Internal CAN(4), External CAN(2), Select1, Select2, TempAlarm, Tachometer, PowerTrimAngle, OilAlarm, UART(3), StatusOut, Enable(2), PositionIN, GearStatus+, GPSUART(3), 1587(2), LIN</td>
</tr>
</tbody>
</table>

Table 5 Overview of the existing functionalities of the CPAC gateways and the summation of all separate I/Os which the generic gateway supports
4 Methodology

4.1 Block Diagram of the Generic Gateway
In this section, the generic gateway will be described by the analysis of its hardware and software. In Figure 27, the main blocks in the design are depicted. These blocks operate in parallel.

Figure 27 Block diagram of the generic gateway
4.2 Hardware description of the generic gateway

4.2.1 Power Supply
The power supply is one of the most important parts of the generic gateway and its robustness plays a significant role in the design stability. In Figure 28, the main blocks of the power supply is demonstrated.

![Figure 28 The block diagram of the power supply of the generic gateway](image)

The first stage of the power supply is lightning absorber. According to the design requirements, the power supply input part should be protected against surges and transients [1, 15]. Several solutions have been introduced for this problem [1, 15] but the most reliable one is a combination of a varistor and a bipolar diode. In addition to this combination, a gas absorber (GDT) also is a component that is capable to absorb high current surges itself which other electronic components cannot tolerate, but its response time is somehow slower [15]. In practice, before a surge voltage reaches a harmful level (because surge does not have a high voltage level at the beginning) this component will react and close the circuit against deadly transients.

![Figure 29 Response time vs. Voltage level of the GDT at input protection stage of the power supply block (Reference: Component datasheet)](image)
The reaction time of this component is considered in Figure 29. The mentioned input protection stage is demonstrated in Figure 30. At the next stage, unwanted low frequency noises should be reduced. The components, which are capable to do this duty, are capacitors. An important factor should also be considered according to the customer requested standards, namely, the power supply unit must remain stable against a very short 400us power drop [12]. It means in the face of such a sudden change, the microcontroller should not reset. In Figure 31, the voltage drop in the black pulse and the power supply least response is depicted. According to Figure 31, the blue line reaction should be achieved, because next stage of the circuit, just could be able to accept around +5V as its input voltage. Any proposed solution that could be able to keep the input voltage level of the first regulator above than +6V (because it has low forward voltage drop) is a considerable solution. A sufficient number of capacitors in parallel with the input line is the cheapest and the most effective solution to this problem. A 22uF capacitor in parallel with the previous 100nF installed ones solved this problem.

At the next stage, protection of the supply against the reverse polarity should be considered. One shottky diode has been selected, because it has a low forward voltage drop (around 0.3V) and it protects the line against reverse polarity. One 1R resistor in series with the diode limits high flows of the current and is used to apply an intentional voltage drop to keep the regulator safe from overheating and keep it inside its operation boundaries.

A +5V voltage regulator which has been marked with automotive and industrial standards has been selected. This component has a very low forward voltage drop and provides short circuit and temperature protection. It delivers constant +5V at output, which is used for supplying the CAN bus and implemented isolation components [11, 13].

At the next stage, the second voltage regulator is implemented to provide a proper voltage for the microcontroller and many other components which consume +3.3V. It is designed just to convert +5V to +3.3V, but it can tolerate a voltage increase to +5.5V and a drop to +4.5V. The external power supply (non-CPAC) is designed in the same way because it must have the same protections and robustness. At the external hardware side (non-CPAC), no part of the circuit consume +3.3V, so just a +5V regulator is sufficient.
4.2.2 CAN Interface

The CAN interface is divided into two parts. The first stage is internal CAN (CPAC CAN) and the second is the external isolated CAN (non-CPAC). The first stage of the internal CAN, bus lines passes through an ESD protection diode that protects the bus against overvoltage and unwanted noises, also two parallel capacitors with CANL and CANH lines reduce the low frequency noises. At the next stage, CAN lines pass through a common-mode filtering choke. The idea to use this choke is gathered from the existing gateways, which were using this component to absorb unwanted high frequency noises (Figure 32) [16, 19, 26, 28]. After this stage, a CAN level conversion chip is needed to convert CAN line signal levels to the TTL logic levels, then it could be applied to our main processing device (MCU). The CAN bus level converting chip should have the possibility to convert +5V logic level to +3.3V also, because this is the only way that the output signal could be applied to the main controller without designing some external discrete hardware. The second issue is that when any problem or crash happens in the MCU, the CAN converter chip should not keep the CAN bus busy and locked. The selected chip also provides the facility that if no data is received within a specific period; it will release the bus “automatically”. This is called the “Fail Safe” feature.

The isolated external CAN is related to the customer CAN bus or non-CPAC device connection line. This bus has been designed similar to the internal CAN until the level converter chip, but after the level converter, an extra isolation IC for both RXD and TXD lines has been used which complies with the galvanic isolation between the internal and external power supplies also.
Furthermore, it reduces the possible noises on these two lines [19, 26, 28]. In addition, the microcontroller is connected to the internal ground reference (GND), and this isolation chip establishes a proper signal connection between these two separate parts.

![Diagram](Figure 32 Generic Gateway CAN input filtering)

4.2.3 Instrumentation

This part contains 10 instrumentations I/Os and all of the functionality combinations. Table 6 demonstrates instructions I/Os and Table 7 shows CANs and power lines. Table 8 also demonstrates detailed characteristics of the all input/output signals as well.

The first I/O PIN is a combination design of one I/O from the AGI gateway, one from DSAG and one from LZGW gateway. It is controlled by an isolated and enhanced Mosfet component as an active low enabled switch.

The second I/O PIN is a combination design of one I/O from the Autopilot gateway, one from the NMEA0183, one from the DSAG and one from the ACU gateway.

The third I/O PIN is a combination of one I/O from the AGI gateway, one from the Autopilot and one from the NMEA0183. It makes a possibility to have both serial TX signal and also a controlling signal of the AGI gateway on one I/O line. Required input protection circuit complies with the Volvo PENTA standard [12].

The forth I/O PIN makes a signal ground for all of the RX signal lines which use serial interface for the communication. It is also a signal ground for the DSAG I/O.

The fifth I/O PIN is a combination of one I/O from the AGI gateway and one from the ACU. It is based on an embedded package of MOSFET which is used to transfer power to the GPS or dashboard gauge. Also one wire of the LIN communication line is also multiplexed on this pin.
The sixth I/O PIN makes a combination to use an external analogue joystick and one I/O from the AGI gateway on the same line. It is based on a resistor network to make the conversion of (-10V...+10V) to (0V...+3.3V) to be applied to the Microcontroller for the ADC conversion.

The seventh I/O PIN is assigned to one signal line from the AGI gateway. It is based on one isolated MOSFET package and it makes the possibility to control the level of a specific gauge from the customer dashboard, which has a duty to show the boat's trim level. The gauge level varies with the variations of a PWM signal’s duty cycle, which is produced by the microcontroller.

The eighth I/O PIN is assigned to one I/O from the AGI. It is implemented with an isolated Mosfet package, which provides the activation with Low (ground) output for this I/O line.

The ninth and tenth I/O PINs are assigned to the 1587 protocol interface. The ACU and MOTORSIM gateways use this interface. The first stage of these lines is protected by a diode package. It makes immunity against ESD and unwanted noises. In addition, two parallel capacitors reduce the low frequency noises. The physical layer of this protocol is based on the RS422/485 communication interface. At the next level, one suitable chip is needed to convert the logic levels. The selected chip is marked with required standards, protection and necessary specifications. The transmission line provides 3.3V logic level and it should be converted to +5V logic to be applied to the chip. One transistor is used to do this task. Figure 33 demonstrates some parts of this design.

![Figure 33 Generic Gateway 1587 (Serial) input interface](image)
For selecting the gateway’s components, the cost of the components in parallel with their importance level were in consideration and many components have been ignored because of this issue. The total cost of the gateway product should not exceed 400SEK in 1000 quantity. Final device should be able to have a reasonable price in addition to its satisfactory operation and quality.

Table 6 Instrumentation I/Os of Generic Gateway

<table>
<thead>
<tr>
<th>PIN</th>
<th>AGI</th>
<th>NMEA2000</th>
<th>Autopilot</th>
<th>NMEA0183</th>
<th>DSAG</th>
<th>LZGW</th>
<th>DPS</th>
<th>TISGW</th>
<th>ACU</th>
<th>MotorSim</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TempAlarm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UART(RX)</td>
<td>UART(RX)</td>
<td>UART(RX)</td>
<td>UART(RX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GPSRX</td>
</tr>
<tr>
<td>3</td>
<td>UART(TX)</td>
<td>UART(TX)</td>
<td>UART(TX)</td>
<td>UART(TX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UART(GND)</td>
<td>UART(GND)</td>
<td>UART(GND)</td>
<td>UART(GND)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GPSRXGround</td>
</tr>
<tr>
<td>5</td>
<td>Tachometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GPS Power</td>
</tr>
<tr>
<td>6</td>
<td>Select-2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PowerTrimAngle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIN</td>
</tr>
<tr>
<td>8</td>
<td>OilAlarm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1587+</td>
<td>1587+</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1587-</td>
<td>1587-</td>
</tr>
</tbody>
</table>

Table 7 CAN and Power demonstration of Generic Gateway

<table>
<thead>
<tr>
<th>PIN</th>
<th>CPAC CAN</th>
<th>CPAC Power</th>
<th>Isolated External CAN</th>
<th>External Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>CANL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CANL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CANH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CANH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>B+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>B-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>CANL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>CANH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>B+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>B-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The power consumption factor in the hardware design is related to each component consumption and type of the design that could lead to lower or higher current consumption. Selected microcontroller are from the types with low power consumption.
Table 8: Characteristics of all Input/Output signals (CAN and power lines are excluded because their I/Os are fixed)

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Digital</th>
<th>Analogue</th>
<th>Voltage Level</th>
<th>Input</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✓</td>
<td>Isolated Serial UART</td>
</tr>
<tr>
<td>Tachometer</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✗</td>
<td>✓</td>
<td>PWM Based Voltage Level Controlling</td>
</tr>
<tr>
<td>Temperature Alarm</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✗</td>
<td>✓</td>
<td>Just two Voltage Levels, But not TTL</td>
</tr>
<tr>
<td>Oil Alarm</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✗</td>
<td>✓</td>
<td>Just two Voltage Levels, But not TTL</td>
</tr>
<tr>
<td>Power Trim Angle</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✗</td>
<td>✓</td>
<td>Gauge reading is based on as much as its Pin control is grounded (PWM)</td>
</tr>
<tr>
<td>IGN</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✗</td>
<td>✓</td>
<td>Just two Voltage Levels, But not TTL (Switch is ON or OFF)</td>
</tr>
<tr>
<td>Status Out</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✗</td>
<td>✓</td>
<td>5V shows AP has Control, GND shows EVC has control</td>
</tr>
<tr>
<td>CPAC CAN</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✗</td>
<td>Isolated CPAC CAN for PFM</td>
</tr>
<tr>
<td>CPAC Power</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✓</td>
<td>✗</td>
<td>Isolated CPAC Power for PFM</td>
</tr>
<tr>
<td>Gear Status</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✗</td>
<td>Shows Gear is engaged or not</td>
</tr>
<tr>
<td>Gear Status -</td>
<td>✓</td>
<td>✓</td>
<td>TTL</td>
<td>✓</td>
<td>✓</td>
<td>Ground of Gear Status, It's connected to GW Ground</td>
</tr>
<tr>
<td>GPS CAN</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✓</td>
<td>CPAC GPS CAN</td>
</tr>
<tr>
<td>1587A</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✓</td>
<td>1587A</td>
</tr>
<tr>
<td>1587B</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✓</td>
<td>1587B</td>
</tr>
<tr>
<td>GPS Signal</td>
<td>✓</td>
<td>✗</td>
<td>TTL</td>
<td>✓</td>
<td>✗</td>
<td>GPS Data</td>
</tr>
<tr>
<td>GPS Power</td>
<td>✗</td>
<td>✓</td>
<td>12V or 24V</td>
<td>✓</td>
<td>✓</td>
<td>Enables or Disables the power of GPS module</td>
</tr>
<tr>
<td>GPS Ground</td>
<td>✓</td>
<td>✓</td>
<td>GND</td>
<td>✓</td>
<td>✓</td>
<td>GPS Ground, the same as GW ground</td>
</tr>
</tbody>
</table>
4.2.4 Embedded Device (Microcontroller)

For this stage, one 32-bit microcontroller from the STM family MCUs has been selected. The reasons for choosing this type of microcontroller are:

1. Low Cost
2. Several embedded hardware features and a powerful core (ARM Cortex-M3 Core)
3. Low power consumption
4. It is in production and tested by the company in many projects
5. Very low internal FLASH memory access time (it increases the MCU speed dramatically)
 [17]
6. High speed, 72MHz clock rate (144MHz in the overclocking mode)

The main controller has been selected from the series with support for embedded CAN 2.0B interface. This Microcontroller can handle internal clocking up to 72MHz (by its internal PLL); it can perform at 144MHz in overclocked mode and can drive 1.25DMIPS of performance. It claims to do multiplication and division in just one clock cycle.

4.2.5 Inclinometers

The inclinometer component is used to realize the level of the boat when there is a request to balance the level of the boat by sending the relative instructions to the boat trims, which are in accordance with the boat speed. Two types of inclinometers have been implemented to be tested. In the final product, one of the inclinometers will be used, but for the first prototype, both selected components will be tested. First inclinometer uses SPI communication interface and it sends exact actual values of X, Y and Z through the SPI bus. Another inclinometer provides analogue outputs in terms of voltage level variation between 210mV to 850mV, which is in accordance with changes in X, Y and Z-axis. The price difference between the two inclinometer components is quite high. The goal is to check that the second inclinometer could perform almost the same as the first one, which is much cheaper.

4.2.6 PCB & Component Assembly

The PCB (Printed circuit board) of the generic gateway was designed by the ALTIUM Designer 10 software. It was designed based on the four layers PCB board. Figure 34 demonstrates all layers, which have contributed in the board structure. Top layer and bottom layer are mounted on the both surfaces of the board and two mid-layers are integrated in between to carry two separate layers of ground and power (+5V, +3.3V). The PCB design is a key element for the lower noise, robustness, stability and in summary higher reliability of the device. The robustness requirements in the PCB design generally means to have lower EMC factor (emission and absorption), proper supply current handling and isolation, having a steady and ‘calm’ ground area exactly one layer below the components (TOP layer). Furthermore, with
applying the ground plane around the sensitive components, the noise will be decreased and a better EMC factor will be achieved [9, 14]. The second issue in the reliability of the generic gateway in the PCB design is its isolated power supply design. Figure 35 shows this isolation in the PCB design for two separate power supplies. The cutting plane between area 1 and area 2 is designed in a way to have lower noise and therefore better stability of the whole device and therefore higher reliability and robustness [9, 27, 14]. One ceramic capacitor connects (for the noise reduction) two copper areas to each other.

Figure 34 PCB Layers stack demonstration of generic gateway (Top-GND-Power-Bottom)
Figure 35 Isolated PCB copper ground planes (one and two) with proper insulation gap

The designer was responsible to solder all components, which were mainly SMD components. It should be mentioned that the quality of the soldering was also important and mistakes can easily lead to disruption of the device.

4.3 Generic Gateway Embedded Software Description

The two software, which are used to program the microcontroller of this product, were mainly IAR Embedded Workbench and MIKRO-C for ARM; furthermore, the results of another master thesis research were also used [10]. The author’s approach was to gain the best result of the signal processing filters. The programming language is embedded C.

The selected microcontroller has a sophisticated architecture and fast enough to do all required tasks on time and before task deadlines. The time consuming tasks in this application are signal processing functions and filters and these tasks are accomplished on time in the existing gateway products with 8-bits MCU with lower performance (MIPS). Therefore, the 32-bit MCU of the generic gateway, apart from possible tests, will not have any limitation to process the tasks on time. In addition, the data truncation in this application are in the type of “message delivering” and there is no live data stream request hypothesized. According to this fact, it is not necessary to select multi-core microcontrollers and there is no need and intention to use RTOS or scheduler. Therefore, the interrupts prioritize the tasks. According to the manufacturer datasheet, the interrupts have a priority table and if two or more interrupts occur at the same time, the one which has higher priority will be selected and executed (in the case of single core MCU). The user could change these priorities with the feature called NVIC (Nested vectored interrupt controller). In Table 9, some important interrupts and their addresses for the selected STM32 MCU are given.
Table 9 Some examples of STM32 interrupt and priorities

<table>
<thead>
<tr>
<th>Priority</th>
<th>Acronym</th>
<th>Description</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reset</td>
<td>Reset</td>
<td>0x0000-0004</td>
</tr>
<tr>
<td>1</td>
<td>WWDG</td>
<td>Window Watchdog interrupt</td>
<td>0x0000_0040</td>
</tr>
<tr>
<td>2</td>
<td>PVD</td>
<td>PVD through EXTI Line detection interrupt</td>
<td>0x0000_0044</td>
</tr>
<tr>
<td>3</td>
<td>TAMPER</td>
<td>Tamper interrupt</td>
<td>0x0000_0048</td>
</tr>
<tr>
<td>4</td>
<td>RTC</td>
<td>RTC global interrupt</td>
<td>0x0000_004C</td>
</tr>
<tr>
<td>5</td>
<td>FLASH</td>
<td>Flash global interrupt</td>
<td>0x0000_0050</td>
</tr>
<tr>
<td>6</td>
<td>RCC</td>
<td>RCC global interrupt</td>
<td>0x0000_0054</td>
</tr>
<tr>
<td>26</td>
<td>CAN1_TX</td>
<td>CAN1 TX interrupts</td>
<td>0x0000_008C</td>
</tr>
<tr>
<td>70</td>
<td>CAN2_TX</td>
<td>CAN2 TX interrupts</td>
<td>0x0000_013C</td>
</tr>
</tbody>
</table>

The reliability in embedded software construes in these areas [18, 20, 25]:

1. Recoverability: Code adaptation for the industrial applications against unwanted malfunctions (watchdog).
2. Fault tolerance: Maintaining the performance of data values in front of sudden infringement of its specified interface (Ex: ADC readings).

Recoverability: Dealing with many I/Os, timeouts and deadlines in the industrial applications that mostly function in noisy environments, prone to unforeseen CPU crashes. Total failure may arise if one register or flag does not fill in on time or changes unwantedly. The probability of this event depends on the application, environment, used I/Os and the MCU itself. To overcome this problem, there is a feature in the microcontrollers called watchdog timer. This timer works independently, therefore when the whole MCU crashes, this timer still works and counts. The explanation is when the crash happens, the passed time will be more than the total necessary time of the instruction execution, therefore, after passing a pre-adjusted time, the overflow flag of the watchdog timer will be changed and microcontroller will be restarted (Hardware Watchdog). A watchdog has the highest priority in the interrupt table after the Reset. The selected MCU has other features such as window watchdog which can detect the occurrence of software faults, generated by an external interference or unexpected logical condition.

Fault tolerance: in a case of continues reading of the sensitive types of data, especially from analogue instruments (such as sensors), depending on the environment and application or tools, usually there is a risk to have false readings caused by internal or external noises. For instance, consider that a part of the application is to read the boat steering position and to convert the steering angle values to the digital values (through MCU ADC). In this case, the software must handle unwanted noisy readings and one straightforward method to deal with this issue is to make the average of several readings, instead of deciding based on one reading.
Consider equation (2a) and equation (2b). In equation (2b), value “i” is dependent on the speed of the ADC, the deadline for ADC reading and conversion and the variety of noise in the data series.

\[\text{ADC} = x.K \ (x: \text{analogue magnitude}, K = \text{correction term}) \quad (2a) \]

\[\text{ADC} = \left(\frac{x_1+x_2+x_3+\cdots+x_i}{i}\right).K \ (i = \text{number of readings}, K = \text{correction term}) \quad (2b) \]

The power consumption of the MCU could be reduced by using the sleep mode but it is not considered at this level of design because the difference of several milliamps is not significant for this application, furthermore this device will always work in the operational mode and the sleep time is very short. A simple view of the software block diagram structure is demonstrated in Figure 36 and a flow chart of the general software operation is demonstrated in Figure 37.
While (1) {

 Ordinary Functions (non-interruptive) or instructions

}

Figure 36 Block diagram of the generic gateway software
Figure 37 Flowchart diagram of the generic gateway software
5 Results (Robustness Tests)

5.1 Power supply robustness

The power supply of the generic gateway is one of the key blocks of the whole design and it has the same importance level for the gateway as the fuelling system for a vehicle. The power supply should bear against reverse polarity and tolerate against 48V injection for 2 minutes.

Reverse polarity protection has been implemented by using a suitable diode from the shottky family. Shottky diodes provide low forward voltage drop and fast operation. Therefore, in the case of linear DC-to-DC power supply design of the generic gateway, low forward voltage drop feature is essential, because firstly, the diode component itself will dissipate less energy and secondly, the gateway can operate at slightly lower battery supply.

The voltage regulator component is a key element in the linear DC-to-DC supply for the immunity against short circuit and unwanted high voltages at inputs. Figure 38 and Figure 39 show the robustness of the power supply and the voltage regulator that the high voltage injection has increased the internal heat of the regulator (144°C) but the regulator has tolerated the high voltage during the 2 minutes test time. The pictures have been taken by an IR camera.

![Figure 38](image)

Figure 38 The temperature of the heart of the power supply (voltage regulator) 10 seconds after +48V injection to the inputs
Figure 39 The temperature of the heart of the power supply (voltage regulator), 2 minutes after +48V injection to the inputs

In Table 10, the applied voltages to the power supply and the responses of the generic gateway have been described.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Requested operation</th>
<th>Gateway Function</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><6.5</td>
<td>No function is predicted – output voltages are naturally low</td>
<td>No function- low supply output voltages – MCU is OFF</td>
<td>-</td>
</tr>
<tr>
<td>6.5 to 12V</td>
<td>Full function – power supply outputs should be stable and fixed</td>
<td>Full Function – supply output voltages are stable</td>
<td>PASSED</td>
</tr>
<tr>
<td>12V to 24V</td>
<td>Full function – power supply outputs should be stable and fixed</td>
<td>Full Function – supply output voltages are stable</td>
<td>PASSED</td>
</tr>
<tr>
<td>48V (2m)</td>
<td>Power supply should tolerate the high voltage shock – device operation is not mandatory</td>
<td>Full Function – supply output voltages are stable!</td>
<td>PASSED</td>
</tr>
</tbody>
</table>

Table 10 The test results of the generic gateway’s power supply against the variable inputs
The power supply block of the generic gateway provides two voltage levels: +5V and +3.3V. In the Figure 40, the level of the supply output voltages against the input voltage variations has been demonstrated.

![Supply output voltages graph](image)

Figure 40 The level of the output voltages of the generic gateway power supply block, in front of input voltage variation

5.2 Isolation

The isolation factor of the generic gateway was considered about two aspects: physical isolation and signal isolation. The physical isolation has been implemented with a proper PCB segmentation and the signal isolation is done by using the optocoupler component. The physical isolation in the PCB has been described in the methodology section 4.2.6. The test points for the physical isolation are between two grounds and between two power lines.

Signal isolation is used when there is an intention to connect the two ground isolated circuits which share some sort of communication signals. In Figure 41, the diagram of the prepared signal isolation by an optocoupler component and the test points has been shown.
The provided signal isolation by the optocoupler and the test points in the generic gateway.

For the both physical and signal isolation tests, the resistance between the two test points should be at least 1MΩ. This resistance is measured by applying a 60V voltage across the test leads and measuring the current flow through the circuit. Then the resistance is the result of dividing the voltage by the current \(\frac{V}{I} \). In Table 11, the results of the isolation test are given.

<table>
<thead>
<tr>
<th>Test points</th>
<th>Threshold value</th>
<th>Measured value</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power lines</td>
<td>Minimum 1MΩ in 60VDC</td>
<td>Current flow is less than 0.0001mA R > 600MΩ</td>
<td>PASSED</td>
</tr>
<tr>
<td>Ground lines</td>
<td>Minimum 1MΩ in 60VDC</td>
<td>Current flow is less than 0.0001mA R > 600MΩ</td>
<td>PASSED</td>
</tr>
<tr>
<td>Signals (CAN)</td>
<td>Minimum 1MΩ in 60VDC</td>
<td>Current flow is less than 0.0001mA R > 600MΩ (Both RX and TX)</td>
<td>PASSED</td>
</tr>
<tr>
<td>Signals (I/O)</td>
<td>Minimum 1MΩ in 60VDC</td>
<td>Current flow is less than 0.0001mA R > 600MΩ (Both RX and TX)</td>
<td>PASSED</td>
</tr>
</tbody>
</table>

Table 11: Isolation test results of the generic gateway.
5.3 Power Consumption
The input voltage to the generic gateway varies between 12V to 24V. Hence, the current consumption is used as a reference value.

To reduce the current consumption of the generic gateway, firstly, the power supply block should have high efficiency and secondly, the microcontroller should be selected from the types with lower power consumption. In the generic gateway, the linear DC-to-DC supply has been implemented and hence lower power consumption of the power supply in the generic gateway is minimized by selecting a regulator chip with lower forward voltage drop.

In Table 12, the typical current consumption of the gateway has been measured and compared with the requirement. The typical current consumption of the generic gateway is measured at 90mA. Around 40mA of the total current consumption is just consumed by the two separate CAN buses.

<table>
<thead>
<tr>
<th>Test points</th>
<th>Threshold value</th>
<th>Measured value</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical current consumption of the gateway</td>
<td>Maximum 150mA</td>
<td>90mA at full enabled device</td>
<td>PASSED</td>
</tr>
</tbody>
</table>

Table 12 Typical current consumption test of the Generic Gateway

5.4 Temperature
The generic gateway should operate flawlessly in the presence of temperature variations. The upper limit for the temperature test is +85°C and the lower limit is -20°C. The implementation inside the design has been done by using components of which the temperature specifications fit within the requested temperature boundaries.

For testing, the device operation is examined with an active communication line to check the activity of the device, specially the MCU.

First, the generic gateway is tested and examined in the “room temperature”. Then it is tested at the upper and the lower temperature boundaries. The used equipment for these tests is a temperature chamber. Figure 42 shows the temperature chamber room, equipment and the test room.
Figure 42 Test room of the temperature chamber, a PC and a digital oscilloscope are connected to the generic gateway to record the events.

- +25°C: Figure 43 demonstrates the adjusted temperature in the temperature chamber (25°C), which is actually the temperature of the "room". The dark red box in the "analog channels" part and the dark red-colored line in the graph demonstrate the adjusted temperature and the light red-colored line shows the actual real time temperature inside the chamber.
Figure 43 Temperature chamber software and related adjustments, dark red line shows the adjusted temperature and the normal red line shows the real time temperature inside the chamber (Adjustments are done inside analogue channels box in the software).

Figure 44 demonstrates the test messages, which have been received flawlessly from the UART communication line of the generic gateway, which is connected to the PC. Figure 45 also shows the signal demonstration of the UART messages from the digital oscilloscope screen, which shows no specific distortion inside the signal.
Figure 44 The received text message from the generic gateway, which shows healthy communication between the generic gateway inside the chamber and the PC outside (Temperature: 25°C)

Figure 45 Signal demonstration of the UART messages between the generic gateway inside the chamber and the digital oscilloscope outside (Temperature: 25°C)
+85°C: Figure 46 demonstrates the adjusted temperature in the temperature chamber (+85°C). The dark red box in the “analog channels” part and the dark red-colored line in the graph demonstrate the adjusted temperature. The light red-colored line shows the actual real time temperature inside the chamber.

Figure 46 Temperature chamber adjustments for 85°C, dark red line shows the adjusted temperature and the normal red line shows the real time temperature inside the chamber (Adjustments are done inside “analogue channels” box in the software)

Figure 47, demonstrates the test messages, which have received flawlessly from the UART communication line of the generic gateway, which is connected to the PC. Figure 48 also shows the signal demonstration of the UART messages from the digital oscilloscope screen, which shows no specific distortion in the signal.
Figure 47 The received text message from the generic gateway, which shows healthy communication between the generic gateway inside the chamber and the PC outside (Temperature: +85°C)

Figure 48 Signal demonstration of the UART messages between the generic gateway inside the chamber and the digital oscilloscope outside (Temperature: +85°C)
-20°C: Figure 49 demonstrates the adjusted temperature in the temperature chamber (-20°C). The dark red box in the “analog channels” part and the dark-red colored line in the graph demonstrate the adjusted temperature. The light-red colored one shows the actual real time temperature inside the chamber.

Figure 49 Temperature chamber adjustments for -20°C, dark red line shows the adjusted temperature and the normal red line shows the real time temperature inside the chamber (Adjustments are done inside analogue channels box in the software)

Figure 50, demonstrates the test messages, which have been received flawlessly from the UART communication line of the generic gateway, which is connected to the PC. Figure 51 also shows the signal demonstration of the UART messages from the digital oscilloscope screen, which shows no specific distortion in the signal.
Figure 50 The received text message from the generic gateway, which shows healthy communication between the generic gateway inside the chamber and the PC outside (Temperature: -20°C)

Figure 51 Signal demonstration of the UART messages between the generic gateway inside the chamber and the digital oscilloscope outside (Temperature: -20°C)
Table 13 explains the test results of the temperature test. The generic gateway has been tested at the upper and lower temperature, limits and has been shown to operate at all temperatures between the maximum and the minimum values.

<table>
<thead>
<tr>
<th>Threshold value</th>
<th>Requested operation</th>
<th>Gateway response</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>No malfunction for a selected test line, no supply drift or OFF MCU at the temperature test point</td>
<td>stable operation, no specific signal distortion</td>
<td>PASSED</td>
</tr>
<tr>
<td>85°C</td>
<td>No malfunction for a selected test line, no supply drift or OFF MCU at the temperature test point</td>
<td>stable operation, no specific signal distortion</td>
<td>PASSED</td>
</tr>
<tr>
<td>-20°C</td>
<td>No malfunction for a selected test line, no supply drift or OFF MCU at the temperature test point</td>
<td>stable operation, no specific signal distortion</td>
<td>PASSED</td>
</tr>
</tbody>
</table>

Table 13 Temperature test results of the generic gateway
6 Results (Design Tests)

6.1 Hardware Test Results
To achieve expected results, some research has been done, industrial application notes have been studied and several discussions and meetings have been organized. The project has started with the analysis of the existing gateways, then designing a proper schematic and a PCB board, component assembly and finally functional and non-functional testing with the embedded software to verify the operation of the device.

After proper soldering, the PCB is tested. The first step is visual inspection. This process is mainly about sweeping the board for any soldering mistake, unwanted solder joints or mistakes in component placement. Two mistakes were found in component placement. Two resistors were mounted with incorrect values. After modification, the gateway was prepared for the software development, test and debugging. The assembled device is demonstrated in Figure 52 and 53.

![Assembled PCB board of the generic gateway (TOP)](image)

Figure 52 Assembled PCB board of the generic gateway (TOP)
6.2 Software Test Results (Joint test with the hardware)
There are many embedded features and facilities provided by the Microcontroller like CAN, ADC, UART, GPIOs that should be tested by the associated software in real operation. The implementation is done systematically to each part be verified. Except for two issues, every part worked very well and the results were satisfactory. The first issue concerned with the LIN communication interface. The problem had arisen from the embedded software and by modifying some parts of the software, the solution has been achieved. In addition, the LIN interface chip has not been enabled before and the related Microcontroller’s PIN was damaged internally for some unknown reasons (possibly during tests) and in most cases, microcontrollers’ pins damaged in a way that they connected permanently to the ground. After modification of the hardware and changing the microcontroller and re-soldering the new one, the problem solved completely.

The second problem was in the combination of the sixth I/O PIN. After several technical considerations, the result was that this combination should be separated. There are two solutions for this problem: selecting another connector with more PIN numbers than 20 and the second is removing one free line from the internal CAN for this issue and make corrections for the internal CAN inside the CAN cable (Internal CAN has two similar L and two H lines).
Another problem was related to the RX signal of the internal CAN communication line. According to the design, this line must have +3.3V voltage level on this line, but for unknown reason(s), this voltage level was +5V. The selected Microcontroller generally accepts the levels until +3.3V but some Microcontroller’s I/Os have the feature of being 5V tolerant I/Os. It means this issue generally will not lead to a problem for the operation, but it could be investigated more.

The most important test results of the gateway (communication signals) which is recorded with digital oscilloscope or in case of CAN bus with CAN Analyser, will be demonstrated further.

In Figure 54, a demonstration of the differential transmission of CAN signal on the related microcontroller’s output pins is offered. Time division is adjusted to 50mS. The particular differential shape of the signal shows that the related part of the MCU (Embedded CAN) works properly. The frequency of the signal is around 2.5 KHz with a rise time of 12uS.
Figure 55 demonstrates the CAN signal on the bus lines (120Ω matching resistor is online). The voltage levels and differential transmission effect have been demonstrated completely.

Figure 55 Analysis of the CAN data signals on communication wires (influence of wires and filters are noticeable)

Figure 56 shows a demonstration of the Figure 55 signal in a shorter period.
Figure 56 Demonstration of the Figure 32 signal, in a shorter period (1uS)

Figure 57 shows the influence of line filter and wire influence on the CAN communication signals in a small selected period.
Figure 57 Short time frame cut of CAN communication signal on line wire (200nS)

Figure 58 shows the transmitted data from the CAN Analyser. Figure 59 demonstrates the reception of the CAN data inside the microcontroller embedded software and debugger. It shows the CAN RX interrupt function and the received value.
Figure 58 Demonstration of CAN data transmission with the CAN analyzer software (Black boxes show baud rate: 500Kb/s and the Data)

Figure 60 demonstrates the transmission signal on the 1587 communication lines. The differential voltage levels are different from CAN demonstration of course.
Figure 59 Reception of transmitted CAN data on related receive interrupt event (Green highlight, Data: Black rectangle in the debug window)

Figure 60 Demonstration of serial 1587 communication signal on output lines
6.2.1 Power consumption
The operational voltage of the gateways depends on the application and it varies between 12 to 48 Volts, therefore there is no possibility to give a unique value of power consumption for each gateway. The power consumption in DC loads is calculated by the \(W = V \times I \) formula, where \(V \) is the voltage and \(I \) is the current consumption. In this equation, \(V \) is not constant (it varies between 12V to 48V, dependant on the type or size of the boat) but the typical current consumption of the gateway is almost constant against the input voltage variations. Therefore, the current consumption has been used as a reference.

![Bar plot of current consumption for different gateways](image)

Figure 61 Typical current consumption of all existing gateways (Average=73mA, generic gateway=90mA)

Typically, low values of the current consumption are better. The current consumption of the generic gateway is ranked at 90mA (Typical). There is a comparison of the typical current consumption of the existing gateways and the generic gateway on a bar plot in Figure 61. The average of the current consumption of the existing gateways (CPAC and other companies) is calculated as 73mA. In comparison with 90mA of the generic gateway's current consumption, this is a reasonable achievement considering the much broader functionalities of the generic gateway (the main source of the current consumption is CAN circuitry because the physical layer must feed the bus).
6.2.2 Multiplexing Factor (Design Performance)
In Figure 62, a comparison between the design performance of the gateways has been demonstrated. The design performance is calculated by a division of number of the provided functionalities, over the total number of the gateway I/Os. The related data has been gathered from the Table 5. For the generic gateway, this value is equal to \(\frac{16}{20} = 0.8 \). A bigger value means a better design achievement.

Figure 62 A comparison between the design performance of the generic gateway and others existing ones in terms of the I/O multiplexing
6.2.3 Cost Efficiency
In the Generic Gateway design, the price of the selected components in accompany with their characteristic for the task accomplishment was a challenge. Many component were rejected because their high prices were not acceptable. In Table 14, the price difference and final selected components and its influence on the total cost has been calculated.

<table>
<thead>
<tr>
<th>Component</th>
<th>Suggested</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>LPC=7.5$</td>
<td>STM32=6.5$</td>
</tr>
<tr>
<td>Inclinometer</td>
<td>SCA=52$</td>
<td>ADXL=1.2$</td>
</tr>
<tr>
<td>Discrete Components</td>
<td>70$</td>
<td>62$</td>
</tr>
<tr>
<td>Total</td>
<td>129.5$</td>
<td>69.7$</td>
</tr>
</tbody>
</table>

Table 14 The price difference between the suggested and the selected components of the generic gateway and its influence on the total material price
Conclusions

Currently, the problem in the boat gateway market is that all existing gateways are designed to fulfill specific tasks or requirements and no system upgrade has been considered in their design. Furthermore, few gateways account for technical or environmental restrictions. As a result, introducing an innovative product in this market will remove many technical obstacles of the manufacturer and other competitors in boat gateway products. The "generic gateway" was introduced and designed to address these concerns. The most challenging issues in the design of this gateway is the limitation in communications I/Os.

Implementation of the generic gateway was started by designing the hardware. A combination of ten CPAC Systems gateways produces 35 communication and instruction lines which have been multiplexed within twenty I/Os. This challenge was in addition to other design requirements such as reliability, final cost, power consumption, general and customer-requested technical requirements, modifications from the existing gateway products and many other issues.

Investigation of the four gateways from different manufacturers demonstrated that similar products are designed first just to accomplish special requests, such as NMEA0183 to NMEA2000 protocol conversion (similar to a few of the existing CPAC gateways). Additionally, most of them lacked a user interface of operation (LEDs). Furthermore, two of them had not considered the power isolation factor and, finally, none of the similar products has included embedded inclinometer and proper connection for wire harness. Therefore, rather than technical analyses, the gateway, which designed in this thesis that is named "generic gateway", covers much broader communication and instrumentation interfaces. The generic gateway is designed with future prospects; other features could be added or removed based on the production line policy. The production of one device instead of ten devices for any company has lower cost and after sale regulations and satisfies several customer requests with one product.

With the exception of two minor problems, satisfactory test results have been achieved. For future work, the gateway could be designed in a more compact way and removing one of the inclinometers will help to decrease the size of the PCB board. Also, changing the connector type (20PIN) to another product with a higher number of pins (Ex: 28 PIN), creates an option to include an Ethernet interface to the gateway; the selected STM32 microcontroller provides an embedded Ethernet transceiver, which could be used to design a device with such interface as well. Recently Ethernet was highly considered by industrial communication companies and there is significant movement toward this protocol to be used more for communication among industrial equipment.
8 References

[1]: Internal documents of products’ description (Confidential), CPAC Systems AB, Göteborg-Sweden

[4]: ANN228, 2002, A CAN Physical Layer Discussion, Microchip Technology Intercorporated

[6]: The NMEA 0183 Information sheet, Active Research Limited (Actisense), 2011.

[8]: ARV332 application note, ATMEL Corporation, May.2012.

[10]: Martin Byrhult, Victor Stensson, Multi-Purpose Gateway for Vessel Steer-By-Wire Systems, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden-2011

[12]: VOLVO PENTA, Electromagnetic Compatibility (EMC) and Power Quality Requirements for complete systems and components, 2009.01.12

[14]: Fluke Corporation, Electrical noise and transients, Application Note, October of 2004, USA.

[17]: Tom Starnes, Objective Analysis for Convergence Promotions LLC, Memory Considerations for Faster MCUs, DIGIKEY Corporation, January 2012.
[18]: Application note JN-AN-1107, Designing Robust Embedded Systems, Jennic, November 2008, Sheffield-United Kingdom

[21]: ACTISENSE Company, NMEA 2000® to NMEA 0183 gateway, NGW-1 Datasheet – issue 2.00

[26]: Jose m. giron-sierra, c. Insaurralde, m. seminario, j. f. jiménez, peter klose, CANbus-Based distributed fuel system with smart components, 2008 IEEE.

Hesam Moshiri received his bachelor degree in Computer Hardware Engineering from Islamic Azad University, Iran and attended the Halmstad University to follow the M.Sc. degree in Embedded and Intelligent Systems Design. His interests are programming, electronic design and R&D.