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and Memory Effects in RF MIMO Transmitters
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Abstract—This paper proposes three novel mod-
els for behavioral modeling and digital pre-distortion
(DPD) of nonlinear 2×2 multiple-input multiple-
output (MIMO) transmitters in the presence of
crosstalk. The proposed models are extensions of the
single-input single-output (SISO) generalized memory
polynomial model. Three types of crosstalk effects were
studied and characterized as linear, nonlinear, and
nonlinear & linear crosstalk. A comparative study was
performed with previously published models for the
linearization of crosstalk in a nonlinear 2×2 MIMO
transmitter. The experiments indicate that, depending
on the type of crosstalk, the selection of the correct
model in the transmitter is necessary for behavioral
modeling and sufficient DPD performance. The effects
of coherent and partially non-coherent signal genera-
tion on the performance of DPD were also studied.
For crosstalk levels of -30 dB, the difference in the
normalized mean square error and adjacent channel
power ratio was found to be 3 to 4 dB between coherent
and partially non-coherent signal generation.

Index Terms—Behavioral modeling, digital pre-
distortion, multiple-input multiple-output (MIMO),
nonlinear and linear crosstalk, radio frequency, power
amplifiers.

I. Introduction

In wireless communication systems, the radio frequency
(RF) power amplifier (PA) of the transmitter distorts the
signal due to nonlinear dynamic effects. Numerous studies
have been conducted to model and compensate for these
effects. In behavioral modeling, black box models are used
to relate input and output signals [1].

In digital pre-distortion (DPD), the input signal to the
amplifier is distorted in the digital domain before up-
converting to RF to compensate for nonlinear dynamic
effects of the PA. The algorithms for DPD and behavioral
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modeling that are used in most cases are memory poly-
nomials [1]–[3], which are reduced forms of the general
Volterra series that can be used to model any nonlinear
dynamic system with fading memory [4]. The reduced
forms are necessary because the number of coefficients
of the Volterra series becomes large even for moderate
nonlinear orders and memory depths [5]. In DPD, the
inverse of the PAs nonlinear dynamic transfer function is
used, which is also a nonlinear dynamic transfer function
that can be modeled using a Volterra series.

Behavioral modeling of single-input single-output
(SISO) RF PAs is important in DPD because of the
relationship between a forward model and its inverse
[1]. Behavioral models have also been used in system
simulations [6], [7] and indirect learning algorithms for
identifying DPD models [8]. Research on the behavioral
modeling of RF PAs has primarily focused on SISO mod-
els. The generalized memory polynomial (GMP) is based
on physical knowledge of PAs [9] and has been extensively
studied for both behavioral modeling and DPD [9], [10].

In multiple-input multiple-output (MIMO) systems, the
transceivers exhibit specific impairments due to crosstalk
between different paths if they are implemented on the
same chipset [11]. Therefore, the behavioral modeling
and DPD of the MIMO transmitters must consider these
effects, and the algorithms should be based on MIMO
Volterra theory [12]. In [11], memory polynomial DPD was
used to compensate for the crosstalk effects in nonlinear
transmitters with two input and two output signals, i.e.
a 2×2 system. In [13], neural-networks were used for a
similar application.

A DPD of 2×2 systems has also been applied to concur-
rent dual band PAs in which two modulated RF signals at
different center frequencies are amplified by the same PA.
Memory polynomials of various types have been used for
DPD [14]–[17] of concurrent dual band PAs and behavioral
modeling with an enhanced Parallel Hammerstein model
has been reported in [15].

In this paper, we derive different memory polynomi-
als for behavioral modeling and DPD of a 2×2 MIMO
transmitter. We combine the SISO GMP with different
types of crosstalk to develop new 2×2 MIMO models. A
full Volterra complex baseband model for a 2×2 MIMO
transmitter is formulated and compared to the novel 2×2
MIMO memory polynomials. The proposed models are
also compared to the models presented in [11] and [18].
The experimental results presented in this paper indicate
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that the proposed models yield lower model errors in be-
havioral modeling and lower distortions in DPD compared
to the existing models for both behavioral modeling and
DPD. The effect of phase noise in signal generation on the
DPD performance is also investigated. The phase noise
results in bias terms in the estimated parameters for the
behavioral modeling and DPD algorithm. This effect also
occurs in SISO PAs but is not obvious. To the best of the
authors’ knowledge, this effect has not been studied for a
2×2 MIMO transmitter. This analysis also applies to other
2×2 systems, such as DPD of concurrent dual band PAs.

The paper is organized as follows. In Section II, the
crosstalk models are introduced for a MIMO transmit-
ter and according to the type of crosstalk, black box
models are proposed for behavioral modeling and DPD.
Additionally, a generalized framework is developed for the
Volterra series for a 2×2 MIMO transmitter in Section II.
The experimental setup is presented in Section III. The
measurement results of the crosstalk and phase noise are
presented and discussed in Section IV, and the conclusions
are given in Section V. For a 2×2 MIMO transmitter an
analysis of the effect of phase noise on model performance
is address in the Appendix.

II. Theory

A. Linear and Nonlinear crosstalk

Crosstalk in an electrical system occurs due to the cou-
pling of a signal from one branch to another. In 2×2 MIMO
transmitters, crosstalk can be classified as either linear
or nonlinear [11], depending on where the crosstalk takes
place. In wireless transmitters, PAs are the primary source
of nonlinearity, and thus coupling before and after the
PAs results in nonlinear and linear crosstalk respectively
[11], [18], as shown in Fig. 1, where α, β, γ and δ are the
impulse responses of the linear filters before and after the
PAs, which indicates the amount of crosstalk. Linear and
nonlinear crosstalk effects are also discussed in [19], [20]
where 2×2 MIMO transceivers were implemented on the
same package. The proposed models in this paper would
also work for the situation studied in [19], [20].

If there is no crosstalk, i.e., α, β, γ and δ are equal
to zero, then Fig. 1 can be viewed as two separate SISO
systems, and the output of each PA can be modeled as in
[9],

y(n) =

P∑

p=1

M1∑

m1=0

M2∑

m2=0

gp,(m1,m2)

x(n − m1)|x(n − m1 − m2)|2(p−1),

(1)

where (1) is defined as a generalized memory polynomial
(GMP) in [9], P is the nonlinearity order defined as
(degree+1)/2, M1 and M2 are memory depths. If M2 = 0,
then (1) reduces to the Parallel Hammerstein (PH) model.
The models proposed in this paper are extended versions of
the SISO GMP model. The SISO GMP model was chosen
as the starting point because it has been extensively used
and its performance has been evaluated in previous studies
and is based on physical knowledge of the PA [9], [10].

Fig. 1 Linear crosstalk (LC) and nonlinear crosstalk (NLC) in
a MIMO transmitter.

In the presence of only nonlinear crosstalk (γ = 0, δ = 0
and α 6= 0, β 6= 0), the transmitter output can be
modeled as in [11],

y1(n) = f1(x1(n) + β ∗ x2(n))

y2(n) = f2(α ∗ x1(n) + x2(n)),
(2)

where x1(n) and x2(n) are the baseband input signals,
y1(n) and y2(n) are the output signals, α and β are defined
as above and ’∗’ indicates convolution. The functions f1(·)
and f2(·) are nonlinear dynamic transfer functions that
can be modeled using SISO memory polynomials. In this
paper x1(n) and x2(n) are the generated input signals,
y1(n) and y2(n) are the measured output signals. Similarly,
in the case of linear crosstalk (α = 0, β = 0 and γ 6=
0, δ 6= 0), the output of the PAs can be modeled as

y1(n) = f1(x1(n)) + δ ∗ (f2(x2(n)))

y2(n) = γ ∗ (f1(x1(n))) + f2(x2(n)),
(3)

where γ, δ are defined previously, y1(n) and y2(n) are the
output of the PAs after the linear crosstalk.

Equation (2) shows that the nonlinear transfer functions
operate simultaneously on the input signals and (3) in-
dicates that the PAs output is a linear combination of
the nonlinear transfer functions f1(·) and f2(·). Therefore,
conventional approaches used to model and linearize PAs
are not sufficient for nonlinear MIMO transmitters in the
presence of crosstalk.

In this paper, three different crosstalk effects appearing
in a 2×2 MIMO transmitter are studied. These effects
can be categorized into the following three cases: Linear
crosstalk; α = 0, β = 0 and γ 6= 0, δ 6= 0, nonlinear
crosstalk; α 6= 0, β 6= 0 and γ = 0, δ = 0 and
nonlinear & linear crosstalk; α 6= 0, β 6= 0, γ 6= 0 and
δ 6= 0. We also assumed that the crosstalk is memoryless
i.e., frequency independent. Based upon these cases, three
novel behavioral models are proposed in Section II-C.
These novel models are developed such that in system
identification, the model parameters take into account the
level and type of crosstalk effect, i.e, the crosstalk is not an
input parameter to the developed models. Also the devel-
oped models in Section II-C do not require prior knowledge
of crosstalk effect and crosstalk level. Furthermore, any
mismatch appearing between the crosstalk levels will also
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be taken into account by all the models during system
identification.

Volterra series are extensively used to understand the
behavior of a nonlinear system(s). In the following section,
complex baseband SISO Volterra series is extended to the
2×2 MIMO case.

B. Volterra Series

The relationship between input x(n) and output y(n) in
a nonlinear SISO system can be modeled using a Volterra
series. In wireless systems, the input and output signals are
written in complex baseband form because the bandwidth
of the signal is on the order of MHz, whereas the carrier
frequency is typically on the order of GHz. The signal of
primary interest is close to the carrier frequency. A com-
mon method for representing a signal close to the carrier is
by the use of a complex-valued low-pass equivalent signal
[21]. The complex baseband representation of a truncated
Q-order Volterra model is given as in [5],

y(n) =

M∑

m=0

g1(m)x(n − m1) +

M∑

m1=0

M∑

m2=m1

M∑

m3=0

g3(m1,m2,m3)x(n−m1)x(n−m2)x∗(n−m3)+

M∑

m1=0

M∑

m2=m1

. . .

M∑

m(Q+1)/2=m(Q−1)/2

. . .

M∑

mQ=mQ−1

gQ(m1,m2,...,mQ)

×x(m−m1)x(n−m2) . . . x∗(n−m(Q+1)/2) . . . x∗(n−mQ)
(4)

where g1(m), g3(m1, m2, m3) and gQ(m1, m2, . . . , mQ) are
the linear, 3rd and Qth order kernels of a nonlinear sys-
tem respectively and (·)∗ denotes the complex conjugate.
In (4), due to kernel symmetry, i.e., g3(m1, m2, m3) =
g3(m2, m1, m3), the redundant terms are removed. Addi-
tionally, even order kernels have been removed because
their effect can be omitted in band limited modeling [22].

Equation (4) can be extended to a complex baseband
low-pass equivalent odd order MIMO Volterra model. For
two input signals, x1(n) and x2(n), with the same center
frequency, the output signal y1(n) can be modeled as (5).
In (5), (5a) represents the kernels for linear response,
one for the linear filtering of x1(n), and the other for
x2(n). Equations (5b)-(5c) represent the self kernels. These
self kernels have the same symmetry properties as the
kernels of a SISO system. In (5b), g3,1,111 represents the
3rd order kernel, where the subscripts 3, 1, 111 indicate
the 3rd order Volterra kernel, 1 indicates the channel
and 111 indicates the combination of input signals. In
the case with no crosstalk, all kernels except g1,1,1(m)
and g3,1,111(m1, m2, m3) in (5) are zero. The cross ker-
nels (5d)-(5e) have symmetry properties different from
the self kernels. For (5d), e.g., g3,1,112(m1, m2, m3) =
g3,1,112(m2, m1, m3), but not for other permutations of m1,
m2 and m3. For the real valued 2×2 MIMO Volterra series,
there are two 3rd order cross kernels, not four as in (5),

and these kernels have less symmetry than the self kernels
[12], [23].

In the SISO Volterra series, the number of coefficients
increases along with an increase in the model order [5].
From (5), the implementation of the Volterra series for a
nonlinear MIMO system becomes even more complex due
to more kernels and lower symmetry than SISO nonlinear
systems. Therefore, the use of memory polynomials is
proposed. In memory polynomials, many of the kernels
are set equal to zero based on prior knowledge [1], [6].

In the next section, novel black box models are proposed
for a 2×2 MIMO transmitter to compensate for the effects
of crosstalk. The structure of the proposed models is com-
pared to the MIMO Volterra. The comparison indicates
that the proposed models are a subset of the MIMO
Volterra series.

C. Generalized Memory Polynomial for MIMO transmit-
ter

Conventional SISO models cannot model the crosstalk
effects that occur in a nonlinear MIMO transmitter [11],
[18]; therefore, new model structures are required. This
type of model was formulated in [11] for DPD and in
[18] for behavioral modeling. This paper proposes three
novel models with improved performance to compensate
for different crosstalk effects for behavioral modeling and
in DPD, for the crosstalk effects discussed in Section II-A.

1) Generalized Memory Polynomial for Linear Crosstalk
(GMPLC): In the presence of linear crosstalk i.e., when
α = 0 and β = 0, as shown in (3), the output signal of
each channel in a 2×2 MIMO transmitter is a combination
of nonlinear transfer function of a PA that is linearly
combined with the nonlinear transfer function of a PA in
the other channel, where f1 and f2 in (3) are modeled by
the SISO GMP given by (1).

For a 2×2 MIMO transmitter, output channel 1 can be
modeled as

y1(n) =
P∑

p=1

M1∑

m1=0

M2∑

m2=0

g1p,(m1,m2)
x1(n − m1)

|x1(n − m1 − m2)|2(p−1) +

P∑

p=1

M1∑

m1=0

M2∑

m2=0

g2p,(m1,m2)
x2(n − m1)|x2(n − m1 − m2)|2(p−1),

(6)

where P is the nonlinearity order defined as (degree+1)/2,
M1 and M2 are the the memory depths, y1(n) is the output
of channel 1, x1(n) and x2(n) are the input signals to
channels 1 and 2, respectively. The crosstalk effects are
included in the parameters. The GMPLC model contains
linear combinations of the PA outputs in a 2×2 system.

2) Generalized Memory Polynomial for Nonlinear
Crosstalk (GMPNLC): In the presence of nonlinear
crosstalk, the GMPLC model is not sufficient to charac-
terize the effects of nonlinear crosstalk in a 2×2 MIMO
transmitter, because the GMPLC model contains only
SISO nonlinear terms of one channel linearly combined
with SISO nonlinear terms of the second channel.
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y1(n) =

M∑

m=0

g1,1,1(m)xi(n − m) +

M∑

m=0

g1,1,2(m)x2(n − m)+ (5a)

M∑

m1=0

M∑

m2=m1

M∑

m3=0

g3,1,111(m1, m2, m3)x1(n − m1)x1(n − m2)x∗

1(n − m3)+ (5b)

M∑

m1=0

M∑

m2=m1

M∑

m3=0

g3,1,222(m1, m2, m3)x2(n − m1)x2(n − m2)x∗

2(n − m3)+ (5c)

M∑

m1=0

M∑

m2=m1

M∑

m3=0

g3,1,112(m1, m2, m3)x1(n − m1)x1(n − m2)x∗

2(n − m3)+ (5d)

M∑

m1=0

M∑

m2=0

M∑

m3=0

g3,1,121(m1, m2, m3)x1(n − m1)x2(n − m2)x∗

1(n − m3)+ (5e)

M∑

m1=0

M∑

m2=0

M∑

m3=0

g3,1,122(m1, m2, m3)x1(n − m1)x2(n − m2)x∗

2(n − m3)+ (5f)

M∑

m1=0

M∑

m2=m1

M∑

m3=0

g3,1,221(m1, m2, m3)x2(n − m1)x2(n − m2)x∗

1(n − m3)+ (5g)

...

Thus, in order to compensate the effects of nonlinear
crosstalk where the nonlinear transfer function operates
simultaneously on both input signals as shown in (2),
the model should include crossterms between the input
signals x1 and x2, i.e., the nonlinear combinations of
x1(n) and x2(n) along with nonlinear SISO combinations.
The output of a 2×2 MIMO transmitter in presence of
nonlinear crosstalk can be modeled as

y1(n) =

P∑

p=1

P −p+1∑

q=1

M1∑

m1=0

M2∑

m2=0

g1,p,q,(m1,m2)x1(n − m1)

|x1(n − m1 − m2)|2(p−1)|x2(n − m1 − m2)|2(q−1)+

P∑

p=1

P −p+1∑

q=1

M1∑

m1=0

M2∑

m2=0

g2,p,q,(m1,m2)x2(n − m1)

|x2(n − m1 − m2)|2(p−1)|x1(n − m1 − m2)|2(q−1).

(7)

For 3rd order nonlinearity, (7) contains the following
terms; x1(n − m1)|x1(n − m1 − m2)|2, x1(n − m1)|x2(n −
m1 − m2)|2, x2(n − m1)|x1(n − m1 − m2)|2 and x2(n −
m1)|x2(n − m1 − m2)|2. Compared to the GMPLC model,
the GMPNLC model in (7) contains not only the SISO
nonlinearity, but also the combinations of crossterms be-
tween the inputs x1(n) and x2(n).

3) Extended Generalized Memory Polynomial for Non-
linear Crosstalk (EGMPNLC): EGMPNLC model is an
extension of the GMPNLC model. The difference between
these models is that the former model contains more
crossterm combinations between input signals x1(n) and
x2(n) compared to (7). The basis functions in the EGM-
PLC model are shown in Table I. The difference between
the GMPNLC and EGMPNLC models is evident, where

the GMPNLC model for 3rd order nonlinearity includes
ony the following basis functions; x1(n − m1)|x1(n − m1 −
m2)|2, x1(n − m1)|x2(n − m1 − m2)|2, x2(n − m1)|x1(n −
m1 − m2)|2 and x2(n − m1)|x2(n − m1 − m2)|2, whereas
the EGMPNLC model contains four additional terms for
the 3rd order nonlinearity (k = 3), as shown in Table I.

Note that the terms shown in Table I for k = 3, are
equal to the 3rd order terms in (5) if m2 = m3, except for
the terms on rows 3 and 7 in Table I, which corresponds
to m1 = m3. Therefore, the basis functions are a subset of
the MIMO Volterra basis functions: EGMPNLC ⊂ MIMO
Volterra, where "⊂" denotes subset. Similarly, GMPLC
⊂ GMPNLC ⊂ EGMPNLC, and 2×2 PH ⊂ GMPNLC.
Additionally, SISO GMP ⊂ GMPLC.

4) Parallel Hammerstein for a MIMO transmitter: The
model used for comparison is an extension of the SISO
Parallel Hammerstein (PH) [24], to 2×2-PH [18]

y1(n) =

P∑

p=1

P −p+1∑

q=1

M∑

m=0

g1,p,q,mx1(n − m)

|x1(n − m)|2(p−1)|x2(n − m)|2(q−1)+

P∑

p=1

P −p+1∑

q=1

M∑

m=0

g2,p,q,mx2(n − m)

|x2(n − m)|2(p−1)|x1(n − m)|2(q−1),

(8)

where M is the maximum memory depth.

D. System identification

Let x1(n), x2(n), y1(n) and y2(n) be the input and
output signals of the 2×2 MIMO transmitter. The output
signal model of a 2×2 MIMO transmitter can be written
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Table I Basis functions of the EGMPNLC models, where L1 = (n − m1), L2 = (n − m1 − m2) and k is the order of nonlinearity.

k = 1 k = 3 k = 5 · · · k = ∞
x1(L1) x1(L1)|x1(L2)|2 x1(L1)|x1(L2)|4 · · · x1(L1)|x1(L2)|(k−1)

x2(L1) x1(L1)|x2(L2)|2 x1(L1)|x2(L2)|4 · · · x1(L1)|x2(L2)|(k−1)

x2(L1)|x1(L2)|2 x2(L1)|x1(L2)|4 · · · x2(L1)|x1(L2)|(k−1)

x2(L1)|x2(L2)|2 x2(L1)|x2(L2)|4 · · · x2(L1)|x2(L2)|(k−1)

x1(L1)x1(L2)x∗

2(L2) x1(L1)|x1(L2)|2x1(L2)x∗

2(L2) · · · x1(L1)|x1(L2)|(k−3)x1(L2)x∗

2(L2)
x1(L1)x∗

1(L2)x2(L2) x1(L1)|x1(L2)|2x∗

1(L2)x2(L2) · · · x1(L1)|x1(L2)|(k−3)x∗

1(L2)x2(L2)
x2(L1)x1(L2)x∗

2(L2) x1(L1)|x2(L2)|2x1(L2)x∗

2(L2) · · · x1(L1)|x2(L2)|(k−3)
x1(L2)x∗

2(L2)
x2(L1)x∗

1(L2)x2(L3) x1(L1)|x2(L2)|2x
∗

1(L2)x2(L2) · · · x1(L1)|x2(L2)|(k−3)
x

∗

1(L2)x2(L2)
x1(L1)|x1(L2)|2|x2(L2)|2 · · · x1(L1)|x1(L2)|(k−1)/2|x2(L2)|(k−1)/2

x2(L1)|x1(L2)|2|x2(L2)|2 · · · x2(L1)|x1(L2)|(k−1)/2|x2(L2)|(k−1)/2

x2(L1)|x1(L2)|2x1(L2)x∗

2(L2) · · · x2(L1)|x1(L2)|(k−3)x1(L2)x∗

2(L2)
x2(L1)|x1(L2)|2x

∗

1(L2)x2(L2) · · · x2(L1)|x1(L2)|(k−3)
x

∗

1(L2)x2(L2)
x2(L1)|x2(L2)|2x1(L2)x∗

2(L2) · · · x2(L1)|x2(L2)|(k−3)
x1(L2)x∗

2(L2)
x2(L1)|x2(L2)|2x∗

1(L2)x2(L2) · · · x2(L1)|x2(L2)|(k−3)x∗

1(L2)x2(L2)

as
[

y1

y2

]
=

[
H1 0
0 H2

] [
θ1

θ2

]
+

[
v1

v2

]
, (9)

where H1 and H2 are the regression matrices for channels
1 and 2, respectively, and θ1 and θ2 are the complex valued
model parameters. The signals v1(n) and v2(n) are noise
in channels 1 and 2, respectively, and are assumed to be
mutually uncorrelated and to have zero-mean. As shown
in (9), the parameter estimation for output channels 1 and
2 is decoupled, i.e., the parameters can be independently
estimated. For simplicity, considering channel 1 of a 2×2
nonlinear system, the regression matrix H1 is

H1 =




φ1(1) φ2(1) . . . φO(1)
φ1(2) φ2(2) . . . φO(2)

...
...

. . .
...

φ1(N) φ2(N) . . . φO(N)


 , (10)

where φi(·) are the basis functions of the model, O is the
number of basis functions and N is the number of samples.

The behavior of the PA is captured in the construction
of the basis functions, because the models proposed in
Section II-C are linear in the parameters, linear least
square estimation (LSE) [25] can be used to estimate
the model parameters θ1 by minimizing the cost function
S(θ1),

S(θ1) = arg
θ1

min‖y1 − H1θ1‖. (11)

The LSE solution can be written in matrix form as,

θ̂1 = (H∗

1H1)−1H∗

1y1, (12)

where H1 is the regression matrix and θ̂1 contains the
estimated parameters for channel 1 in a 2×2 MIMO trans-
mitter. In a realistic scenario, the measurement process is
also be affected by I/Q imbalance [26] [27], measurement
noise [28] and phase noise. Other estimators such as BLUE
[25] can be used to reduce the variance of the estimated
parameters if the color of the noise is known. However, the
estimated parameters under zero-mean noise is unbiased
with the LSE.

Fig. 2 a) Measurement setup. b) Outline of the measurement
setup consisting of vector signal generators, a DUT with non-
linear and linear crosstalk, down converter, and an ADC.

Note that in partially non-coherent nonlinear MIMO
transmitter (see Appendix), phase noise results in a bias
term that scales the estimated parameters θ̂ if a standard
linear least-squares estimation is used. To the best of the
authors’ knowledge, no methods that eliminates this bias
have been proposed.

III. Experimental setup

The measurement setup is shown in Fig. 2. The setup
consists of two Rohde & Schwartz SMBV100A signal gen-
erators, that are baseband synchronized and can be used
with either a common external LO for coherent operation,
or independently generated LO signals based on a common
10 MHz reference. To introduce crosstalk, directional cou-
plers together with two Mini-Circuits ZVE-8G+ amplifiers
were used as the devices under test (DUT). The measured
RF signals operating at a carrier frequency of 2.14 GHz
were downconverted to intermediate frequency (IF) signals
using a wideband downconverter. An SP Devices ADQ214
analog-to-digital converter (ADC) was used for sampling



6

the IF signals. The ADC had a sampling rate of 400 MHz
and a resolution of 14 bits. The sampling frequency and
the number of samples were chosen such that an integer
number of repeated periods were captured which is known
as coherent sampling [29]. Note that the receiver was
locked to the transmitter using the 10 MHz instrument
reference. When effects of phase noise were tested, only
one of the transmitters’ 10 MHz reference was locked to
the receiver.

Two separate sets of wideband code division multiple
access (WCDMA) test signals were used, and each set
consisted of 40,960 samples at a sampling rate of 30.72
MHz and a crest factor of 8.5 dB. Separate signal sets
were used for identification and validation of the model
performance. The measurements were taken with 100
coherent averages to minimize the impact of measurement
noise. The performance limit of the measurement setup
was limited to -68 dB adjacent channel power ratio.

The performance was evaluated in terms of normalized
mean-square error (NMSE), adjacent channel error power
ratio (ACEPR) and adjacent channel power ratio (ACPR).
NMSE is defined as [30]

NMSE =

∫
Φe(f) df∫
Φy(f) df

, (13)

where Φy(f) is the power spectrum of the measured output
signal and Φe(f) is the power spectrum of the difference
between measured and the desired signal; integration is
carried out across the available bandwidth. The ACEPR
is defined as [30]

ACEPR =

∫
adj. ch. Φe(f) df
∫

ch. Φy(f) df
, (14)

where the integration in the numerator is performed over
the adjacent channel with maximum error power and in
the denominator, integration is performed over the input
channel. The ACPR is defined as [30]

ACPR =

∫
adj. ch.

Φy(f) df
∫

ch.
Φy(f) df

, (15)

where in the numerator integration is performed over the
adjacent channel with the largest amount of power; in
the denominator, integration is performed over the input
channel band.

IV. Results

The performance of the proposed models was evaluated
against the 2×2 PH model and the SISO GMP model
in terms of behavioral modeling and DPD. For evalua-
tion purposes, the following cases were studied; a) linear
crosstalk (LC) case with -20 dB and -30 dB crosstalk
levels, b) nonlinear crosstalk (NLC) case with -20 dB
and -30 dB crosstalk levels, and c) nonlinear & linear
crosstalk (NL&LC) case with -20 dB and -30 dB crosstalk
levels. The proposed models were also evaluated without
any crosstalk and are denoted as NC. In Section IV-C
the effects of phase noise on the DPD performance are

presented for the transmitters in coherent and partially
non-coherent modes.

For all of the measurements, the performance evaluation
was conducted by setting the model order to be constant,
i.e., a nonlinearity order of 9 was used, and the memory
depths M1 and M2 were 2 and 5, respectively, for the
proposed models and the SISO GMP. For the 2×2 PH
model, the memory depth M was equal to 5. This se-
lection of model order results in the smallest errors for
the proposed models. Increasing the memory depth or
nonlinearity order did not result in improved performance
of the investigated models. Different model parameter
pruning techniques e.g., least absolute shrinkage and se-
lection operator (LASSO) [31] or principal component
analysis [32] could be used to reduce the large number
of model parameters while maintaining the performance.
These techniques are out of the scope of this paper and
thus are not discussed. Table II shows a comparison of the
number of coefficients of the considered models.

Table II Total number of coefficients of respective models at
nonlinearity order of 9 and a maximum memory depth of 5.

Model Number of coefficents

SISO GMP 63

2×2 PH 180

GMPLC 126

GMPNLC 242

EGMPNLC 486

SISO Volterra 40116

MIMO Volterra 960924

A. Behavioral Modeling

Table III NMSE [dB] for given behavioral models and
crosstalk type, the crosstalk level was -20 dB.

Model LC NLC NL&LC NC

SISO GMP -23.8 -22.1 -22.9 -50.4

2×2 PH -41.5 -40.1 -40.0 -41.8

GMPLC -50.1 -42.3 -41.1 -50.3

GMPNLC -50.3 -45.4 -45.1 -50.4

EGMPNLC -50.2 -50.4 -50.3 -50.6

Table IV ACEPR [dB] for given behavioral models and
crosstalk type, the crosstalk level was -20 dB.

Model LC NLC NL&LC NC

SISO GMP -47.6 -47.3 -47.1 -60.6

2×2 PH -56.6 -54.7 -54.3 -57.2

GMPLC -58.9 -52.7 -51.9 -60.4

GMPNLC -59.2 -58.9 -58.3 -60.7

EGMPNLC -60.2 -60.1 -60.3 -60.7

1) -20 dB crosstalk: Tables III and IV summarize the
performance of each model. In the absence of crosstalk
(NC), all of the proposed models except 2×2 PH exhibited
the same performance in terms of NMSE and ACEPR. A
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Fig. 3 Measured and modeled power spectral density (PSD)
vs frequency for DUT with -20 dB linear crosstalk (LC). Also
shown are the error spectra for the given models.

similar trend was observed in channel 2, and thus only the
results from channel 1 are presented.

In the presence of LC, the proposed models had approx-
imately the same NMSE of -50 dB and ACEPR of -59 to
-60 dB, whereas the GMPLC model exhibited the largest
errors and the EGMPNLC model exhibited the smallest
errors. The 2×2 PH model had an NMSE of -41.5 dB,
i.e., nearly 9 dB higher than the GMPLC model, which
is expected considering that the model is not an adequate
model for these PAs, as demonstrated by the NC case.
As expected, the SISO GMP model was not able to model
the LC, and is henceforth not further commented but only
included for reference. Fig. 3 shows the error spectra of
models for -20 dB LC.

In the presence of NLC, the difference between the
performances of the proposed models is shown in Fig. 4.
The GMPLC model has the largest NMSE compared to
the EGMPNLC model, which had an NMSE of -50 dB,
whereas the GMPNLC model had an NMSE of -45 dB.
The difference in the performance of the proposed models
is because the GMPLC model lacks crossterm combina-
tions of input signals x1(n) and x2(n) that are required
to model the NLC effect. The difference in performance
between the GMPNLC and EGMPNLC models is also ev-
ident from Sections II-C2 and II-C3, in which EGMPNLC
contains more combinations of crossterms, especially the
conjugate crossterms i.e., x1(L1)x1(L2)x∗

2(L2), between
the input signals compared to the GMPNLC model. A
similar trend is observed when the performance of the
proposed models is evaluated as measured by the ACEPR.
The measurement results are summarized in Tables III
and IV for the NMSE and ACEPR, respectively. As
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Fig. 4 Measured and modeled power spectral density (PSD)
vs frequency for DUT with -20 dB nonlinear crosstalk (NLC).
Also shown are the error spectra for the given models.

−6 −4 −2 0 2 4 6
−70

−60

−50

−40

−30

−20

−10

0

Frequency (MHz)

P
S

D
 (

d
B

x
/H

z
)

 

 

Output

Model Output

GMPLC Error

GMPNLC Error

EGMPNLC Error

2x2 PH Error

SISO GMP Error

Fig. 5 Measured and modeled power spectral density (PSD)
vs frequency for DUT with -20 dB nonlinear & linear crosstalk

(NL&LC). Also shown are the error spectra for the given
models.

measured by the ACEPR, the GMPLC model had slightly
inferior performance compared to 2×2 PH model due to
the lack of crossterms between the input signals. The
crossterms included in the 2×2 PH model are x1(n −
1)|x1(n − m)|2(p−1)|x2(n − m)|2(q−1) and x2(n − 1)|x2(n −
m)|2(p−1)|x1(n − m)|2(q−1).
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Fig. 6 Measured and modeled power spectral density (PSD)
vs frequency for DUT with -30 dB linear crosstalk (LC). Also
shown are the error spectra for the given models.

In the presence of NL&LC, Tables III and IV, indicate
that the EGMPNLC model resulted in lower model error
in terms of both the NMSE and ACEPR compared to
the other proposed models, whereas the GMPNLC model
exhibited higher performance compared to the GMPLC
and 2×2 PH models. Compared to the GMPLC model,
the 2×2 PH model resulted in slightly smaller model error
when measured by the ACEPR. The improved perfor-
mance of the EGMPNLC model compared to the GMPLC
and GMPNLC models was described previously. The error
spectra of the models in the presence of NL&LC are shown
in Fig. 5. From Tables III and IV, under various crosstalk
conditions, the EGMPNLC model in terms of NMSE and
ACEPR resulted in approximately the same performance
compared to the case in which no crosstalk is present.

2) -30 dB crosstalk: In the presence of -30 dB crosstalk
and under all crosstalk conditions, the GMPNLC and
EGMPNLC models exhibited the same performance in
terms of both NMSE and ACEPR, as shown in Figs. 6,
7, and 8. For the NLC and NL&LC cases, the GMPLC
model had an NMSE of -43 dB which is approximately 2
dB lower than the 2×2 PH model, whereas the GMPLC
model had an ACEPR of approximately -54 dB which
is 2 dB higher than the 2×2 PH model due to the lack
of crossterms between the input signals. The results are
summarized in Tables V and VI.

B. Digital Pre-distortion

Linearization of the system was performed by the use
of an indirect learning architecture (ILA) [33]. The goal of
the ILA is to determine the post-inverse of the DUT and
use it as a pre-inverse, i.e., as a DPD algorithm. Three ILA
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Fig. 7 Measured and modeled power spectral density (PSD)
vs frequency for DUT with -30 dB nonlinear crosstalk (NLC).
Also shown are the error spectra for the given models.
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Fig. 8 Measured and modeled power spectral density (PSD)
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(NL&LC). Also shown are the error spectra for the given
models.

iterations were performed for the DPD algorithm to fully
converge to the operational point of the PAs. Linearization
of the system can also be done by using the direct learning
architecture (DLA), but it requires nonlinear least mean
squares algorithms for estimating the DPD parameters [34]
in contrast to ILA which is often used for linearization
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Table V NMSE [dB] for given behavioral models and crosstalk
type, the crosstalk level was -30 dB.

Model LC NLC NL&LC NC

SISO GMP -32.4 -31.6 -31.4 -50.4

2×2 PH -41.0 -41.3 -41.0 -41.8

GMPLC -50.1 -43.3 -42.9 -50.3

GMPNLC -50.3 -50.2 -49.9 -50.4

EGMPNLC -50.5 -50.1 -50.2 -50.6

Table VI ACEPR [dB] for given behavioral models and
crosstalk type, the crosstalk level was -30 dB.

Model LC NLC NL&LC NC

SISO GMP -51.0 -51.6 -51.0 -60.6

2×2 PH -57.2 -57.3 -56.1 -57.2

GMPLC -60.2 -54.5 -54.7 -60.4

GMPNLC -60.4 -60.0 -60.1 -60.7

EGMPNLC -60.6 -60.7 -60.5 -60.7

Fig. 9 The relationship between the DUT with different
crosstalk types and the corresponding DPD structure.

of PA [11], [18]. Fig. 9 illustrates the DPD structures
that were used for the DUTs under different crosstalk
conditions.

1) Digital predistortion for -20 dB crosstalk: For a DUT
with NLC, the proposed models exhibited the same DPD
performance in terms of NMSE and ACPR, as shown in
Fig. 10. In presence of NLC, the DUT has the structure
of crosstalk followed by a nonlinearity f(·). Therefore, by
using the ILA for linearization, the current DPD algorithm
exhibits the structure shown in Fig. 9a, i.e., the inverse of
nonlinearity f−1(·) followed by crosstalk. Furthermore, in
Section IV-A, indicates that under the LC condition, the
proposed models exhibited similar performance when used
as direct models. Therefore, when used as an inverse model
for a DUT with NLC, these models exhibits approximately
the same DPD performance in terms of both NMSE
and ACPR. The measurement results are summarized in
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Fig. 10 Measured power spectral density (PSD) vs frequency
for DPD of a DUT with -20 dB nonlinear crosstalk (NLC).
The different inverse models used for DPD are explained in the
legend.

Tables VII and VIII, which are in agreement with the
previous discussion and the DPD structure shown in Fig.
9a. Compared to the proposed models, the 2×2 PH model
had an NMSE of -40 dB which was 5 dB higher than the
proposed model, and an ACPR of -52 dB. The proposed
models had an ACPR of approximately -58 dB.

Table VII NMSE [dB] for given inverse models used for DPD
and given crosstalk types of DUT. The crosstalk level was -20
dB.

Inverse Model LC NLC NL&LC NC

SISO GMP -24.0 -24.5 -24.0 -49.4

2×2 PH -39.7 -40.1 -38.1 -42.0

GMPLC -41.2 -45.3 -37.3 -49.4

GMPNLC -45.3 -45.1 -45.8 -49.5

EGMPNLC -45.1 -45.4 -45.6 -49.3

Table VIII ACPR [dB] for given inverse models used for DPD
and given crosstalk types of DUT. The crosstalk level was -20
dB.

Inverse Model LC NLC NL&LC NC

SISO GMP -45.0 -46.0 -44.7 -59.8

2×2 PH -54.3 -52.1 -51.3 -58.2

GMPLC -52.1 -58.6 -48.3 -59.8

GMPNLC -58.2 -58.5 -58.7 -59.7

EGMPNLC -58.4 -58.8 -57.9 -59.9

In the presence of LC, the DUT and its corresponding
DPD structure are shown in Fig. 9b, where f(·) represents
the nonlinear DUT function followed by crosstalk. Thus,
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Fig. 11 Measured power spectral density (PSD) vs frequency
for DPD of a DUT with -20 dB linear crosstalk (LC). The
different inverse models used for DPD are explained in the
legend.

for a DUT with LC, the DPD structure can be described
as crosstalk followed by an inverse of the nonlinear func-
tion f−1(·). As shown in Fig. 11, the GMPNLC and
EGMPNLC models exhibited similar DPD performance
in terms of both NMSE and ACPR. The GMPLC model
had an NMSE of -41 dB, which was approximately 4 dB
higher than the GMPNLC and EGMPNLC models. In
terms of ACPR, the GMPLC model had an ACPR that
was 6 dB higher than those of GMPNLC and EGMPNLC.
As shown in Section IV-A, model errors exhibited by the
GMPNLC and EGMPNLC models when used as direct
models for the DUT with NLC, are lower compared to
the GMPLC model. Therefore, for the DUT with LC, the
use of the GMPNLC and EGMPNLC models as inverse
models resulted in better performance than the GMPLC
model. The results are summarized in Tables VII and
VIII. The inferior performance of GMPLC compared to
GMPNLC and EGMPNLC as an inverse model is due to
the lack of nonlinear crossterms.

Fig. 12, shows the DPD performance of the proposed
models in the presence of NL&LC. The DUT and its
corresponding DPD structure are shown in Fig. 9c. From
measurement results summarized in Tables VII and VIII,
the GMPNLC and EGMPNLC models had 8 dB better
performance as a measure of NMSE compared to the
GMPLC model. As measured by ACPR, the GMPNLC
and EGMPNLC models exhibited 10 dB higher DPD
performance than the GMPLC model.

In order to compensate a DUT with LC and, NL&LC
(cf. Fig. 9 b and c), a model should contain both linear
and nonlinear crossterms. As shown in (6), the GMPLC
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Fig. 12 Measured power spectral density (PSD) vs frequency
for DPD of a DUT with -20 dB nonlinear & linearcrosstalk

(NL&LC). The different inverse models used for DPD are
explained in the legend.

model lacks such crossterms, therefore, when it was used
as the inverse model for a DUT with LC and NL&LC, its
performance as measured by NMSE and ACPR was lower
than the GMPNLC and EGMPNLC models. Similarly due
to the lack of crossterms, the GMPLC model has slightly
inferior performance compared to the 2×2 PH model for
the cases with crosstalk.

2) Digital predistortion for -30 dB crosstalk: For the -30
dB crosstalk level, the DPD performance of the proposed
models is summarized in Tables IX and X. For the NLC,
the DUT and its corresponding DPD structure is shown in
Fig. 9a. For such a DPD structure, the proposed models
exhibited similar DPD performance in terms of NMSE
and ACPR. Compared to the proposed models, the 2×2
PH model exhibited inferior performance in terms of both
NMSE and ACPR. Even in the case with no crosstalk, the
2×2 PH model performance was approximately 7 dB and
2 dB higher in terms of NMSE and ACPR, respectively,
compared to the other models. This result indicates that
for these PAs, the 2×2 PH model showed inferior perfor-
mance both as a direct and an indirect model.

In the presence of -30 dB LC, the GMPNLC and
EGMPNLC models exhibited a similar DPD performance
trend as the DUT with -20 dB LC. The GMPLC model
had an NMSE that was 9 dB higher than the GMPNLC
and EGMPNLC models, whereas the GMPLC models had
an ACPR of -55 dB which was 4 dB higher compared to
those of GMPNLC and EGMPNLC models. Compared to
the 2×2 PH model, the GMPLC model exhibited slightly
lower DPD performance in terms of NMSE and ACPR.

In the presence of NL&LC, the GMPNLC and
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EGMPNLC models had an NMSE and ACPR lower than
-48 dB and -59 dB, respectively. As described in the
previous section, the 2×2 PH model had slightly better
performance as measured by NMSE and ACPR compared
to the GMPLC model.

Table IX NMSE [dB] for given inverse models used for DPD
and given crosstalk types of DUT. The crosstalk level was -30
dB.

Inverse Model LC NLC NL&LC NC

SISO GMP -32.0 -32.6 -32.1 -49.4

2×2 PH -41.6 -41.2 -39.8 -42.0

GMPLC -40.2 -48.6 -41.0 -49.4

GMPNLC -49.4 -48.4 -48.6 -49.5

EGMPNLC -49.2 -48.6 -48.4 -49.3

Table X ACPR [dB] for given inverse models used for DPD
and given crosstalk types of DUT. The crosstalk level was -30
dB.

Inverse Model LC NLC NL&LC NC

SISO GMP -50.0 -50.4 -50.6 -59.8

2×2 PH -56.4 -57.8 -57.1 -58.2

GMPLC -55.4 -59.1 -54.0 -59.8

GMPNLC -59.6 -59.5 -59.7 -59.7

EGMPNLC -59.8 -59.7 -59.4 -59.9

C. Effect of phase noise on digital predistortion

A brief study was made to analyze the effect of coherent
and partially non-coherent measurement on the identifica-
tion of the digital predistortion parameters. As described
in appendix, in partially non-coherent measurements, the
transmitters do not share a common RF LO; therefore,
the phase relationship between the transmitters does not
remain constant. This phase noise affects the measurement
and introduces bias terms in the LSE as analyzed in
appendix. For this test, the measurement setup shown in
Fig. 2 was modified such that the signal sources did not
share a common RF LO but were only linked through the
10 MHz frequency reference. The crosstalk level was -30 dB
and NLC was used. The measured signals were averaged
10 to 100 times to determine the effect of phase noise
on coherent averaging. For coherent and partially non-
coherent measurements, the GMPNLC model was used
because, as shown in Tables IX and X, the GMPNLC and
EGMPNLC models exhibited similar performance when
used as a pre-inverse.

Fig. 13 shows the impact of phase noise on the per-
formance of DPD. Partially non-coherent measurement
resulted in an NMSE of -45.1 dB and ACPR of -56.1
dB whereas coherent measurement resulted in an NMSE
of -48.51 dB and an ACPR of -59.4 dB for channel 1
when the coherent averaging was equals to 100. For this
measurement setup, the difference in NMSE was 2.5-3 dB
and 3-4 dB in ACPR depending on the additive noise level.

Fig. 13 indicates that even by increasing the number
of averages, the performance of DPD as a measurement of
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Fig. 13 Measured NMSE and ACPR vs number of averages of
the output signal for DPD with coherent and partially non-
coherent signal generation, respectively. The DUT had -30
dB nonlinear crosstalk and the inverse model for DPD was
GMPNLC.

NMSE and ACPR for partially non-coherent measurement
is lower compared to coherent measurement. This is due
to the fact that when coherent averaging is done, it is
assumed that the phase of the signal is the same at the
beginning of each measured sample set but due to phase
noise this assumption is not met, consequently partially
non-coherent averaging produces a biased estimate as
mentioned in appendix. Note that Fig. 13 illustrate that
in presence of partially non-coherent measurement i.e.,
when the signal generators are only coupled with 10 MHz
reference clock (see Appendix), the DPD performance will
degrade compared to coherent measurement.

V. Conclusion

Three novel models for the direct modeling and lin-
earization in the form of DPD of a nonlinear transmit-
ter were considered in three crosstalk cases in a MIMO
transmitter, and the results were compared to an existing
PH based model. The considered crosstalk cases were
linear crosstalk, nonlinear crosstalk and linear & nonlin-
ear crosstalk. The proposed models that were used for
the linearization of a DUT in the presence of nonlinear
crosstalk exhibited similar performance and had lower
model errors compared to the 2×2 PH model. Similarly,
for linear and nonlinear & linear crosstalk, the GMPNLC
and EGMPNLC models exhibited improved performance
in both NMSE and ACPR than the GMPLC and 2×2 PH
models. From the measurement results for the DPD, it can
be concluded that for a DUT with nonlinear crosstalk only,
GMPLC is sufficient for linearization. However for a DUT
with linear and nonlinear & linear crosstalk, GMPLC lacks
the necessary nonlinear crossterm combinations that are
essential for the linearization.

The importance of phase coherency in MIMO transmit-
ters’ linearity when DPD is used is also illustrated. The ef-
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fects on DPD performance for coherent and partially non-
coherent RF LOs on the signal sources were considered for
varying averages. For the used measurement setup, the
difference in performance was 2.3 dB in NMSE for less
than 40 averages but increases to more than 3.5 dB for 90
averages. The difference in ACPR was between 3-4 dB and
also limited by the dynamic range of the measurement.

Appendix

Analysis of Phase Noise in partially

non-coherent MIMO transmitter

In coherent MIMO systems, transmitters and receivers
can share a common local oscillator (LO), which results
in improved measurement accuracy and relaxed phase
noise requirements in the system [20]. In this paper,
measurements were taken with transmitters that did not
use the same LO, rather, the RF LOs’ coupled through
the 10 MHz instrument frequency reference, which made
the system partially non-coherent. Therefore, the relative
phase between the transmitters did not remain constant,
which resulted in phase noise and produced additional
measurement errors. This section addresses the impact
of phase noise on parameter estimation in behavioral
modeling and DPD when standard LSE is used to estimate
the parameters of the proposed models.

The analysis in [35] concluded that the phase noise of a
free-running oscillator has a white Gaussian distribution
with a variance that linearly increases with time. However,
the oscillators in this case were not free-running but were
coupled through phase-locked loops (PLL;s) to a common
low frequency reference. Nevertheless, we assume that the
phase noise in each sample can be modeled as additive
white Gaussian noise Ψi,n in channel i and sample n.

In the following the bias terms due to phase noise in the
model parameters when using a linear LSE are derived.
This derivation assumes that the receiver is the phase
reference, i.e., there is no phase noise in the receiver;
instead, all of phase noise contributions originate from the
signal sources. The resulting equations are similar if one of
the signal sources is used as a reference which is discussed
at the end of this section.

Let A1 =diag([ejΨ1,1 ejΨ1,2 . . . ejΨ1,N ]) be the diag-
onal matrix that consist of the phase differences be-
tween each sample in all regressors involving the terms
x1(n−m1)|x1(n−m1 −m2)|2(p−1)|x2(n−m1 −m2)|2(q−1).
Similarly, let A2 be a diagonal matrix similar to A1 that
consist of all the regressors involving the terms x2(n −
m1)|x2(n − m1 − m2)|2(p−1)|x1(n − m1 − m2)|2(q−1). Note
that under the current assumption, the transmitter noise
is only observed in the x1(n − m1) and x2(n − m1) terms
because these are the only terms without an absolute
value.

The regression matrix H1 that was defined in
(10) can be decomposed into two sub-matrices as,
H1 = [h1 h2]. Each sub-matrix can be defined as
h1 = [φ1,1 φ1,2 . . . φ1,o] and h2 = [φ2,1 φ2,2 . . . φ2,o],
where φ1,1 = [φ1,1(1) . . . φ1,1(N)]T and φ2,1 =

[φ2,1(1) . . . φ2,1(N)]T are the column vectors in h1 and
h2 respectively.

For a non-coherent 2×2 MIMO system, the output
signal for channel 1 can be modeled as

y1 = [A1h1, A2h2]

[
θ1,1

θ2,1

]
+ v, (16)

where y1 is the output signal of channel 1, θ1 = [θ1,1; θ2,1]
are the complex valued parameters and v is the additive
zero mean noise. A standard linear LSE gives,

[
θ̂1,1

θ̂2,1

]
=(H∗

1H1)−1H∗

1y1 =

(H∗

1H1)−1H∗

1

[
[A1h1 A2h2]

[
θ1,1

θ2,1

]
+ v

]
=

(H∗

1H1)−1H∗

1[A1h1 A2h2]

[
θ1,1

θ2,1

]
+ w,

(17)

where H1 = [h1 h2] is the regression matrix composed of
h1 and h2 and w = (H∗

1H1)−1H∗

1v is the weighted noise.
By neglecting the noise term w for simplicity, it follows
that

[
θ̂1,1

θ̂2,1

]
= (H∗

1H1)−1H∗

1[A1h1 A2h2]

[
θ1,1

θ2,1

]
=

(H∗

1H1)−1

[
h∗

1A1h1 h∗

1A2h2

h∗

2A1h1 h∗

2A2h2

] [
θ1,1

θ2,1

]
. (18)

Using the properties of the respective terms of h∗

1A1h1

gives,

h∗

1A1h1 = (19)



φ∗

1,1A1φ1,1 φ∗

1,1A1φ1,2 · · · φ∗

1,1A1φ1,O

φ∗

1,2A1φ1,1 φ∗

1,2A1φ1,2 · · · φ∗

1,2A1φ1,O

...
. . . · · ·

...
φ∗

1,OA1φ1,1 φ∗

1,OA1φ1,2 · · · φ∗

1,OA1φ1,O


 .

Each entry φ∗

1,oA1φ1,k in (20) can now be computed as a
weighted sum

φ∗

1,oA1φ1,k =

N∑

n=1

φ∗

1,o(n)ejΨ1,n φ1,k(n), (20)

where Ψ1,n are the random variables. The random vari-
ables Ψ1,n are assumed to be Gaussian with zero mean due
to the use of a common frequency reference and variance
σ2

1 . The probability density function (PDF) of Ψ1,n is

p(Ψ1,n) =
1

σ1

√
2π

e
−

Ψ2
1,n

2σ2
1 , (21)
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the expected value of ejΨ1,n can be calculated as

E{eΨ1,n} =

∫
∞

−∞

ejΨ1,n p(Ψ1,n) dΨ = (22a)

∫
∞

−∞

ejΨ1,n
1

σ1

√
2π

e
−

Ψ2
1,n

2σ2
1 dΨ = (22b)

∫
∞

−∞

(cos(Ψ1,n) + j sin(Ψ1,n))
1

σ1

√
2π

e
−

Ψ2
1,n

2σ2
1 dΨ =

(22c)
∫

∞

−∞

cos(Ψ1,n)
1

σ1

√
2π

e
−

Ψ2
1,n

2σ2
1 dΨ = (22d)

2

∫
∞

0

cos(Ψ1,n)
1

σ1

√
2π

e
−

Ψ2
1,n

2σ2
1 dΨ = (22e)

2

σ1

√
2π

1

2

√
π
1

2σ2
1

e
−

1
2

2/ 1

2σ2
1 = (22f)

e−

σ2
1

2 , (22g)

where (22d) follows from the fact that the Gaussian func-
tion is even and sine is odd over [−∞, ∞]. Equation (22e)
follows from that the argument is even over the interval

and (22f) is from [36]:
∫

∞

0
e−at2

cos(2xt)dt = 1
2

√
π
a e−

x2

a .
Using the result in (22g), the expected value of (19) is

E{h∗

1A1h1} = Ne−

σ2
1

2 h∗

1h1, (23)

which is the bias term for all terms that contain A1. Using
(23) in (17) and computing the expected value gives,

E

{[
θ̂1,1

θ̂2,1

]}
=

(H∗

1H1)−1


 e−

σ2
1

2 I 0

0 e−

σ2
2

2 I




[
θ1,1

θ2,1

]
H∗

1H1. (24)

If σ = σ1 = σ2, it is possible to move out the term

e−
σ2

2 in front of (24), which shows that the estimated

parameters are scaled by the constant e−
σ2

2 . However, in
general this is not possible. Considering the effects when
σ1 6= σ2, let

G =

[
G11 G12

G21 G22

]
= (H∗

1H1)−1 = F
−1, (25)

F =

[
F11 F12

F21 F22

]
, (26)

and

Di = e−

σ2
i

2 I, (27)

where I is the identity matrix of appropriate size; then

(H∗

1H1)−1


 e−

σ2
1

2 I 0

0 e−

σ2
2

2 I


 H∗

1H1 =

[
G11 G12

G21 G22

] [
D1F11 D1F12

D2F21 D2F22

]
= (28)

[
D1G11F11 + D2G12F21 D1G11F12 + D2G12F22

D1G21F11 + D2G22F21 D1G21F12 + D2G22F22

]
.

Unless D1 = D2, this equation cannot be a scaled
version of the identity matrix. Therefore, for a system with
more than one input, phase noise not only results in a bias
term that scales the estimated parameters θ̂ depending
on the variance of the phase noise increments, but also
mixes the parameters from the two parts θ1,1 and θ2,1 if
a standard linear least-squares estimation is used. To the
best of the authors’ knowledge, no methods that eliminates
this bias have been proposed.

As previously mentioned, the result is similar if one
of the sources is considered to be a phase reference, i.e.,
there is no phase noise. We assume that the receiver and
second signal source are noisy and we let B0 and A2 be
the phase noise matrices as previously described. Since the
first signal source is the phase reference, i.e., A1 = I, the
LSE can be written as

[
θ̂1,1

θ̂2,1

]
= (H∗

1H1)−1H∗

1[B0h1 B0A2h2]

[
θ1,1

θ2,1

]
=

(H∗

1H1)−1

[
h∗

1B0h1 h∗

1B0A2h2

h∗

2B0h1 h∗

2B0A2h2

] [
θ1,1

θ2,1

]
,

(29)

which is the same form as the LSE in (18). In (29), B0

and A2 are two different phase noise matrices since for
the partially non-coherent case, always two different LOs
are used.

Note that the phase noise also causes the coherent aver-
aging to produce a biased estimate that does not improve
with the number of averages compared to additive noise
[28], in which the bias terms tend to zero by increasing the
number of averages.
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