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framlägges till offentlig granskning för avläggande av teknologie doktorsexamen
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Sammanfattning

I den här avhandlingen behandlar vi flera problem relaterade till informationsteore-
tisk säkerhet. Wiretap-kanalen är den enklaste informationsteoretiska modellen som
behandlar säkerhet och i de första kapitlen av avhandlingen designar vi praktiska
koder för wiretap-kanalen.

Först designar vi glesa paritetskontrollkoder (LDPC) med tv̊a kanttyper för den
binära erasure-wiretap-kanalen (BEC-WT). För scenariot där huvudkanalen är felfri
och avlyssnarens kanal är en binär erasure-kanal (BEC) konstruerar vi en följd av
koder som uppn̊ar säkerhetkapaciteten. Dessa koder är baserade p̊a vanliga LDPC-
koder för BEC. V̊ar konstruktion fungerar dock inte när huvudkanalen inte är felfri.
Om s̊a inte är fallet använder vi en metod baserad p̊a linjär programmering för att
optimera gradfördelningen hos v̊ara koder, vilket l̊ater oss designa kodensembler
som har prestanda nära säkerhetskapaciteten hos BEC-WT. Vi generaliserar sedan
en av Méassons, Montanaris och Urbankes metoder för att räkna ut den betingade
entropin av meddelandet hos avlyssnaren.

Vi visar sedan att Arıkans polära koder kan användas för att uppn̊a hela
kapacitets-ekvivokationsregionen för en degraderad symmetrisk wiretap-kanal med
binärt inalfabet. Vi designar ocks̊a polära koder för decode-and-forward-protokollet
för den fysiskt degraderade reläkanalen och för den bidirektionella broadcastkana-
len med gemensamma och konfidentiella meddelanden. Vi visar att koderna uppn̊ar
kapaciteten och kapacitets-ekvivokationsregionen för dessa kanalmodeller.

I nästföljande kapitel behandlar vi en gaussisk kanalmodell. Vi visar att Jo-
sephs och Barrons glesa regressionskoder (SPARCs) kan användas för att uppn̊a
säkerhetskapaciteten för wiretapkanaler med gaussiskt brus och för decode-and-
forward-protokollet för reläkanalen. Vi behandlar ocks̊a generering av hemliga nyck-
lar fr̊an korrelerade gaussiska källor med hjälp av en publik kanal av begränsad
kapacitet. Vi visar att SPARC-koder uppn̊ar kapacitetsregionen för detta problem.

I det sista kapitlet behandlar vi generering av hemliga nycklar över fädande
kanaler. Vi behandlar först ett scenario med flera antenner och högt signal-till-
brusförh̊allande (SNR) och föresl̊ar ett protokoll baserat p̊a träning och slumpdel-
ning. Vi behandlar sedan ett scenario med en antenn hos varje terminal och l̊agt
SNR, där vi begränsar den ena terminalen till att endast sända pilotsignaler. Vi
föresl̊ar ett protokoll baserat p̊a sporadisk träning och opportunistisk sändning med
en wiretap-kod och visar att det är optimalt.
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Abstract

In this thesis we consider several problems relating to information theoretic secu-
rity. The wiretap channel is the simplest information theoretic setting which takes
security into account, and in the first chapters of the thesis we design some practical
coding schemes for this channel model.

First we consider the design of two edge type low density parity check (LDPC)
codes for the binary erasure wiretap channel (BEC-WT). For the scenario when the
main channel is error free and the wiretapper’s channel is a binary erasure channel
(BEC) we find secrecy capacity achieving code sequences based on standard LDPC
code sequences for the BEC. However, this construction does not work when there
are also erasures on the main channel. For this case we develop a method based
on linear programming to optimize two edge type degree distributions. Using this
method we find code ensembles that perform close to the secrecy capacity of the
BEC-WT. We generalize a method of Méasson, Montanari, and Urbanke in order
to compute the conditional entropy of the message at the wiretapper. We apply
this method to relatively simple ensembles and find very good secrecy performance.

We then show that Arıkan’s polar codes can be used to achieve the whole
capacity-equivocation region of for any degraded symmetric binary input wiretap
channel. We also design capacity achieving polar codes for the decode-and-forward
scheme for the physically degraded relay channel, and for the bidirectional broad-
cast channel with common and confidential messages.

In the subsequent chapter we consider a Gaussian system model. We show that
sparse regression codes (SPARCS) as introduced by Joseph and Barron achieve the
secrecy capacity of the additive white Gaussian noise (AWGN) wiretap channel,
and can be used to implement the decode-and-forward scheme for the Gaussian
relay channel. We also consider secret key agreement using correlated Gaussian
random variables and a rate-limited public channel. We show that SPARCs attain
the capacity region also for this problem.

Finally we consider secret key agreement over reciprocal fading channels. We
first consider a multiple-antenna setup in the high signal-to-noise-ratio (SNR)
regime and propose a scheme based on training and randomness sharing. We then
consider a single antenna setup in the low SNR regime, where one of the terminals
is only allowed to transmit pilot signals. We propose a bursty transmission scheme
based on training and opportunistic transmission using a wiretap channel code, and
show that this scheme is optimal.
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Chapter 1

Introduction

Secure communication is essential when considering not only communication be-
tween people or between a person and an electronic device, but also machine-to-
machine communication. The recent large rise in the number of devices communi-
cating wirelessly is not expected to slow at any time in the foreseeable future, and
therefore the analysis of cyber physical systems, in which different systems commu-
nicate, form networks, and interact with the physical world, is needed in order to
make tomorrow’s power grids, transportation systems, and manufacturing plants
more efficient, safer, and sustainable.

One example of such a system could be a manufacturing plant with many sen-
sors and actuators distributed over a large area, in which wireless communication
protocols allow for cheap deployment and easy reconfiguration. On the other hand,
wireless communication opens up the possibility for industrial espionage or even
sabotage.

There are also many environments where wired communication is not feasible at
all. One example is health monitoring via sensors embedded in the patient’s body,
or even the control of implanted medical devices such as pacemakers. Here there
are privacy concerns around the leakage of sensitive medical data, and in the case
of sabotage, the consequences could be fatal.

Another example where wireless communication is needed is Automated High-
way Systems, in which several vehicles form platoons in order to increase fuel ef-
ficiency and reduce congestion. If the communication between trucks and cars
traveling at 100 mph is compromised, the outcome could once again be severe.

Secure communication is also important in smart grids, where on one end of the
spectrum, unsecure communication could result in a blackout of a large area due to
sabotage, and on the other end there are privacy concerns in reporting the detailed
electricity usage patterns of a single household.

It is clear from these examples that security has a large part to play in future
wireless communication systems. Traditionally, security has been implemented
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2 Introduction

in higher layers using methods based on secret key or public key cryptography
[MVO96]. This solution is not ideal for all applications considered above, as pointed
out by Liang, Poor, and Shamai [LPS08]. The methods based on physical layer
security which we consider in this thesis can often be implemented with less com-
putational overhead than cryptographic solutions. This is essential, for example,
when extending the battery life of remotely situated sensors, or medical devices
inside the body. Another advantage of these methods is that they can be better
suited for networks without infrastructure, or rapidly changing networks, where the
distribution of keys needed for cryptography-based methods could be impractical.

Alice

Bob

Eve

Channel

Figure 1.1: A wiretap channel.

We will mostly consider the type of system depicted in Figure 1.1. Here Alice
and Bob are two trusted users that want to exchange messages over a network, while
keeping their communication secret from an untrusted entity Eve. In public key
cryptography, Alice encrypts her message using Bob’s public key, which is known
to everyone, and transmits the ciphertext over the network. After receiving the
ciphertext, Bob then decrypts it using his private key. If Eve somehow gains access
to the ciphertext she is unable to decode it since she only has access to Bob’s
public key. The reason that Eve cannot decode the message without access to the
private key is the conjectured difficulty of solving certain computational problems,
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and Eve’s limited computational powers. The absence of this assumption on Eve’s
computational ability is one reason that makes physical layer security attractive, in
addition to those mentioned above. We instead rely on Eve’s physical limitations
compared to Bob’s. For example, let Alice be a wireless router and Bob a computer
situated in the same room, and assume that Eve is located outside the building. In
this case the channel from Alice to Eve is noisier than the channel from Alice to
Bob, and Wyner showed that this makes it possible to transmit a secret message
from Alice to Bob without using any pre-shared keys [Wyn75]. In Chapter 3–5 we
design practical coding schemes for similar setups.

Key-based cryptography is still possible without assuming that Eve has bounded
computational powers. Shannon studied this problem [Sha49] and found that in
order to guarantee secrecy in this case the key needs to act as a One Time Pad.
This means that the key needs to be the same size as the message, and key reuse
weakens the secrecy considerably. Due to the large size of the key needed this is
not easy to realize in practice because of the difficulty in distributing large keys,
especially in the type of rapidly changing ad-hoc networks we envision.

A related problem we consider is one in which the wireless channel connecting
Alice, Bob, and Eve changes in a random manner. In this case we can use the
random state of the channel itself to generate a secret key K at both Alice and
Bob, without needing to agree on it beforehand. This key can then be used as a
One Time Pad to communicate secretly in the manner mentioned above. This is
a problem which has been studied extensively, but, surprisingly, relatively little is
known about the fundamental limits on which key sizes can be achieved, and which
schemes are optimal. In Chapter 6 we study this problem.

1.1 Outline and Contributions

This section outlines the thesis and summarizes its contributions.

Chapter 2

This chapter contains a review of fundamental results in information theory and
coding needed for the rest of the thesis. It is divided into three parts. First we
give an information-theoretic overview of channel coding and in particular Wyner’s
wiretap channel, and the secret-key agreement problem. We also briefly introduce
the relay channel and the bidirectional broadcast channel. The second part is
an overview of LDPC codes, polar codes, and sparse regression codes, which are
practical coding schemes that we will use to construct optimal coding schemes for
these problems. Finally we give an overview of previous work on practical coding
schemes for secrecy. Parts of this chapter also appeared in the author’s licentiate
thesis [And11].
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Chapter 3

In this chapter we introduce a two edge type LDPC ensemble for the wiretap
channel. We give a construction that achieves the secrecy capacity when the
main channel is noise-free. In the case of a noisy main channel we numerically
optimize the ensemble, and find codes that operate close to the secrecy capacity.
We also generalize a result from [MMU08] in order to be able to calculate the
equivocation at the eavesdropper. Using this result we find relatively simple
ensembles that have very good secrecy performance. This chapter also appeared in
the author’s licentiate thesis [And11] and is based on the following published papers:

[RAT+09]
V. Rathi, M. Andersson, R. Thobaben, J. Kliewer, and
M. Skoglund. Two edge type LDPC codes for the wiretap
channel. In Proc. Asilomar Conf. Signals, Systems, and
Computers, pages 834 –838, 2009, c⃝ 2009 IEEE.

[ART+10a]
M. Andersson, V. Rathi, R. Thobaben, J. Kliewer, and
M. Skoglund. Equivocation of Eve using two edge
type LDPC codes for the erasure wiretap channel. In
Proc. Asilomar Conf. Signals, Systems, and Computers,
November 2010, c⃝ 2010 IEEE.

[RAT+13]
V. Rathi, M. Andersson, R. Thobaben, J. Kliewer, and
M. Skoglund. Performance analysis and design of two
edge-type LDPC codes for the BEC wiretap channel.
IEEE Transactions on Information Theory, 59(2):1048–
1064, February 2013, c⃝ 2013 IEEE.

Here [RAT+13] is an extended journal version of [RAT+09] and [ART+10a].

Chapter 4

In this chapter we construct polar codes for degraded wiretap channels, the
physically degraded relay channel, and the bidirectional broadcast channel with
common and confidential messages. We show that these constructions achieve the
fundamental limits of these channel models. This chapter is based on the following
published papers:
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[ART+10b]
M. Andersson, V. Rathi, R. Thobaben, J. Kliewer, and
M. Skoglund. Nested polar codes for wiretap and relay
channels. IEEE Communications Letters, 14(8):752 –754,
August 2010, c⃝ 2010 IEEE.

[AWOS12]
M. Andersson, R. Wyrembelski, T. J. Oechtering, and
M. Skoglund. Polar codes for bidirectional broadcast
channels with common and confidential messages. In
Proc. Int. Symp. on Wireless Communication Systems
(ISWCS), pages 1014 –1018, August 2012, c⃝ 2012 IEEE.

[ASOS13]
M. Andersson, R. Schaefer, T. J. Oechtering, and
M. Skoglund. Polar coding for bidirectional broad-
cast channels with common and confidential messages.
IEEE Journal on Selected Areas in Communications,
31(9):1901–1908, September 2013, c⃝ 2013 IEEE.

Here [ASOS13] is an extended journal version of [AWOS12]. Parts of this chap-
ter also appeared in the author’s licentiate thesis [And11], and some results from
[ART+10b] were also included in [BSTA+12].

Chapter 5

In this chapter we construct sparse regression codes for the secret key agreement
problem with degraded correlated Gaussian sources, the Gaussian wiretap channel,
and the physically degraded Gaussian relay channel with orthogonal receivers. We
show that these codes achieve the whole capacity region of the studied problems.
The material in this chapter has not yet been submitted for publication.

Chapter 6

In this chapter we consider secure key agreement over a reciprocal non-coherent
fading channel. First we consider a scenario where the terminals have multiple
antennas. We propose a scheme based on training and randomness sharing, and
characterize its achievable secure degrees of freedom in the high SNR regime. In
the second part we consider a single antenna scenario in the low SNR regime. We
constrain one of the terminals to only transmit pilot symbols, and find the secret
key capacity and the secrecy capacity. In particular, we show that both the secret
key capacity and the secrecy capacity scales as the channel capacity without an
eavesdropper. We also note that in both the high SNR and the low SNR schemes
studied no knowledge about Eve’s channel is needed. This chapter is based on the
following published papers:
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[AKS12]
M. Andersson, A. Khisti, and M. Skoglund. Secret-key
agreement over a non-coherent block-fading MIMO wire-
tap channel. In Proc. IEEE Information Theory Workshop
(ITW), pages 153 –157, September 2012, c⃝ 2012 IEEE.

[AKS13]
M. Andersson, A. Khisti, and M. Skoglund. Secure key
agreement over reciprocal fading channels in the low SNR
regime. In Proc. IEEE Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pages
674–678, June 2013, c⃝ 2013 IEEE.

Chapter 7

In this chapter we conclude the thesis and point out some directions for possible
future work.

1.2 Contributions outside the Thesis

In addition to the material covered in this thesis, the author has also contributed
to the following works.
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[OAS09]
T. J. Oechtering, M. Andersson, and M. Skoglund.
Arimoto-Blahut algorithm for the bidirectional broadcast
channel with side information. In Proc. IEEE Information
Theory Workshop (ITW), pages 394–398, October 2009

[SAS11]
N. Schrammar, M. Andersson, and M. Skoglund. Approx-
imate capacity of the general Gaussian parallel relay net-
work. In Proc. IEEE Int. Symp. on Information Theory
(ISIT), pages 89–93, July 2011

[RUAS11]
V. Rathi, R. Urbanke, M. Andersson, and M. Skoglund.
Rate-equivocation optimal spatially coupled LDPC codes
for the BEC wiretap channel. In Proc. IEEE Int. Symp.
on Information Theory (ISIT), pages 2393–2397, July
2011

[SATS11]
Z. Si, M. Andersson, R. Thobaben, and M. Skoglund.
Rate-compatible LDPC convolutional codes for capacity-
approaching hybrid ARQ. In Proc. IEEE Information
Theory Workshop (ITW), pages 513–517, October 2011

[AZWS11]
M. Andersson, A. Zaidi, N. Wernersson, and M. Skoglund.
Nonlinear distributed sensing for closed-loop control over
gaussian channels. In Communication Technologies Work-
shop (Swe-CTW), 2011 IEEE Swedish, pages 19–23, Oc-
tober 2011

[BSTA+12]
R. Blasco-Serrano, R. Thobaben, M. Andersson, V. Rathi,
and M. Skoglund. Polar codes for cooperative relay-
ing. IEEE Transactions on Communications, 60(11):3263
–3273, November 2012

1.3 Notation and Abbreviations

We will use the following notation and abbreviations throughout the thesis.

X A random variable
x A realization of the random variable X
X The set (alphabet) which X takes values in
|X | The cardinality of X
pX(x) The probability mass function of X
pY |X(y|x) The conditional probability mass function of X
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conditioned on Y
fX(x) The probability density function of X
fX|Y (x|y) The conditional probability density function of X

conditioned on Y
E[X] The expectation of X
H(X) The entropy of X
H(X|Y ) The conditional entropy of X conditioned on Y
h(X) The differential entropy of X
h(X|Y ) The conditional differential entropy of X

conditioned on Y
I(X;Y ) The mutual information between X and Y
I(X;Y |S) The conditional mutual information between

X and Y conditioned on S
X → Y → Z (X,Y, Z) form a Markov chain in this order
BEC(ϵ) The binary erasure channel with erasure

probability ϵ
BEC-WT(ϵm, ϵw) A wiretap channel where the main channel

is a BEC(ϵm) and the wiretapper’s channel
is a BEC(ϵw)

log(x) The logarithm to base 2
ln(x) The natural logarithm
h2(x) The binary entropy function to base 2
11{S} The indicator variable which is 1 if S is true

and 0 otherwise
coef

{∑

i FiDi, Dj
}

The coefficient of Dj in
∑

i FiDi

xN A vector with N elements
xj
i The vector [xi xi+1 . . . xj−1 xj ]

xN
e The vector consisting of the elements in xN

with even indices
xN
o The vector consisting of the elements in xN

with odd indices
b.p.c.u. bits per channel use
LDPC code Low Density Parity Check code
R-S code Reed-Solomon code
SPARC Sparse Regression Code
s.d.o.f. secure degrees of freedom



Chapter 2

Fundamentals

In this chapter we will review results used in later parts of the thesis. We will
begin by a short introduction to channel coding and the classic result by Shannon
[Sha48]. We will then give an overview of the wiretap channel as introduced by
Wyner in [Wyn75], and the related problem of secret key agreement studied by
Maurer [Mau93], and by Ahlswede and Csiszár [AC93]. We then briefly discuss
the relay channel introduced by Cover and El-Gamal [CG79] and the bidirectional
broadcast channel first studied by Larsson, Johansson, and Sunell [LJS05]. We
then give an introduction to Gallager’s LDPC codes [Gal63], Arıkan’s polar codes
[Arı09], and sparse regression codes as introduced by Joseph and Barron [JB12],
which will be used in later chapters to construct practical codes for the channel
models mentioned above.

2.1 Channel Coding

Channel coding is concerned with the communication problem depicted in Fig-
ure 2.1. At the source there is a message that we want to replicate at the des-
tination. To do this we have a channel available. The channel can in general be
any medium, for example a telephone line, the air, the Internet or a hard drive.
Shannon studied this problem from a mathematical viewpoint in his revolutionary
paper [Sha48] and quantified how much information the source can reliably, i.e.
with low probability of error, transmit to the destination.

Source Channel Destination
Y NXN

Figure 2.1: A communication system.

9
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We define the channel by the triple (X ,Y, PY N |XN ), where X and Y are two
finite sets called the input alphabet and the output alphabet respectively, and
PY N |XN (yN |xN ) are the channel transition probabilities for different number of
channel uses N . PY N |XN (yN |xN ) is the probability of seeing the output yN at the
channel when the input is xN .

Note that in general we let the channel transition probability PY N |XN depend
on the block length N . If the channel transition probabilities factorize as

PY N |XN (yN |xN ) =
N
∏

i=1

PY |X(yi|xi)

we say that the channel is memoryless and write (X ,Y, PY |X).
A (2NR, N) code of rate R for the channel (X ,Y, PY |X) consists of a message

set

M = {1, . . . ,
⌈

2NR
⌉

}

of cardinality
⌈

2NR
⌉

, an encoder

f : M → XN ,

and a decoder

g : YN → M.

The average decoding error probability is defined as

PN
e =

1

M

M
∑

i=1

Pr(g(Y N ) ̸= i|XN = f(i)),

and it is the probability of the decoder making an error when all of the possible
messages in M are used with equal probability.

We say that a rate R is achievable if there exists a sequence of (2NRN , N) codes
such that for every ϵ > 0

lim inf
N→∞

RN > R− ϵ,

lim
N→∞

PN
e < ϵ.

We call the supremum of all achievable rates the capacity C of the channel

C = sup{R : R is achievable}.

Shannon showed that the capacity is equal to the maximum mutual information
I(X;Y ) between the input and the output of the channel, where the maximization
is taken over all possible input distributions PX :

C = max
PX

I(X;Y ). (2.1)
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We also define the symmetric capacity I(PY |X) of a channel as

I(PY |X) =
∑

y∈Y

∑

x∈X

1

|X |pY |X(y|x) log
pY |X(y|x)

1
|X |

∑

x′∈X pY |X(y|x′)
.

This is the maximum achievable rate when all channel inputs x are used with
the same probability. If the maximizing distribution PX in (2.1) is the uniform
distribution then the symmetric capacity is equal to the capacity.

One class of channels for which this is the case is the class of symmetric discrete
memoryless channels. In order to define a symmetric discrete memoryless channel
we note that we can write the transition probabilities of a discrete and memoryless
channel in matrix form. Each row i of the matrix correspond to a different input
xi and each column j corresponds to a different output yj . The element in position
(i, j) is the channel transition probability pY |X(yj |xi). Based on this matrix we
have the following definition:

Definition 2.1 (Symmetric discrete memoryless channel [Gal68]). A discrete and
memoryless channel is said to be symmetric if we can partition the set of outputs y
so that for each subset the matrix of transition probabilities corresponding to this
subset fulfills:

1. The rows of the matrix are permutations of each other,

2. The columns of the matrix are permutations of each other.

♦

For an example of a symmetric channel see the following subsection, in which
we define the binary erasure channel, a channel model that we will use frequently
throughout the rest of the thesis.

The Binary Erasure Channel

The Binary Erasure Channel was introduced by Elias [Eli55] as a toy example. The
practical interest in it, or rather in its generalization the packet erasure channel, has
risen since the introduction of the Internet. The binary erasure channel with erasure
probability ϵ, or BEC(ϵ), is a memoryless channel with binary input alphabet X =
{0, 1}, a ternary output alphabet Y = {0, 1, ?} and channel transition probabilities
given by:

PY |X(0|0) = 1− ϵ

PY |X(1|0) = 0

PY |X(?|0) = ϵ

PY |X(0|1) = 0

PY |X(1|1) = 1− ϵ
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PY |X(?|1) = ϵ.

In Figure 2.2 we see a representation of the different possible channel transitions
and their probabilities. We see that the input is either reconstructed perfectly at
the output, with probability 1− ϵ, or erased, with probability ϵ.

00

11

?

ϵ

ϵ

1− ϵ

1− ϵ

X Y

Figure 2.2: Binary erasure channel.

We can write the channel transition probability matrix as
[

1− ϵ ϵ 0
0 ϵ 1− ϵ

]

.

Rows one and two correspond to the inputs 0 and 1 respectively, and columns one,
two, and three correspond to the outputs 0, ?, and 1 respectively. We now partition
the output alphabet into the sets {0, 1} and {?}. This gives us the following two
transition probability matrices:

[

1− ϵ 0
0 1− ϵ

]

,

[

ϵ
ϵ

]

.

Since for both of these matrices the rows (and the columns) are a permutation
of each other the BEC(ϵ) is a symmetric channel. Thus the maximizing input
distribution is the uniform distribution, and the capacity, as well as the symmetric
capacity, is found to be 1− ϵ.

In the next section we give a short information theoretic introduction to the
wiretap channel. We also present a code construction method based on linear
nested codes which will be used in the main part of the thesis.

2.2 The Wiretap Channel

In [Wyn75] Wyner introduced the notion of a wiretap channel which is depicted
in Figure 2.3. It is the most basic channel model that takes security into account.
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A wiretap channel consists of an input alphabet X , two output alphabets Y and
Z, and a transition probability PY Z|X(y, z|x). We call the marginal channels PY |X

and PZ|X the main channel and the wiretapper’s channel respectively.
In a wiretap channel, Alice communicates a message S, which is chosen uni-

formly at random from the message set S, to Bob through the main channel. Alice
performs this task by encoding S as a vector XN of length N and transmitting
XN . Bob and Eve receive noisy versions of XN , which we denote by Y N and ZN ,
via their respective channels.

Alice PY Z|X Bob

Eve

Y NXN

S Ŝ

ZN

Figure 2.3: Wiretap channel.

The encoding of a message S by Alice should be such that Bob is able to decode
S reliably and ZN provides as little information as possible to Eve about S.

We define an (2nRN , N) code for the wiretap channel by

• a message set S = {1, . . . ,
⌈

2nRN
⌉

},

• a (randomized) encoding function at Alice fN : S → XN ,

• a decoding function at Bob gN : YN → S.

The structure of the codebook is as follows. The codebook C is made up of disjoint
subcodes CS , each labelled by one of the possible messages. To encode the message
S ∈ S, Alice chooses one of the codewords in CS uniformly at random and transmits
it. We assume that all messages are equally likely. Let PN

e be the average decoding
error probability for Bob

PN
e = Pr(gN (Y N ) ̸= S),

and let RN
e be the equivocation rate of Eve

RN
e =

1

N
H(S|ZN ).

The equivocation rate is a measure of how much uncertainty Eve has about the
message S after observing ZN . We want RN

e to be as high as possible, and ideally
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it should equal the rate R. For ease of notation, whenever we say equivocation in
the rest of the thesis we will mean the equivocation rate.

A rate-equivocation pair (R,Re) is said to be achievable if, for every ϵ > 0,
there exists a sequence of codes of rate RN and length N such that the following
reliability and secrecy criteria are satisfied:

Rate : lim inf
N→∞

RN > R− ϵ, (2.2)

Reliability: lim
N→∞

PN
e < ϵ, (2.3)

Secrecy: lim inf
N→∞

RN
e > Re − ϵ. (2.4)

The capacity-equivocation region is the closure of all achievable pairs (R,Re), and
was found by Csiszár and Körner:

Theorem 2.2 (Corollary 2 from [CK78]). The capacity-equivocation region
of the wiretap channel is the set of rate-equivocation pairs (R,Re) ∈ R2

+ that
satisfy

Re ≤ R, (2.5)

Re ≤ I(V ;Y |U)− I(V ;Z|U), (2.6)

R ≤ I(V ;Y ), (2.7)

for random variables U → V → X → (Y, Z). The cardinalities of the ranges of
U and V can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

The highest R, such that the pair (R,R) is achievable, is called the secrecy
capacity. In this case R = Re, which we call perfect secrecy. This is equivalent
to lim supN→∞ I(S;ZN )/N = 0, or lim infN→∞ H(S|ZN )/N = R, and means that
the information leakage to the wiretapper goes to zero rate-wise. From Theorem 2.2
we get

Corollary 2.3. The secrecy capacity for a general wiretap channel is

CS = max
PV X

[I(V ;Y )− I(V ;Z)] ,

where V satisfies the Markov chain V → X → (Y, Z). "

Note that the secrecy capacity is always non-negative since we can choose V
and X to be independent which will ensure that I(V ;Y )− I(V ;Z) = 0.
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If there exists a channel transition probability PZ|Y ′ with input alphabet Y such
that

PZ|X(z|x) =
∑

y′∈Y

PY |X(y′|x)PZ|Y ′(z|y′) ∀z, x

we say that the wiretapper’s channel is stochastically degraded with respect to the
main channel. If the channel transition probability PY Z|X factorizes as

PY Z|X(y, z|x) = PY |X(y|x)PZ|Y (z|y),

or equivalently the Markov chain X → Y → Z holds, we say that the wiretapper’s
channel is physically degraded with respect to the main channel. It is easy to show
that the capacity-equivocation region only depends on the marginal probabilities,
which means that the capacity-equivocation region for physically and stochastically
degraded wiretap channels is the same. We have:

Corollary 2.4 (Theorem 3 from [CK78]). The capacity-equivocation region of the
degraded wiretap channel is the set of rate-equivocation pairs (R,Re) ∈ R2

+ that
satisfy

Re ≤ R,

Re ≤ I(X;Y )− I(X;Z),

R ≤ I(X;Y ),

for some input probability distribution PX . In particular, the secrecy capacity is
given by

CS = max
PX

[I(X;Y )− I(X;Z)] .

"

In the degraded case, if the same input distribution PX maximizes both I(X;Y )
and I(X;Z), for example when both PY |X and PZ|X are symmetric channels, the
capacity-equivocation region is given by

Re ≤ R ≤ CM , 0 ≤ Re ≤ CM − CW , (2.8)

and the secrecy capacity is

Cs = [CM − CW ]+ = max(0, CM − CW ),

where CM and CW are the capacities of the main and the wiretapper’s channels
respectively. The rate region described by (2.8) is depicted in Figure 2.4. The
line AB corresponds to points with perfect secrecy, and the point C corresponds to
using the main channel at full rate.
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Re

A RCMCM − CW

CM − CW
B C

Figure 2.4: Capacity-equivocation region for a degraded symmetric wiretap chan-
nel.

When both the main channel and the wiretapper’s channel are binary erasure
channels we call the resulting wiretap channel the binary erasure wiretap channel,
and we denote it by BEC-WT(ϵm, ϵw). Here ϵm and ϵw are the erasure probabilities
of the main channel and the wiretapper’s channel respectively. If ϵw ≥ ϵm, the BEC-
WT(ϵm, ϵw) is a symmetric degraded wiretap channel and its capacity-equivocation
region is given by

Re ≤ R ≤ 1− ϵm, 0 ≤ Re ≤ ϵw − ϵm,

and the secrecy capacity is

Cs = ϵw − ϵm.

A detailed information theoretic overview of general wiretap channels can be
found in [LPSS09] and [BB11].

Weak versus Strong Secrecy

One could also consider the case where the mutual information between S and XN

is required to go to zero instead of just the mutual information rate, i.e.

lim sup
N→∞

I(S;ZN ) = 0

instead of

lim sup
N→∞

I(S;ZN )

N
= 0.

This constraint is called strong secrecy, whereas the constraint given in (2.4) is called
weak secrecy. Csiszár showed that the secrecy capacity for discrete memoryless
channels under the strong and the weak secrecy criterion is the same [Csi96], a
result which was recently extended by Bloch and Lanemann to a more general class
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of channels [BL13] using the concept of channel resolvability introduced by Han
and Verdú in [HV93]. We will mostly consider the case of weak secrecy in the rest
of the thesis.

In the next subsection we present a coding strategy based on cosets of linear
codes introduced by Wyner.

2.2.1 Nested Codes

Wyner and Ozarow used the following coset encoding strategy [Wyn75, OW84] to
show that perfect secrecy can be achieved when the main channel is error free and
the input alphabet is binary. Similar nested code structures for other multiterminal
setups were considered in [ZSE02]. The secrecy capacity of the wiretap channel
considered by Wyner and Ozarow is 1 − CW . Let C0 be the binary linear code of
rate R0 defined by the parity check check equation HxN = 0. The coset Cs is the
set

Cs = {xN : HxN = s}.

To transmit the binary message s, Alice chooses one of the messages in Cs uniformly
at random. Since there are 2N/2NR0 different cosets, the rate of the coding scheme
is 1 − R0. Bob decodes by multiplying H with x. If C0 comes from a capacity
approaching sequence of linear codes both the rate and the equivocation can be
made as close to 1 − CW as wanted. To see this we consider the similar code
construction method for a noisy main channels using nested codes introduced in
[TDC+07]:

Definition 2.5 (Wiretap code CN with coset encoding). LetH be anN(1−R(1,2))×
N parity check matrix with full rank, and let C(1,2) be the code whose parity-check
matrix is H. Let H1 and H2 be the sub-matrices of H such that

H =

[

H1

H2

]

,

where H1 is an N(1−R(1))×N matrix and H2 is an NR×N matrix. We see that
R = R(1) − R(1,2). Let C(1) be the code with parity-check matrix H1. Alice uses
the following coset encoding method to communicate her message to Bob.
Coset Encoding Method: Assume that Alice wants to transmit a message whose
binary representation is given by an NR-bit vector S. To do this she transmits XN ,
which is a randomly chosen member of the coset

CS =

{

XN :

[

H1

H2

]

XN =

[

0
S

]}

.

Bob uses the following syndrome decoding to retrieve the message from Alice.
Syndrome Decoding: After observing Y N , Bob obtains an estimate X̂N for XN
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using the parity check equations H1XN = 0. Then he computes an estimate Ŝ for
S as Ŝ = H2X̂N .

We call this the wiretap code CN . ♦

We see that C(1) can be partitioned into 2NR disjoint subsets given by the cosets
of C(1,2). This is a generalization of Wyner’s construction above. To see this note
that in Wyner’s construction, C(1,2) is the set of all binary vectors of length N , and
C(1) = C0.

Now assume that C(1) comes from a capacity achieving sequence over the main
channel and that C(1,2) comes from a capacity achieving sequence over the wire-
tapper’s channel1. Thangaraj et al. [TDC+07] showed that in this case the coset
encoding scheme achieves limN→∞ PN

e = 0 and limN→∞ I(S;ZN )/N = 0.
It is easy to see that the error probability over the main channel goes to zero.

Since C(1) is capacity achieving over the main channel Bob can determine which
codeword XN was sent with arbitrarily low probability of error, and then multiply
H2 by XN to obtain S.

To bound the mutual information I(S;ZN ), we use the chain rule of mutual
information on I(XNS;ZN ) in two ways:

I(XN ;ZN ) + I(S;ZN |XN ) = I(S;ZN ) + I(XN ;ZN |S).

Since S → XN → ZN is a Markov chain, I(S;ZN |XN ) = 0, and we get

I(S;ZN ) =I(XN ;ZN )− I(XN ;ZN |S)
=I(XN ;ZN )−H(XN |S) +H(XN |ZNS)

≤NCW −NR(1,2) +H(XN |ZNS),

where we have used that I(XN ;ZN ) ≤ NCW and that H(XN |S) = NR(1,2) in the
last step. Since C(1,2) is capacity achieving we must have limN→∞ R(1,2) = CW . To
bound H(XN |ZNS) we use Fano’s inequality:

H(XN |ZNS) ≤ h2(P
N,S
e ) + PN,S

e NR(1,2),

where PN,S
e is the error probability of decodingXN when knowing ZN and the coset

S, and h2(x) is the binary entropy function. Since all the cosets CS are capacity
achieving over the wiretapper’s channel we have limN→∞ PN,S

e = 0. In total we
get

lim
N→∞

I(S;ZN )

N
≤ lim

N→∞

(

CW −R(1,2) +
h2(PN,S

e )

N
+ PN,S

e R(1,2)

)

= 0.

#

1Since the cosets are just translations of each other, this implies that all cosets Cs are capacity
achieving over the wiretapper’s channel. Equivalently, conditioned on which coset S a codeword
xN belongs to, the error probability of the wiretapper can be made arbitrarily small.
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2.3 Secret Key Agreement

Secret key agreement is a related problem to secret message transmission over the
wiretap channel. The goal of secret key agreement is for Alice and Bob to agree on
a key K, which is to be kept secret from Eve. In Chapter 5 we construct sparse
regression codes for secret key agreement, and in Chapter 6 we consider secret key
agreement over non-coherent fading channels. We will consider the source model
and the channel model for secret key agreement as introduced by Ahlswede and
Csiszár [AC93].

2.3.1 Source Model

The setup in Figure 2.5 is the source model for secret key agreement. Alice, Bob and
Eve observe X ∈ X , Y ∈ Y, and Z ∈ Z respectively, where (X,Y, Z) is a discrete
memoryless source distributed according to PXY Z . Alice and Bob are allowed to
exchange messages over a public channel, the output of which is also observed by
Eve. We assume that Alice and Bob will use the public channel for q rounds, and
without loss of generality we assume that Alice uses the channel in odd rounds,
Bob uses the channel in even rounds, and that q is even. A q-round key agreement
scheme of length N is then given by

• a finite message set for the public channel P and a finite key set K,

• q/2 encoding functions at Alice

fi : XN × P(i−1)/2 → P for odd i,

• q/2 encoding functions at Bob

gi : YN × Pi/2 → P for even i,

• A key generating function at Alice

kA : XN × Pq/2 → K,

• A key generating function at Bob

kB : YN × Pq/2 → K.

Let Pi denote the message transmitted over the public channel in round i, and let
KA and KB denote the keys generated at Alice and Bob after q rounds respectively.
We say that a key rate R is achievable if ∀ϵ > 0, there exists a sequence of key
agreement schemes that satisfies

lim sup
N→∞

Pr(KA ̸= KB) < ϵ, (2.9)
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Alice PXY Z Bob

Eve

Pi, i even

Pi, i odd

XN Y N

ZN

KA KB

Figure 2.5: Source model for secret key agreement.

lim inf
N→∞

1

N
H(KA) > R− ϵ, (2.10)

lim inf
N→∞

max

(
1

N
I(KA;Z

NP q),
1

N
I(KB ;Z

NP q)

)

< ϵ. (2.11)

As before we call the supremum of all achievable secret key rates the secret key
capacity CK , and note that the secret key capacity is not known in general. The
following upper bound was found by Maurer [Mau93] and Ahlswede and Csiszár
[AC93]:

CK ≤ min [I(X;Y ), I(X;Y |Z)] ,

together with a lower bound

CK ≥ max [I(X;Y )− I(X;Z), I(X;Y )− I(Y ;Z)] .

These bounds are not tight in general, but they match if (X,Y, Z) form a Markov
chain in any order.

2.3.2 Channel Model

The other similar setup we consider is the channel model for secret key agreement,
see Figure 2.6. In this setup, instead of a source generating (X,Y, Z) we let Alice,
Bob, and Eve be connected by a memoryless broadcast channel PY Z|X , and let
Alice control the input X to the channel. We also allow Alice and Bob access to
two independent sources of randomness MA and MB . In this case a q-round secret
key agreement scheme of length N consists of

• a finite message set P and a finite key set K as before.

• Nq/2 encoding functions for the public channel at Alice

fi,j : MA × Pq(i−1)/2+(j−1)/2 → P,
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Alice PY Z|X Bob

Eve

Pi, i even

Pi, i odd

MA MB

XN Y N

ZN

KA KB

Figure 2.6: Channel model for secret key agreement.

• Nq/2 encoding functions for the public channel at Bob

gi,j : MB × Pq(i−1)/2+j/2 → P,

• N encoding functions for the broadcast channel at Alice

hi : MA × Pq(i−1)/2 → X ,

• A key generating function at Alice

kA : MA × PqN/2 → K,

• A key generating function at Bob

kB : MB × YN × PqN/2 → K.

Alice’s input to the broadcast channel at time i is a function of MA and the
communication P i−1 over the public channel up to that point. After the ith use
of the broadcast channel Alice generates a public message Pi,1 = fi,1(MA, P i−1),
Bob then generates a public message Pi,2 = gi,2(MB , P i−1, Pi,1). This message
exchange takes place over q rounds, after which Alice generates a new input Xi+1 =
hi+1(MA, P i). After N uses of the public channel and a final exchange of public
messages Alice and Bob generate their respective keys KA and KB using their
key generating functions. As in the source model, we say that a key rate R is
achievable if ∀ϵ > 0 there exists a sequence of key agreement schemes that satisfies
(2.9), (2.10), but (2.11) is replaced with

lim inf
N→∞

max

(
1

N
I(KA;Z

NPN ),
1

N
I(KB ;Z

NPN )

)

> R− ϵ. (2.12)
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Source PYSDYSR|X Destination

Relay PYRD|X1

Y N
SDXN

S Ŝ

Y N
SR Y N

RD

XN
R

Figure 2.7: Relay channel with orthogonal receivers.

As for the source model, Ahlswede and Csiszár [AC93] found upper and lower
bounds on the secret key capacity CK :

CK ≤ max
PX

min [I(X;Y ), I(X;Y |Z)] ,

and a lower bound was also found

CK ≥ max

[

max
PX

(I(X;Y )− I(X;Z)) ,max
PX

(I(X;Y )− I(Y ;Z))

]

.

These are not tight in general, but if (X,Y, Z) form a Markov chain in any order
they match.

2.4 Multiuser Channels with a Relay

The same nested coding schemes used to achieve secrecy over the wiretap channel
can also be used for other multiuser channels. Here we present two such channels
that make use of a relay to facilitate communication between two users, the relay
channel introduced by Cover and El-Gamal [CG79], and the bidirectional broadcast
channel introduced by Larsson, Johansson, and Sunell [LJS05]. We will construct
polar codes for these two channels in Chapter 4, and sparse regression codes for the
relay channel in Chapter 5.

2.4.1 The Relay Channel

The relay channel consists of three nodes, a sender, a relay, and a destination. The
sender wishes to convey a message to the destination with the aid of the relay. We
consider the discrete memoryless relay channel with orthogonal receivers, which
consists of finite input sets X and XR at the source and the relay respectively, two
channel transition probabilities PYSDYSR|X and PYRD|XR

, and three finite output
sets YSR, YSD, and YRD, corresponding to the received signal at the relay, the
received signal at the destination from the source, and the received signal at the
destination from the relay respectively.

We define an (2nR, N) code for the relay channel by
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• a message set M = {1, . . . ,
⌈

2nR
⌉

},

• an encoding function at the source f : M → XN ,

• a set of encoding functions at the relay fR,i : Yi−1
SR → XR,

• a decoding function at the destination g : YN
SD × YN

RD → M.

Assuming that the message S is transmitted, the inputs to the channels at time
i are given by

Xi = f(S)i (2.13)

XR,i = fR,i(Y
i−1
SR ). (2.14)

At time N the destination produces an estimate Ŝ = g(Y N
SD, Y N

RD), and we
denote the error probability by PN

e = Pr(S ̸= Ŝ), where we assume that S is
uniformly distributed. We say that a rate R is achievable if ∀ϵ > 0 there exists a
sequence of codes (2NRN , N) such that

lim
N→∞

PN
e < ϵ (2.15)

lim inf
N→∞

RN > R− ϵ. (2.16)

The capacity C is the supremum of all achievable rates.
In general the capacity is not known for the relay channel. We will consider the

special case of a physically degraded relay channel, where the channel transition
probability factors as PYSRYSD|X = PYSR|XPYSD|YSR

. In this case the Decode-and-
Forward scheme is optimal. In this scheme the relay decodes the message M , and
transmits extra information over the relay-to-destination channel which helps the
destination decode the message. The capacity is given by

Theorem 2.6 (Theorem 1 from [CG79]). The capacity of the physically de-
graded relay channel is

C = max
PXPXR

min {I(X;YSD) + I(XR;YRD), I(X;YSD, YSR)} . (2.17)

If the marginal channels PYSR|X , PYSD|X , and PYRD|XR
are symmetric, this

simplifies to

C = min {CSD + CRD, CSR} , (2.18)

where CSD, CSR, and CRD are the capacities of the source-to-destination,
source-to-relay, and relay-to-destination channels respectively.
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Figure 2.8: Physical layer service integration in bidirectional relay networks. In the
initial MAC phase, nodes 1 and 2 transmit their messages m1 and m2 with rates R2

and R1 to the relay node. Then, in the BBC phase, the relay forwards the messages
m1 and m2 and adds a common message m0 with rate R0 to the communication
and further a confidential message mc for node 1 with rate Rc which should be kept
secret from node 2. ( c⃝ 2013 IEEE. Reused with permission.)

2.4.2 Bidirectional Broadcast Channel

The bidirectional broadcast channel consists of three nodes; two users and a relay.
We assume that the two users wish to communicate with one another using the re-
lay, and that there is no direct channel between the two users. The communication
takes place over two phases, the multiple access (MAC) phase, and the bidirectional
broadcast phase (BBC). In the MAC phase the two users communicate their mes-
sages to the relay, and in the BBC phase the relay transmits the two messages to
the users simultaneously. This phase is different from the normal broadcast channel
since the two users know the messages they transmitted in the first phase. Perhaps
surprisingly, this allows the relay to transmit to the two users at the full capacity
of their marginal channels [OSBB08, KMT08, KS07].

Here we consider the second phase with two additional messages from the relay,
one common message intended for both users, and one confidential message intended
for user 1 which should be kept secret from user 2.

The BBC is given by a finite input alphabet X , two finite output alphabets Y1

and Y2, and a channel transition probability PY1Y2|X .
A (2NRc , 2NR0 , 2NR1 , 2NR2 , N) code for the BBC with common and confidential

messages is given by

• four message sets

MC = {1, . . . ,
⌈

2NRc
⌉

},
M0 = {1, . . . ,

⌈

2NR0
⌉

},
M1 = {1, . . . ,

⌈

2NR2
⌉

},
M2 = {1, . . . ,

⌈

2NR1
⌉

},

for the confidential, common, and individual messages respectively.

• an encoding function f : MC ×M0 ×M1 ×M2 → XN ,
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• two decoding functions

g1 :M1 × YN
1 → Mc ×M0 ×M2 (2.19)

g2 :M2 × YN
2 → M0 ×M1. (2.20)

We say that a rate-equivocation tuple (Rc, Re, R0, R1, R2) ∈ R5
+ is achievable

if ∀ϵ > 0 there exists a sequence of (2NRcN , 2NR0N , 2NR1N , 2NR2N , N) codes such
that the error probability

PN
e = Pr((g1(S1, Y

N
1 ), g2(S2, Y

N
2 )) ̸= (SC , S0, S2, S0, S1)),

and the equivocation rate

H(Sc|Y N
2 S2)

N

satisfy

lim sup
N→∞

PN
e < ϵ (2.21)

lim sup
N→∞

H(Sc|Y N
2 S2)

N
> Re − ϵ. (2.22)

We call the closure of the set of achievable rate-equivocation tuples the capacity-
equivocation region, and it was found by Wyrembelski and Boche in [WB11].

Theorem 2.7 (Theorem 1 from [WB11]). The capacity-equivocation region of
the BBC with common and confidential messages is the set of rate-equivocation
tuples (Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy

Re ≤ Rc

Re ≤ I(V ;Y1|U)− I(V ;Y2|U)

Rc +R0 +Rk ≤ I(V ;Y1|U) + I(U ;Yk), k = 1, 2

R0 +Rk ≤ I(U ;Yk), k = 1, 2

for random variables U → V → X → (Y1, Y2). The cardinalities of the ranges
of U and V can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

2.5 LDPC Codes

Low Density Parity Check codes, or LDPC codes, were introduced by Gallager in
his PhD thesis [Gal63]. Following the success of Turbo codes they were studied in
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the 1990’s in work by MacKay and Neal [MN95], Luby, Mitzenmacher, Shokrollahi,
Spielman, and Stemann [LMS+97], Richardson and Urbanke [RSU01], and many
others. We will give a short introduction and give the results we need. For a
detailed overview see [RU08]. In Chapter 3 we construct codes for the BEC-WT
using LDPC codes.

Low density parity check codes are linear codes defined by a parity check matrix.
We will consider binary codes, where all operations are carried out in the binary
field. Consider the linear code C defined by the parity check matrix H, that is

C = {xN : HxN = 0}.

To each parity check matrix we associate a bipartite Tanner graph in the fol-
lowing way [Tan81]. We refer to the two types of nodes in the bipartite graph as
variable nodes and check nodes respectively. Each row in H corresponds to a check
node, and each column in H corresponds to a variable node. The check node i and
the variable node j are connected with an edge if element (i, j) in H is 1. The
Tanner graph in Figure 2.9 corresponds to the check matrix

H =

⎡

⎢
⎢
⎣

1 1 1 0 1 1 0 1
1 1 0 1 0 1 1 1
1 0 1 1 1 0 1 1
0 1 1 1 1 1 1 0

⎤

⎥
⎥
⎦

and has the variable node names and check equations written out.

x8

x7

x6

x5

x4

x3

x2

x1

x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0

x1 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8 = 0

x1 ⊕ x2 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8 = 0

x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 = 0

Figure 2.9: Tanner graph of an LDPC code of length N = 8.

The following compact notation for the degree sequences of an LDPC code was
introduced by Luby et al. in [LMSS01a]. Let Λl be the fraction of variable nodes
of degree l, let Γr be the fraction of check nodes of degree r in the Tanner graph,
and let Λ(x) and Γ(x) be the polynomials defined by

Λ(x) =
lmax∑

l=1

Λlx
l, Γ(x) =

rmax∑

r=1

Γrx
r,

where lmax and rmax are the largest variable node and check node degrees respec-
tively. For the graph in Figure 2.9 we have Λ(x) = x3 and Γ(x) = x6.
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We call (Λ(x),Γ(x)) the degree distribution from the node perspective of the
Tanner graph. We also define the degree distribution from the edge perspective.
Let λl be the fraction of edges in the graph connected to a variable node of degree
l and ρr be the fraction of edges connected to a check node of degree r. Define the
polynomials

λ(x) =
lmax∑

l=1

λlx
l−1, ρ(x) =

rmax∑

r=1

ρrx
r−1.

For the graph in Figure 2.9 we have λ(x) = x2 and ρ(x) = x5.
Let N be the number of variable nodes in a Tanner graph, M the number of

check nodes, and E the number of edges. We can find the following relations

E = NΛ′(1) = MΓ′(1),

λl =
lΛl

∑
lmax

k=1 kΛk

, ρr =
rΓr

∑
rmax

k=1 kΓk

,

λ(x) =
Λ′(x)

Λ′(1)
, ρ(x) =

Γ′(x)

Γ′(1)
,

Λl =
λl

l
∑

lmax

k=1
λk

k

, Γr =
ρr
r

∑
rmax

k=1
ρk
k

,

where f ′(x) denotes the derivative of the function f(x).
If all rows of the parity check matrix H are linearly independent, then the rate

of the code defined by H is

Rdes = 1− M

N
= 1− Λ′(1)

Γ′(1)
= 1−

∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

.

We call this the design rate of the code. Note that when the connections in the
Tanner graph are chosen randomly the check equations might not be independent,
and the true rate of the code might be larger than the design rate. Both the actual
rate and the design rate of the graph in Figure 2.9 are 1/2.

Given a degree distribution (Λ(x),Γ(x)) and a block length N define the stan-
dard ensemble of LDPC codes as follows:

Definition 2.8 (LDPC(N,Λ(x),Γ(x))). The LDPC(N,Λ(x),Γ(x)) ensemble is the
collection of all bipartite graphs that have NΛl variable nodes of degree l and

N Λ′(1)
Γ′(1)Γr check nodes of degree r for all l and r. We allow multiple edges between

two nodes. We impose a probability distribution on the ensemble by fixing one
member of it and then permuting the endpoints of all edges on the check node side
using a permutation of E objects chosen uniformly at random. ♦

Note that we allow multiple edges between a variable and check node. To create
a parity check matrix from a Tanner graph with multiple edges let the corresponding
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entry in H be one if the variable and check node are connected with an odd number
of edges and zero otherwise.

In the following subsection we describe the belief propagation decoder when the
LDPC code is used over a BEC.

2.5.1 The Belief Propagation Decoder for the BEC

The belief propagation decoder is a message passing decoder. This means that the
nodes in the Tanner graph exchange messages with their neighbors2. For general
channels these messages are related to the probabilities of the variable nodes being
1 or 0, but for the BEC these messages take a simple form. A node can send the
message 0, 1, or ? to its neighbor. We call ? the erasure message.

1. We first look at a message from a variable node to a check node. If a variable
node knows its value, either from the channel observation or from incoming
messages from other check nodes in previous iterations, it sends that value to
the check node, otherwise it sends the erasure message.

2. Now look at a message from a check node to a variable node. If any incoming
messages to the check node from other variable nodes are the erasure message,
then the check node sends the erasure message. Otherwise it calculates the
XOR of all incoming messages from other variable nodes and sends this value
as the message.

3. In the final step we update the values of all variable nodes. If an unknown
variable node receives an incoming message which is not the erasure message
it becomes known.

4. If any unknown variable nodes were recovered in this iteration go to step
1. Otherwise, if all variable nodes are known, return the decoded codeword.
Otherwise stop and declare an error.

Luby et al. analyzed the BP decoder for the BEC(ϵ) using the following density
evolution method in [LMS+97] and [LMSS01a]. Consider transmission over the
BEC(ϵ) using a code from the LDPC(λ(x), ρ(x)) ensemble.

Let x(k) be the probability that a variable node sends the erasure message in
iteration k. Clearly x(1) = ϵ. Similarly let y(k) be the probability that a check node
sends the erasure message in iteration k. Consider an edge connected to a variable
node of degree l. This outgoing message is an erasure if the incoming message
from the channel, and all incoming messages on the other edges are erasures. This
happens with probability ϵ(y(k−1))l−1. Averaging over all incoming edges we get

x(k) =
∑

l

λlϵ(y
(k−1))l−1 = ϵλ(y(k−1)) (2.23)

2We say that two nodes are neighbors if they are connected by an edge.
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Now consider an edge connected to a check node of degree r. The outgoing message
on this edge is an erasure unless all the incoming r− 1 messages are not erasures.
Thus the probability that this outgoing message is an erasure is 1− (1− x(k))r−1.
Averaging over all incoming messages we get

y(k) =
∑

r

ρr(1− (1− x(k))r−1) = 1− ρ(1− x(k)). (2.24)

Putting (2.23) and (2.24) together we get

x(k+1) = ϵλ(1− ρ(1− x(k))),

which we call the density evolution recursion equation. This equation will correctly
predict the erasure probability if the neighborhood of a variable node up to distance
k+1 is a tree. For any fixed k the probability that this neighborhood is not a tree
goes to zero as N goes to infinity.

Successful decoding is equivalent to x(k) → 0. This happens if the function

fϵ(x) = ϵλ(1− ρ(1− x))

has no fixed points for x in the range (0, ϵ).
Let

ϵBP = sup
ϵ∈(0,1)

{fϵ(x) has no fixed point for x ∈ (0, ϵ)} .

If ϵ < ϵBP then the average error probability when communicating over the BEC(ϵ)
using a randomly chosen code from LDPC(N,λ(x),Γ(x)) and using the belief prop-
agation decoding method goes to zero almost surely as N → ∞. Conversely, if
ϵ > ϵBP the average error probability is always bounded away from zero. ϵBP is
called the belief propagation threshold for the degree distribution (λ, ρ).

In the following subsection we describe a method to calculate the conditional
entropy H(XN |Y N ) introduced by Méasson, Montanari and Urbanke in [MMU08].

2.5.2 MAP Decoding

In [MMU08], Méasson, Montanari and Urbanke considered the conditional entropy
H(XN |Y N ) of the transmitted codeword XN conditioned on the received sequence
Y N when using LDPC codes over the BEC. They found a criterion on the degree
distribution (λ(x), ρ(x)) and the erasure probability ϵ, that when satisfied allows
the calculation of limN→∞ H(XN |Y N )/N .

Consider transmission over the BEC using an LDPC code. The peeling decoder
introduced by Luby et al. in [LMS+97] is an iterative message passing decoder
equivalent to belief propagation. The peeling decoder removes edges and nodes
from the graph as the variables get recovered. When no more recovery is possible
it returns the resulting graph. We call this the residual graph Gres and an empty
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residual graph corresponds to successful decoding. We now describe the decoding
algorithm.

At each check node we introduce a book-keeping bit. The value of this bit is
the sum of all known neighbouring nodes.

1. Initialize all variable nodes to the received value and calculate the book-
keeping bit at each check node.

2. For each variable node v in G. If v is known, update the book-keeping bits of
all connected check nodes. Then remove v and all its edges from G. Otherwise
do nothing.

3. For each check node c in G. If c has degree one, declare its neighboring
variable node known and give it the value of the book-keeping bit. Then
remove c and its edge from G. Otherwise do nothing.

4. If no changes were made to the graph in the last iteration return G, otherwise
go to 2.

In Figure 2.10 we show the peeling decoder applied to the code defined by the
Tanner graph in Figure 2.9. The sent codeword is 11101101 and the received word
is 1??01?01. In the initialization step it removes all known variable nodes and their
edges from the graph. In the first iteration the decoder manages to recover x3 since
the third check node has degree 1, but then it gets stuck since all remaining check
nodes have degree at least 2. The resulting residual graph is the one on the right
in Figure 2.10.

1
0
?
1
0
?
?
1

1

1

0

1

?

1
?

1

1

0

1

?

?

0

0

0

Figure 2.10: Peeling decoder.

Now consider the ensemble of residual graphs defined as follows. Choose a graph
at random from the ensemble LDPC(N,Λ(x),Γ(x)), transmit a codeword over the
BEC(ϵ), and decode it using the peeling decoder. Call the resulting residual graph
G and its degree distribution from the node perspective (Ω,Φ). It was shown in
[LMSS01b] that conditioned on the degree distribution (Ω,Φ) all residual graphs G
are equally likely. It was shown in [MMU08] that the residual degree distribution
(Ω,Φ) is concentrated around its expected value. This expected value converges to
(Λϵ(z),Γϵ(z)) as N goes to infinity, where

Λϵ(z) = ϵΛ(zy),
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Γϵ(z) = Γ(1− x+ zx)− Γ(1− x)− zxΓ′(1− x),

where x is the fixed point of the density evolution equation xk = ϵλ(1−ρ(1−xk−1))
when initialized with x0 = ϵ, and y = ρ(1−x). Here the degree distributions (Λϵ,Γϵ)
and (Ω,Φ) are normalized with respect to the number of variable nodes N in the
original graph.

Now consider the residual graph. The number of different assignments of ones
and zeros to the variable nodes that satisfy all the check equations is equal to the
number of codewords of the original code that are consistent with the received
sequence Y N . This means that H(XN |Y N )/N is equal to the rate of the residual
graph. Lemma 7 from [MMU08] gives a condition on the degree distribution (Λ,Γ)
that when satisfied guarantees that the rate of a randomly chosen code from the
ensemble LDPC(N,Λ,Γ) is close to its design rate:

Lemma 2.9 (Lemma 7 from [MMU08]). Let C be a code chosen uniformly at
random from the ensemble LDPC(N,Λ,Γ) and let rC be its rate. Let r = 1 −
Λ′(1)/Γ′(1) be the design rate of the ensemble. Consider the function ΨΛ,Γ(u)

ΨΛ,Γ(u) =− Λ′(1) log

(
1 + uv

1 + v

)

+
∑

l

log

(
1 + ul

2

)

+
Λ′(1)

Γ′(1)

∑

r

log

[

1 +

(
1− v

1 + v

)r]

, (2.25)

where

v =

(

∑

l

λl
1 + ul

)−1(
∑

l

λlul−1

1 + ul

)

. (2.26)

Assume that ΨΛ,Γ(u) takes on its global maximum in the range u ∈ [0,∞) at u = 1.
Then there exists B > 0 such that, for any ξ > 0, and N > N0(ξ,Λ,Γ)

Pr |rG − r| > ξ ≤ e−BNξ.

Moreover, there exists C > 0 such that, for N > N0(ξ,Λ,Γ)

E[|rG − r|] ≤ C
logN

N
.

"

Proof. The lemma is proved using the following idea. The expected number of
codewords where e3 edges are connected to a variable node assigned a one is given
by

E[NW (e)] =
coef

{∏

l
(1 + ul)NΛl

∏

r
qr(v)MΓr , ue, ve

}

(NΛ′(1)
e

) , (2.27)

3Here e is a variable and not the constant e.
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where coef
{
∑

j Djvj , vk
}

is the coefficient of vk in the polynomial
∑

j Djvj and

qr(v) = ((1 + v)r + (1− v)r)/2. To see this, note that

coef

{

∏

l

(1 + ul)NΛl , ue

}

is equal to the number of ways of assigning ones and zeros to the variable nodes so
that e edges are connected to a variable node assigned a one. Also

coef

{

∏

r

qr(v)
MΓr , ve

}

is equal to the number of ways of assigning e ones to the sockets on the check node
side so that each check node has an even number of incoming ones. The number of
ways of connecting the sockets together is given by e!(NΛ′(1)− e)!. Thus the total
number of codewords involving e edges in the ensemble is given by

coef

{

∏

l

(1 + ul)NΛl

∏

r

qr(v)
MΓr , ue, ve

}

e!(NΛ′(1)− e)!.

Dividing by the number of graphs in the ensemble (NΛ′(1))! yields (2.27).
Since the expected rate

E[rG] = E

[

1

N
log
∑

e

NW (e)

]

is hard to calculate we instead calculate

1

N
log

(

E

[

∑

e

NW (e)

])

which by Jensen’s inequality is an upper bound on the expected rate. If
limN→∞

1
N log (E [

∑

e NW (e)]) = rdes the rate of a code will be close to the de-
sign rate.

Since the number of possible different values of e only grows linearly with N we
get

lim
N→∞

1

N
log

(

E

[

∑

e

NW (e)

])

= sup
e∈[0,1]

lim
N→∞

1

N
log (E [NW (eNΛ′(1))])

From the Hayman approximations

coef
{

F (D)N , Dk
}

≤ inf
x>0

F (x)N/xk,
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and

lim
N→∞

1

N
log

[(
αN

eαN

)]

= αh(e)

in [RU08, Appendix D] we get

lim
N→∞

1

N
log (E [NW (eNΛ′(1))]) = inf

u,v>0
φ(e, u, v)

where

φ(e, u, v) =
∑

l

Λl log(1 + ul)− Λ′(1)e log(u)+

+
Λ′(1)

Γ′(1)

∑

r

Γr log(qr(v))− Λ′(1)e log(v)− Λ′(1)h(e).

We now bound the exponent supe∈[0,1] infu,v φ(e, u, v) from above as follows.
The exponent is given by a stationary point of φ(e, u, v). Taking the derivative of
φ with respect to e and equating it to zero gives

e =
uv

1 + uv
.

Inserting this value for e into φ and taking the derivative with respect to u gives
the expression (2.26) for v. If we subtract the design rate rdes from the resulting
expression we get ΨΛ,Γ(u), which is an upper bound on

lim
N→∞

1

N
log(E[N ])− rdes.

If supu>0 ΨΛ,Γ(u) = 0, then the expected value of the rate is equal to the design
rate and we can use Markov’s inequality to get the bounds in the lemma. #

We now use the above lemma to check that the residual graph has rate equal
to its design rate. If this is the case we can calculate the conditional entropy as the
design rate of this ensemble, making sure to normalize its rate to the original block
length N . This is what is done in [MMU08, Theorem 10]:

Theorem 2.10 (Theorem 10 from [MMU08]). Let C be a code picked uniformly
at random from the ensemble LDPC(N,Λ,Γ) and let HC(X|Y ) be the condi-
tional entropy of the transmitted message when the code is used for communi-
cating over BEC(ϵ). Let (Λϵ,Γϵ) be the typical degree distribution of the residual
graph and let ΨΛϵ,Γϵ

(u) be as defined in Lemma 2.9. Assume that ΨΛϵ,Γϵ
(u)
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achieves its global maximum for u ∈ [0,∞) at u = 1, that Ψ′′
Λϵ,Γϵ

(1) < 0, and
that ϵ is nonexceptional. Then

lim
N→∞

1

N
E[HC(X|Y )] = Λ′(1)x(1− y)− Λ′(1)

Γ′(1)
(1− Γ(1− x)) + ϵΓ(y)

where x ∈ [0, 1] is the largest solution of x = ϵλ(1−ρ(1−x)) and y = 1−ρ(1−x).

As noted before, Theorem 2.10 can be used to calculate the MAP decoding
threshold of an ensemble. We call this the MMU method in acknowledgement of
the authors of [MMU08], and we will use it in a generalized form in Chapter 3 to
calculate the equivocation rate of Eve when using two edge type LDPC codes over
the BEC-WT(ϵm, ϵw). The MMU method was extended to non-binary LDPC codes
for transmission over the BEC in [Rat08, RA11].

2.6 Polar Codes

Polar codes were introduced by Arıkan and were shown to be capacity achieving for
a large class of channels [Arı09]. In Chapter 4 we construct polar coding schemes
for the wiretap channel, the relay channel and the bidirectional broadcast channel
with common and confidential messages. Let W be a binary input channel with
discrete output alphabet Y. Denote the channel transition probability of W by
W (y|x). Let I(W ) denote the symmetric capacity

I(W ) =
∑

y∈Y

∑

x∈X

1

2
W (y|x) log 2W (y|x)

W (y|0) +W (y|1) ,

and recall that I(W ) is the capacity ofW when the input distribution is constrained
to be uniform. IfW is a symmetric channel, then I(W ) equals the Shannon capacity
of W .

Polar codes rely on a phenomenon called channel polarization, which is achieved
in a two-step process called channel combining and channel splitting. Channel com-
bining takes N copies of the channel W and creates a vector channel WN (yN |uN )
in a recursive manner. The vector channel WN is then split into N binary input

channels W (i)
N . The channels W (i)

N are polarized in the sense that their symmetric
capacities are either close to 0 or 1, and the idea behind polar codes is to send
information only over the channels with I(W ) close to 1. We now describe the
channel combining and channel splitting steps in detail.

Channel combining is a recursive transformation that takes two copies of a vector

channel WN/2(y
N/2
1 |uN/2

1 ) and creates a new vector channel WN (yN1 |uN
1 ) according

to

WN (yN1 |uN
1 ) = WN/2(y

N/2
1 |uN

1,o ⊕ uN
1,e)WN/2(y

N
N/2+1|uN

1,e), (2.28)
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where uN
1,o = (u1, u3, . . . , uN−1) and uN

1,e = (u2, u4, . . . , uN ).
For the first two steps N = 2 and 4, (2.28) becomes

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2)

and

W4(y
4
1 |u4

1) = W2(y1, y2|u1 ⊕ u2, u3 ⊕ u4)W2(y3, y4|u2, u4)

respectively, as illustrated in Figures 2.11 and 2.12.

u1

u2

x1

x2

y1

y2
W

W

Figure 2.11: The channel W2 constructed from two copies of W .

Note that the inputs (x1, . . . , xN ) to the individual copies of the channel W can
be written as uN

1 GN where

GN = BNF⊗n. (2.29)

Here BN is a bit-reversal permutation matrix where the output is generated from
the input by writing the indices of the bits ui in bit format and reversing the indices.
For example

B8 : (u1, u2, u3, u4, u5, u6, u7, u8) ,→ (u1, u5, u3, u7, u2, u5, u4, u8)

since in bit format

(u1, u2, u3, u4, u5, u6, u7, u8) = (u000, u001, u010, u011, u100, u101, u110, u111),

and

(u1, u5, u3, u7, u2, u5, u4, u8) = (u000, u100, u010, u110, u001, u101, u011, u111).

The matrix F⊗n is the nth Kronecker power of the matrix

F =

[

1 0
1 1

]

.
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u1

u2

x1

x2

y1

y2

u3

u4

x3

x4

y3

y4

W

W

W

W

R4

Figure 2.12: The channel W4 constructed from two copies of W2.

This means that in general we have WN (yN1 |uN
1 ) = WN (yN1 |uN

1 GN ), where

WN (yN1 |xN
1 ) =

∏N
i=1 W (yi|xi).

Channel splitting is done by converting the combined vector channel

WN (yN1 |uN
1 ) into N binary input channels W (i)

N (yN1 , ui−1
1 |ui).

W (i)
N (yN1 , ui−1

1 |ui) =
∑

uN
i+1∈XN−i

1

2N−i
WN (yN1 |uN

1 ). (2.30)

Note that W (i)
N has yN1 as well as the previous inputs ui−1

1 as output. The successive

cancellation decoder proposed by Arıkan gets around this problem by decodingW (i)
N

before W (j)
N if i < j, and thus obtaining an estimate ûi of ui. If these estimates are

correct we will have all outputs of W (j)
N available before decoding.

Arıkan showed that the channels {W (i)
N } polarize as N goes to infinity, that is

for any δ ∈ (0, 1), the fraction of indices i for which I(W (i)
N ) ∈ (1 − δ, 1] goes to

I(W ) and the fraction for which I(W (i)
N ) ∈ [0, δ) goes to 1− I(W ).

The idea behind polar coding is to send information only over the good channels,
while keeping the input to the bad channels fixed. Let A be a subset of {1, . . . , N}
and let uA be a binary vector of length |A|. We call A and AC the information set
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and the frozen set respectively. Similarly we call uA and uAC the information bits
and the frozen bits. We now define the polar code P(N,A, uAC ) as follows:

Definition 2.11 (The polar code P(N,A, uAC )). Let G be the matrix GN as
defined in (2.29) and let GA be the submatrix composed of the columns of G
whose indices belong to the index set A. The polar code P(N,A, uAC ) is the set of
codewords xN of the form

xN = uAGA ⊕ uACGAC .

♦

We see that the polar code fixes the input to the channels W (i)
n where i is in

the frozen set, and sends information over the channels where i ∈ A. The rate of
the polar code is equal to

R =
|A|
N

.

The decoder that Arıkan proposed uses the following successive cancellation
decoding rule

ûi =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ui i ∈ AC

0
W (i)

N (yN
1 ,ûi−1

1 |ui=0)

W (i)
N (yN

1 ,ûi−1
1 |ui=1)

≥ 1 and i ∈ A

1 otherwise

(2.31)

to decode the transmitted bits. The decoder decodes the bits in increasing order
and thus has the estimates ûi−1

i available when decoding ui.
The average error probability PN

e of the successive cancellation decoder, av-
eraged over all possible frozen sets, can be bounded from above in the following
way

PN
e ≤

∑

i∈A

Pr(ûi ̸= ui)

=
∑

i∈A

∑

yN
1 ,ui−1

1

pui
W (i)

N (yN1 , ui−1
1 |ui)11{W

(i)
N

(yN
1 ,u

i−1
1 |ui⊕1)

W
(i)
N

(yN
1 ,u

i−1
1 |ui)

≥1

}

≤
∑

i∈A

∑

yN
1 ,ui−1

1

pui
W (i)

N (yN1 , ui−1
1 |ui)

√
√
√
√

W (i)
N (yN1 , ui−1

1 |ui ⊕ 1)

W (i)
N (yN1 , ui−1

1 |ui)

=
∑

i∈A

Z(i)
N . (2.32)

Here Z(i)
N is the Bhattacharyya parameter of the channel W (i)

N , defined as

Z(i)
N =

∑

yN
1

∑

ui−1
1

√

W (i)
N (yN1 , ui−1

1 |0)W (i)
N (yN1 , ui−1

1 |1).



38 Fundamentals

In [AT09] Arıkan and Telatar showed the following result on the rate of the
polarization process:

Theorem 2.12 (Rate of Polarization [AT09]). For any 0 < β < 1/2

lim
n→∞

1

N
|{i : Z(i)

N < 2−Nβ

}| = I(W ). (2.33)

This result shows us how to choose the frozen set when using the successive
cancellation decoder.

Theorem 2.13 ([Arı09], [AT09]). Let W be a discrete memoryless channel
with binary input, and let R < I(W ). For any 0 < β < 1/2 there exists a
sequence of polar codes of block lengths N = 2n, with rates RN such that

lim
n→∞

RN > R

and there exists an n0 such that the error probability under successive cancel-
lation decoding satisfies

PN
e < 2−Nβ

∀n > n0.

Proof. Let β < β′ < 1/2 and choose the the non-frozen set AN as

AN = {i : Z(i)
N < 2−Nβ′

}.

Then due to Theorem 2.12

lim
n→∞

RN = I(W ) > R.

For large enough N we have

N2−Nβ′

< 2−Nβ

,

which together with (2.32) implies that there exists an n0 such that

PN
e ≤

∑

i∈AN

Z(i)
N < N2−Nβ′

< 2−Nβ

(2.34)

provided that n > n0. Finally since this is the error probability averaged over all
frozen sets there must exist a frozen set with error probability at most N2−Nβ

. #
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If the channel W is symmetric, then the symmetric capacity I(W ) is equal to
the capacity C, and further, the error probability does not depend on the values of
the frozen bits uAC [Arı09].

2.7 Sparse Regression Codes

Sparse Regression Codes (SPARCs) are non-linear codes introduced by Joseph and
Barron in [JB12]. They were shown to achieve capacity of the AWGN channel when
decoded using minimum distance decoding. Varying the code construction slightly,
they were also shown to be capacity achieving using a less computationally de-
manding decoding algorithm in [JB14]. For lossy source coding, Venkataramanan,
Joseph, and Tatikonda showed in [VJT12] that SPARCs with optimal encoding at-
tain the rate-distortion function RRD(D) with optimal error exponent for D below
a certain threshold. As when used for channel coding, a slight variation of the
construction allows for computationally efficient encoding [VST13]. Venkataraman
and Tatikonda constructed sparse regression codes for several multi-terminal prob-
lems in [VT12]. We will use nested SPARCs in Chapter 5 to construct codes for
the Gaussian wiretap channel, the decode-and-forward scheme for Gaussian relay
channels, and for secret key agreement from Gaussian sources.

We define an ensemble of sparse regression codes (SPARCs) in the following
way. Let A be an N ×ML design matrix, and divide A into L sections containing
M columns each. We assign a probability distribution to A by generating each
entry independently from a N (0, 1) distribution.

Each codeword of the code is given by choosing one column Xl from each section
of the design matrix, multiplying them by a fixed weight cl > 0 and adding them
together:

X =
L
∑

l=1

clXl,

or equivalently, X = Aβ, where β is a vector of length ML which has exactly one
nonzero element in each section of M elements. The nonzero elements of β are
given by the weights {cl}. We will choose all weights to be equal to P/L, to satisfy
the power constraint of the code. Let the set of all such vectors β be denoted by B.

Note that by choosing L = 1 this gives the usual ensemble of random codes
used in the proof of Shannon’s coding theorem for the Gaussian channel. We will
instead choose the number of columns M in each section as M = Lb for some b > 1,
in order to hopefully develop computationally feasible encoders and decoders. Let
R denote the rate of the code in nats. The number of codewords in the code is
given by ML, which implies that

eNR = ML, (2.35)

or

NR = bL lnL. (2.36)
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Section 1
︷ ︸︸ ︷

M columns

Section 2
︷ ︸︸ ︷

Section L
︷ ︸︸ ︷

A =

⎡

⎢
⎢
⎣

| | · · · |
| | · · · |
| | · · · |
| | · · · |

⎤

⎥
⎥
⎦

Figure 2.13: The design matrix of a sparse regression code.

Channel Coding using SPARCs

The minimum distance decoder is given by

β̂ = argmin
β∈B

|Y −Aβ|2. (2.37)

Let v⋆ ≈ 15.8 be the solution to the equation (1 + v⋆) ln(1 + v⋆) = 3v⋆, and let

b0(v) =

{
4v(1+v) ln(1+v)

((1+v) ln(1+v)−v)2
if v < v⋆,

(1+v) ln(1+v)
(1+v) ln(1+v)−2v if v ≥ v⋆.

(2.38)

Joseph and Barron showed that if R < C = 1
2 ln(1 + v), and if b > b0(v), then

the probability of β̂ differing from β in more than a small fraction α0 of the sec-
tions decays exponentially in the block length N . In order to make the total error
probability PN

e (CN ) small, they suggested concatenating a SPARC with an outer
Reed-Solomon code (R-S code) [RS60] of high rate. In particular they choose a
sequence of SPARCs with rates R = C − δN , with δN ≤ 1

lnN , and a sequence of
outer codes of rate 1− 2δN . We have the following result:

Theorem 2.14 (Proposition 2 from [JB12]). Let R = C−δN = 1
2 ln(1+v)−δN ,

and b > b0(v). Then there exists a sequence of sparse regression codes CN (R, b),
and R-S codes of rate 1− 2δN , such that the block error probability PN

e (CN ) of
the concatenated code satisfies

PN
e (CN ) ≤ e−Nc(C−R)2 (2.39)

for some constant c > 0.



2.7 Sparse Regression Codes 41

Lossy Source Coding using SPARCs

Consider the following lossy source coding problem studied by Shannon [Sha48].
The encoder tries to compress a Gaussian source SN with power σ2 to a quantized
codeword ŜN coming from a codebook CN of rate R. We define an error as the event
that the distortion between SN and ŜN exceeds the maximum allowable distortion
D, where the distortion is given by the normalized distance between SN and ŜN

squared:

d(SN , ŜN ) =
1

N

N
∑

i=1

(Si − Ŝi)
2. (2.40)

Let PN
e (CN , D) = Pr

(

d(Sn, ŜN ) > D
)

denote the error probability of the code

CN at distortion-level D. Note that the encoder that maps the sequence SN to
the closest codeword in CN minimizes PN

e (CN , D) for a given codebook CN . The
minimum rate R such that PN

e (CN , D) can be made arbitrarily small is given by
the rate-distortion function [CT91]

RRD(D) =
1

2
ln
σ2

D
. (2.41)

Venkataramanan, Joseph, and Tatikonda showed that if the distortionD is small
enough, SPARCs can achieve the rate-distortion bound RRD(D) with optimal error
exponent 1

N lnPN
e (CN , D). The error exponent is a measure of how fast PN

e decays
with the block length N , and if it is positive PN

e decays at least exponentially fast
in N . They showed the following:

Theorem 2.15 (Theorem 1 from [VJT12]). Fix a target distortion D that
satisfies

D < σ2/x⋆,

where x⋆ ≈ 4.913 is the solution to 1
2 lnx = 1− 1

x , and fix a rate R > RRD(D).

If b > 3.5R
R−(1−D/ρ2) , where ρ

2 satisfies R = 1
2 ln

ρ2

D , then there exists a sequence

of sparse regression codes {CN (R, b)} which satisfies

− lim sup
N→∞

1

N
lnPN

e (CN , D) =
1

2

(
ρ2

σ2
− 1− ln

ρ2

σ2

)

. (2.42)
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2.8 Previous Work

Thangaraj et al. [TDC+07] considered nested LDPC codes for the case when the
main channel is noiseless, but no explicit construction was given for the case of a
noisy main channel. Liu et al. also considered noiseless main channels in [LLPS07],
with a BEC, BSC, or an AWGN channel to the wiretapper. In [LPSL08] Liu et
al. considered nested codes designed for the BEC-WT used over general binary
input symmetric channels for transmission at rates below the secrecy capacity. In
[CV10] Chen and Vinck showed that nested random linear codes can achieve the
secrecy capacity over the binary symmetric wiretap channel and an upper bound on
the information leakage was derived. In [SST+10] Suresh et al. suggested a coding
scheme for the BEC-WT that guarantees strong secrecy for a noiseless main channel
and some range of ϵw using duals of sparse graph codes. In [STBM11] Subraminian
et al. constructed large girth LDPC codes for a BEC-WT with a noiseless main
channel that achieve strong secrecy, albeit at a lower rate than the secrecy capacity.
Rathi et al. constructed spatially coupled LDPC codes that achieve weak secrecy
for the general BEC-WT in [RUAS11].

That nested polar codes are capacity achieving for the wiretap channel was
shown by several research groups independently. The results by Hof and Shamai
[HS10], Mahdavifar and Vardy [MV10], and Koyluoglu and El Gamal [KEG12] are
closely related to the results we show in Chapter 4. Recently this scheme was
extended to provide strong secrecy by Sasoglu and Vardy [SV13]. A secret key
agreement scheme providing strong secrecy based on polar codes was suggested by
Chou, Bloch, and Abbe in [CBA13].

Lattice codes have been proposed for the Gaussian wiretap channel and for
secret key agreement using Gaussian sources, and can generally be used to achieve
strong secrecy. See for example the works by Ling et al. [LLBS12] and by Ling,
Luzzi, and Bloch [LLB13].

Bellare, Tessaro, and Vardy investigated a stronger version of security called
semantic security in [BTV12], and designed a scheme based on seeded extractors.

Secret key agreement over fading channels has been extensively studied [WTS07,
DSC09, CDS10, SP08, YMR+10, WBS09, LLP12, LLD12, PCB13]. In [WBS09] the
secret key capacity for the coherent fast fading MIMO wiretap channel was found.
The non-coherent fast fading case was studied in [ARKA11]. The related problem
of secret message transmission over fading channels was studied in e.g. [GLEG08,
LPS08, LYT07]. Secret-key agreement for non-coherent block-fading SISO channels
was considered in [LLP12], where a two-phase scheme with training and secret
message transmission was proposed. This approach is extended in Chapter 6 to
MIMO block fading channels using a two-phase scheme involving channel training
and randomness sharing. Furthermore, in [Khi12] it was shown that if imperfect
reciprocity is assumed between the forward and reverse channel gains, then the
two-phase scheme consisting of channel training and randomness sharing is optimal
in the high SNR regime for SISO channels. In Chapter 6 we complement [Khi12]
by studying the capacity scaling behaviour in the low SNR regime.



Chapter 3

Two Edge Type LDPC Codes

In this chapter we consider LDPC codes for the BEC-WT channel. We propose
a code construction method using two edge type LDPC codes based on the coset
encoding scheme. Using a standard LDPC ensemble with a given threshold over
the BEC, we give a construction for a two edge type LDPC ensemble with the
same threshold. Thus if the standard LDPC ensemble is capacity achieving over
the wiretapper’s channel, our construction guarantees perfect secrecy.

However, our construction cannot guarantee reliability over the main channel if
ϵm > 0 and the given standard LDPC ensemble has degree two variable nodes. This
is because our approach gives rise to degree one variable nodes in the code used over
the main channel. This results in zero threshold over the main channel. In order
to circumvent this problem, we numerically optimize the degree distribution of the
two edge type LDPC ensemble. We find that the resulting codes approach the rate-
equivocation region of the wiretap channel. For example, for the BEC-WT(0.5, 0.6)
we find ensembles that achieve the points (R,Re) = (0.0999064, 0.0989137) and
(R,Re) = (0.498836, 0.0989137) which are very close to the best achievable points
B = (0.1, 0.1) and C = (0.5, 0.1) as depicted in Figure 3.1.

Re

A R1− ϵmϵw − ϵm

ϵw − ϵm
B C

Figure 3.1: Capacity-equivocation region for the BEC-WT(ϵm, ϵw). ( c⃝ 2013 IEEE.
Reused with permission.)
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Note that reliability, which corresponds to the probability of decoding error for
the intended receiver, can be easily measured using density evolution recursion.
However secrecy, which is given by the equivocation of the message conditioned
on the wiretapper’s observation, can not be easily calculated. By generalizing
the MMU method from [MMU08] to two edge type LDPC ensembles, we show
how the equivocation for the wiretapper can be computed. We find that relatively
simple constructions give very good secrecy performance and are close to the secrecy
capacity.

The chapter is organized in the following way. In Section 3.1, we define two edge
type LDPC ensembles and give the density evolution recursion for them. Section
3.2 contains the code design and optimization for the BEC wiretap channel BEC-
WT(ϵm, ϵw). The MMU method and its extension to compute the equivocation of
Eve for two edge type LDPC codes is given in Section 3.3. In Section 3.4 we present
various examples to elucidate the computation of equivocation and show that our
optimized degree distributions also approach the information theoretic equivocation
limit.

3.1 Two Edge Type LDPC Ensembles

We will use the coset encoding scheme introduced in Section 2.2.1. A natural
candidate for coset encoding is a two edge type LDPC code since a two edge type
parity check matrix H has the form

H =

[

H1

H2

]

. (3.1)

The two types of edges are the edges connected to check nodes in H1 and those
connected to check nodes in H2. An example of a two edge type LDPC code is
shown in Figure 3.2.

Type one checks Type two checks

x(k)
1 x(k)

2

y(k)1

y(k)2

Figure 3.2: Two edge type LDPC code. ( c⃝ 2013 IEEE. Reused with permission.)

We now define the degree distribution of a two edge type LDPC ensemble. Let

λ(j)
l1l2

denote the fraction of type j (j = 1 or 2) edges connected to variable nodes
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with l1 outgoing type one edges and l2 outgoing type two edges. The fraction

λ(j)
l1l2

is calculated with respect to the total number of type j edges. Let Λl1l2 be
the fraction of variable nodes with l1 outgoing edges of type one and l2 outgoing
edges of type two. This gives the following relationships between Λ,λ(1), and λ(2):

λ(1)
l1l2

=
l1Λl1l2

∑

k1,k2
k1Λk1k2

, (3.2)

λ(2)
l1l2

=
l2Λl1l2

∑

k1,k2
k2Λk1k2

, (3.3)

Λl1l2 =

λ(1)
l1l2
l1

∑

k1,k2

λ(1)
k1k2
k1

=

λ(2)
l1l2
l2

∑

k1,k2

λ(2)
k1k2
k2

. (3.4)

Similarly, let ρ(j) and Γ(j) denote the degree distribution of type j edges on the
check node side from the edge and node perspective respectively. Note that only
one type of edges is connected to a particular check node. An equivalent definition
of the degree distribution is given by the following polynomials:

Λ(x, y) =
∑

l1,l2

Λl1l2x
l1yl2 ,

λ(1)(x, y) =
∑

l1,l2

λ(1)
l1l2

xl1−1yl2 ,

λ(2)(x, y) =
∑

l1,l2

λ(2)
l1l2

xl1yl2−1,

Γ(j)(x) =
∑

r

Γ(j)
r

xr, j = 1, 2,

ρ(j)(x) =
∑

r

ρ(j)
r

xr−1, j = 1, 2.

Like the standard LDPC ensemble of Definition 2.8, the two edge type LDPC
ensemble with block length N and degree distribution

{

λ(1),λ(2), ρ(1), ρ(2)
}

({Λ,Γ(1),Γ(2)} from the node perspective) is the collection of all bipartite graphs
satisfying the degree distribution constraints, where we allow multiple edges be-
tween two nodes. We will call a two edge type LDPC ensemble for which
Λ(x, y) = xl1yl2 , left regular, and denote it by {l1, l2,Γ(1),Γ(2)}.

Consider the two edge type LDPC ensemble {Λ,Γ(1),Γ(2)}. If we consider the
ensemble of the subgraph induced by one particular type of edges it is easy to
see that the resulting ensemble is the standard LDPC ensemble and we can easily
calculate its degree distribution. Let {Λ(j),Γ(j)} be the degree distribution of the
ensemble induced by type j edges, j = 1, 2. Then Λ(j), for j = 1, 2, is given by

Λ(1)
l1

=
∑

l2

Λl1l2 , Λ(2)
l2

=
∑

l1

Λl1l2 . (3.5)
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We now derive the density evolution equations for two edge type LDPC ensembles,

assuming that transmission takes place over the BEC(ϵ). Let x(k)
j denote the prob-

ability that a message from a variable node to a check node on an edge of type j
in iteration k is erased. Clearly,

x(1)
j = ϵ, j = 1, 2. (3.6)

In the same way, let y(k)j be the probability that a message from a check node to a
variable node on an edge of type j in iteration k is erased. This probability is

y(k)j = 1− ρ(j)(1− x(k)
j ), j = 1, 2. (3.7)

Using this we can write down the following recursions for x(k)
j :

x(k+1)
1 = ϵλ(1)(y(k)1 , y(k)2 ), (3.8)

x(k+1)
2 = ϵλ(2)(y(k)1 , y(k)2 ). (3.9)

In the next section, we show how the degree distribution of a two edge type
LDPC ensemble can be chosen such that it has the same density evolution recur-
sion as that of a given standard LDPC ensemble. We also numerically optimize
the degree distributions of two edge type LDPC ensembles and show that we can
approach points on the boundary of the capacity-equivocation region.

3.2 Optimization

As the density evolution recursion for two edge type LDPC ensembles is two dimen-
sional, it is difficult to analyze. Thus we look for degree distributions which reduce
the two dimensional recursion to a single dimension. This will enable us to use the
density evolution recursion for standard LDPC ensembles over the BEC, which has
been very well studied. In the following theorem, we accomplish this task.

Theorem 3.1. Let (λ, ρ) be a standard LDPC degree distribution with design
rate R and threshold ϵ⋆ over the BEC. Then the following assignment,

ρ(1)(x) = ρ(2)(x) = ρ(x), (3.10)

λ(1)
l,l = λ(2)

l,l = λ2l, (3.11)

λ(1)
l,l+1 = λ(2)

l+1,l =
l

2l+ 1
λ2l+1, (3.12)

λ(1)
l+1,l = λ(2)

l,l+1 =
l+ 1

2l+ 1
λ2l+1, (3.13)

λ(1)
l1,l2 = λ(2)

l1,l2 = 0, |l1 − l2| > 1, (3.14)
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ensures that the two edge type LDPC ensemble
{

λ(1),λ(2), ρ(1), ρ(2)
}

also has
design rate R and threshold ϵ⋆.

Proof. Assume that we choose λ(1),λ(2), ρ(1), and ρ(2) such that (3.10) and the
following relation

λ(1)(x, x) = λ(2)(x, x) = λ(x). (3.15)

is satisfied. Note that since

λ(j)(x, x) =
∑

l1,l2

λ(j)
l1l2

xl1+l2−1

=
∑

k

(

∑

l1+l2=k

λ(j)
l1l2

)

xk−1,

(3.15) implies

∑

l1+l2=k

λ(1)
l1l2

=
∑

l1+l2=k

λ(2)
l1l2

∀k.

From the density evolution recursion for two edge type LDPC ensembles given in

(3.6)-(3.9), we see that (3.10) ensures that y(k)1 = y(k)2 whenever x(k)
1 = x(k)

2 , and

(3.15) ensures that x(k+1)
1 = x(k+1)

2 whenever y(k)1 = y(k)2 . Since x(1)
j = ϵ, we see by

induction that x(k)
1 = x(k)

2 and y(k)1 = y(k)2 for k ≥ 1. Thus we can reduce the two
dimensional density evolution recursion to the one dimensional density evolution
recursion for the standard LDPC ensemble

x(k+1) = ϵλ(1− ρ(1− x(k))), (3.16)

where λ(x) =
∑

l
λlxl−1,

λl =
∑

l1+l2=l

λ(1)
l1l2

, (3.17)

and we have dropped the subscript of x(k) as x(k)
1 = x(k)

2 . Note that by (3.11)-(3.14)

λ(1)
l1l2

l1
=
λ(2)
l1l2

l2
∀l1, l2. (3.18)

This ensures that (3.4) is fulfilled.
We now show that (3.11)-(3.14) guarantee that λ(1)(x, x) = λ(2)(x, x) = λ(x).

Then the two dimensional density evolution recursion becomes the one dimensional
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recursion in (3.16) and the two edge type ensemble will have the same threshold as
the standard LDPC ensemble. We have

λ(1)(x, x) =
∑

l1,l2

λ(1)
l1l2

xl1+l2−1

(a)
=
∑

l

(

λ(1)
l,l+1x

2l + λ(1)
l,lx

2l−1 + λ(1)
l+1,lx

2l
)

(b)
=
∑

l

(
l

2l+ 1
λ2l+1x

2l + λ2lx
2l−1

)

+
∑

l

l+ 1

2l+ 1
λ2l+1x

2l

=
∑

l

(

λ2l+1x
2l + λ2lx

2l−1
)

=λ(x),

where (a) is due to (3.14) and (b) is due to (3.11)–(3.13). The proof for λ(2)(x, x)
is done in the same way.

We now show that the design rate of the resulting two edge type LDPC ensemble
is the same as the design rate of the given standard LDPC ensemble. The design
rate of the two edge type ensemble is

Rdes = 1− (M1 +M2)/N

where Mj is the number of parity checks of type j and N is the number of variable
nodes. If we let davg denote the average check node degree (this is the same for
both types because of (3.10)) and count the number of type j edges in two different
ways, we get

N
∑

l1,l2

ljΛl1l2 = Mjdavg, j = 1, 2,

or

Mj

N
=

∑

l1,l2
ljΛl1l2

davg
,

(a)
=

1

davg

∑

l1,l2
lj

λ(j)
l1l2
lj

∑

l1,l2

λ(j)
l1l2
lj

,

(b)
=

1

davg

1
∑

l1,l2

λ(j)
l1l2
lj

,

where (a) is due to (3.4) and (b) follows since the λ(j)
l1l2

sum to 1. The design rate
then becomes

Rdes = 1− (M1 +M2)/N,
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= 1− 1

davg

⎛

⎝
1

∑

l1,l2

λ(1)
l1l2
l1

+
1

∑

l1,l2

λ(2)
l1l2
l2

⎞

⎠

(a)
= 1− 2

davg

⎛

⎝
1

∑

l1,l2

λ(1)
l1l2
l1

⎞

⎠

(b)
= 1− 2

davg

⎛

⎝
1

∑

l

(
λ2l+1

2l+1 + λ2l
l

+ λ2l+1

2l+1

)

⎞

⎠

= 1− 1

davg

1
∑

l

(
λ2l+1

2l+1 + λ2l
2l

)

= 1− 1

davg

1
∑

l

λl

l

,

where (a) is due to (3.18) and (b) follows using (3.11) - (3.14). Since this expression
is the same as the design rate of the standard LDPC ensemble (λ, ρ), we have shown
that the two edge type LDPC ensemble has design rate R. This completes the proof
of the theorem. #

To compute the threshold achievable on the main channel, we need to compute
the threshold of the ensemble of parity-check matrices H1 induced by type one
edges. The ensemble of matrices H1 is a standard LDPC ensemble, and its degree
distribution can be easily calculated from the degree distribution of the two edge
type ensemble. Hence we can easily compute its threshold.

Since all capacity approaching sequences of degree distributions have some de-
gree two variable nodes, because of (3.11) we see that our construction will have
some degree one variable nodes in the matrix H1. This means that the thresh-
old over the main channel will be zero. To get around this problem we use linear
programming methods to find good degree distributions for two edge type LDPC
ensembles based on their two dimensional density evolution recursion.

First we optimize the degree distribution of H1 for the main channel using the
methods described in [RU08] and obtain a good ensemble (Λ(1),Γ(1)).

For a given two edge type ensemble we can find the corresponding one edge type
ensemble for H1 by summing over the second index, since the fraction of variable
nodes with l1 outgoing type one edges is given by

∑

l2
Λl1l2 . To fix the degree

distribution of H1 we then impose the constraint
∑

l2

Λl1l2 = Λ(1)
l1

for all l1.

For successful decoding we further impose the two constraints x(k+1)
1 ≤ x(k)

1 and

x(k+1)
2 ≤ x(k)

2 which can be written as

x1 ≥ ϵλ(1)(y1, y2)
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= ϵ
∑

l1,l2

λ(1)
l1l2

yl1−1
1 yl22

= ϵ
∑

l1,l2

l1Λl1,l2
∑

k1,k2
k1Λk1,k2

yl1−1
1 yl22 ,

where we have used (3.2) in the last step, and y1, y2 are given by

yj = 1− ρ(j)(1− xj), j = 1, 2.

This simplifies to the linear constraint

0 ≤
∑

l1,l2

l1(x1 − ϵyl1−1
1 yl22 )Λl1l2 .

The corresponding constraint for x2 is

0 ≤
∑

l1,l2

l2(x2 − ϵyl11 yl2−1
2 )Λl1l2 .

The design rate can be written as

Rdes = 1−
∑

l1,l2
l1Λl1l2

∑

l1
l1Γ

(1)
l1

−
∑

l1,l2
l2Λl1l2

∑

l2
l2Γ

(2)
l2

,

where the term
∑

l1,l2
l1Λl1l2

∑

l1
l1Γ

(1)
l1

is a constant because of the fixed degree distribution

of H1. If Γ(2) is fixed, we see that maximizing the design rate is the same as
minimizing

∑

l1,l2
l2Λl1l2 . Thus we end up with the following linear program:

minimize
∑

l1,l2

l2Λl1l2

subject to
∑

l2

Λl1l2 = Λ(1)
l1

, l1 = 2, . . . , l1,max

∑

l1,l2

l1(x1 − ϵyl1−1
1 yl22 )Λl1l2 ≥ 0, ∀ x1, y1, y2 ∈ [0, 1] (3.19)

∑

l1,l2

l1(x2 − ϵyl11 yl2−1
2 )Λl1l2 ≥ 0, ∀ x2, y1, y2 ∈ [0, 1] (3.20)

where l1,max is the largest degree in Λ(1)(x). Since (3.19) and (3.20) represent
infinitely many constraints we replace them with

∑

l1,l2

l1(x1(k)− ϵy1(k)
l1−1y2(k)

l2)Λl1l2 ≥ 0, k = 1, . . . ,K
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∑

l1,l2

l1(x2(k)− ϵy1(k)
l1y2(k)

l2−1)Λl1l2 ≥ 0, k = 1, . . . ,K,

in order to have a finite number of constraints. The points {x1(k), x2(k)}Kk=1 are
chosen by generating a distribution Λ and then running the density evolution re-
cursion

x(1)
1 = x(1)

2 = ϵ

x(k+1)
1 = ϵλ(1)(y(k)1 , y(k)2 )

x(k+1)
2 = ϵλ(2)(y(k)1 , y(k)2 )

K times. The program is then solved repeatedly, each time updating
{x1(k), x2(k)}Kk=1. This process is repeated several times for different check node
degree distributions Γ(2) until there is negligible improvement in rate.

We now present some optimized degree distributions obtained by this method.
We use the following degree distribution

Standard LDPC Degree Distribution 1.

Λ(1)(x) = 0.5572098x2 + 0.1651436x3 + 0.07567923x4

+ 0.0571348x5 + .043603x7 + 0.02679802x8

+ 0.013885518x13 + 0.0294308x14 + 0.02225301x31

+ 0.00886105x100,

Γ(1)(x) = 0.25x9 + 0.75x10

as the ensemble (Λ(1),Γ(1)) for the main channel. It has rate 0.498826 bits per
channel use (b.p.c.u.), threshold 0.5, and multiplicative gap to capacity (1 − ϵ −
Rdes)/(1−ϵ) = 0.00232857. We use it to obtain two optimized degree distributions,
one for ϵw = 0.6, and one for ϵw = 0.75.

The degree distribution for the ensemble optimized for the BEC-WT(0.5, 0.6)
is given by

Two Edge Type Degree Distribution 1.

Λ(x, y) = 0.463846x2 + 0.0814943x2y + 0.0118691x2y2

+ 0.14239x3 + 0.0201658x3y + 0.00258812x3y2

+ 0.0292241x4 + 0.0464551x4y + 0.0564162x5

+ 0.000718585x5y + 0.0436039x7y

+ 0.0258926x8y + 0.000905503x8y2

+ 0.00631474x13y2 + 0.00757076x13y5

+ 0.011051x14y + 0.0173718x14y2

+ 0.00100807x14y5 + 0.00240762x31
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+ 0.0012626x31y4 + 0.0185828x31y5

+ 0.000326117x100y4 + 0.00383319x100y17

+ 0.00470174x100y18,

Γ(1)(x) = 0.25x9 + 0.75x10,

Γ(2)(x) = x6.

This ensemble has design rate 0.39893 b.p.c.u., threshold 0.6, and the multi-
plicative gap to capacity is 0.00267632. The rate R from Alice to Bob is 0.099906
b.p.c.u. and Re, the equivocation of Eve, is 0.0989137 b.p.c.u. Thus there is a small
information leakage of 0.0009923 b.p.c.u. However both R and Re are very close to
the secrecy capacity CS = 0.1 b.p.c.u.

The degree distribution for the ensemble optimized for the BEC-WT(0.5, 0.75)
is given by

Two Edge Type Degree Distribution 2.

Λ(x, y) = 0.367823x2 + 0.166244x2y + 0.0231428x2y2

+ 0.125727x3 + 0.0394166x3y + 0.00286773x4

+ 0.0728115x4y + 0.0571348x5y

+ 0.0300989x7y2 + 0.013505x7y3

+ 0.0196622x8y3 + 0.00713582x8y4

+ 0.000565918x13y2 + 0.0133196x13y5

+ 0.0149732x14y2 + 0.0132215x14y5

+ 0.0012361x14y6 + 0.00490831x31y8

+ 0.0173447x31y9 + 0.00130606x100y17

+ 0.00498932x100y30 + 0.00256567x100y31,

Γ(1)(x) = 0.25x9 + 0.75x10,

Γ(2)(x) = 0.25x4 + 0.75x5.

This ensemble has design rate 0.248705 b.p.c.u. and threshold 0.75. The multi-
plicative gap to capacity is 0.00518359. The rate R from Alice to Bob is 0.250131
b.p.c.u. and Re, the equivocation of Eve, is 0.248837 b.p.c.u. Note that the secrecy
capacity Cs for this channel is 0.25 b.p.c.u. Thus the obtained point is slightly to
the right of and below point B in Figure 3.1.

As mentioned earlier, computing the equivocation of Eve is not as straightfor-
ward as computing the reliability on the main channel. In the next section we
show how to compute the equivocation of Eve by generalizing the methods from
[MMU08] to two edge type LDPC codes.
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3.3 Analysis of Equivocation

In order to compute the average equivocation of Eve over the erasure pattern and
ensemble of codes, we generalize the MMU method of [MMU08] to two edge type
LDPC codes. In [MMU08], the equivocation of standard LDPC ensembles for point-
to-point communication over BEC(ϵ) was computed. More precisely, let X̃N be a
randomly chosen codeword of a randomly chosen code C from the standard LDPC
ensemble. Let X̃N be transmitted over BEC(ϵ) and let Z̃N be the channel output.
Then the MMU method computes

lim
N→∞

E
(

HC(X̃N |Z̃N )
)

N
,

where HC(X̃N |Z̃N ) is the conditional entropy of the transmitted codeword given
the channel observation for the code C, and we do the averaging over the ensemble.
Note that we need not average over the codewords as the analysis can be carried
out under the assumption that the all-zero codeword is transmitted [RU08, Chap.
3]. The MMU method is described below.

1. Consider decoding using the peeling decoder. The peeling decoder gets stuck
in the largest stopping set contained in the set of erased variable nodes. The
subgraph induced by this stopping set is again a code whose codewords are
compatible with the erasure set. We call this subgraph the residual graph.
Thus the peeling decoder associates to every graph and erasure set a residual
graph. If the erasure probability is above the BP threshold, then almost
surely the residual graph has a degree distribution close to the average residual
degree distribution [LMSS01a]. The average residual degree distribution can
be computed by the asymptotic analysis of the peeling decoder.

2. Conditioned on the residual degree distribution, the induced probability dis-
tribution is uniform over all the graphs with the given degree distribution.
This implies that almost surely a residual graph is an element of the standard
LDPC ensemble with degree distribution equal to the average residual degree
distribution.

3. One can easily compute the design rate of the average residual degree dis-
tribution. However, the design rate is only a lower bound on the rate. A
criterion was derived in [MMU08], which, when satisfied, guarantees that the
actual rate is equal to the design rate. If the actual rate is equal to the de-
sign rate, then the equivocation is given by the design rate of the standard
LDPC ensemble with degree distribution equal to the average residual degree
distribution.

In order to compute the equivocation of Eve H(S|ZN ), using the chain rule we
write H(XNS|ZN ) in two different ways and obtain

H(XN |ZN ) +H(S|XNZN ) = H(S|ZN ) +H(XN |ZNS). (3.21)
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By noting that H(S|XNZN ) = 0 and substituting it in (3.21), we obtain

H(S|ZN )

N
=

H(XN |ZN )

N
− H(XN |ZNS)

N
. (3.22)

In the following two subsections we show how the normalized average ofH(XN |ZN )
and H(XN |ZNS) can be computed. The next subsection deals with H(XN |ZN ).

3.3.1 Computing the Normalized H(XN |ZN )

In the following lemma we show that the average of limN→∞ H(XN |ZN )/N can
be computed by the MMU method.

Lemma 3.2. Consider transmission over the BEC-WT(ϵm, ϵw) using the syndrome

encoding method with a two edge type LDPC code H =

[

H1

H2

]

, where the dimen-

sions of H, H1, and H2 are N(1 − R(1,2)) × N , N(1 − R(1)) × N , and NR × N
respectively. Let S be a randomly chosen message from Alice for Bob and let XN

be the transmitted vector which is a randomly chosen solution of HXN =

[

0
S

]

. Let

ZN be the channel observation of Eve. Consider a point-to-point communication
set-up over the BEC(ϵw) using a standard LDPC code H1. Let X̂N be a randomly
chosen transmitted codeword, i.e., X̂N is a randomly chosen solution of H1X̂N = 0.
Further let ẐN be the channel output. Then

H
(

XN |ZN
)

= H
(

X̂N |ẐN
)

.

"

Proof. We prove the lemma by showing that (XN , ZN ) and (X̂N , ẐN ) have the
same joint distribution. Clearly, Pr(ZN = zN |XN = xN ) = Pr(ẐN = zN |X̂N =
xN ) as transmission takes place over the BEC(ϵw) in both cases. Now

Pr(XN = xN ) =
∑

s

Pr
(

XN = xN , S = s
)

,

(a)
=

1

2NR

∑

s

Pr
(

XN = xN |S = s
)

,

(b)
=

1

2NR

∑

s

1

2NR(1,2) 11{H1xN=0}11{H2xN=s},

(c)
=

11{H1xN=0}

2NR(1) , (3.23)

where 11{S} is the indicator function for the statement S, (a) follows from the
uniform a priori distribution on S, (b) follows since conditioned on s there are
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2NR(1,2)

equally likely solutions to HxN = [0 s]T , and (c) follows because for a
fixed xN ,

∑

s

11{H2xN=s} = 1.

Now the a priori distribution of X̂N is also the RHS of (3.23). This is because X̂N

is a randomly chosen solution of H1X̂N = 0. This proves the lemma. #

From Lemma 3.2, we see that when we consider transmission over the BEC-
WT(ϵm, ϵw) using the two edge type LDPC ensemble {Λ,Γ(1),Γ(2)}, we can com-
pute the average of limN→∞ H(XN |ZN )/N by applying the MMU method to the
standard LDPC ensemble {Λ(1),Γ(1)} for transmission over the BEC(ϵw). We for-
mally state this in the following theorem.

Theorem 3.3. Consider transmission over the BEC-WT(ϵm, ϵw) using a ran-
domly chosen code C from the two edge type LDPC ensemble {Λ,Γ(1),Γ(2)}
and the coset encoding method. Let XN be the transmitted word and ZN be the
wiretapper’s observation.

Consider a point-to-point communication setup for transmission over
BEC(ϵw) using the standard LDPC ensemble {Λ(1),Γ(1)}. Let {Ω,Φ} (from
the node perspective) be the average residual degree distribution of the residual
ensemble given by the peeling decoder and let Rr

des be the design rate of the av-
erage residual ensemble {Ω,Φ}. If almost every element of the average residual
ensemble {Ω,Φ} has its rate equal to the design rate Rr

des, then

lim
N→∞

E
(

HC(XN |ZN )
)

N
= ϵwΛ

(1)
(

1− ρ(1)(1− x)
)

Rr
des,

where x is the fixed point of the density evolution recursion for {Λ(1),Γ(1)} ini-
tialized with erasure probability ϵw, and ρ(1) is the check node degree distribution
of H1 from the edge perspective.

Proof. Note that the condition that almost every element of the average residual
ensemble {Ω,Φ} has its rate equal to the design rate can be verified by using
Lemma 2.9.

The proof is a straightforward consequence of Lemma 3.2 and Theorem 2.10.
The factor ϵwΛ(1)

(

1− ρ(1)(1− x)
)

, which is the ratio of the block length of the

average residual ensemble {Ω,Φ} to the initial ensemble {Λ(1),Γ(1)}, takes care of
the fact that we are normalizing HC(XN |ZN ) by the block-length of the initial
ensemble {Λ(1),Γ(1)}. #

In the following subsection we generalize the MMU method to two edge type
LDPC ensembles in order to compute H(XN |ZNS).
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3.3.2 Computing the Normalized H(XN |ZNS) by Generalizing

the MMU method to Two Edge Type LDPC Ensembles

Similarly to Lemma 3.2, in the following lemma we show that computing
H(XN |S,ZN ) for the BEC-WT(ϵm, ϵw) using the coset encoding method and two
edge type LDPC ensemble {Λ,Γ(1),Γ(2)} is equivalent to computing the equivoca-
tion of the same ensemble for point-to-point communication over the BEC(ϵw).

Lemma 3.4. Consider transmission over BEC-WT(ϵm, ϵw) using the syndrome

encoding method with a two edge type LDPC code H =

[

H1

H2

]

, where the dimen-

sions of H, H1, and H2 are N(1 − R(1,2)) × N , N(1 − R(1)) × N , and NR × N
respectively. Let S be a randomly chosen message from Alice for Bob and let XN

be the transmitted vector which is a randomly chosen solution of HXN =

[

0
S

]

. Let

ZN be the channel observation of Eve.
Consider a point-to-point communication set-up for transmission over the

BEC(ϵw) using the two edge type LDPC code H =

[

H1

H2

]

. Let X̂N be the transmit-

ted codeword which is a randomly chosen solution of HX̂N = 0 and let ẐN be the
channel output. Then

H(XN |ZNS)
(a)
= H(XN |S = 0, ZN )

(b)
= H(X̂N |ẐN ).

"

Proof. Equality (b) is obvious. To prove equality (a), note that for a solution xN

of HxN =

[

0
s

]

we can write xN = x′N ⊕xN
s , where Hx′N = 0 and HxN

s =

[

0
s

]

. Let

zN be a specific received vector and let z′N be the vector that has the same erased
positions as zN and is equal to the corresponding position in x′N in the unerased
positions. The proof is completed by noting that

Pr(XN = xN , ZN = zN |S = s) = Pr(XN = x′N , ZN = z′N |S = 0).

#

Thus from Lemma 3.4 we see that H(XN |ZNS) can be computed by general-
izing the MMU method to two edge type LDPC ensembles. The proof of Step 1
and 2 of the MMU method for two edge type LDPC ensemble is the same as for
the standard LDPC ensemble. We state it in the following two lemmas.

Lemma 3.5. Consider transmission over the BEC(ϵw) using the two edge type
LDPC ensemble {Λ,Γ(1),Γ(2)} and decoded via the peeling decoder. Let G be a
random residual graph. Conditioned on the event that G has degree distribution
{Ω,Φ(1),Φ(2)}, it is equally likely to be any element of the two edge type ensemble
{Ω,Φ(1),Φ(2)}. "
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Proof. The proof is the same as for standard LDPC codes [LMSS01b]. #

Lemma 3.6. Consider transmission over the BEC(ϵw) using the two edge type
LDPC ensemble {Λ,Γ(1),Γ(2)} which is decoded using the peeling decoder. Let

{Ω,Φ(1),Φ(2)} be the average residual degree distribution. Let {ΩG,Φ
(1)
G ,Φ(2)

G } be
the residual degree distribution of a random residual graph G. Then, for any δ > 0

lim
N→∞

Pr
{

d
((

Ω,Φ(1),Φ(2)
)

,
(

ΩG,Φ
(1)
G ,Φ(2)

G

))

≥ δ
}

= 0.

The distance d(·, ·) is the L1 distance

d
((

Ω,Φ(1),Φ(2)
)

,
(

Ω̃, Φ̃(1), Φ̃(2)
))

=
∑

l1l2

|Ωl1l2 − Ω̃l1l2 |+
∑

r1

|Φ(1)
r1

− Φ̃(1)
r1

|+
∑

r2

|Φ(2)
r2

− Φ̃(2)
r2

|.

"

Proof. The proof is the same as that for standard LDPC ensembles [LMSS98,
LMSS01b], [RU08, Theorem 3.106]. #

In the following lemma we compute the average residual degree distribution of
the two edge type LDPC ensemble.

Lemma 3.7. Consider transmission over BEC(ϵw) using the two type LDPC en-
semble {Λ,Γ(1),Γ(2)} which is decoded by the peeling decoder. Let (x1, x2) be the
fixed points of (3.8) and (3.9) when initialized with channel erasure probability ϵw.
Let yj = 1 − ρ(j)(1 − xj), j = 1, 2, where ρ(j) is the degree distribution of check
nodes of type j from edge perspective. Then the average residual degree distribution
{Ω,Φ(1),Φ(2)} is given by

Ω(z1, z2) = ϵΛ(z1y1, z2y2),

Φ(j)(z) = Γ(j)(1− xj + xjz)− xjzΓ
′(j)(1− xj)

− Γ(j)(1− xj), j = 1, 2,

where Γ′(j)(x) is the derivative of Γ(j)(x). Note that the degree distributions are
normalized with respect to the number of variable (check) nodes in the original
graph. "

Proof. The proof follows by the analysis of the peeling decoder for general multi-
edge type LDPC ensembles in [HW10]. However, as we are interested in only two
edge type LDPC ensembles, the proof also follows from the analysis for the standard
LDPC case [LMSS01b]. #
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Lemma 3.5, 3.6, and 3.7 generalize Step 1 and 2 of the MMU method for two
edge type LDPC ensembles. The key technical task in extending Step 3 to two edge
type LDPC ensemble is to derive a criterion, which when satisfied, guarantees that
almost every code in the residual ensemble has its rate equal to the design rate.
The rate is equal to the normalized logarithm of the total number of codewords.
However, as the average of the logarithm of the total number of codewords is hard to
compute, we compute the normalized logarithm of the average of the total number
of codewords. By Jensen’s inequality this is an upper bound on the average rate.
If this upper bound is equal to the design rate, then by the same arguments as in
Lemma 2.9 we can show that almost every code in the ensemble has its rate equal
to the design rate.

Recall that coef
{
∑

j Djvj , vk
}

is the coefficient of vk in the polynomial
∑

j Djvj . In the following lemma we derive the average of the total number of
codewords of a two edge type LDPC ensemble.

Lemma 3.8. Let NW be the total number of codewords of a randomly chosen code
from the two edge type LDPC ensemble (Λ,Γ(1),Γ(2)). Then the average of NW

over the ensemble is given by

E(NW ) =

NΛ′
1(1,1),NΛ′

2(1,1)∑

E1=0,E2=0

coef

{

∏

l1,l2

(1 + ul11 ul22 )NΛl1,l2 , uE1
1 uE2

2

}

×

coef

{

∏

r1,r2
qr1(v1)

NΛ′
1(1,1)

Γ′(1)(1)
Γ(1)
r1 qr2(v2)

NΛ′
2(1,1)

Γ′(2)(1)
Γ(2)
r2 , vE1

1 vE2
2

}

(NΛ′
1(1,1)
E1

)(NΛ′
2(1,1)
E2

) ,

where Λ′
j(1, 1) =

∑

l1,l2
ljΛl1,l2 , Γ

′(j)(1) =
∑

rj
rjΓ

(j)
rj , j ∈ {1, 2}. The polyno-

mial qr(v) is defined as

qr(v) =
(1 + v)r + (1− v)r

2
.

"

Proof. Let W(E1, E2) be the set of assignments of ones and zeros to the variable
nodes which result in E1 (resp. E2) type one (resp. type two) edges connected
to variable nodes assigned value one. Denote the cardinality of W(E1, E2) by
|W(E1, E2)|. For an assignment w, let 11w be a random indicator variable which
evaluates to one if w is a codeword of a randomly chosen code and zero otherwise.
Let NW (E1, E2) be the number of codewords belonging to the set W(E1, E2). Then
we have the following relationships

NW (E1, E2) =
∑

w∈W(E1,E2)

11w,
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NW =

NΛ′
1(1,1),NΛ′

2(1,1)∑

E1=0,E2=0

NW (E1, E2).

By linearity of expectation we obtain

E(NW (E1, E2)) =
∑

w∈W(E1,E2)

E(11w),

and

E(NW ) =

NΛ′
1(1,1),NΛ′

2(1,1)∑

E1=0,E2=0

E(NW (E1, E2)). (3.24)

From the symmetry of code generation, we observe that E(11w), for w ∈ W(E1, E2),
is independent of w. Thus we can fix w to any one element of W(E1, E2) and obtain

E(NW (E1, E2)) = |W(E1, E2)|Pr (w is a codeword) . (3.25)

Note that |W(E1, E2)| is given by

|W(E1, E2)| = coef

{

∏

l1,l2

(1 + ul11 ul22 )NΛl1,l2 , uE1
1 uE2

2

}

. (3.26)

We now evaluate the probability that an assignment w, w ∈ W(E1, E2), is a code-
word, which is given by

Pr (w is a codeword) =
Total number of graphs for which w is a codeword

Total number of graphs
.

(3.27)

Similar to the arguments for the standard LDPC ensemble in the proof of
Lemma 2.9, the total number of graphs for which w is a codeword is given by

E1!E2!(NΛ′
1(1, 1)− E1)!(NΛ′

2(1, 1)− E2)!

coef

{

∏

r1,r2

qr(v1)
NΛ′

1(1,1)

Γ′(1)(1)
Γ(1)
r1 qr(v2)

NΛ′
2(1,1)

Γ′(2)(1)
Γ(2)
r2 , vE1

1 vE2
2

}

. (3.28)

By noting that the total number of graphs is equal to (NΛ′
1(1, 1))!(NΛ′

2(1, 1))!,
and combining (3.24)-(3.28), we obtain the expression for the average of the total
number of codewords.

#

Remark 3.9. Note that related problems of computing the weight distribution
of two edge type and more generally multi-edge type LDPC ensembles have been
addressed in [IKS+05, KAD+09]. ♦
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Lemma 3.10. Let E(N) be the set of (e1, e2) such that

coef

{

∏

l1,l2

(1 + ul11 ul22 )NΛl1,l2 , u
e1NΛ′

1(1,1)
1 u

e2NΛ′
2(1,1)

2

}

̸= 0. (3.29)

Then limN→∞ E(N) is the set of (e1, e2) such that

(e1, e2) =

(∑

l1,l2
l1Λl1,l2σ(l1, l2)

Λ′
1(1, 1)

,

∑

l1,l2
l2Λl1,l2σ(l1, l2)

Λ′
2(1, 1)

)

,

where 0 ≤ σ(l1, l2) ≤ 1. We call this set E.
E can also be represented as the subset of the unit square enclosed between two

piecewise linear curves. Order the pairs (l1, l2) for which Λl1,l2 > 0 in decreasing
order of l1/l2 and assume that there are D distinct such values. Let

σd(l1, l2) =

{

1 if l1/l2 takes the dth largest possible value,

0 otherwise,

and let

pd =

(∑

l1,l2
l1Λl1,l2σd(l1, l2)

Λ′
1(1, 1)

,

∑

l1,l2
l2Λl1,l2σd(l1, l2)

Λ′
2(1, 1)

)

.

Then E is the set above the piecewise linear curve connecting the points
{(0, 0), p1, p1 + p2, . . . , (1, 1)} and below the piecewise linear curve connecting the
points {(0, 0), pD, pD + pD−1, . . . , (1, 1)}, where addition of points p1 + p2 is the
point obtained by component wise addition of p1 and p2.

"

Proof. The proof is given in Appendix 3.A. #

Before stating our next result we need the following definition. For a two edge
type LDPC ensemble {Λ,Γ(1),Γ(2)} with design rate Rdes we define the function
θ(e1, e2) for (e1, e2) ∈ E as

θ(e1, e2) =
∑

l1,l2

Λl1,l2 log(1 + ul21 ul22 )− Λ′
1(1, 1)e1 log u1

− Λ′
2(1, 1)e2 log u2 +

Λ′
1(1, 1)

Γ′(1)(1)

∑

r1

Γ(1)
r1

log qr1(v1)

− Λ′
1(1, 1)e1 log v1 +

Λ′
2(1, 1)

Γ′(2)(1)

∑

r2

Γ(2)
r2

log qr2(v2)

− Λ′
2(1, 1)e2 log v2 − Λ′

1(1, 1)h(e1)− Λ′
2(1, 1)h(e2)

−Rdes, (3.30)
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where u1, u2, v1, and v2 are positive solutions to the following equations

v1
Γ(1)′(1)

∑

r1

r1Γ
(1)
r1

(1 + v1)r1−1 − (1− v1)r1−1

(1 + v1)r1 + (1− v1)r1
= e1, (3.31)

v2
Γ(2)′(1)

∑

r2

r2Γ
(2)
r2

(1 + v2)r2−1 − (1− v2)r2−1

(1 + v2)r2 + (1− v2)r2
= e2, (3.32)

1

Λ′
1(1, 1)

∑

l1,l2

Λl1,l2l1
ul11 ul22

1 + ul11 ul22
= e1, (3.33)

1

Λ′
2(1, 1)

∑

l1,l2

Λl1,l2l2
ul11 ul22

1 + ul11 ul22
= e2. (3.34)

In the following theorem, we present a criterion for two edge type LDPC ensem-
bles, which, when satisfied, guarantees that the actual rate is equal to the design
rate.

Theorem 3.11. Consider the two edge type LDPC ensemble {Λ,Γ(1),Γ(2)}
with design rate Rdes. Let NW be the total number of codewords of a randomly
chosen code C from this ensemble and let RC be the actual rate of the code C.
Then

lim
N→∞

log(E[NW ])

N
= sup

(e1,e2)∈E
θ(e1, e2) +Rdes,

where the set E is defined in Lemma 3.10 and θ(e1, e2) is defined in (3.30).
Also, if sup(e1,e2)∈E θ(e1, e2) = 0, i.e., θ(1/2, 1/2) ≥ θ(e1, e2), ∀(e1, e2) ∈ E,
then for any δ > 0

lim
N→∞

Pr (RC ≥ Rdes + δ) = 0.

Proof. By (3.24), we have

lim
N→∞

log(E[NW ])

N
= sup

(e1,e2)∈E
lim

N→∞

log(E[N(e1NΛ′
1(1, 1), e2NΛ′

2(1, 1))])

N
.

Using Stirling’s approximation for the binomial coefficients and [BM04, Theorem
2] for the coefficient growths in Lemma 3.8 we know that

lim
N→∞

log(E[N(e1NΛ′
1(1, 1), e2NΛ′

2(1, 1))])

N
=

sup
(e1,e2)∈E

inf
u1,u2,v1,v2>0

ψ(e1, e2, u1, u2, v1, v2)
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where ψ(e1, e2, u1, u2, v1, v2) is given by
∑

l1,l2

Λl1,l2 log(1 + ul21 ul22 )− Λ′
1(1, 1)e1 log u1

−Λ′
2(1, 1)e2 log u2 +

Λ′
1(1, 1)

Γ′(1)(1)

∑

r1

Γ(1)
r1

log qr1(v1)

−Λ′
1(1, 1)e1 log v1 +

Λ′
2(1, 1)

Γ′(2)(1)

∑

r2

Γ(2)
r2

log qr2(v2)

−Λ′
2(1, 1)e2 log v2 − Λ′

1(1, 1)h(e1)− Λ′
2(1, 1)h(e2).

Further, the infimum of ψ with respect to u1, u2, v1, and v2 can be found by solving
the following saddle point equations

∂ψ

∂u1
=

∂ψ

∂u2
=
∂ψ

∂v1
=
∂ψ

∂v2
= 0,

which are equivalent to (3.31) - (3.34). The second claim of the theorem follows
from Lemma 2.9. #

Note that in general for a two edge type LDPC ensemble, in order to check if
the actual rate is equal to the design rate, we need to compute the maximum of a
two variable function over the set E . However, the set E is just a line for left regular
two edge type LDPC ensembles. Thus we deal with the case of left regular LDPC
ensembles in the following lemma.

Lemma 3.12. Consider the left regular two edge type LDPC ensemble
{l1, l2,Γ(1),Γ(2)} with design rate Rdes. Let N be the total number of codewords of
a randomly chosen code C from this ensemble and RC be its actual rate. Then

lim
N→∞

log(E[NW ])

N
= sup

e∈(0,1)
θ(e) +Rdes.

If supe∈(0,1) θ(e) = 0 i.e. θ(1/2) ≥ θ(e), ∀e ∈ (0, 1), then for any δ > 0

lim
N→∞

Pr (RC > Rdes + δ) = 0

The function θ(e) is defined as

θ(e) = (1− l1 − l2)h(e) +
l1

Γ(1)′(1)

∑

r

Γ(1)
r

log qr(v1)

+
l2

Γ(2)′(1)

∑

r

Γ(2)
r

log qr(v2)− el1 log v1 − el2 log v2 −Rdes,

where v1 (resp. v2) is the unique positive solution of (3.31) (resp. (3.32)) with e1
(resp. e2) substituted by e on the RHS.

"
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Proof. Most of the arguments in this lemma are the same as those of Theorem
3.11, so we will omit them. First note that the cardinality of the set W(E1, E2), as
defined in Lemma 3.8, is given by

|W(E1, E2)| = coef
{

(1 + ul11 ul22 )N , uE1
1 uE2

2

}

=

{

0 E2
l2

̸= E1
l1
,

( N
E1/l1

)

otherwise.

Let e = E1/(Nl1) = E2/(Nl2). By Stirling’s approximation and the saddle point
approximation for the coefficient terms [RU08, pp. 517], we obtain

lim
N→∞

log(E[NW ])

N
= lim

N→∞
sup

e∈(0,1)

log(E[N(eNl1, eNl2)])

N

= sup
e∈(0,1)

inf
y1,y2>0

{

(1− l1 − l2)h(e)

+
l1

Γ(1)′(1)

∑

r1

Γ(1)
r1

log qr1(v1)− el1 log v1

+
l1

Γ(2)′(1)

∑

r2

Γ(2)
r2

log qr2(v2)− el2 log v2

}

= sup
e∈(0,1)

inf
y1,y2>0

ψ(e, v1, v2)

The saddle point equations are obtained by taking the partial derivatives of ψ
with respect to vj , j ∈ {1, 2} and setting them equal to 0. These equations are the
same as (3.31) (resp. (3.32)) with e1 (resp. e2) substituted by e on the RHS.

#

Remark: Note that as in [MMU08], we can change the order of inf and sup.
Taking the derivatives after changing the order gives a function which is an upper
bound on θ(e). The advantage of this upper bound is that it can be computed
without solving any saddle point equations. However, as opposed to the standard
LDPC ensembles, for two edge type LDPC ensembles this upper bound is not tight
and does not provide a meaningful criterion to check if the rate is equal to the
design rate.

The following two lemmas show that in the case of a left regular ensemble where
Γ(1) and Γ(2) both have only either odd or even degrees, the function θ(e) attains
its maximum inside the interval [0, 1/2].

Lemma 3.13. Consider the left regular two edge type LDPC ensemble
{l1, l2,Γ(1),Γ(2)}. Let θ(e) be the function as defined in Lemma 3.12. If both
Γ(1) and Γ(2) are such that both the type of check nodes only have odd degrees, then
for e > 1/2

θ(e) < θ(1/2).
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"

Proof. The proof is given in Appendix 3.B. #

Lemma 3.14. Consider the left regular two edge type LDPC ensemble
{l1, l2,Γ(1),Γ(2)}. Let θ(e) be the function as defined in Lemma 3.12. If both
Γ(1) and Γ(2) are such that both the type of check nodes only have even degrees,
then for e ∈ (0, 1/2)

θ(e) = θ(1− e).

"

Proof. The proof is given in Appendix 3.C. #

In the following theorem we state how we can compute the conditional entropy
H(XN |ZNS) appearing in (3.22).

Theorem 3.15. Consider transmission over the BEC-WT(ϵm, ϵw) using a ran-
dom code C from the two edge type LDPC ensemble {Λ,Γ(1),Γ(2)} and the coset
encoding method. Let S be the message from Alice for Bob, XN be the trans-
mitted word, and ZN be the wiretapper’s observation.

Also consider a point-to-point communication setup for transmission over
the BEC(ϵw) using the two edge type LDPC ensemble {Λ,Γ(1),Γ(2)} As-
sume that the erasure probability ϵw is above the BP threshold of the ensem-
ble. Let {Ω,Φ(1),Φ(2)} be the residual ensemble resulted from the peeling de-
coder. Let Rr

des be the design rate of the residual ensemble {Ω,Φ(1),Φ(2)}. If
{Ω,Φ(1),Φ(2)} satisfies the condition of Theorem 3.11, i.e. if the design rate of
the residual ensemble is equal to the rate then

lim
N→∞

E(HC(XN |ZNS))

N
= ϵwΛ(y1, y2)R

r
des, (3.35)

where y1, and y2 are the fixed points of the density evolution equations (3.8)

and (3.9) obtained when initializing them with x(1)
1 = x(2)

2 = ϵw.

Proof. From Lemma 3.4, we know that the conditional entropy in the point-to-point
set-up is identical to H(XN |ZNS). The conditional entropy in the point-to-point
case is equal to the RHS of (3.35). This follows from the same arguments as in
[MMU08, Theorem 10]. The quantity ϵwΛ(y1, y2) on the RHS of (3.35) is the ratio
of the number of variable nodes in the residual ensemble to that in the initial
ensemble.

#
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This gives us the following method to calculate the equivocation of Eve when
using two edge type LDPC ensembles for the BEC-WT(ϵm, ϵw) based on the coset
encoding method.

1. If the threshold of the two edge type LDPC ensemble is lower than ϵw, calcu-
late the residual degree distribution for the two edge type LDPC ensemble for
transmission over the BEC(ϵw). Check that the rate of this residual ensemble
is equal to the design rate using Theorem 3.11. Calculate H(XN |ZNS) using
Theorem 3.15. If the threshold is higher than ϵw, H(XN |ZNS) is trivially
zero.

2. If the threshold of the standard LDPC ensemble induced by type one edges is
higher than ϵw, calculate the residual degree distribution of this ensemble for
transmission over the BEC(ϵw). Check that its rate is equal to the design rate
using Lemma 2.9. Calculate H(XN |ZN ) using Theorem 3.3. If the threshold
is higher than ϵw, H(XN |ZN ) is trivially zero.

3. Finally calculate H(S|ZN ) using

H(S|ZN ) = H(XN |ZN )−H(XN |ZNS).

In the following section we demonstrate this procedure by computing the equivo-
cation of Eve for various two edge type LDPC ensembles.

3.4 Examples

Example 3.16. Consider using the ensemble defined by

Standard LDPC Degree Distribution 1.

Λ(1)(x) = 0.5572098x2 + 0.1651436x3 + 0.07567923x4

+ 0.0571348x5 + .043603x7 + 0.02679802x8

+ 0.013885518x13 + 0.0294308x14 + 0.02225301x31

+ 0.00886105x100,

Γ(1)(x) = 0.25x9 + 0.75x10

from Section 3.2 for transmission over the BEC-WT(0.5, 0.6) at rate R = 0.498836
b.p.c.u. (the full rate of the ensemble), without using the coset encoding scheme.
Here every possible message s corresponds to a single codeword xN , and encod-
ing and decoding is done as with a standard LDPC code. Since the threshold is
0.5, Bob can decode with error probability approaching zero. The equivocation of
Eve is given by H(S|ZN ) = H(XN |ZN ) which can be calculated using the MMU
method. In Figure 3.3 we plot the function Ψ{Ω(1),Φ(1)}(u) defined in Lemma 2.9

corresponding to the standard LDPC ensemble {Ω(1),Φ(1)}, which is the average
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Figure 3.3: Ψ{Ω(1),Φ(1)}(u) for Example 3.16 and 3.17. ( c⃝ 2013 IEEE. Reused with
permission.)

residual degree distribution of the ensemble induced by type one edges for trans-
mission over BEC(ϵw).

From Lemma 2.9, if the maximum of Ψ{Ω(1),Φ(1)}(u) over the unit interval oc-
curs at u = 1, which holds in this case, the design rate of the residual graph
is equal to the actual rate. Thus we can calculate the average equivocation
limN→∞ H(XN |ZN )/N = 0.0989137 b.p.c.u. Using this ensemble we can achieve
the point (R,Re) = (0.498836, 0.0989137) in the rate-equivocation region which is
very close to the point C = (0.5, 0.1) in Figure 3.1. ♦

Example 3.17. Now consider the two edge type ensemble defined by

Two Edge Type Degree Distribution 1.

Λ(x, y) = 0.463846x2 + 0.0814943x2y + 0.0118691x2y2

+ 0.14239x3 + 0.0201658x3y + 0.00258812x3y2

+ 0.0292241x4 + 0.0464551x4y + 0.0564162x5

+ 0.000718585x5y + 0.0436039x7y

+ 0.0258926x8y + 0.000905503x8y2

+ 0.00631474x13y2 + 0.00757076x13y5

+ 0.011051x14y + 0.0173718x14y2

+ 0.00100807x14y5 + 0.00240762x31

+ 0.0012626x31y4 + 0.0185828x31y5

+ 0.000326117x100y4 + 0.00383319x100y17

+ 0.00470174x100y18,
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Γ(1)(x) = 0.25x9 + 0.75x10,

Γ(2)(x) = x6,

from Section 3.2, for transmission over the BEC-WT(0.5, 0.6) using the coset en-
coding scheme. Again Bob can decode since the threshold of the ensemble induced
by type one edges is 0.5. Since the threshold of the two edge type ensemble is 0.6,
we get H(XN |ZNS) = 0, and H(S|ZN ) = H(XN |ZN ). The degree distribution
of type one edges is the same as the degree distribution in Example 1, so we again
get limN→∞ E(H(XN |ZN ))/N = 0.0989137 b.p.c.u. Using this scheme we achieve
the point (R,Re) = (0.0999064, 0.0989137) in the rate-equivocation region which is
very close to point B = (0.1, 0.1) in Figure 3.1. ♦

Example 3.18. Consider transmission over the BEC-WT(0.429, 0.75) using the
coset encoding scheme and the regular two edge type ensemble defined by

Two Edge Type Degree Distribution 3.

Λ(x, y) = x3y3

Γ(1)(x) = x6

Γ(2)(x) = x12.

The design rate of this ensemble is 0.25 b.p.c.u. and the threshold is 0.469746.
The threshold for the ensemble induced by type one edges is 0.4294, so it can be
used for reliable communication if ϵm < 0.4294.

To calculate the equivocation of Eve, we first calculate H(XN |ZN )/N by the
MMU method. We calculate the average residual degree distribution {Ω(1),Φ(1)}
of the ensemble induced by type one edges for erasure probability ϵw and plot
Ψ{Ω(1),Φ(1)}(u) in Figure 3.4. As in Examples 1 and 2, we see that it takes its maxi-
mum at u = 1. Thus, by Lemma 2.9, we obtain that the conditional entropy is equal
to the design rate of the residual ensemble, that is, limN→∞ E(H(XN |ZN ))/N =
0.250124 b.p.c.u.
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!0.8

!0.6

!0.4

!0.2

0.2 0.4 0.6 0.8 1.0

!0.35

!0.30

!0.25

!0.20

!0.15

!0.10

!0.05

Figure 3.4: θ(e) and Ψ{Ω(1),Φ(1)}(u) for Example 3.18. ( c⃝ 2013 IEEE. Reused with
permission.)
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We now calculate the residual degree distribution (Ω,Φ(1),Φ(2)) of the two edge
type ensemble corresponding to erasure probability ϵw and plot the function θ(e) de-
fined in Lemma 3.12. If θ(e) is less than or equal to zero for e ∈ [0, 1], then the rate
of the residual ensemble is equal to the design rate by Lemma 3.12. Then we can cal-
culateH(XN |ZNS) using Lemma 3.15. In Figure 3.4 we see that supe∈[0,1] θ(e) = 0,

and we get limN→∞ E(H(XN |ZNS))/N = 0.000124297 b.p.c.u.
Finally, using (3.22) we get limN→∞ E(H(S|ZN ))/N = 0.24999998 b.p.c.u. We

thus achieve the point (R,Re) = (0.25, 0.24999998) in the rate-equivocation region.
We see that we are very close to perfect secrecy. The reason that we are so far
away from the secrecy capacity Cs = 0.321 is that the (3, 6) ensemble for the main
channel is far from being capacity achieving.

♦

Example 3.19. Consider the two edge type ensemble

Two Edge Type Degree Distribution 4.

Λ(x, y) = 0.5572098x2y3 + 0.1651436x3y3 + 0.07567923x4y3

+ 0.0571348x5y3 + .043603x7y3 + 0.02679802x8y3

+ 0.013885518x13y3 + 0.0294308x14y3

+ 0.02225301x31y3 + 0.00886105x100y3,

Γ(1)(x) = 0.25x9 + 0.75x10,

Γ(2)(x) = x12

where the graph induced by type one edges has the same degree distribution as
Standard LDPC Degree Distribution 1 and the graph induced by type two edges
is (3, 12) regular. The rate of the overall ensemble is 0.248836 b.p.c.u. and the
rate from Alice to Bob is R = 0.25 b.p.c.u. Consider transmission over the BEC-
WT(0.5, 0.751164).

In Figure 3.5, we plot Ψ{Ω(1),Φ(1)}(u) for the residual ensemble {Ω(1),Φ(1)} in-
duced by type one edges for transmission over BEC(ϵw). Since the maximum of
Ψ{Ω(1),Φ(1)}(u) over the unit interval occurs at u = 1, we obtain by Lemma 2.9 that
the rate is equal to the design rate for this residual ensemble. In Figure 3.5 we
plot θ(e1, e2) for the residual ensemble (Ω,Φ(1),Φ(2)) of the two edge type LDPC
ensemble for transmission over BEC(ϵw). Since the maximum of θ(e1, e2) over
the set E is zero, we obtain by Theorem 3.11 that the rate is equal to the design
rate for this residual two edge type ensemble. In this case we can calculate the
equivocation of Eve and find it to be 0.24999999 b.p.c.u., which is very close to
the rate. Thus this ensemble achieves the point (R,Re) = (0.25, 0.24999999) in
the capacity-equivocation region in Figure 3.1. Note that the secrecy capacity is
0.251164 b.p.c.u.

♦
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Figure 3.5: θ(e1, e2) and Ψ{Ω(1),Φ(1)}(u) for Example 4. ( c⃝ 2013 IEEE. Reused
with permission.)

These examples demonstrate that there exist simple ensembles with very good
secrecy performance.
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3.A Proof of Lemma 3.10

The terms in the expansion of
∏

l1,l2
(1 + ul11 ul22 )NΛl1,l2 have the form

u
∑

l1,l2
l1k(l1,l2)Λl1,l2

1 u
∑

l1,l2
l2k(l1,l2)Λl1,l2

2 ,

where 0 ≤ k(l1, l2) ≤ N . If the coefficient of u
e1NΛ′

1(1,1)
1 u

e2NΛ′
2(1,1)

2 is non-zero,
there exist {k(l1, l2)}l1,l2 such that

∑

l1,l2

l1k(l1, l2)Λl1,l2 = e1NΛ′
1(1, 1)

and
∑

l1,l2

l2k(l1, l2)Λl1,l2 = e2NΛ′
2(1, 1)

which is the same as

(e1, e2) =

(∑

l1,l2
l1Λl1,l2σ(l1, l2)

Λ′
1(1, 1)

,

∑

l1,l2
l2Λl1,l2σ(l1, l2)

Λ′
2(1, 1)

)

,

where 0 ≤ σ(l1, l2) = k(l1, l2)/N ≤ 1. When N grows this is the same as (3.29).
Now we show that E is the set between the two piecewise linear curves described

in the statement of this lemma. We show this by varying the σ(l1, l2) between 0
and 1 while trying to make the ratio e1/e2 as large as possible. Start by letting
σ(l1, l2) = 0 if l1/l2 is not maximal, and letting σ(l1, l2) increase to 1 if l1/l2
is maximal. This traces out the line between (0, 0) and p1, and clearly we can
not have (e1, e2) below this line for (e1, e2) ∈ E . Then increase σ(l1, l2) for l1, l2
such that l1/l2 takes the second largest value. This traces out the line between p1
and p1 + p2 and again it is clear that we can not have (e1, e2) below this line for
(e1, e2) ∈ E . We continue like this until we have σ(l1, l2) = 1 for all l1, l2, which
corresponds to the point (1, 1). The upper curve is obtained by reversing the order
and starting with the line between (0, 0) and pD.

#

3.B Proof of Lemma 3.13

Take the derivative of θ(e) with respect to e to get

dθ

de
=(1− l1 − l2) log

(
1− e

e

)

− l1 log v1 − l2 log v2

= log

(
1− e

e

)

− l1 log

(
(1− e)v1

e

)

− l2 log

(
(1− e)v2

e

)

.
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We can now write

1− e

e
=

1− v1

Γ(1)′ (1)

∑

r1
r1Γ

(1)
r1

(1+v1)
r1−1−(1−v1)

r1−1

(1+v1)r1+(1−v1)r1

v1

Γ(1)′ (1)

∑

r1
r1Γ

(1)
r1

(1+v1)r1−1−(1−v1)r1−1

(1+v1)r1+(1−v1)r1

=

∑

r1
r1Γ

(1)
r1

(

1− v1
(1+v1)

r1−1−(1−v1)
r1−1

(1+v1)r1+(1−v1)r1

)

∑

r1
r1Γ

(1)
r1 v1

(1+v1)r1−1−(1−v1)r1−1

(1+v1)r1+(1−v1)r1

=

∑

r1
r1Γ

(1)
r1

(1+v1)
r1−1+(1−v1)

r1−1

(1+v1)r1+(1−v1)r1
∑

r1
r1Γ

(1)
r1 v1

(1+v1)r1−1−(1−v1)r1−1

(1+v1)r1+(1−v1)r1

or

(1− e)v1
e

=

∑

r1
r1Γ

(1)
r1

(1+v1)
r1−1+(1−v1)

r1−1

(1+v1)r1+(1−v1)r1
∑

r1
r1Γ

(1)
r1

(1+v1)r1−1−(1−v1)r1−1

(1+v1)r1+(1−v1)r1

. (3.36)

We obtain a similar expression for (1 − e)v2/e. Note that vj(e) are increasing
functions of e and vj(1/2) = 1. Thus for e > 1/2, vj > 1 which together with

(3.36) implies (1−e)vj

e > 1 when all r are odd. This in turn implies that dθ
de < 0 for

e > 1/2.
#

3.C Proof of Lemma 3.14

First we show that v(1 − e) = 1/v(e) if there are only even check degrees. Let
vj(e) = v and 1/v = ṽ. Then

e =
1/ṽ

Γ(j)′(1)

∑

r

rΓ(j)
r

(1 + 1/ṽ)r−1 − (1− 1/ṽ)r−1

(1 + 1/ṽ)r + (1− 1/ṽ)r

=
1

Γ(j)′(1)

∑

r

rΓ(j)
r

(1 + ṽ)r−1 + (1− ṽ)r−1

(1 + ṽ)r + (1− ṽ)r

and

1− e = 1− v

Γ(j)′(1)

∑

r

rΓ(j)
r

(1 + v))r−1 − (1− v)r−1

(1 + v)r + (1− v)r

=
1

Γ(j)′(1)

∑

r

Γ(j)
r

(

1− v
(1 + v)r−1 − (1− v)r−1

(1 + v)r + (1− v)r

)

=
1

Γ(j)′(1)

∑

r

rΓ(j)
r

(1 + v)r−1 + (1− v)r−1

(1 + v)r + (1− v)r
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These two equations imply that v(1− e) = 1/v(e). Now note that

qr(1/v) =
qr(v)

vr

for r even, so

θ(1− e) = (1− l1 − l2)h(1− e) +
l1

Γ(1)′(1)

∑

r

Γ(1)
r

log qr(v1)

− l1 log v1 +
l2

Γ(2)′(1)

∑

r

Γ(2)
r

log qr(v2)− l2 log v2

− (1− e)l1 log(1/v1)− (1− e)l2 log(1/v2)−Rdes

= θ(e).

#



Chapter 4

Polar Codes

In this chapter we discuss the application of polar codes to the wiretap channel,
the decode-and-forward scheme for degraded relay channels and the bidirectional
broadcast channel with confidential messages. Based on a construction of nested
polar codes by Korada [Kor09] we construct polar codes that achieve the capacity
regions for these channels.

4.1 Nested Polar Codes

For polar codes we will define the nested structure in terms of the frozen set instead
of as the solution to a certain parity check equation as we did for LDPC codes.
These definitions are equivalent, but the characterization based on the frozen sets
makes it particularly easy to prove the results we want.

We will consider binary polar codes of block length N = 2n. Let A and B be
two index sets such that

B ⊂ A ⊂ {1, . . . , N}. (4.1)

As for nested parity check codes the the nested structure of polar codes comes
from the cosets of a smaller subcode. Consider the polar codes P(N,A, uAC ) and
P(N,B, [0, uAC ]). By [0, uAC ] we mean a binary vector whose elements are zero for
the indices i in A\B, and otherwise they equal the corresponding elements in uAC .
The indices in AC are frozen for both codes, but the indices in BC are frozen only
for P(N,B, [0, uAC ]). See Figure 4.1 to see a pictorial representation of the frozen
sets. Similarly to Definition 2.11 we now define the nested polar code as follows:

Definition 4.1 (The nested polar code P(N,A,B, uAC )). Let G be the matrix GN

as defined in (2.29) and let GI be the submatrix composed of the columns of G
whose indices belong to an index set I. The nested polar code P(N,A,B, uAC ) is

73
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the set of codewords xN of the form

xN = uBGB ⊕ uA\BGA\B ⊕ uACGAC . (4.2)

The vector uA\B determines which coset of P(N,B, [0, uAC ]) the codeword belongs
to. ♦

The rates of the subcodes P(N,B, [uA\B, uAC ]) all equal |B|/N , and the rate of
the overall code equals |A|/N .

B
︷ ︸︸ ︷

︸ ︷︷ ︸

A

Figure 4.1: A nested polar code. The rectangle corresponds to the whole index set
{1, . . . , N}. The two frozen sets are AC and BC , and AC ⊂ BC . ( c⃝ 2010 IEEE.
Reused with permission.)

Let W and W̃ be two symmetric binary input memoryless channels and let W̃
be stochastically degraded with respect to W . Denote the polarized channels as

defined in (2.30) by W (i)
N and W̃ (i)

N respectively, and their Bhattacharyya param-

eters by Z(i)
N and Z̃(i)

N respectively. The following Lemma from [Kor09] allows us
to construct nested polar codes for degraded channels where the overall code is
capacity-achieving for W , while the subcodes are capacity achieving for W̃ :

Lemma 4.2 (Lemma 4.7 from [Kor09]). If W̃ is degraded with respect to W , then

W̃ (i)
N is degraded with respect to W (i)

N , and Z̃(i)
N ≥ Z(i)

N . "

In the following section we use Lemma 4.2 to show that nested polar codes
achieve the whole capacity-equivocation region for the degraded wiretap channel.

4.2 Polar Codes for the Wiretap Channel

We consider a wiretap channel where Alice’s alphabet X is binary, and Bob’s and
Eve’s output alphabets Y and Z are discrete. We assume that the main channel (de-
noted byW (y|x)) and the wiretapper’s channel (denoted by W̃ (z|x)) are symmetric.
We also assume that W̃ is stochastically degraded with respect to W , that is, there
exists a probability distribution W ′(z|y) such that W̃ (z|x) =

∑

y∈Y W ′(z|y)W (y|x)
for every z. Since W and W̃ are symmetric, CM = I(W ) and CW = I(W̃ ). For
this setup the capacity-equivocation region is given by

Re ≤ R ≤ CM , 0 ≤ Re ≤ CM − CW . (4.3)
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In Theorem 4.3 we give a nested polar coding scheme for the wiretap channel that
achieves the whole capacity-equivocation region.

Theorem 4.3. Let (R,Re) satisfy (4.3). For every ϵ > 0 and every 0 < β <
1/2 there exists a wiretap polar code of length N = 2n and rate RN , and an
n0 ∈ N that satisfy

RN > R− ϵ, (4.4)

PN
e < 2−Nβ

, (4.5)

RN
e > Re − ϵ, (4.6)

provided that n > n0. The encoders and decoders can be implemented with
complexity O(N logN).

Proof. Fix β < β′ < 1/2. Let

AN = {i : Z(i)
N < 2−Nβ′

}

and choose the subset BN as follows. Order the indices in AN by increasing Z̃(i)
N

and choose the N(CM −R) smallest ones. Since limn→∞ |AN |/N = CM ≥ CM −R
a subset of this size exists provided that n is large enough.

Now consider the nested polar code P(N,AN ,BN , uAC ). Since W and W̃ are
symmetric channels the performance of the successive cancellation decoder does not
depend on the choice of the frozen bits uAC . We will therefore set uAC = 0.

As for the wiretap codes based on LDPC codes we let each coset correspond to
a different message. To send the message SN , Alice generates the codeword

XN = TNGBN
⊕ SNGAN\BN

, (4.7)

where TN is a binary vector of length |BN | chosen uniformly at random. There are
2|AN\BN | different cosets, so the rate of the coding scheme is

RN =
|AN |− |BN |

N
=

|AN |
N

− CM +R.

Due to Theorem 2.12 we have limn→∞ |AN |/N = CM , which implies

lim
n→∞

RN = R.

This proves (4.4).
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Since the codewords of the nested code are the same as the ones for the polar
code P(N,AN , 0) we can bound PN

e from above by the corresponding error prob-

ability for P(N,AN , 0). Since this error probability is smaller than 2−Nβ

provided
that n is large enough we get (4.5).

To show (4.6) we look at the equivocation for Eve. We first look at the case
where R ≥ CM −CW . We expand I(XNSN ;ZN ) in two different ways and obtain

I(XNSN ;ZN ) = I(XN ;ZN ) + I(SN ;ZN |XN )

= I(SN ;ZN ) + I(XN ;ZN |SN ). (4.8)

Note that I(SN ;ZN |XN ) = 0 as SN → XN → ZN is a Markov chain. By (4.8)
and noting that I(SN ;ZN ) = H(SN )−H(SN |ZN ), we write the equivocation rate
H(SN |ZN )/N as

H(SN |ZN )

N
=
H(SN ) + I(XN ;ZN |SN )− I(XN ;ZN )

N

=
H(SN )

N
+

H(XN |SN )

N
− H(XN |ZNSN )

N
− I(XN ;ZN )

N

≥ |AN |
N

− CW − H(XN |ZN , SN )

N
,

where we have used that H(SN )+H(XN |SN ) = H(XNSN ) = H(XN ) = |AN | and
that I(XN ;ZN )/N ≤ CW .

We now look at H(XN |ZNSN ). For a fixed SN = sN we see that XN ∈
P(N,B, [sN , 0]). Let PN,sN

e be the error probability of decoding this code using

an SC decoder. By Lemma 4.2, the set ÃN = {i : Z̃(i)
N < 2−Nβ′

} is a subset
of AN . Also, limn→∞

1
N |ÃN | = CW , so if |BN | ≤ NCW we have BN ⊂ ÃN for

large n, by the definition of BN . Since |BN | = N(CM − R) ≤ NCW , we have

Z̃(i)
N < 2−Nβ′

∀i ∈ BN for large enough n. This implies that

PN,sN
e ≤

∑

i∈BN

Z̃(i)
N ≤ 2−Nβ

,

provided n is large enough. We use Fano’s inequality to show thatH(XN |ZNSN ) →
0 as n → ∞. We get

lim
n→∞

H(XN |ZNSN ) ≤ lim
n→∞

max
sN

[

h2(P
N,sN
e ) + PN,sN

e |BN |
]

= 0,

since PN,sN
e |BN | = N2−Nβ |BN |/N ≤ N2−Nβ

CW ∀sN .
Thus we have shown that

H(SN |ZN )

N
≥ CM − CW − ϵ ≥ Re − ϵ
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for n large enough.
We now consider the case when R < CM − CW . The only difference from the

analysis above is the term H(XN |ZNSN ). Since |BN | = N(CM −R) > NCW , Eve
cannot decode the code defined by (4.7) with vanishing error probability. Instead,

let B1N = {i : Z̃(i)
N < 2−Nβ′

}, B2N = BN \ B1N , and rewrite (4.7) as

XN = T1NGB1N ⊕ T2NGB2N ⊕ SNGAN\BN
.

Note that, since limn→∞ |B1N |/N = CW , this code is decodable using a successive
cancellation decoder given T2N . If T2N is unknown we can try all possible combi-
nations and come up with 2|B2N | equally likely solutions (all solutions are equally
likely since TN is chosen uniformly at random). Thus H(XN |ZNSN ) should tend
to H(T2N ). We make this argument precise by bounding H(XN |ZNSN ) as follows:

H(XN |ZNSN ) = H(XNT2N |ZNSN )

= H(T2N |ZNSN ) +H(XN |ZNSNT2N )

≤ H(T2N ) +H(XN |ZNSNT2N )

where in the last step we have used the fact that conditioning reduces entropy. We
can show that the second term goes to zero using Fano’s inequality as above. Since
limn→∞

H(T2N )
N = limn→∞

|B2N |
N = CM − R − CW , we get H(SN |ZN )/N ≥ R − ϵ

for n large enough. Finally, the complexity of the encoder and the decoder is the
same as for the point-to-point channel. #

4.2.1 Simulation Results

We show simulation results comparing Eve’s equivocation for nested polar wiretap
codes and two edge type LDPC codes over a wiretap channel where both the main
channel and the wiretapper’s channel are binary erasure channels with erasure
probabilities em and ew respectively. The LDPC codes are optimized using the
methods in Section 3.2 and for the LDPC codes the curve shows the ensemble
average. The equivocation of Eve is calculated using an extension of a result in
[OW84]1:

Lemma 4.4. Let H1 be a parity check matrix for the overall code (P(N,AN ) in
the polar case) and let H be a parity check matrix for the subcode (P(N,BN )) in a
nested coding scheme for the binary erasure channel. Then the equivocation at Eve
is rank(HE) − rank(H1,E), where HE is the matrix formed from the columns of H
corresponding to erased codeword positions. "

Proof. The equivocation at Eve can be written as

H(SN |ZN ) = H(XN |ZN )−H(XN |ZNSN ).

1Note that the polar codes P(N,AN ) and P(N,BN ) are linear codes and we therefore can
calculate the corresponding parity check matrices.
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For a specific received zN we have H1,ExT
E +H1,ECxT

EC = 0, where xT
E is unknown.

The above equation has 2N−rank(H1,E) solutions, all of which are equally likely since
the original codewords XN are equally likely. In the same way H(XN |ZNSN ) =
N − rank(HE). This implies that H(SN |ZN ) = rank(HE)− rank(H1,E). #

Figure 4.2 shows the equivocation rate at Eve and also the upper bound for Re

as a function of ew for fixed R = 0.25 and em = 0.25. It is interesting to note that
even with a block length of only 1024 bits the curves are close to the upper bound.
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Figure 4.2: Equivocation rate versus ew. Codes designed for R = 0.25, em = 0.25,
ew = 0.5, and block length N = 1024.( c⃝ 2010 IEEE. Reused with permission.)

4.3 Polar Codes for the physically degraded Relay Channel

with orthogonal receivers

Consider the physically degraded relay channel with binary input alphabets X
and X1 as defined in 2.4.1. We assume that the source to relay (SR), source to
destination (SD), and relay to destination (RD) channels are symmetrical. In this
case the capacity is given by

C = min {CSD + CRD, CSR} ,

and can be achieved using nested polar codes using a block coding scheme. Our
result is the following:
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Theorem 4.5. Let R < C. For all ϵ > 0 there exists a nested polar code of
rate R and length (B+1)N = (B+1)2n, and two integers B0 and n0 such that
the error probability at the destination is smaller than ϵ provided that B > B0

and n > n0.

Proof. We use a block coding scheme and transmit B codewords of length N in

B +1 blocks. Let W and W̃ denote the SR and SD channels respectively. Let Z(i)
N

and Z̃(i)
N be the Bhattacharyya parameters of the corresponding polarized channels.

First assume that CSR ≤ CSD + CRD. Let 0 < β < 1/2, AN = {i : Z(i)
N <

2−Nβ}, and let BN = {i : Z̃(i)
N < 2−Nβ}. By Lemma 4.2, BN ⊂ AN . The source will

transmit in each block using the nested polar code P (N,AN ,BN ). After receiving
the whole codeword the relay decodes the bits in AN . The probability that the
relay makes an error when decoding can be made smaller than ϵ/(3B) by choosing
n large enough. The relay then reencodes the bits in AN \ BN and transmits them
using a polar code of rate (|AN |− |BN |)/N in the next block. In general, in block k
the source transmits the kth codeword while the relay transmits the bits in AN \BN

from the (k−1)th block. The destination first decodes the bits in AN \BN using the
transmission from the relay. This can be done with error probability smaller than
ϵ/(3B) provided n is large enough since the rate of the relay to destination code
tends to CSR−CSD ≤ CRD as n grows. Finally the destination decodes the source
transmission from the (k − 1)th block. It uses the bits from the relay transmission
in block k to determine which coset of P (N,BN ) the codeword lies in. If n is large
enough, the rate of P (N,BN ) is smaller than CSD so the destination can decode
with block error probability smaller than ϵ/(3B). By the union bound the overall
error probability over all B blocks is then smaller than ϵ. The rate of the scheme
is B|AN |/N(B + 1) which can be made arbitrarily close to CSR provided B and n
are large enough since lim infn→∞ |AN |/N = CSR.

Now assume that CSR > CSD + CRD. Let BN = {i : Z̃(i)
N < 2−Nβ} and let

AN be a subset of {i : Z(i)
N < 2−Nβ} of size N(CSD + CRD) containing BN . Such

a subset exists provided n is large enough since CSR > CSD + CRD. The analysis
of the block error probability is the same as in the first case, and the rate of the
coding scheme is B|AN |/N(B + 1) which approaches CSD + CRD when n and B
are large. #

4.4 Polar Codes for the Bidirectional Broadcast Channel

We consider polar codes for the Bidirectional Broadcast Channel introduced in
Section 2.4.2. Recall the capacity-equivocation region given by Theorem 2.7



80 Polar Codes

Theorem 2.7. The capacity-equivocation region of the BBC with com-
mon and confidential messages is the set of rate-equivocation tuples
(Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy

Re ≤ Rc

Re ≤ I(V ;Y1|U)− I(V ;Y2|U)

Rc +R0 +Rk ≤ I(V ;Y1|U) + I(U ;Yk), k = 1, 2

R0 +Rk ≤ I(U ;Yk), k = 1, 2

for random variables U → V → X → (Y1, Y2). The cardinalities of the ranges
of U and V can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

For the following analysis of polar codes we need the case where the marginal
channels are degraded, i.e., X → Y1 → Y2.

Corollary 4.6. The capacity-equivocation region of the degraded BBC with com-
mon and confidential messages is the set of rate tuples (Rc, Re, R0, R1, R2) ∈ R5

+

that satisfy

Re ≤ Rc

Re ≤ I(X;Y1|U)− I(X;Y2|U)

Rc +R0 +Rk ≤ I(X;Y1|U) + I(U ;Yk), k = 1, 2

R0 +Rk ≤ I(U ;Yk), k = 1, 2

for random variables U → X → Y1 → Y2. The cardinality of the range of U can be
bounded by

|U| ≤ |X |.
"

Proof. The achievability follows immediately from the non-degraded case in Theo-
rem 2.7, cf. also [WB11]. We prove the converse and the bound on the cardinality
of U in the appendix. #

By considering the case of perfect secrecy, i.e. Re = Rc, we obtain the secrecy
capacity region.

Corollary 4.7. The secrecy capacity region of the degraded BBC with common and
confidential messages is the set of rate tuples (Rc, R0, R1, R2) ∈ R4

+ that satisfy

Rc ≤ I(X;Y1|U)− I(X;Y2|U)



4.4 Polar Codes for the Bidirectional Broadcast Channel 81

R0 +Rk ≤ I(U ;Yk), k = 1, 2

for random variables U → X → Y1 → Y2. The cardinality of the range of U can be
bounded by

|U| ≤ |X |.
"

Remark 4.8. The improved bound on the cardinality of U is particularly helpful
when designing coding schemes. In the following subsections we will see that it
allows us to consider binary input coding schemes when designing codes for a binary
input channel, where a looser bound might have required non-binary schemes. ♦

Remark 4.9. Note that by letting Re = 0 in Corollary 4.11 we drop the secrecy
constraint on the message sc. In this case the BBC with common and confidential
messages specializes to the broadcast channel with partial receiver side information
and degraded message sets considered in [KS07]. Thus the BBC with common and
confidential messages is a generalization of the broadcast channel with partial re-
ceiver side information and degraded message sets, and any scheme that is capacity
achieving for the first is also capacity achieving for the latter. ♦

In the next subsections we design polar coding schemes for the BBC, and then
for the BBC with common and confidential messages.

4.4.1 Polar Codes for the BBC

First consider a binary input BBC W with marginal channels W1 and W2 with no
common and confidential messages. The capacity region is given by

R1 ≤ C1, (4.9)

R2 ≤ C2, (4.10)

where C1 and C2 are the capacities of W1 and W2 respectively.
In the following theorem we present a polar coding scheme for this channel.

Note how the values of the frozen bits for the two users correspond to the side
information available.

Theorem 4.10. Let W be a BBC with binary input alphabet and symmetric
marginal channels W1 and W2. For every ϵ > 0 and every 0 < β < 1/2, there
exists a polar coding scheme of length N = 2n and an n0 ∈ N that satisfy

R1 > C1 − ϵ, (4.11)

R2 > C2 − ϵ, (4.12)

PN
e < 2−Nβ

(4.13)
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m1m2 m1 ⊕m2

︸ ︷︷ ︸

G1,N

︸ ︷︷ ︸

G12,N

︸ ︷︷ ︸

G2,N

︸ ︷︷ ︸

BN

Figure 4.3: Frozen sets and encoding for the BBC. A Part of m1 (m2) is transmitted
over G1,N (G2, N), and the remaining part of m1 and m2 are transmitted as m1⊕m2

over G12,N . ( c⃝ 2013 IEEE. Reused with permission.)

if n > n0. The encoders and decoders can be implemented with complexity
O(N logN).

Proof. Fix 0 < β < 1/2. Let W (i)
k,N and Z(i)

k,N for k = 1, 2 denote the polarized
marginal channels and their Bhattacharyya parameters. Now define the following
sets:

G1,N = {i : Z(i)
1,N < 2−Nβ

and Z(i)
2,N ≥ 2−Nβ

}, (4.14)

G2,N = {i : Z(i)
1,N ≥ 2−Nβ

and Z(i)
2,N < 2−Nβ

}, (4.15)

G12,N = {i : Z(i)
1,N < 2−Nβ

and Z(i)
2,N < 2−Nβ

}, (4.16)

BN = {i : Z(i)
1,N ≥ 2−Nβ

and Z(i)
2,N ≥ 2−Nβ

}, (4.17)

where G1,N are the channels that are good only for node 1, G2,N the channels that
are good only for node 2, G12,N are the channels that are good for both nodes,
and BN are the channels that are bad for both nodes. Consider the polar code
C(N,G1,N ∪ G2,N ∪ G12,N , uF ) with input bits given by

ui =

⎧

⎪
⎨

⎪
⎩

m2i if i ∈ G1,N ,

m1i if i ∈ G2,N ,

m1i ⊕m2i if i ∈ G12,N ,

where we assume that the messages m1 and m2 are binary vectors. The frozen sets
and the encoding is shown in Figure 4.3. Since node 1 knows m1 it treats the input
bits in G2,N as frozen and decodes the input bits ui for i ∈ G1,N ∪ G12,N using the
SC decoder (2.31). Finally it subtracts the bits of m1 that appear in bits in G12,N .
Thus the rate for node 1 becomes

R1,N =
|G1,N |+ |G12,N |

N
. (4.18)
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Node 2 treats the input bits m2 in G1,N as frozen and gets the rate

R2,N =
|G2,N |+ |G12,N |

N
. (4.19)

By the definition of G1,N ,G2,N ,G12,N ,BN , Theorem 2.12 and (2.34) we get (4.11)
– (4.13) Finally, the complexity of the encoder and the decoder is the same as for
the point-to-point channel. #

Note that we can use some of the input bits in G12,N to transmit a common
message m0, unknown at both destinations, by transferring parts of the rates R1

and R2 to R0.

Corollary 4.11. Let W be a BBC with binary input alphabet and symmetric
marginal channels W1 and W2, where W2 is degraded with respect to W1. If we
consider an additional common message m0, the scheme in Theorem 4.10 achieves
the following rate triples, which is the capacity region,

R0 +R1 ≤ C1 (4.20)

R0 +R2 ≤ C2. (4.21)

"

Proof. It is easy to see that C1 and C2 are outer bounds to the capacity region.
Since W2 is degraded with respect to W1 we have G2,N = ∅ by Lemma 4.2. Thus,
by (2.33),

lim
N→∞

R0,N+R1,N = lim
N→∞

|G1,N |+|G12,N |
N

=C1, (4.22)

and

lim
N→∞

R0,N+R2,N = lim
N→∞

|G12,N |
N

=C2, (4.23)

which completes the proof. #

Remark 4.12. Note that the condition that W2 is degraded with respect to W1 en-
sures that G2,N = ∅. If W1 and W2 are not ordered by degradation, the highest rate
for the common message that can be achieved is given by lim infN→∞ |G12,N |/N .
This quantity is called the compound capacity CP,SC(W1,W2) of W1 and W2 using
polar codes and SC decoding. In general, CP,SC(W1,W2) is lower than the mini-
mum of the capacities of W1 and W2. Methods to calculate upper and lower bounds
on CP,SC(W1,W2) were developed in [HKU09]. ♦

In the next subsection we show how to design polar codes for a degraded BBC
with common and confidential messages.
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4.4.2 Polar Codes for the BBC with Confidential Messages

We consider the case where W1 and W2 are binary symmetric channels (BSC) with
transition probabilities p1 and p2, with p2 > p1.2 We call such a channel a binary
symmetric BBC. Using the upper bound on |U| from Corollary 4.6 and the same
arguments as in [CT91, Example 15.6.3] it is easy to show that choosing U to be a
Ber(1/2) binary random variable, and PX|U to be a BSC(α), with 0 < α < 1/2 is
optimal. In this case the capacity-equivocation region in Corollary 4.6 becomes

0 ≤ Re ≤Rc

Re ≤h2(α ⋆ p1)− h2(p1)− h2(α ⋆ p2) + h2(p2)

Rc +R0 +Rk ≤h2(α ⋆ p1)− h2(p1) + 1− h2(α ⋆ pk),

k = 1, 2

R0 +Rk ≤1− h2(α ⋆ pk), k = 1, 2,

where α ⋆ β = (1− α)β + α(1− β).
Our main result is the following:

Theorem 4.13. There exists a polar code CBBC designed for the binary sym-
metric BBC, and a polar code CWT designed for the binary symmetric wiretap
channel such that transmitting

XN = XN
BBC ⊕XN

WT ,

for XN
BBC ∈ CBBC and XN

WT ∈ CWT achieves the capacity-equivocation region
for the binary symmetric BBC with common and confidential messages. The
encoders and decoders can be implemented with complexity O(N logN).

Proof. Fix 0 < α < 1/2. We first design CBBC for a binary symmetric BBC with
a common message with transition probabilities α ⋆ p1 and α ⋆ p2. If XN

WT is
statistically indistinguishable from an i.i.d. Ber(α) vector, then, by Corollary 4.11,
CBBC achieves all rate triples satisfying

R0 +Rk ≤1− h2(α ⋆ pk), k = 1, 2.

Both nodes can now decode XN
BBC and remove its contribution. Note that since

the channels are symmetric, the error probabilities do not depend on the values of
the frozen bits, and we can choose them to be zero [Arı09]. Also note that since
XN

BBC and XN
WT are independent, XN

BBC provides no information about XN
WT .

2This apparent simplification is made to make the exposition clearer. Our results generalize
to arbitrary q-ary input BBCs with degraded marginal channels using results from [STA09].
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Thus, assuming that node 2 decodes XN
BBC does not increase the equivocation of

mc at node 2.
Let CWT be a polar code with input weight α′ ∈ Q designed for a binary sym-

metric wiretap channel with transition probabilities p1 and p2 using Theorem 4.3.
To design a polar code with rational input weight α′, we augment the binary chan-
nel with a virtual q-ary input and then design a q-ary input polar code for this
augmented channel. This technique was introduced by Gallager [Gal68], and used
for polar codes in [STA09, Kor09]. Since any α ∈ R can be approximated arbi-
trarily well by an α′ ∈ Q, such a construction achieves all rate-equivocation pairs
satisfying

Rc ≤h2(α ⋆ p1)− h2(p1),

Re ≤h2(α ⋆ p1)− h2(p1)− h2(α ⋆ p2) + h2(p2).

In order to make the codewords of CWT statistically indistinguishable from an
i.i.d. Ber(α) vector we average over all possible values of the frozen bits of CWT . Let
Pe,BBC(uF ), Pe,WT (uF ), and Pe(uF ) be the average error probabilities of CBBC ,
CWT , and the overall scheme respectively, when using uF as the frozen bits for
CWT . Choosing uF uniformly at random we can make the average error probability

EUF [Pe(UF )] ≤ EUF [Pe,BBC(UF ) + Pe,WT (UF )]

arbitrarily small by choosing N large enough, since the codewords of CWT are i.i.d.
Ber(α) when averaged over uF . Since the average error probability is small there
exists at least one uF such that Pe(uF ) is small, and using this uF as the frozen
bits for CWT makes the overall error probability small.

Finally, the complexity of the encoders and the decoders are the same as in the
point-to-point setting. #

Remark 4.14. Consider a BBC with non-degraded marginal channels. As in
Remark 4.12, R0 is bounded from above by CP,SC(W1,W2), but more importantly,
the analysis of the equivocation rate Re becomes difficult. It was conjectured in
[HS10] that it is possible to achieve the secrecy capacity of non-degraded wiretap
channels using polar codes. A proof of this conjecture would also apply to our
scheme. ♦
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4.A Proof of Weak Converse

For any sequence of codes for the degraded BBC with common and confidential
messages with error probabilities going to zero, we want to show that there exist
random variables U → X → Y1 → Y2 such that

1
NH(Sc|Y N

2 S2) ≤ I(X;Y1|U)− I(X;Y2|U)
1
N (H(Sc) +H(S0) +H(Sk)) ≤ I(X;Y1|U) + I(U ;Yk), k = 1, 2

1
N (H(S0) +H(Sk)) ≤ I(U ;Yk), k = 1, 2.

We do this by using techniques similar to [LLL10] and the Fano-like inequalities

H(ScS0S2|Y N
1 S1) ≤ Nϵ1,N ,

H(S0S1|Y N
2 S2) ≤ Nϵ2,N ,

from [WB11]. Here ϵ1,N and ϵ2,N are two non-negative sequences that tend to
zero as N → ∞. Let S012 = (S0S1S2) and introduce the random variable Ui =
(S012Y

i−1
1 ).

We first bound N(R0 +R1) ≤ H(S0) +H(S2) as

H(S0) +H(S2) ≤I(S012;Y
N
1 ) +Nϵ1,N

≤
N
∑

i=1

I(S012Y
i−1
1 ;Y1i) +Nϵ1,N

=
N
∑

i=1

I(Ui;Y1i) +Nϵ1,N .

Then we bound N(R0 +R2) ≤ H(S0) +H(S1) as

H(S0) +H(S1) ≤I(S012;Y
N
2 ) +Nϵ2,N

≤
N
∑

i=1

I(S012Y
i−1
1 Y i−1

2 ;Y2i) +Nϵ2,N

(a)
=

N
∑

i=1

I(S012Y
i−1
1 ;Y2i) +Nϵ2,N (4.24)

=
N
∑

i=1

I(Ui;Y2i) +Nϵ2,N ,

where (a) follows from the degradedness Xi → Y1i → Y2i.
We bound H(Sc):

H(Sc) ≤I(Sc;Y
N
1 |S012) +Nϵ1,N
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≤I(ScX
N ;Y N

1 |S012) +Nϵ1,N

=
N
∑

i=1

I(XN ;Y1i|S012Y
i−1
1 ) +Nϵ1,N

=
N
∑

i=1

H(Y1i|S012Y
i−1
1 )−H(Y1i|S012Y

i−1
1 XN ) +Nϵ1,N

=
N
∑

i=1

H(Y1i|S012Y
i−1
1 )−H(Y1i|S012Y

i−1
1 Xi) +Nϵ1,N

=
N
∑

i=1

I(Xi;Y1i|S012Y
i−1
1 ) +Nϵ1,N

=
N
∑

i=1

I(Xi;Y1i|Ui) +Nϵ1,N .

Finally we bound NRc ≤ H(Sc|Y N
2 S2) as

H(Sc|Y N
2 S2)

= H(Sc|Y N
2 S012) + I(Sc;S0S1|Y N

2 S2)

≤ H(Sc|Y N
2 S012) +Nϵ2,N

= I(Sc;Y
N
1 |Y N

2 S012) +H(Sc|Y N
2 S012Y

N
1 ) +Nϵ2,N

≤ I(Sc;Y
N
1 |Y N

2 S012) +Nϵ1,N +Nϵ2,N

≤ I(ScX
N ;Y N

1 |Y N
2 S012) +Nϵ1,N +Nϵ2,N

= I(XN ;Y N
1 |Y N

2 S012) +Nϵ1,N +Nϵ2,N

= H(XN |S012Y
N
2 )−H(XN |S012Y

N
2 Y N

1 ) +Nϵ1,N +Nϵ2,N

= H(XN |S012Y
N
2 )−H(XN |S012Y

N
1 ) +Nϵ1,N +Nϵ2,N

= I(XN ;Y N
1 |S012)− I(XN ;Y N

2 |S012) +Nϵ1,N +Nϵ2,N

=
N
∑

i=1

I(XN ;Y1i|S012Y
i−1
1 )− I(XN ;Y2i|S012Y

i−1
2 ) +Nϵ1,N +Nϵ2,N

=
N
∑

i=1

H(Y1i|Y i−1
1 S012)−H(Y1i|Y i−1

1 S012X
N )−H(Y2i|Y i−1

2 S012)

+H(Y2i|Y i−1
2 S012X

N ) +Nϵ1,N +Nϵ2,N

≤
N
∑

i=1

H(Y1i|Y i−1
1 S012)−H(Y1i|Y i−1

1 S012Xi)−H(Y2i|Y i−1
2 Y i−1

1 S012)
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+H(Y2i|Y i−1
2 S012Xi) +Nϵ1,N +Nϵ2,N

(b)
=

N
∑

i=1

H(Y1i|Y i−1
1 S012)−H(Y1i|Y i−1

1 S012Xi)−H(Y2i|Y i−1
1 S012)

+H(Y2i|Y i−1
1 S012Xi) +Nϵ1,N +Nϵ2,N

=
N
∑

i=1

I(Xi;Y1i|Ui)− I(Xi;Y2i|Ui) +Nϵ1,N +Nϵ2,N ,

where (b) follows from the Markov chain (Y i−1
1 , Y i−1

2 , S012) → Xi → Y2i, which is
due to the channel being memoryless.

Now we get the desired bounds by letting J be a R.V. uniformly distributed
over {1, . . . , N}, and choosing U = (UJ , J), X = XJ , Y1 = Y1J , and Y2 = Y2J .

4.B Proof of Bound on Cardinality of U

We follow [Sal78] closely, and use their notation. By [Sal78, Lemma 3] the capacity-
equivocation region is given by

{(Re, Rc, R0, R1, R2) ∈ R5
+ : ∀(λ1,λ2,λ3,λ4,λ5) ∈ R5

+,

λ1Re + λ2(Rc +R0 +R1) + λ3(Rc +R0 +R2)+

λ4(R0 +R1) + λ5(R0 +R2) ≤ G(λ1,λ2,λ3,λ4,λ5)},

where G(λ1,λ2,λ3,λ4,λ5) is given by the supremum of

λ1(I(X;Y1|U)− I(X;Y2|U)) + λ2(I(X;Y1|U) + I(U ;Y1))+

λ3(I(X;Y1|U) + I(U ;Y2)) + λ4I(U ;Y1) + λ5I(U ;Y2),

taken over all R.V. U s.t. PUXY1Y2 = PUPX|UPY1Y2|X . Now let P be the set
of probability distributions on X , and let PX ∈ P. We define the following |X |
functions on P:

fj(PX) =PX(j), j = 1, 2, . . . , |X |− 1,

f|X |(PX) =λ1(IPX
(X;Y1)− IPX

(X;Y2))

+ λ2(IPX
(X;Y1)−HPX

(Y1))

+ λ3(IPX
(X;Y1)−HPX

(Y2))

− λ4HPX
(Y1)− λ5HPX

(Y2),

where IPX
(X;Yi) and HPX

(Yi) are the corresponding mutual information and en-
tropies when the distribution of X is PX . Each probability distribution PU defines
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a measure µ(dPX) on P. Let P ∗
X be the probability distribution that achieves

G(λ1,λ2,λ3,λ4,λ5), and let µ∗ be the corresponding measure. Note that

∫

fj(PX)µ∗(dPX) =P ∗
X(j), j = 1, 2, . . . , |X |− 1,

∫

f|X |(PX)µ∗(dPX) =λ1(IP∗
X
(X;Y1|U)− IP∗

X
(X;Y2|U))

+ λ2(IP∗
X
(X;Y1|U)−HP∗

X
(Y1|U))

+ λ3(IP∗
X
(X;Y1|U)−HP∗

X
(Y2|U))

− λ4HP∗
X
(Y1|U)− λ5HP∗

X
(Y2|U).

From f1(P ∗
X), . . . , f|X |−1(P

∗
X) we can calculate HP∗

X
(Y1) and HP∗

X
(Y2) and form

∫

f|X |(PX)µ∗(dPX) + (λ2 + λ4)HP∗
X
(Y1) + (λ3 + λ5)HP∗

X
(Y2)

= G(λ1,λ2,λ3,λ4,λ5).

Now it follows from [Sal78, Lemma 2] that it is sufficient to consider R.V. U with
|U| ≤ |X |.





Chapter 5

Sparse Regression Codes

In this chapter we consider coding schemes based on nested sparse regression codes
(SPARCs). We consider the AWGN wiretap channel and show that nested SPARCs
achieve the secrecy capacity. As in the case with the polar codes considered in Chap-
ter 4 the nested codes for the wiretap channel can also be used to implement the
decode-and-forward scheme for the relay channel which achieves the capacity of the
physically degraded relay channel with orthogonal receivers. We then show that the
Wyner-Ziv coding scheme from [VT12] can be employed in a secret key agreement
scheme for correlated Gaussian sources over a rate-limited public channel.

5.1 Nested SPARCs for the Wiretap Channel

As noted in [VT12], SPARCs can be given a nested structure. As shown in Fig-
ure 5.1, the M columns in each section of the design matrix of the code is divided
into subsections containing M ′ columns each. The choice of one such subsection
from each section specifies a subcode of the overall code. Formally we define a
nested SPARC as follows

Definition 5.1 (Nested Sparse Regression Code CN (R1, R2, b)). Let M = Lb,
where L satisfies

NR1 = bL lnL,

and let A be an N×ML design matrix with i.i.d. CN (0, 1) entries. The M columns
of each section are divided into subsections of M ′ sections each, where M ′L = eNR2 .
The choice of one subsection from each section then specifies a subcode, and there
are (M/M ′)L = eN(R1−R2) such different subcodes. ♦

Now consider the Gaussian wiretap channel given by

Y = X +WM ,

91
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Section 1
︷ ︸︸ ︷

M columns

Section 2
︷ ︸︸ ︷

Section L
︷ ︸︸ ︷

A =

⎡

⎢
⎢
⎣

| | · · · |
| | · · · |
| | · · · |
| | · · · |

⎤

⎥
⎥
⎦

Figure 5.1: The design matrix of a nested sparse regression code. The red columns
indicate the chosen subsection from each section.

Z = X +WW ,

where WM ∼ CN (0,σ2
M ), WW ∼ CN (0,σ2

W ), with σ2
W > σ2

M and we have the
power constraint

E[|X|2] ≤ P.

This channel is depicted in Figure 5.2.

Alice Bob

Eve

XN Y N

ZN

WN
M

WN
W

S Ŝ

Figure 5.2: Gaussian wiretap channel.

The secrecy capacity of this channel was found by Leung-Yan-Cheong and Hell-
man [LH78] and is given by

CS =
1

2
log

(

1 +
P

σ2
M

)

− 1

2
log

(

1 +
P

σ2
M

)

, (5.1)

where CM = 1
2 log

(

1 + P
σ2
M

)

is the capacity of the channel to Bob, and CW =

1
2 log

(

1 + P
σ2
W

)

is the capacity of the channel to Eve.
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Section 1
︷ ︸︸ ︷

M columns

Section 2
︷ ︸︸ ︷

Section (1−2δN )L
︷ ︸︸ ︷

Parity sections
︷ ︸︸ ︷

A =

⎡

⎢
⎢
⎣

| | · · · | | |
| | · · · | | |
| | · · · | | |
| | · · · | | |

⎤

⎥
⎥
⎦

Figure 5.3: The design matrix of a nested sparse regression code with an outer R-S
code. The parity sections are not nested.

Now consider the usual coding scheme for the wiretap channel where each sub-
code corresponds to a certain message, and the choice of a specific codeword in
that subcode is done at random. To implement this scheme with an outer R-S code
of rate 1 − 2δN , we note that R-S codes are linear codes and we can implement
them as systematic codes. For SPARCs, this implies that the choice of a column
from the first (1 − 2δN )L sections specify the columns in the last 2δNL sections,
and therefore we call them parity sections (cf. the parity bits of systematic linear
code). Thus we will only implement the nested structure for the first (1 − 2δN )L
columns, see Figure 5.3. The rates of the overall code will then be (1 − 2δN )R1,
each subcode will have rate (1 − 2δN )R2, and the coding scheme will have rate
R = (1− 2δN )(R1 −R2).

Theorem 5.2. For every ϵ > 0 there exists a sequence of nested SPARCs
CN (R1,N , R2,N , b), with b > max{b0(SNRM ), R1,N

R2,N
b0(SNRW )}, a sequence of

R-S codes of rates (1−2δN ), and an N0 ∈ N such that the above coding scheme
satisfies

R > CM − CW − ϵ, (5.2)

Pe,N < ϵ, (5.3)

I(S;ZN )

N
< ϵ, (5.4)

if N > N0.

Proof. Fix ϵ > 0. Let R1,N = CM − δN , R2,N = CW − δN , with δN = 1/ lnN . The
rate of the coding scheme is then

(1− 2δN )(R1,N −R2,N ) = (1− 2δN )(CM − CW ), (5.5)
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which establishes (5.2). From Theorem 2.14, since b > b0(SNRM ), we have

E[PN
e ] <

ϵ

3
, (5.6)

if N is large enough, where E[·] denotes the average over the SPARC ensemble.
To bound E[I(S;ZN )/N ] we use that I(S;ZN ) + I(XN ;ZN |S) = I(XN ;ZN ) +
I(S;ZN |XN ) = I(XN ;ZN ), since I(S;ZN |XN ) = 0 due to the Markov chain
S → XN → ZN . Let PN,S

e denote the error probability when knowing to which
subcode S a codeword belongs. We then have

I(S;ZN )

N
=
I(XN ;ZN )

N
− I(XN ;ZN |S)

N

≤CW − H(XN |S)
N

+
H(XN |ZNS)

N
(a)
≤CW − (1− 2δN )R2,N +

he(PN,S
e )

N
+ PN,S

e (1− 2δN )R2,N

≤δN (1 + 2CW − 2δN ) +
he(PN,S

e )

N
+ PN,S

e (1− 2δN )R2,N , (5.7)

where we have used Fano’s inequality and the fact that I(XN ;ZN ) ≤ NCW in (a).
he(·) is the binary entropy function evaluated in nats.

We now bound PN,S
e from above. When considered as a SPARC, each subcode

has L sections with M ′ columns each, which means that the parameter b′ for the
subSPARC satisfies

M ′ = Lb′ .

This, together with the relation M ′L = eNR2,N , gives us

b′ =
NR2,N

L lnL
=

bR2,N

R1,N
.

Since b > R1
R2

b0(SNRW ), we have b′ > b0(SNRW ). Theorem 2.14 then implies that
the minimum distance decoder of the subSPARC has a small probability of section
error. The fact that the minimum distance of the subcode is not larger than the
minimum distance of the overall code can then be used to show that the outer R-S
code can correct any remaining section errors. Thus we have E[PN,S

e ] < ϵ′ for any
ϵ′ > 0 if N is large enough. Combining this with (5.7) we get

E
[

I(S;ZN )
]

<
ϵ

3
. (5.8)

We now evaluate the probability that a randomly chosen code from the SPARC
ensemble has both low error probability and low information leakage. We have

Pr

(
(

PN
e > ϵ

)

∪
(
I(S;ZN )

N
> ϵ

))

≤Pr
(

PN
e > ϵ

)

+ Pr

(
I(S;ZN )

N
> ϵ

)
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Figure 5.4: Gaussian relay channel with orthogonal receivers.

(a)
≤ E[PN

e ]

ϵ
+

E
[
I(S;ZN )

N

]

ϵ

≤2

3
,

where (a) follows from Markov’s inequality, and in the last step we assume that
N is large enough for both (5.6) and (5.7) to hold. Thus there exists an N0 and
at least one sequence of SPARCs such that N > N0 implies that both PN

e and
I(S;ZN )/N are smaller than ϵ. #

5.1.1 Decode-and-Forward using nested SPARCs

As we saw in Chapter 4, nested codes designed for the wiretap channel achieve
the capacity of the degraded relay channel with orthogonal receivers. Consider the
degraded Gaussian relay channel with orthogonal receivers depicted in Figure 5.4.

Let

YSR = X +W1,

YSD = YSR +W2,

YRD = XR +W3,

where Wi ∼ CN (0,σ2
i ), and we have the power constraints E[|X|2] ≤ PS and

E[|XR|2] ≤ PR. The capacity of this channel is given by [CG79] as

C = min{CSD + CRD, CSR}

= min

{
1

2
ln

(

1 +
PS

σ2
1 + σ2

2

)

+
1

2
ln

(

1 +
PR

σ2
3

)

,
1

2
ln

(

1 +
PS

σ2
1

)}

.

The same block coding scheme we used to show that nested polar codes achieve
the capacity of the physically degraded binary input symmetric relay channel in
Chapter 4 can be implemented for nested SPARCs. We have the following result:
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Theorem 5.3. For every ϵ > 0 there exists a sequence of nested SPARCs
CN (CSR− δN , CSD − δN , b), with b > max{b0(P/σ2

1),
CSR−δN
CSD−δN

b0(P/(σ2
1 +σ

2
2))}

a sequence of R-S codes of rates (1− 2δN ), and an N0 ∈ N such that

R > C − ϵ

PN
e < ϵ

if N > N0.

Proof. The proof is similar to the proof of Theorem 4.5 #

5.2 Secret Key Agreement using nested SPARCs

Recall the source model for the secret key agreement problem from Section 2.3. We
assume that Alice, Bob, and Eve observe correlated Gaussian vectors X, Y , and Z
respectively and have access to a one-way rate limited public channel from Alice to
Bob and Eve of rate Rp. Let X ∼ N (0,σ2), and let

Y = aX +WY , (5.9)

Z = bX +WZ , (5.10)

where WY and WZ are zero mean i.i.d. Gaussian variables that are independent
of X with variance NY and NZ respectively. If a = b and WZ = WY + W̃ for a
Gaussian random variable W̃ independent of X and WY , this describes a degraded
source X → Y → Z.

A secret key agreement scheme for this problem consists of two sets KN and PN

and functions

kA : RN → KN , (5.11)

fN : RN → PN , (5.12)

kB : RN × PN → KN , (5.13)

where |PN | ≤ eNRP , fN (XN ) is the message that Alice transmits over the public
channel, and KA(XN ) and KB(Y N , fN (XN )) are the secret keys generated at Alice
and Bob respectively.

In [WO10] Watanabe and Oohama employed a secret key agreement scheme
based on Wyner-Ziv coding [CT91] to find the secret key capacity of this problem.
Let the Gaussian auxiliary random variable U = X + W , where W ∼ CN (0, Q).
This is equivalent to

X = cU +W ′, (5.14)
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where c = σ2
X

σ2
X+Q

, and W ′ ∼ N
(

0, σ2
XQ

σ2
X+Q

)

is independent of U . Generate a ran-

dom codebook based on fU with rate R1 > RRD( σ2
XQ

σ2
X+Q

), where RRD(·) is the

rate-distortion function defined in (2.41). The codewords in the random codebook
are then divided into eNRP bins. Alice selects the codeword ÛN in the random
codebook that minimizes |XN − cÛN |2 and sends the index of the bin to which ÛN

belongs over the public channel. Since R1 > RRD( σ2
XQ

σ2
X+Q

), the distortion satisfies

|XN − cÛN |2 < σ2
XQ

σ2
X+Q

with high probability. Bob then tries to determine ÛN ,

which is equivalent to a channel decoding problem. If the number of codewords in
each bin is smaller than eNI(U ;Y ), Bob is able to determine ÛN with low probability
of error. Finally Alice and Bob use a hash function chosen from a universal family
of hash functions [CW77] to generate a secret key.

Venkataramanan and Tatikonda introduced a Wyner-Ziv coding scheme using
SPARCs in [VT12]. We combine this with the key agreement scheme from [WO10]
as follows. Fix Q such that

max

{
1

2
ln
σ2
X +Q

Q
,

σ2
X

σ2
X +Q

}

− 1

2
ln

(

1 +
a2σ4

X

a2σ2
XQ+NY (σ2

X +Q)

)

< RP ,

and let

R1,N = max

{
1

2
ln
σ2
X +Q

Q
,

σ2
X

σ2
X +Q

}

+ ϵ1, (5.15)

R2,N =
1

2
ln

(

1 +
a2σ4

X

a2σ2
XQ+NY (σ2

X +Q)

)

− ϵ1 − δN , (5.16)

where (1− 2δN ) = 1− 2/ lnN is the rate loss due to the R-S code needed to ensure
a low error probability at Bob, and ϵ1 > 0 is fixed. As above, let

X = cU +W ′, (5.17)

where c = σ2
X

σ2
X+Q

, and W ′ ∼ N
(

0, σ2
XQ

σ2
X+Q

)

is independent of U . Note that R2,N =

I(U ;Y )− ϵ1 − δN .
Let gN denote the minimum distance source encoder of the SPARC

CN (R1, R2, b). Alice finds the codeword ÛN in the SPARC that minimizes
|XN − cÛN |2 and transmits the index of the subcode this codeword belongs to
over the public channel to Bob and Eve, together with the syndrome of the outer
R-S code. We denote this message over the public channel by PN . Finally she uses
a hash function hN , which will be discussed later, to extract her key KA from ÛN .

Bob utilizes his side information Y N , together with the bin index and the syn-
drome of the R-S code, both of which are contained in the public message PN , to
find ÛN . He then uses the same hash function hN to extract his secret key KB .
We have the following theorem:
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Theorem 5.4. Let R1,N and R2,N be defined as in (5.15) and (5.16), and let

b > max{ 3.5R1,N

R1,N−(1−BN ) ,
R1,N

R2,N
b0(SNR)}, where BN and SNR satisfy

R1,N =
1

2
ln

1

BN
,

SNR =
a2σ4

X

a2σ2
XQ+NY (σ2

X +Q)
.

Then for every ϵ > 0 there exists a sequence of nested SPARCs
CN (R1,N , R2,N , b), a sequence of R-S codes of rates (1− 2δN ), and an N0 ∈ N

such that the scheme above satisfies

PN
e < ϵ, (5.18)

RK > I(U ;Y )− I(U ;Z)−
[

σ2
X

σ2
X +Q

− 1

2
ln
σ2
X +Q

Q

]+

− ϵ, (5.19)

I(ZNPN ;KA) < ϵ (5.20)

if N > N0.

Remark 5.5. If RP is large enough for 1
2 ln

σ2
X+Q
Q > σ2

X

σ2
X+Q

to hold, then

[
σ2
X

σ2
X +Q

− 1

2
ln
σ2
X +Q

Q

]+

= 0.

In this case, if the sources are physically degraded, i.e. X → Y → Z, this scheme
achieves the secret key capacity as shown in [WO10]. Note that the first constraint
holds in the special case where there is no rate constraint on the public channel. ♦

Proof. We first consider the error probability at Bob. The SNR of the virtual
channel connecting UN and Y N through

Y N = aXN +WN
Y = acUN + aW ′N +WN

Y , (5.21)

is given by

SNR =
a2σ4

X

a2σ2
XQ+NY (σ2

X +Q)
. (5.22)

Since R2 was designed to be smaller than 1
2 ln(1+SNR), the capacity of this chan-

nel, and b′ > b0(SNR) (cf. (5.8)), the nearest neighbour decoder of the SPARC
together with the outer R-S code allows Bob to determine ÛN with arbitrarily
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small probability of error due to Theorem 2.14. This implies that PN
e can be made

arbitrarily small since Alice and Bob use the same hash function to determine their
keys.

To bound the information leakage to Eve, let µN be the variational distance
between the distributions fZNPKAPN |ZN and fZN P̃KA

PPN |ZN , where P̃KA
is the

uniform distribution over the space of keys:

µN =

∫
∑

kA,p

fZN (zN )|PKAPN |ZN (kA, p|zN )− P̃KA
(kA)PPN |ZN (p|zN )|dzN . (5.23)

We can connect the information leakage to Eve with the variational distance
through the following lemma due to Csiszár:

Lemma 5.6 (Lemma 1 from [Csi96]). The mutual information I(KA;ZNPN ) can
be bounded from above as follows:

I(KA;Z
NPN ) ≤ µn ln

|KN |
µN

.

"

Now let gN : RN → QN ⊂ RN denote any quantization function, and let
φN : QN → PN denote a mapping from the quantized version of XN to the public
channel. Watanabe and Oohama showed that for any key space KN there exists a
hash function hN that satisfies the following:

Lemma 5.7 (Lemma 12 from [WO10]). For any functions gN : RN → QN , φN :
QN → PN and α ∈ R, there exists a hash function hN : QN → KN such that

µN ≤
√

|KN ||PN |e−N(I(U ;X)−I(U ;Z)−α) + 2Pr((gN (XN ), XN , ZN ) /∈ AN ), (5.24)

where AN is given by

AN =

{

(uN , xN , zN ) :
1

N
ln

fXN |UN ,ZN (xN |uN , zN )

fXN |ZN (xN |zN )
≥ I(U ;X|Z)− α

}

. (5.25)

"

Since the rate of the public message PN is R1,N − R2,N , the term under the
square root sign goes to zero if

RK < −R1,N +R2,N + I(U ;X)− I(U ;Z)− α

= I(U ;Y )− I(U ;Z)−
[

σ2
X

σ2
X +Q

− 1

2
ln
σ2
X +Q

Q

]+

− δN − α, (5.26)

where we have used that R2,N = I(U ;Y )− ϵ1− δN , and that I(U ;X) = 1
2 ln

σ2
X+Q
Q .

When bounding the second term in (5.24) the following lemma is helpful:
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Lemma 5.8. The probability Pr((gN (XN ), XN , ZN ) /∈ AN ), appearing in
Lemma 5.7 can be bounded from above by

Pr((gN (XN ), XN , ZN ) /∈ AN ) ≤ e−NA + Pr

(

|XN − cÛN |
N

>
σ2
XQ

σ2
X +Q

)

, (5.27)

where A > 0 is a constant. "

Proof. See the appendix. #

Note that R1 > max
{

1
2 ln

σ2
X+Q
Q , σ2

X

σ2
X+Q

}

, and b > 3.5R1

R1−σ2
X/(σ2

X+Q)
. Thus by

Theorem 2.15, the second term in (5.27) decays exponentially in N .
In toto, since µN decays exponentially in N , Lemma 5.6 implies that

lim supN→∞ I(KA(XN );ZNfN (XN )) < ϵ. Finally we note that we can use
Markov’s inequality in the same way as in the proof of Theorem 5.2 to show that
there exists at least one sequence of codes that satisfies (5.18) - (5.20) simultane-
ously, provided that N is large enough. This concludes the proof. #
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5.A Proof of Lemma 5.8

Proof. The conditional pdfs are [Lap09]:

fXN |UNZN (xN |uN , zN ) =
1

(2πΣX|UZ)N/2
e
− 1

2ΣX|UZ
|xN−E[XN |UN=uN ,ZN=zN ]|2

(5.28)

=
1

(2πΣX|UZ)N/2
e
− 1

2ΣX|UZ
|xN−ΣX|UZ(uN

Q + bzN

NZ
)|2

, (5.29)

and

fXN |ZN (xN |zN ) =
1

(2πΣX|Z)N/2
e
− 1

2ΣX|Z
|xN−E[XN |ZN=zN ]|2

(5.30)

=
1

(2πΣX|Z)N/2
e
− 1

2ΣX|Z
|xN−ΣX|Z

bzN

NZ
|2

, (5.31)

with

ΣX|UZ =

(
b2

NZ
+

1

Q
+

1

σ2
X

)−1

(5.32)

ΣX|Z =
σ2
XNZ

b2σ2
X +NZ

. (5.33)

We can then write 1
N ln

fXN |UN,ZN (xN |uN ,zN )

fXN |ZN (xN |zN ) as

1

2
ln

(
ΣX|Z

ΣX|UZ

)

+
1

2N

(

|xN − ΣX|Z
bzN

NZ
|2

ΣX|Z
−

|xN − ΣX|UZ(
uN

Q + bzN

NZ
)|2

ΣX|UZ

)

, (5.34)

and note that 1
2 ln

(
ΣX|Z

ΣX|UZ

)

= I(U ;X|Z). We rewrite the second term in (5.34) as

1

2N

|xN − ΣX|Z
bzN

NZ
|2

ΣX|Z
=

1

2N

∣
∣
∣xN − ΣX|Z

b
NZ

(bxN + wN
Z )
∣
∣
∣

2

ΣX|Z

=
1

2N

∣
∣
∣xN NZ

b2NZ+σ2
X
− bΣX|Z

NZ
wN

Z

∣
∣
∣

2

ΣX|Z

=
1

2N

∣
∣A1xN −A2wN

Z

∣
∣
2

ΣX|Z
,

with A1 = NZ

b2NZ+σ2
X
, and A2 =

bΣX|Z

NZ
. For the last term in (5.34) we have

1

2N

|xN − ΣX|UZ(
uN

Q + bzN

NZ
)|2

ΣX|UZ
=

1

2N

|xN − ΣX|UZ(
uN

Q + b(zN−bxN+bxN )
NZ

)|2

ΣX|UZ
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=
1

2NΣX|UZ

∣
∣
∣
∣
xN

(

1− ΣX|UZ
b2

NZ

)

− ΣX|UZ

(
uN

Q
+

b

NZ
wN

Z

)∣
∣
∣
∣

2

=
1

2NΣX|UZ

∣
∣
∣
∣
(xN − cuN + cuN )

(

1− ΣX|UZ
b2

NZ

)

− ΣX|UZ

(
uN

Q
+

b

NZ
wN

Z

)∣
∣
∣
∣

2

(a)
=

1

2NΣX|UZ

∣
∣
∣
∣
(xN − cuN )

(

1− ΣX|UZ
b2

NZ

)

− ΣX|UZ
b

NZ
wN

Z

∣
∣
∣
∣

2

=
1

2NΣX|UZ

∣
∣A3(x

N − cuN )−A4w
N
Z

∣
∣
2
,

with A3 =
(

1− ΣX|UZ
b2

NZ

)

, and A4 = ΣX|UZ
b

NZ
, and where in (a) we use that

c
(

1− ΣX|UZ
b2

NZ

)

− ΣX|UZ

Q = 0.

Now let E1 and E2 denote the events

(

|XN−cUN |2
N ≥ D

)

and

(

|WN
Z |2 > (NZ + ϵ2)

)

respectively, where D = σ2
XQ

σ2
X+Q

and ϵ2 > 0. We can

now bound Pr((gN (XN ), XN , ZN ) ̸= AN ) from above by

Pr

⎛

⎜
⎝

∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

∣
∣
∣A3(XN − cÛN )−A4WN

Z

∣
∣
∣

2

ΣX|UZ
< −2Nα

⎞

⎟
⎠ =

Pr

⎛

⎜
⎝

⎛

⎜
⎝

∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

∣
∣
∣A3(XN − cÛN )−A4WN

Z

∣
∣
∣

2

ΣX|UZ
< −2Nα

⎞

⎟
⎠ ∩ EC

1

⎞

⎟
⎠+

Pr

⎛

⎜
⎝

⎛

⎜
⎝

∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

∣
∣
∣A3(XN − cÛN )−A4WN

Z

∣
∣
∣

2

ΣX|UZ
< −2Nα

⎞

⎟
⎠ ∩ E1

⎞

⎟
⎠ ≤

Pr

((∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

A2
3ND +

∣
∣A4WN

Z

∣
∣
2

ΣX|UZ
< −2Nα

)

∩ EC
1

)

+ Pr (E1) ≤

Pr

(∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

A2
3ND +

∣
∣A4WN

Z

∣
∣
2

ΣX|UZ
< −2Nα

)

+ Pr (E1) ≤

Pr

((∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

A2
3ND +

∣
∣A4WN

Z

∣
∣
2

ΣX|UZ
< −2Nα

)

∩ EC
2

)

+

Pr

((∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
−

A2
3ND +

∣
∣A4WN

Z

∣
∣
2

ΣX|UZ
< −2Nα

)

∩ E2

)

+ Pr (E1) ≤

Pr

((∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
− A2

3ND +A2
4N(NZ + ϵ2)

ΣX|UZ
< −2Nα

)

∩ EC
2

)

+
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Pr (E2) + Pr (E1) ≤

Pr

(∣
∣A1XN −A2WN

Z

∣
∣
2

ΣX|Z
< N

(

1− 2α+ ϵ2
A2

4

2ΣX|UZ

)
)

+ Pr (E2) + Pr (E1) ≤

(5.35)

e−N(A5+A6) + Pr (E1)

The last step follows from the Cramér-Chernoff type bound in Lemma 5.9 given

below, and the fact that we can choose ϵ2 such that ϵ2
A2

4
2ΣX|UZ

< α. Thus there

exists two positive constants A5 and A6 such that the two first probabilities in
(5.35) are bounded from above by e−N(A5+A6). #

Lemma 5.9 ((B1) and (B2) from [Pol94]). Let X1, X2, . . . , XN be i.i.d zero mean
Gaussian random variables with variance σ2. Then

Pr

(

1

N

N
∑

i=1

X2
i ≤ ρ

)

≤
{

e−N( ρ

2σ2 − 1
2 ln ρe

σ2 ) if ρ ≤ σ2

1 otherwise

Pr

(

1

N

N
∑

i=1

X2
i ≥ ρ

)

≤
{

e−N( ρ

2σ2 − 1
2 ln ρe

σ2 ) if ρ ≥ σ2

1 otherwise

"





Chapter 6

Non-Coherent Secret Key Agreement

In this chapter we study two variations of the secret key agreement problem from
Section 2.3. In particular we consider secret key agreement over a non-coherent
block-fading channel. In Section 6.1 we assume that each user has multiple anten-
nas, and we suggest a two phase scheme based on training and randomness sharing.
We evaluate the performance of this scheme in the high SNR regime in terms of its
achievable secure degrees of freedom (s.d.o.f). In Section 6.2 we assume that each
user has a single antenna. We constrain one of the users to only transmit fixed
training symbols and show that a bursty training scheme based on opportunistic
secret message transmission is optimal in the low SNR regime.

6.1 Multiple Antenna Channel Model

We consider a variation of the channel type model from Section 2.3, depicted in
Figure 6.1. Alice and Bob communicate over a two way block-fading (MIMO)
channel, and in addition they can also use a public discussion channel with unlimited
capacity. We pose the constraint that Alice and Bob cannot transmit and receive
at the same time. We assume that Alice, Bob, and Eve have nA, nB , and nE

antennas, respectively, with nA ≥ nB without loss of generality. If Alice uses the
channel, the received signals at Bob and Eve at time i are given by

YB(i) = H(i)XA(i) +VB(i),

YE(i) = GAE(i)XA(i) +VAE(i),

and if Bob uses the channel, the received signals at Alice and Eve are given by

YA(i) = H†(i)XB(i) +VA(i),

YE(i) = GBE(i)XB(i) +VBE(i).

105
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Alice
block-fading

MIMO channel
Bob

Eve

Pi, i even

Pi, i odd

MA MB

H,GAE,GBE, {V}

XA HXA +VB

H†XB +VA
XB

GAEXA +VAEGBEXB +VBE

KA KB

Figure 6.1: Secret key agreement over a block-fading MIMO channel.

Here XA(i) ∈ CnA , or XB(i) ∈ CnB is the transmitted signal, YA(i) ∈ CnA ,
YB(i) ∈ CnB , and YE(i) ∈ CnE are Alice’s, Bob’s, and Eve’s received signals,
respectively. H(i) represents the channel matrix between Alice and Bob, and
GAE(i) and GBE(i) are the channel matrices between Alice and Eve, and Bob
and Eve, respectively. The noise terms VA(i) ∼ CN (0, InA

),VB(i) ∼ CN (0, InB
),

and VAE(i),VBE(i) ∼ CN (0, InE
) are i.i.d. and independent of each other and

all other variables. We assume that the entries of H(i), GAE(i), and GBE(i) are
distributed as CN (0, 1), independent of each other, and stay fixed for T channel
uses. After a block of T channel uses a new set of channel gains H(i), GAE(i), and
GBE(i) are generated, independent of the gains in all previous blocks. We further
assume a short-term average power constraint on the input symbols

E[XA
†(i)XA(i)] ≤ SNR, E[XB

†(i)XB(i)] ≤ SNR. (6.1)

Alice and Bob also have access to two independent random variables MA and MB

respectively.
Alice’s input to the fading channel at time i is a deterministic function of her

random source MA, the communication P i−1 over the public channel, and her
received signals YA

i−1 up to that point. Bob generates his input to the fading
channel in the same way. After the ith use of the broadcast channel Alice generates
a public message Pi,1 = fi,1(MA, P i−1,YA

i−1). Bob then generates a public mes-
sage Pi,2 = gi,2(MB , P i−1, Pi,1,YB

i−1). This message exchange takes place over q
rounds, after which either Alice or Bob generates a new input Xi+1 to the fading
channel. After N uses of the fading channel and a final round of exchanges of public
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messages, Alice and Bob generate their respective keys KA and KB based on all
their observations. As in Section 2.3, we say that a secret key rate R is achievable
if ∀ϵ > 0 there exists a sequence of key agreement schemes that satisfies

lim sup
N→∞

Pr(KA ̸= KB) < ϵ, (6.2)

lim inf
N→∞

1

N
H(KA) > R− ϵ, (6.3)

lim inf
N→∞

max

(
1

N
I(KA;Z

NP q),
1

N
I(KB ;Z

NP q)

)

< ϵ. (6.4)

6.1.1 Achievable Scheme

We consider a three-phase scheme based on transmitting known training symbols
between Alice and Bob in the first two phases, and randomness sharing in the third
phase. By randomness sharing we mean that Alice generates random symbols XA

and transmits them over the channel. Bob then quantizes his observations from
the training phase and the source emulation phase, and sends enough information
over the public channel in order for Alice and Bob to agree on a secret key K.

In phase one Alice transmits known training symbols between time 1 and MA <
nA. Alice’s transmitted symbols at antenna j at time i are given by

XA,j(i) = δi,j
√
SNR,

where

δi,j =

{

1 if i = j,

0 otherwise.

In phase two Bob transmits known training symbols between time MA + 1 and
MA +MB , with MB < nB . Bob’s transmitted symbols at antenna j at time i are
given by

XB,j(i) = δ(i−MA),j

√
SNR.

As in [ZT02], Alice and Bob can estimate parts ofH from their received signals dur-
ing the training phases using component-wise minimum mean square error (MMSE)
estimation. Let

H =

[

H1 H2

H3 H4

]

,

where H1 ∈ CMB×MA , H2 ∈ CMB×(nA−MA), H3 ∈ C(nB−MB)×MA , and H4 ∈
C(nB−MB)×(nA−MA). Bob’s received signal at time j at antenna i is

yB,i(j) = Hi,j

√
SNR + vB,i(j). (6.5)
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The MMSE estimate ĤB,i,j of Hi,j is a circularly symmetric Gaussian random
variable with variance SNR/(SNR + 1) given by

ĤB,i,j =

√
SNR

SNR+ 1
yB,i(j). (6.6)

The estimation error eB,i,j = Hi,j−ĤB,i,j is distributed as CN (0, 1/(SNR+1)). The

estimation errors eB,i,j and the estimates ĤB,i,j are all independent of each other.

In this way Bob obtains an MMSE estimate ĤB =
[

ĤT
B,1 ĤT

B,3

]T
of
[

H1
T H3

T
]T

,

and in the same way Alice can form an MMSE estimate ĤA =
[

ĤA,1ĤA,2

]

of

[HA,1HA,2] from her observations in the second phase. Eve can also estimate the
channel matrix GAE from Alice’s transmission in the first phase. We assume that
Eve’s estimate of GAE is perfect, since this gives a lower bound on the achievable
secret key rate.

In phase three Alice uses the first MA antennas to transmit i.i.d. vectors
XA(i) ∼ CN (0, SNR/MAIMA

), between time MA+MB +1 and T . To simplify the
notation we will refer to these transmitted signals {XA(i)}Ti=MA+MB+1 simply as
XA, and to the received signals at Bob and Eve in the third phase as YB and YE,
respectively. We choose XA to be independent of Alice’s estimate ĤA in order to
simplify the analysis of the achievable rate. We have the following result:

Theorem 6.1. The secret key rate achieved by the described training based
scheme is bounded from below by

MAMB

T
log

(

1 +
SNR2

2SNR + 1

)

+
T −MA −MB

T
RSE ,

where RSE is given by

E

⎡

⎣log
det
(

IMA
+ SNR/MAGAE

†GAE + SNR/MAH
†H
)

det
(

IMA
+ SNR/MAGAE

†GAE

)

⎤

⎦

−MB log σ̃2
A,B − (nB −MB) log(σ̃

2
B),

with σ̃2
A,B = SNR

MA(2SNR+1) + 1, and σ̃2
B = SNR

MA(SNR+1) + 1.

Proof. The random variables involved in our scheme satisfy the following Markov
chain:

(YE,GAE) ↔ (XA, ĤA) ↔ (YB,H) ↔ (YB, ĤB). (6.7)
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If we consider our scheme as a Source-Type Model with Wiretapper, and code over
a large number of coherence blocks, the achievable secret key rate is bounded from
below by [WBS09].

R− =
1

T
I(XA, ĤA;YB, ĤB|YE,GAE).

This rate is achieved by quantizing Bob’s observations (YB, ĤB) into a quan-
tization codebook generated by auxiliary random variables (UY,UH) and using
Wyner-Ziv coding to transmit the indices over the public channel. Alice can then
recover (UY,UH), and a secret key can be generated. The scheme uses the same
procedure as detailed in Chapter 5. By making the quantization fine enough we
can achieve the rate R−.

We can bound this rate from below using (6.7) as follows:

TR− =I(XA, ĤA;YB, ĤB|YE,GAE)

=I(XA, ĤA;YB, ĤB)− I(YB, ĤB;YE,GAE)

≥I(XA, ĤA;YB, ĤB)− I(YB,H;YE,GAE)

≥I(ĤA; ĤB) + I(XA;YB|ĤA, ĤB)− I(YB;YE|H,GAE)

=I(ĤA; ĤB) + h(YB|ĤA, ĤB)− h(YB|H,GAE)− h(YB|ĤA, ĤB,XA)

+ h(YB|H,GAEYE)

≥I(ĤA; ĤB)− h(YB|ĤA, ĤB,XA) + h(YB|H,GAEYE), (6.8)

where we have used that XA and ĤA are independent in the second inequality. We
see that we have two contributions to the secret key rate. I(ĤA; ĤB) comes from
the training phases, and h(YB|H,GAEYE)−h(YB|ĤA, ĤB,XA) is the rate from
the source emulation phase.

To calculate the first contribution, we note that H1 is the only part of H for
which both Alice and Bob have estimates. Using (6.5) and (6.6), we get

I(ĤA; ĤB) = MAMBI(YA,i(j);YB,i(j))

= MAMB log

(

1 +
SNR2

2SNR + 1

)

. (6.9)

We now find a lower bound on the contribution from the source emulation
phase h(YB|H,GAEYE) − h(YB|ĤA, ĤB,XA) using the following Lemma from
[WBS09]:

Lemma 6.2 (Lemma 1 from [WBS09]). Let U and V be two jointly distributed
complex random vectors of dimensions mU and mV, respectively. Let KU, KV,
and KUV be the covariance of U, covariance of V and cross-covariance of U and
V, respectively. If KV is invertible, then

h(U|V) ≤ log det
(

KU −KUVK−1
V

KVU

)

+mU log(πe),
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with equality if [UT VT ]T is a circularly symmetric complex Gaussian random
vector. "

We first create a new MMSE estimate Ĥ of H using both ĤA and ĤB. Note
that since only the first MA entries of XA are nonzero, we only need an estimate

of
[

HT
1 HT

3

]T
. If Bob assumes that Ĥ is the true value of H, his received signal is

YB(t) =ĤXA(t) + EXA(t) +VB(t),

where E =
[

ET
1 ET

3

]T
=
[

HT
1 − ĤT

1 HT
3 − ĤT

3

]T
.

The estimate of H1 is based on ĤA and ĤB and the entries have MSE
1/(2SNR + 1), while the estimate of H3 is based only on ĤB and the entries
have MSE 1/(SNR + 1). Thus the covariance of EXA(t) +VB(t) is

[

σ̃2
A,BIMB

0
0 σ̃2

BInB−MB

]

,

where

σ̃2
A,B =

SNR

MA(2SNR + 1)
+ 1, (6.10)

σ̃2
B =

SNR

MA(SNR + 1)
+ 1. (6.11)

We now bound h(YB|ĤA, ĤB,XA) from above as follows:

h(YB|ĤA, ĤB,XA) = E
Ĥ

[

h(YB|ĤA = ĥA, ĤB = ĥB,XA)
]

+ nB log(πe)

≤ E
Ĥ

[

log det(K
Y|Ĥ −K

YX|ĤK−1
X|Ĥ

K
XY|Ĥ)

]

+ nB log(πe)

= log detKEXA(t)+VB(t) + nB log(πe)

= MB log(πeσ̃2
A,B) + (nB −MB) log(πeσ̃

2
B), (6.12)

where we have used Lemma 6.2 in the first inequality.
h(YB|H,GAEYE) is given by [WBS09] as

E

⎡

⎣log
det
(

IMA
+ SNR/MAGAE

†GAE + SNR/MAH
†H
)

det
(

IMA
+ SNR/MAGAE

†GAE

)

⎤

⎦+ nB log(πe). (6.13)

Combining (6.8) - (6.13) gives the desired result. #
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6.1.2 High SNR Regime

In [WBS09] the secret key capacity CK(SNR) for the fast fading coherent MIMO
wiretap channel with MA transmit antennas was found to be

E

⎡

⎣log
det
(

IMA
+ SNR/MAGAE

†GAE + SNR/MAH
†H
)

det
(

InA
+ SNR/MAGAE

†GAE

)

⎤

⎦ .

Note that RSE differs from CK(SNR) only by the negative terms MB log(σ̃2
A,B) +

(nB −MB) log(σ̃2
B), due to not knowing the channel perfectly at Bob. From (6.10)

and (6.11), we see that these terms scale with SNR as Θ(1). Further, from [WBS09,
Corollary 1], if MA > nE , we have that limSNR→∞ CK(SNR)/C∞(SNR) = 1, where
C∞(SNR) is defined as

E

[

log det(InB
+

SNR

MA
H
[

IMA
−GAE

†(GAEGAE
†)−1GAE

]

H†)

]

,

and if MA ≤ nE , CK(SNR) scales with SNR as Θ(1). As in [WBS09], we can
interpret IMA

− GAE
†(GAEGAE

†)−1GAE as a projection matrix onto the null
space of GAE. Thus, at high SNR, the number of s.d.o.f. per channel use from the
third phase is given by min(MA − nE , nB)(T −MA −MB)/T . Further, from (6.9)
we see that the number of s.d.o.f. per channel use from the first two phases is given
by MAMB/T . Combining these results we get:

Theorem 6.3. The number of s.d.o.f. per channel use at high SNR is given by

[min(MA − nE , nB)]
+ (T −MA −MB) +MAMB

T
. (6.14)

Proof. See above. #

We can use Theorem 6.3 to find the optimal MA and MB .

Corollary 6.4. The optimal number of time slots M⋆
A and M⋆

B to use for training
in the high SNR regime is given by

M⋆
A = min(nA,max(T/2, T − nB)),

M⋆
B = min(T −M⋆

A, nB).

"

Proof. See Appendix. #
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Remark 6.5. We note two facts from Corollary 6.4. First, M⋆
A and M⋆

B do not
depend on nE , and second, it is either optimal to train all antennas (if nA+nB < T ),
or to only use training and no source emulation (if nA + nB ≥ T ). In the latter
case the number of s.d.o.f. does not depend on nE . ♦

We can also use Corollary 6.4 to find the optimal number of antennas nA and
nB for a given coherence time T .

Corollary 6.6. Increasing the number of transmit and receive antennas over

n⋆
A = n⋆

B = T/2

does not increase the degrees of freedom. "

Proof. For given T and nB the optimal choice of nA is n⋆
A = max(T/2, T − nB).

We now have

M⋆
B = min(nB , T −max(T/2, T − nB)) = min(T/2, nB),

which implies that n⋆
B = T/2, and thus n⋆

A = T/2. #

With this choice of nA and nB there is only training, and we can guarantee a
secret key rate of

R− =
T

4
log

(

1 +
SNR2

2SNR + 1

)

,

regardless of the number of antennas nE at Eve.

6.1.3 Key Agreement without a public channel

The presence of a public channel with unlimited rate is not realistic in all scenarios.
Therefore we consider a scenario in which some coherence blocks are used for public
discussion between Alice and Bob over the wireless channel. In the high SNR regime
this does not give a loss of s.d.o.f. We have the following result:

Theorem 6.7. At high SNR it is possible to achieve

[min(MA − nE , nB)]
+ (T −MA −MB) +MAMB

T

s.d.o.f. per channel use without a separate channel for public discussion, if MA

and MB are chosen as in Corollary 6.4.
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Proof. Let YAT and YBT denote Alice’s and Bob’s observations in the training
phase. As before, we quantize Bob’s observation (YB,YBT) into a codebook gen-
erated by the auxiliary random variables (UY,UH). From [CN00], the rate needed
for public discussion and the achievable secret key rate are given by

Rp = I(YB,YBT;UY,UH)− I(XA,YAT;UY,UH),

and

Rnp
− = I(XA,YAT;UY,UH|YE,GAE), (6.15)

respectively. As in [LLP12], we let UY = YB +WY and UH = YB +WH, where
WY ∼ CN (0,σ2

Y IMB
) and WH ∼ CN (0,σ2

HIMB
) are i.i.d. and independent of

all other random variables. Note that with the optimal choice of MA and MB

above, either MB = nB , or all time slots are used for training. In the latter case
the measurements at the last nB − MB antennas at Bob cannot be used for key
agreement, so only the first MB measurements are used.

We first analyze the rate needed for public discussion. We have

Rp =I(YB,YBT;UY,UH)− I(XA,YAT;UY,UH)

=I(YB,YBT;UH) + I(YB,YBT;UY|UH)− I(XA,YAT;UH)+

− I(XA,YAT;UY|UH)

=I(YBT;UH)− I(YAT;UH)+

h(UY|YAT,UH,XA)− h(UY|YB,YAT,UH). (6.16)

The first term in (6.16) is given by I(YBT;UH) = MAMB log
(

1 + SNR+1
σ2
H

)

.

For the second term we have

I(YAT;UH) =MAMB log

(
(SNR + 1)(SNR + 1 + σ2

H)

2SNR + 1 + σ2
H(SNR + 1)

)

The third term in (6.16) can be bounded from above using the MMSE estimate
of H1 calculated from (YAT,UH) and Lemma 6.2:

h(UY|YAT,UH,XA) ≤MB log(πeσ̃2
A,UH

)

where σ̃2
A,UH

= SNR(1+σ2
H)

MA(2SNR+1+σ2
H(SNR+1))

+ 1 + σ2
Y . Finally, the last term is

h(UY|YB,YAT,UH) = h(UY|YB) = MB log(πeσ2
Y ). In total we get

Rp =MAMB log

(

1 +
2SNR + 1

σ2
H(SNR + 1)

)

+MB log

(

σ̃2
A,UH

σ2
Y

)

.

We see that, for fixed σ2
Y and σ2

H , Rp scales as Θ(1) with SNR. Now let a fraction
α of the coherence blocks at the end of the transmission be dedicated to public
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discussion. This lowers the achievable secret key rate to (1−α)Rnp
− . Note that the

channel gains H during these coherence blocks are not used as shared randomness
when creating the secret key, so the information leaked to Eve about H during these
blocks do not further lower the secret key rate. When used for communication,
the capacity C(SNR) of the channel between Bob and Alice scales with SNR as
min(T/2, nA, nB) log SNR [ZT02]. Since Rp scales as Θ(1) with SNR, it is possible
to have αC(SNR) > Rp, for any α > 0, provided that SNR is large enough. Thus
we can achieve any secret key rate below Rnp

− , provided that SNR is large enough.
It remains to show that the quantized observations give the same number of

s.d.o.f. as in the case with a public channel. We expand Rnp
− in the same way as in

(6.8) and get

Rnp
− ≥I(YAT;UH)− h(UY|YAT,UH,XA) + h(UY|H,GAE,YE). (6.17)

For fixed σ2
Y and σ2

H , the first term in (6.17) gives MAMB s.d.o.f. Using Lemma 6.2,
the second term in (6.17) scales as Θ(1) with SNR, and finally the last term in (6.17)
gives (T −MA−MB) [min(MA − nE ,MB)]

+ s.d.o.f. The optimal choice of MA and
MB implies that T − MA − MB is positive only when MB = nB , so the result
follows. #

6.2 Single Antenna Channel Model in the Low SNR

Regime

We consider a slightly different channel model in the single antenna case, where
we allow Alice and Bob to transmit and receive at the same time. The scheme
we suggest is not heavily dependent on this assumption however, and is easy to
adapt to the case where a node cannot transmit and receive at the same time. The
channel is given by

YA(i) = H(i)XB(i) + vA(i)

YB(i) = H(i)⋆XA(i) + vB(i)

ZAE(i) = GAE(i)XA(i) + vAE(i)

ZBE(i) = GBE(i)XB(i) + vBE(i),

where YA(i) and YB(i) denote the output symbols at time i ∈ {1, . . . , N} at Alice
and Bob respectively, and {ZAE(i), ZBE(i)} denotes the output symbols at Eve at
time i. The input symbols at Alice and Bob at time i are denoted by XA(i), and
XB(i) respectively, and are required to satisfy the average power constraints

1

N

N
∑

i=1

E
[

|XA(i)|2
]

≤ SNR,
1

N

N
∑

i=1

E
[

|XB(i)|2
]

≤ SNR.

All input and output symbols, as well as the channel gains and the noise are
complex-valued, and H(i)⋆ denotes the complex conjugate of H(i). The chan-
nel gains are drawn from independent zero mean circularly symmetric Gaussian
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CN (0, 1) distributions every T symbols and stay constant for the next T symbols.
As before, gAE and gBE are revealed to the eavesdropper. The additive noise vari-
ables are drawn from an i.i.d. Gaussian CN (0, 1) distribution, and are independent
of all other random variables. We will constrain the input symbols XB at Bob to be
pilot symbols. Thus they are fixed, and revealed to everyone before transmission.
A secret key generating scheme, achievable key rate and secret key capacity are
defined as earlier. We will also consider this channel as a wiretap channel from
Alice to Bob.

6.2.1 Secrecy Capacity with Partial CSI

Our achievable scheme for the secret key agreement problem uses secret message
transmission combined with training. Therefore we consider the wiretap channel
problem, when Alice and Bob have partial knowledge of H. We will make use of
the following result

Theorem 6.8 (Theorem 3 from[BZ10]). Consider the Rayleigh fading channel

Y = (G+ F )X +W,

where G and F are independent CN (0,β) and CN (0, 1 − β) random variables
respectively. The transmitter only knows G and the receiver knows both G and
F . The capacity Cβ(SNR) of this channel for any fixed β ∈ (0, 1] satisfies

lim
SNR→0

Cβ(SNR)

βSNR log
(

1
SNR

) = 1.

We have the corresponding result for the secrecy capacity:

Theorem 6.9. Consider the Rayleigh fading wiretap channel

YB = (H + F )XA + VB ,

Z = GXA + VE ,

where H, F , and G are independent CN (0,β), CN (0, 1 − β), and CN (0, 1)
random variables respectively. Alice knows H, Bob knows H+F , and Eve knows
G. The secrecy capacity CS,β(SNR) of this channel for any fixed β ∈ (0, 1]
satisfies

lim
SNR→0

CS,β(SNR)

βSNR log
(

1
SNR

) = 1.
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Proof. Since the capacity Cβ(SNR) of the channel between Alice and Bob is an
upper bound on the secrecy capacity, we have from Theorem 6.8:

lim
SNR→0

CS,β(SNR)

βSNR log
(

1
SNR

) ≤ lim
SNR→0

Cβ(SNR)

βSNR log
(

1
SNR

) = 1.

For the achievability, it was shown in [LPS08] that the secrecy rate

I(XA;YB |H + F,H)− I(XA;Z|G) (6.18)

is achievable for some input distribution fXA|H(xA|h). As in [BZ10], we use an on-
off power control where Alice transmits Gaussian signals with power P (h) = SNReθ

if |h|2 > θ, where θ = β log
(

1
SNR

)

− 2 log log
(

1
SNR

)

, and zero otherwise.
Using this input distribution, the first term in (6.18) becomes

E
[

log
(

1 + P (H)|H + F |2
)]

and satisfies

lim
SNR→0

E
[

log
(

1 + P (H)|H + F |2
)]

β log
(

1
SNR

)

SNR
= 1,

as shown in the proof of [BZ10, Theorem 3]. For the second term in (6.18) we have,
using Jensen’s inequality,

−I(XA;Z|G) =− E
[

log
(

1 + P (H)|G|2
)]

≥− log
(

1 + E[P (H)|G|2]
)

= − log(1 + SNR).

The result now follows, since log(1+SNR) goes to zero faster than β log
(

1
SNR

)

SNR,
and we have

1 ≤ lim
SNR→0

CS,β(SNR)

βSNR log
(

1
SNR

) .

#

Note that by setting β = 1 we get the standard fading wiretap channel, the
secrecy capacity of which was found in [GLEG08] for general SNR. At high SNR,
a similar on-off scheme was shown to be optimal, and we note that in neither the
high, nor the low SNR regime, knowledge of G is needed.

6.2.2 Large Coherence Time Limit

In this subsection we consider the non-coherent secret key agreement problem in
the large coherence period limit. We assume that T goes to ∞ as SNR goes to 0.
As in [BZ10] we show that by training periodically placed blocks almost perfectly
and not transmitting anything in untrained blocks we achieve a rate R−(SNR) that
goes to zero as SNR log T :
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Theorem 6.10. There exists a secret key agreement protocol with rate
R−(SNR) that satisfies

lim
SNR→0

R−(SNR)

SNR log T
= 1

if T → ∞ as SNR → 0, and T ≤ 1
SNR .

Proof. One out of every K = E2

TSNR blocks is trained with a fixed training energy
E. Both Alice and Bob transmit a known pilot symbol with energy E at the first
instant of each trained block, and then obtain MMSE channel estimates ĤA and ĤB

with variance β = E
E+1 . Alice then uses the scheme from Theorem 6.9 to transmit

a secret message to Bob. Note that Bob does not have access to Alice’s estimate
ĤA, but this estimate is only used to determine when Alice is transmitting. Here
Alice will instead use the public channel to make this known to Bob. The SNR
available for secret message transmission in the trained blocks is

KTSNR− E

T − 1
=

E2 − E

T − 1
.

Since we transmit with this rate for T − 1 channel uses every KT = E2

SNR channel
uses, the achievable rate is

CS,β(
E2−E
T−1 )(T − 1)SNR

E2
.

As SNR → 0, T → ∞, and we can approximate CS,β(
E2−E
T−1 ) with

E
E+1

E2−E
T−1 log

(
T−1
E2−E

)

using Theorem 6.9. We get

lim
SNR→0

R−(SNR)

SNR log T
= lim

SNR→0

E
E+1

E2−E
T−1 log

(
T−1
E2−E

)

(T − 1)SNR

E2SNR log T

= lim
SNR→0

E − 1

E + 1

log(T − 1)− log(E2 − E)

log T

=
E − 1

E + 1
.

As E can be chosen arbitrarily large the result follows. #

Remark 6.11. As also noted in [BZ10], if T ≥ 1
SNR , the same strategy can be used

to achieve a secret message rate of SNR log
(

1
SNR

)

, which is the secrecy capacity
with full CSI. ♦
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We have a matching upper bound on the secret key capacity:

Theorem 6.12. The secret key capacity CK(SNR) satisfies

lim
SNR→0

CK(SNR)

SNR log T
= 1

if T → ∞ as SNR → 0, and T ≤ 1
SNR .

Proof. Achievability was shown in Theorem 6.10. To find an upper bound on the
capacity, we proceed in two steps. First we reveal H(i) to Bob, and show that the
secret key rate is bounded from above by

NR ≤I(MA, Y
N
A ;HK |GK , xN

B ) +
N
∑

i=1

I(XA(i);YB(i)|H(i), GAE(i), ZAE(i)).

(6.19)

The first term is the secret key rate available from Alice’s and Bob’s shared knowl-
edge about H(i). The second term corresponds to secret key agreement over a
channel where Bob and Eve both know H(i). We show that this term is dominant,
and can be bounded using similar methods as in [BZ10].

Assume that the transmission takes place over K coherence blocks, and
that N = TK is the total number of channel uses. Let Z = (ZA, ZB)
and G = (GAE , GBE). Using Fano’s inequality and the secrecy criterion
I(KA;ZN , GK , xN

B , PN ) < NϵN we get

NR ≤I(KA;KB)− I(KA;Z
N , GK , xN

B , PN ) + 2NϵN

≤I(KA;KB |ZN , GK , xN
B , PN ) + 2NϵN .

Suppressing the ϵN -term we get

NR ≤I(MA, Y
N
A ,KA;Y

N
B , HK ,KB |ZN , GK , xN

B , PN )

≤I(MA, Y
N
A ,KA, P

N ;Y N
B , HK ,KB |ZN , GK , xN

B )

≤I(MA, Y
N
A ;Y N

B , HK |ZN , GK , xN
B )

=I(MA, Y
N
A ;Y N−1

B , HK |ZN , GK , xN
B )+

I(MA, Y
N
A ;YB(N)|ZN , GK , xN

B , Y N−1
B , HK),

where the third inequality follows since KA and PN are functions of
(MA, Y N

A ) and KB is a function of Y N
B . Since XA(N) is a function of
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(MA, Y
N−1
A ), and (YB(N), ZAE(N)) are independent of all other random vari-

ables conditioned on (H(N), GAE(N), XA(N)), the second term is equal to
I(XA(N);YB(N)|H(N), GAE(N), ZAE(N)). For the first term we have

I(MA, Y
N
A ;Y N−1

B , HK |ZN , GK , xN
B ) ≤

I(MA, Y
N
A , Z(N);Y N−1

B , HK |ZN−1, GK , xN
B ) ≤

I(MA, Y
N
A ;Y N−1

B , HK |ZN−1, GK , xN
B )+

I(Z(N);Y N−1
B , HK |ZN−1, GK , xN

B ,MA, Y
N
A ).

SinceXA(N) is a function of (MA, Y
N−1
A ), and (ZAE(N), ZBE(N)) are independent

of all other random variables conditioned on (GAE(N), GBE(N)), the second term
is zero. Thus we have

NR ≤I(MA, Y
N
A ;Y N−1

B , HK |ZN−1, GK , xN
B )+

I(XA(N);YB(N)|h(N), gAE(N), ZAE(N)).

Using the same argument and induction over the channel use i, we get (6.19) above.
The first term in (6.19) is equal to I(Y N

A ;HK |xN
B ) since MA and GK are indepen-

dent of the other random variables. Letting H(k) be the channel gain in the kth
coherence interval, we get

I(Y N
A ;HK |xN

B ) ≤
K
∑

k=1

I(Y kT
A,(k−1)T+1;H(k)|XkT

B,(k−1)T+1).

Using Jensen’s inequality and the fact that the xB :s are fixed and satisfy
∑N

i=1 |XB(i)|2 ≤ NSNR, we get

I(Y N
A ;HK |xN

B ) ≤ N log(1 + SNR). (6.20)

To bound the sum appearing in (6.19), note that each term
I(XA(i);YB(i)|H(i), GAE(i), ZAE(i)) is maximized by a Gaussian input
XA(i) ∼ CN (P (i)), where P (i) is a function of (MA, Y

t−1
A ), see e.g. [KW10]. The

sum then becomes

N
∑

i=1

E

[

log

(

1 +
P (i)|H(i)|2

1 + P (i)|GAE(i)|2

)]

. (6.21)

Now assume that Alice is given all observations Y kT
A,(k−1)T+1 from the current

coherence block before her first transmission. Let Ei be the total power used
by Bob in the block that i belongs to, and let Ĥ(i) be the MMSE estimate of
H(i) given Y kT

A,(k−1)T+1. Then we have H(i) = Ĥ(i) + F (i), where Ĥ(i) and F (i)
are independent zero mean circularly symmetric random variables with variance
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βt = Ei

Ei+1 and 1 − βt respectively. Further, F (i) is independent of Y N
A . We can

then bound (6.21)from above as follows:

N
∑

i=1

E

[

log

(

1 +
P (i)|H(i)|2

1 + P (i)|GAE(i)|2

)]

≤
N
∑

i=1

E
[

log
(

1 + P (i)|Ĥ(i) + F (i)|2
)]

≤
N
∑

i=1

E
[

log
(

1 + P (i)EF (i)

[

|Ĥ(i) + F (i)|2
∣
∣
∣Ĥ(i)

])]

≤
N
∑

i=1

E
[

log
(

1 + P (i)|Ĥ(i)|2
)]

+
N
∑

i=1

E
[

log
(

1 + P (i)(1− βt)
2
)]

. (6.22)

The second sum in (6.22) can be bounded from above as

N
∑

i=1

E
[

log
(

1 + P (i)(1− βt)
2
)]

≤ N log(1 +
1

N

N
∑

i=1

E[P (i)]) ≤ N log(1 + SNR),

(6.23)

by using Jensen’s inequality. To bound the first sum in (6.22), note that each term
is the capacity of a fading channel where the channel gain has variance βt instead of
1, with full CSI. Letting C(SNR) denote the capacity of a Rayleigh fading channel
with full CSI, a scaling gives the following bound

E
[

log
(

1 + P (i)|Ĥ(i)|2
)]

≤ C(βtP (i)). (6.24)

Thus the first sum in (6.22) can be bounded from above as

N
∑

i=1

E
[

log
(

1 + P (i)|Ĥ(i)|2
)]

≤
N
∑

i=1

∑

j,k

Pr(Ej |i) Pr(Pk|Eji)C(βjPk),

where Pr(Ej |i) is the probability that the optimal power assignment assigns the
training power Ej to the block that i belongs to, and Pr(Pk|Eji) is the probability
that the optimal power assignment assigns the communication power Pk at time
i, conditioned on Ej . We assume discrete probability distributions, but the result
holds for continuous distributions as well. Rewriting we get

N
∑

i=1

∑

j,k

Pr(Ej |i) Pr(Pk|Eji)C(βjPk) ≤N
N
∑

i=1

∑

j,k

1

N
Pr(Ej |i) Pr(Pk|Eji)C(βjPk)

=N
N
∑

i=1

∑

j,k

Pr(i, Ej , Pk)C(βjPk)
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=N
∑

j

Pr(Ej)
∑

i,k

Pr(i, Pk|Ej)C(βjPk)

≤N
∑

j

Pr(Ej)C(βj
∑

i,k

Pr(i, Pk|Ej)Pk)

=N
∑

j

Pr(Ej)C(βjPj),

where we have used Jensen’s inequality, and Pj =
∑

i,k Pr(i, Pk|Ej)Pk denotes the
average power used when the training energy is Ej . In appendix 6.B, we show the
following lemma:

Lemma 6.13.

C(βjPj) ≤ βjPj + 1{Pj<1}βjPj log

(
1

Pj

)

.

"

Now let qj = Pr(Ej). Using Lemma 6.13 and that βj < 1, we have

∑

j

qjC(βjPj) ≤
∑

j:Pj<1

qjβjPj log

(
1

Pj

)

+ SNR. (6.25)

Since βj ≤ min(Ej , 1), an upper bound to the sum in (6.25) is given by the
solution to the following optimization problem:

maximize{Pj},{Ej},{qj}

∑

j

qj min(Ej , 1)Pj log

(
1

Pj

)

subject to: 0 ≤ qj , Pj ≤ 1, 0 ≤ Ej ,
∑

j

qj ≤ 1,
∑

j

qjEj ≤ TSNR,
∑

j

qjPj ≤ SNR.

It is easy to see that the optimal solution will always have Ej ≤ 1, since increasing
Ej above 1 does not increase the objective function. Thus the objective function

reduces to
∑

j qjEjPj log
(

1
Pj

)

, with the additional constraint Ej ≤ 1.

Now let {Ej}, {qj}, {Pj} attain the optimal solution. We claim that the optimal
solution is also attained for {E′

j}, {q′j}, {Pj}, where E′
j = 1, and q′j = Ejqj . In

particular, note that since q′jE
′
j = qjEj for all j, the objective function is not

changed. Furthermore, since 0 ≤ q′j ≤ qj , all the inequality constraints are still
satisfied. Thus we can eliminate Ej from the optimization problem and instead
consider:

maximize{Pj},{qj}

∑

j

qjPj log

(
1

Pj

)



122 Non-Coherent Secret Key Agreement

subject to: 0 ≤ qj , Pj ≤ 1,
∑

j

qj ≤ TSNR,
∑

j

qjPj ≤ SNR.

We further bound the objective function as follows:

∑

j

qjPj log
1

Pj
=
∑

j

qjPj log
qj

qjPj
≤

≤

⎛

⎝

∑

j

qjPj

⎞

⎠ log

∑

j qj
∑

qjPj

≤

⎛

⎝
∑

j

qjPj

⎞

⎠ log
TSNR
∑

qjPj

≤

⎛

⎝
∑

j

qjPj

⎞

⎠ log
1

∑

qjPj
+

⎛

⎝
∑

j

qjPj

⎞

⎠ log TSNR

≤SNR log
1

SNR
+ SNR log TSNR

=SNR log T, (6.26)

where the first inequality follows from the log-sum inequality, and the last inequality
uses the fact that the function x ,→ x log 1

x is increasing for x ≤ 1
e , which is satisfied

at low SNR.
The proof follows by combining (6.19)–(6.26), dividing by SNR log T , and letting

SNR tend to zero. #

Remark 6.14. If T ≥ 1
SNR , we can instead bound the secret key capacity from

above by SNR log
(

1
SNR

)

. To see this, we note that the two terms (6.20) and (6.23)
in the upper bound go to zero faster than SNR log

(
1

SNR

)

, and the remaining term
(6.24) is bounded from above by SNR log

(
1

SNR

)

in the low SNR limit. This matches
the achievable rate in Remark 6.11, and establishes the secret key and secrecy
capacities also in this case. ♦
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6.A Proof of Corollary 6.4

Proof. Let

F = [min(MA − nE , nB)]
+ (T −MA −MB) +MAMB

=MB(MA − [min(MA − nE , nB)]
+) + [min(MA − nE , nB)]

+ (T −MA). (6.27)

Since (MA − [min(MA − nE , nB)]
+) ≥ 0, F is maximized by maximizing MB :

M⋆
B = min(nB , T −MA). (6.28)

By inserting (6.28) into (6.27) we get

F =min(nB , T −MA)(MA − [min(MA − nE , nB)]
+)

+ [min(MA − nE , nB)]
+ (T −MA).

We get three cases, depending on T . First, if T ≤ nE + nB ,

F =

{

MAnB if MA ≤ T − nB

MA(T −MA) if MA > T − nB .

If T/2 < nB , the maximum of F occurs at MA = T/2, and otherwise it occurs at
MA = T − nB .

In the second case, if nE + nB ≤ T ≤ nE + 2nB , we have

F =

⎧

⎪
⎨

⎪
⎩

MAnB MA ≤ nE

MA(T + nE −MA) + nE(nB − T ) nE < MA ≤ T − nB

MA(T −MA) MA > T − nB .

As in the first case, if T/2 < nB , the maximum occurs at MA = T/2, and otherwise
it occurs at MA = T − nB .

Finally, if T > nE + 2nB , we have

F =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

MAnB MA ≤ nE ,

MA(T + nE −MA) + nE(nB − T ) nE < MA ≤ nB + nE ,

nB(T − nB) nB + nE < MA ≤ T − nB ,

MA(T −MA) MA > T − nB .

As before, if T/2 < nB , the maximum occurs at MA = T/2. If T ≥ 2nB , there are
several maxima, for nB + nE ≤ MA ≤ T − nB .

In all three cases above, at least one maximum occurs at MA = max(T/2, T −
nB), and, since F is non-decreasing for MA < max(T/2, T − nB), we get

M⋆
A = min(nA,max(T/2, T − nB)).

#
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6.B Proof of Lemma 6.13

Proof. For simplicity of notation we will use the natural logarithm and consider the
capacity in nats in this proof. We want to show that C(P ) ≤ P + 1{P<1}P ln

(
1
P

)

.
The capacity C(P ) is given by the water filling solution [GV97]

C(P ) =

∫ ∞

λ(P )
ln

(
t

λ(P )

)

e−tdt =

∫ ∞

λ(P )

e−t

t
dt, (6.29)

where we have used integration by parts, and λ(P ) satisfies

P =

∫ ∞

λ(P )

(
1

λ(P )
− 1

t

)

e−tdt =

∫ ∞

λ(P )

e−t

t2
dt. (6.30)

We first calculate the derivative dC
dP = dC

dλ
dλ
dP . Using (6.29) we get dC

dλ = − e−λ

λ ,

and using implicit differentiation, (6.30) implies that 1 = − dλ
dP

e−λ

λ2 . Thus dC
dP = λ.

Let f(P ) = P + P ln
(
1
P

)

, and note that f ′(P ) = − lnP . Using integration by
parts and (6.30), we have

P =
e−λ

λ2
− 2

∫ ∞

λ

e−t

t3
dt,

which implies that P < e−λ

λ2 . Thus f ′(P ) ≥ λ+2 lnλ. Letting g(P ) = f(P )−C(P ),
we have g′(P ) ≥ 2 lnλ.

Note that P → 0 is equivalent to λ → ∞. Using the facts that g(0) = 0,
g(1) > 0, g′(P ) is positive for λ > 1, and negative for λ < 1, we see that g(P ) is
increasing until P ≈ 0.15 (or λ = 1), and is then decreasing but still positive for
0.15 $ P ≤ 1. Thus f(P ) > C(P ) for 0 ≤ P ≤ 1.

For P > 1, note that since C(1) < 1, and C ′(P ) = λ < 1 for P > 1, we have
C(P ) < P , and the bound follows. #



Chapter 7

Conclusions

The two main topics in this thesis have been code design for information theoretic
security and secret key agreement over non-coherent reciprocal fading wiretap chan-
nels. For the first topic our main contribution is the design of practical schemes
with low complexity that achieve the secrecy capacity of different wiretap chan-
nels. For the second topic, surprisingly little is known about optimal transmission
schemes and fundamental information theoretical limits. We have shown such an
optimal scheme in the case of low SNR, and have found an achievable scheme in the
high SNR case. In more detail, these are the contributions of the different chapters:

• In Chapter 3 we have introduced two edge type LDPC ensembles for the
wiretap channel. For the scenario in which the main channel is error free and
the wiretapper’s channel is a BEC, we find code sequences based on standard
LDPC code sequences for the BEC that achieve the secrecy capacity. Our
construction does not work when there are also erasures on the main channel.
For this case we have developed a method based on linear programming to
optimize two edge type degree distributions. Using this method we have
found code ensembles that perform close to the secrecy capacity of the BEC-
WT. We have generalized a method of Méasson, Montanari, and Urbanke
[MMU08] in order to compute the conditional entropy limN→∞ H(S|ZN )/N .
We apply this method to degree distributions which are simpler than those
found using our numerical method, and find that they show very good secrecy
performance.

• In Chapter 4 we have constructed capacity-achieving polar codes for the
degraded symmetric binary input wiretap channel, the decode-and-forward
scheme for the degraded relay channel with orthogonal receivers, and for the
bidirectional broadcast channel with common and confidential messages.

• In Chapter 5 we constructed sparse regression codes that are capacity-
achieving for the AWGN wiretap channel, the decode-and-forward scheme
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of the degraded relay channel with orthogonal receivers, and for the secret
key agreement problem with degraded Gaussian sources.

• In Chapter 6 we considered secret key agreement over reciprocal fading chan-
nels. We proposed an achievable scheme based on training and randomness
sharing and evaluated its performance in the multiple antenna high SNR
regime. In the single antenna, low SNR regime we showed that the secrecy ca-
pacity of a coherent Rayleigh fading wiretap channel scales as SNR log

(
1

SNR

)

,
and that only knowledge of the main channel state is needed. Based on this
we proposed an optimal secret key agreement scheme based on bursty training
and opportunistic secret message transmission.

7.1 Future Work

Based on the results and methods in the thesis we present some ideas that might
be worthy of further study.

Coding for Strong Secrecy

All coding schemes investigated in the thesis, except for the secret key agreement
scheme using SPARCs, guarantee only weak secrecy. It would be interesting to an-
alyze the nested SPARCs using the methods based on channel resolvability [HV93],
which were used to find schemes that achieve strong secrecy in [BL13, HY10].

Secret Key Agreement over Reciprocal Fading Channels

We do not have an upper bound on the achievable secret key rate in the high SNR
regime. Such a bound was found by Khisti in [Khi12], in the single antenna case
assuming approximate reciprocity between Alice and Bob, instead of the perfect
reciprocity which we assume, and a similar analysis could be performed for the
multiple antenna scenario. It would also be interesting to extend the low SNR
study to the case in which Bob is not constrained to only transmit pilot symbols.

7.2 Practical Considerations

Our coding schemes for the wiretap channel are practical in the sense that low
complexity encoders and decoders exist, however the wiretap channel itself is a
theoretical construction, and our designs might only be relevant in some quite
specific scenarios in which the channel between Alice and Bob is known. The
bidirectional broadcast channel is one such scenario where Eve herself is a legitimate
user of the channel. Another drawback which is particular to our schemes based on
polar codes is that although they are capacity-achieving, their finite block length
performance when decoded using the successive cancellation decoder is not very
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impressive. Recently there have been some advances in this area based on list-
decoding [TV11], and it would be interesting to see how this affects the schemes we
consider. The biggest drawback of our schemes however is that they only provide
weak secrecy.

Somewhat ironically, our more theoretical investigation of secret key agreement
over fading channels might be more useful in practice. This problem is of practical
importance, and experimental implementations of different secret sharing schemes
have already been performed [PCB13, YMR+10]. However, not much is known
about optimal transmission schemes, and it would therefore be interesting to im-
plement our schemes and compare them with previous results. Another aspect
which makes these schemes interesting for practical implementation is that for se-
cret key agreement schemes, the steps needed to go from weak to strong secrecy
are well studied, see [MW00, BB11] and references therein.

Figure 7.1: Protocol by Randall Munroe of xkcd.com. Original avail-
able at http://xkcd.com/1323. Used under Creative Commons Attribution-
NonCommercial 2.5 License.

xkcd.com
http://xkcd.com/1323




Bibliography

[AC93] R. Ahlswede and I. Csiszár. Common randomness in information the-
ory and cryptography. I. secret sharing. IEEE Transactions on Infor-
mation Theory, 39(4):1121 – 1132, July 1993.

[AKS12] M. Andersson, A. Khisti, and M. Skoglund. Secret-key agreement over
a non-coherent block-fading MIMO wiretap channel. In Proc. IEEE In-
formation Theory Workshop (ITW), pages 153 –157, September 2012.

[AKS13] M. Andersson, A. Khisti, and M. Skoglund. Secure key agreement
over reciprocal fading channels in the low SNR regime. In Proc. IEEE
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), pages 674–678, June 2013.

[And11] M. Andersson. Coding for the Wiretap Channel. Licentiate thesis,
Royal Institute of Technology (KTH), Stockholm, Sweden, April 2011.

[Arı09] E. Arıkan. Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels.
IEEE Transactions on Information Theory, 55(7):3051 –3073, July
2009.

[ARKA11] A. Agrawal, Z. Rezki, A. Khisti, and M. Alouini. Noncoherent capacity
of secret-key agreement with public discussion. IEEE Transactions on
Information Forensics and Security, 6(3):565–574, September 2011.

[ART+10a] M. Andersson, V. Rathi, R. Thobaben, J. Kliewer, and M. Skoglund.
Equivocation of Eve using two edge type LDPC codes for the erasure
wiretap channel. In Proc. Asilomar Conf. Signals, Systems, and Com-
puters, November 2010.

[ART+10b] M. Andersson, V. Rathi, R. Thobaben, J. Kliewer, and M. Skoglund.
Nested polar codes for wiretap and relay channels. IEEE Communica-
tions Letters, 14(8):752 –754, August 2010.

129



130 Bibliography

[ASOS13] M. Andersson, R. Schaefer, T. J. Oechtering, and M. Skoglund. Polar
coding for bidirectional broadcast channels with common and confi-
dential messages. IEEE Journal on Selected Areas in Communications,
31(9):1901–1908, September 2013.

[AT09] E. Arıkan and E. Telatar. On the rate of channel polarization. In
Proc. IEEE Int. Symp. on Information Theory (ISIT), pages 1493 –
1495, July 2009.

[AWOS12] M. Andersson, R. Wyrembelski, T. J. Oechtering, and M. Skoglund.
Polar codes for bidirectional broadcast channels with common and con-
fidential messages. In Proc. Int. Symp. on Wireless Communication
Systems (ISWCS), pages 1014 –1018, August 2012.

[AZWS11] M. Andersson, A. Zaidi, N. Wernersson, and M. Skoglund. Nonlin-
ear distributed sensing for closed-loop control over gaussian channels.
In Communication Technologies Workshop (Swe-CTW), 2011 IEEE
Swedish, pages 19–23, October 2011.

[BB11] M. R. Bloch and J. Barros. Physical-Layer Security: From Information
Theory to Security Engineering. Cambridge University Press, 2011.

[BL13] M. R. Bloch and J. N. Laneman. Strong secrecy from channel resolv-
ability. IEEE Transactions on Information Theory, 59(12):8077–8098,
December 2013.

[BM04] D. Burshtein and G. Miller. Asymptotic enumeration methods for
analyzing LDPC codes. IEEE Transactions on Information Theory,
50(6):1115 – 1131, June 2004.

[BSTA+12] R. Blasco-Serrano, R. Thobaben, M. Andersson, V. Rathi, and
M. Skoglund. Polar codes for cooperative relaying. IEEE Transac-
tions on Communications, 60(11):3263 –3273, November 2012.

[BTV12] M. Bellare, S. Tessaro, and A. Vardy. Semantic security for the wiretap
channel. In Advances in Cryptology - CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 294–311. Springer Berlin
Heidelberg, 2012.

[BZ10] S. Borade and L. Zheng. Wideband fading channels with feedback.
IEEE Transactions on Information Theory, 56(12):6058–6065, 2010.

[CBA13] R. A. Chou, M. R. Bloch, and E. Abbe. Polar coding for secret-key gen-
eration. In Proc. IEEE Information Theory Workshop (ITW), pages
1–5, September 2013.



Bibliography 131

[CDS10] T. Chou, S. Draper, and A. Sayeed. Impact of channel sparsity and cor-
related eavesdropping on secret key generation from multipath channel
randomness. In Proc. IEEE Int. Symp. on Information Theory (ISIT),
pages 2518–2522. IEEE, 2010.

[CG79] T. Cover and A. Gamal. Capacity theorems for the relay channel. IEEE
Transactions on Information Theory, 25(5):572 – 584, September 1979.

[CK78] I. Csiszár and J. Körner. Broadcast channels with confidential mes-
sages. IEEE Transactions on Information Theory, 24(3):339 – 348,
May 1978.

[CN00] I. Csiszár and P. Narayan. Common randomness and secret key gen-
eration with a helper. IEEE Transactions on Information Theory,
46(2):344–366, March 2000.

[Csi96] I. Csiszár. Almost independence and secrecy capacity. Problemy
Peredachi Informatsii, 32(1):48–57, 1996.

[CT91] T. Cover and J. Thomas. Elements of Information Theory. Wiley and
Sons, 1991.

[CV10] Y. Chen and A. J. H. Vinck. On the binary symmetric wiretap channel.
In Proc. Int. Zurich Seminar on Communications (IZS), pages 17–20,
March 2010.

[CW77] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory of com-
puting, pages 106–112. ACM, 1977.

[DSC09] S. Draper, A. Sayeed, and T. Chou. Minimum energy per bit for
secret key acquisition over multipath wireless channels. In Proc. IEEE
Int. Symp. on Information Theory (ISIT), pages 2296–2300. IEEE,
2009.

[Eli55] P. Elias. Coding for Two Noisy Channels. In Information Theory,
The 3rd London Symposium, pages 61–76. Buttersworth’s Scientific
Publications, September 1955.

[Gal63] R. G. Gallager. Low-Density Parity-Check Codes. PhD thesis, MIT,
1963.

[Gal68] R. G. Gallager. Information Theory and Reliable Communication. John
Wiley & Sons, Inc., New York, NY, USA, 1968.

[GLEG08] P. Gopala, L. Lai, and H. El Gamal. On the secrecy capacity of fading
channels. IEEE Transactions on Information Theory, 54(10):4687 –
4698, October 2008.



132 Bibliography

[GV97] A. Goldsmith and P. Varaiya. Capacity of fading channels with chan-
nel side information. IEEE Transactions on Information Theory,
43(6):1986 –1992, November 1997.

[HKU09] S. Hassani, S. Korada, and R. Urbanke. The compound capacity of
polar codes. In Proc. Allerton Conf. on Communications, Control,
and Computing, pages 16 –21, October 2009.

[HS10] E. Hof and S. Shamai. Secrecy-achieving polar-coding. In Proc. IEEE
Information Theory Workshop (ITW), pages 1–5, August 2010.
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