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Abstract

Wireless Sensor Networks have become popular during the last years. The introduction of

IPv6 which broadened the address space available, IEEE802.15.4 and adaption layers such as

6loWPAN have allowed the intercommunication of small devices. These networks are useful

in many scenarios such as civil monitoring, mining, battlefield operations, as well as consumer

products. Hence, practical security solutions for the intercommunication must be provided,

ensuring privacy, authenticity, integrity and data freshness. In most cases, WSN nodes are

not tamper-proof and have very limited available resources and capabilities which makes PKI

currently not attractive for this environment. At the same time, key pre-distribution provide

too low security for most applications. Therefore, the communication bootstrapping or the

key generation and distribution problem is an important concern to be addressed with the

additional difficulty of the constrained capabilities of WSN nodes. In this thesis, a solution to

this problem is described. It makes use of ECDH and the curve K-163 for key exchange, AES-

CCM-128 for symmetric encryption to lower the processing overhead and a partial challenge

solving chain as well as a TAS to provide strong authentication. Several hash functions have

been analysed as well as several random number generating approaches. At the same time, in

order to fit the key generation and distribution algorithms together with the regular sensor

operation, code optimizations were carried out on the cryptographic library Relic-Toolkit,

reducing the memory footprint in 4KB; code reductions on Contiki OS allowed it to run using

only 18KB of flash; and the peripheral drivers developed for the CC430 reduced as well the

computation time. The solution allows to generate and distribute the keys in situ and is

proved to be resilient to most adversaries while taking into account scalability, portability,

energy consumption and making it suitable for consumer applications.

Keywords: Wireless Sensor Network, Pairing, Elliptic Curve Diffie-Hellman, Security,

Key exchange
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Sammanfattning

Tr̊adlösa sensornätverk har blivit populära under de senaste åren. Införandet av IPv6,

som breddade det tillgängliga adress utrymmet, IEEE802.15.4 och adaptionslager som

6lowpan har till̊atit förbindelsetrappor av sm̊a enheter. Dessa nätverk är användbara i

m̊anga situationer s̊asom civilövervakning, gruvdrift och p̊a slagfältet, de är även intressanta

för konsumentprodukter. Därför m̊aste praktiska säkerhetslösningar för kommunikation

tillhandah̊allas, säkerställa sekretess, äkthet, integritet och datafärskhet. Ofta kan WSN

noder inte manipuleras. Dessa noder har mycket begränsade resurser och kompetenser som

gör PKI inte är attraktiv nuförtiden för denna miljö. Å andra sidan, ger för-fördelning en

alltför l̊ag säkerhet för de flesta tillämpningar. Därför är kommunikationen bootstra eller

nyckel produktion och distribution problemet viktigt att fokusera p̊a med den extra sv̊arigheten

som den begränsade kapaciteten p̊a WSN noder ger. I denna avhandling har en lösning p̊a

detta problem beskrivits. Det använder sig av ECDH och kurvan K-163 för nyckelutbyte,

AES-CCM-128 används för symmetrisk kryptering för att sänka bearbetnings overhead och

en partial challenge solving chain utöver detta används TAS för att ge stark autentisering.

Flera hash funktioner samt slumpmässiga metoder för nummergenerering har analyserats.

Samtidigt, för att passa den viktigaste generationen och algoritmerdistributionen tillsammans

med den ordinarie sensorfunktionen, har kodoptimeringar utförts p̊a kryptografiska biblioteket

Relic-Toolkit, som har reducerats 4KB; och Contiki OS källkod, gör det möjligt att köra i

18KB flash; och drivrutinerna har utvecklats för CC430 mikroprocessorn. Lösningen gör det

möjligt att generera och drivrutinera nycklarna p̊a plats och har visat sig kunna st̊a emot de

flesta problemen samtidigt som hänsyn tas p̊a skalbarhet, överförbarhet och energiförbrukning

samt att göra den lämplig för konsumentprodukter.

Nyckelord: tr̊adlösa sensornätverk, pairing, Elliptic Curve Diffie-Hellman, säkerhet,

lösenord utdelning
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Chapter 1

Introduction

A Wireless Sensor Network (WSN) is a distributed network of sensoring devices (usually

called nodes or motes) that monitor physical phenomenons such as temperature, radiation or

humidity and can be used for surveillance of an area which makes them really attractive for

consumer applications and for battlefield usage.

A complete WSN is formed of a variable amount of nodes, it can be from few units to

several thousands and sometimes the number is ever-changing: there is no fix number of nodes

forming the network, as new nodes may join and other break and be replaced or just removed.

The nodes are typically cheap, devices with few resources and therefore very constrained in

several aspects. The growth of this kind of networks, partially enforced by the idea of The

Internet of Things, raises the problem of securing the communication of those networks within

these very particular conditions. The Internet of Things roots on the thought of all sort of

objects connected to the Internet with an own identification, being able to share data and

interact with each other.

Nodes must be able to set up link-wise and end-to-end security while these security

procedures shall not affect their regular performance. A solution to solve the secure

communication bootstrap issue is proposed in this master thesis. In the Section Background,

an overview of the particularities of these networks is given and the problem and motivation

are stated in Section 1.2. Finally in Thesis Organization an outline of the further sections is

given.

1.1 Background

The growth of WSNs together with The Internet of Things and technologies like IPv6,

6loWPAN and IEEE802.15.4 has opened the door once more to research on key generation

and distribution schemes. The importance of this field in WSN, is key in the future success

of these networks.

A typical compiled OpenSSL cryptographic library has a size of around 620KB, which

makes it not feasible to embed it into a 30-256KB microcontroller. Additionally, the

microcontrollers for sensors nodes are usually powered by batteries and operate at a frequency

range between 4 and 50 MHz in comparison to the 3GHz microprocessors of desktop

computers. Hence, operations take longer time and intensive computing can easily led to

battery exhaustion. Because of all this, the implementation of security standards such as

Public key Infrastructure (PKI) is a challenge and not always feasible. Although research

1
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focused during the last decade on more insecure and simple key pre-distribution schemes, new

studies demonstrate that optimized Public Key Cryptography (PKC) is affordable for WSNs.

First, the specific aspects of WSN are discussed in 1.1.1, and then an overview on

information security and key exchange is given in 1.1.2.

1.1.1 Wireless Sensor Networks

As already mentioned, the nodes forming a WSN are usually inexpensive and not tamper-

proof. This suggests that the nodes have very limited computational resources and memory

and they can be attacked physically. Most frequently, the nodes are battery powered which

adds another constraint to any kind of energy consuming operation. Although they can be

arranged in different topologies, the most common one and easiest to protect the hierarchical

topology[53]. In such a topology the central node, known as Cluster Head (CH) is usually

more powerful than the rest, as it has to manage many data inputs. Another possible topology

is Peer-to-Peer (P2P) where all the nodes have the same role within the network and there is

no node more important than the rest. Of course, variants of both are also possible.

Typically the CH is connected to a Gateway (GW) node which is the door between the

network and the Internet. The role of a GW is the same as of a router, it can hold some

access control mechanisms but mainly it acts as a network converter, e.g. from IEEE802.15.4

to Ethernet. A hierarchical WSN topology is depicted in Figure 1.1. Normally, WSN are

divided into clusters for better supervision, the CH is the responsible for an area and report

to the Base Station (BS) (or Data Sink), in smaller networks, the CH assumes the role of BS.

CH GW Internet

Figure 1.1: Hierarchical Wireless Sensor Network topology

CH1

CH2 CH3

CH4

BS

Figure 1.2: Clustered Wireless Sensor Network

The nodes take data samples of environment phenomenons and send them to the data sink,

receive orders from the CH or operate depending on readings of other nodes. For instance,
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in a parking lot, nodes indicating free places will turn on and off green and red LEDs based

on the availability of a parking spot in the nearby. At the same time they will send status

information to a main node which updates a display showing the number of free places in each

storey. In a more extreme situation where nodes are in the deep corridors of a mine, hence in

places difficult to access, they report air oxygen levels to a main controller, which will trigger

harder ventilation when required in order to protect miners.

However, not all the interconnected nodes must be of the same nature, a toaster equipped

with IPv6 connectivity for alerting of ready toasts may be used at some point to forward

packets of the house lighting system as well. This cooperative idea is the main goal of The

Internet of Things and the use of standards communication protocols make it possible.

Despite of the benefits that a WSN presents, the increase of their use unveil new threats

and bring opportunities for attackers. Therefore, security is mandatory for many applications

and must be provided.

1.1.2 Information Security

Commonly, information security and cryptography are confused with confidentiality and

encryption, which ensures that the message can just be read by the genuine consignee. But

this is neither the only security aim nor the most important one when speaking of information

security. Other goals such as integrity, which proves that the message has not been altered

from the source; availability, which makes sure that the data is available whenever needed;

authenticity, which confirms that the message comes from where claimed; or data freshness,

which will allow the receiver to detect when a new message has arrived are sometimes more

important. However, these purposes are difficult to provide in an autonomous WSN without

trusted third parties and previously unknown node placement.

In order to ensure the previous goals, some secret information between the communicating

parties must be shared. Depending on the way this secret information is managed, two

tendencies are identified: Symmetric Key Cryptography and Public Key Cryptography.

In Symmetric Key Cryptography, security bases in a shared key, only known by the

communicating ends. This key must be transmitted in a secure way, usually using a different

communication channel. Public Key Cryptography refers to a type of cryptography which uses

asymmetric algorithms, based on the use of a key pair consisting in two keys: a private one and

a public one. Therefore, when one of the keys is used to cipher an information, only the other

key of the pair can be used to decrypt it. It is useful for signing and guarantees most of the

previously mentioned security goals. These algorithms base their strength on mathematical

problems with difficult solution such as the Discrete Logarithm Problem (DLP) or big number

factorizations used by Rivest, Shamir and Adleman (RSA).

The level of understanding of the methods used also reveals four levels of security:

Security by Obscurity, Presumed Security, Computational Security and Provable Security,

being Computational Security the most widely used in modern Information Technology (IT)

systems.

Security by Obscurity is a term used to describe the notion of security achieved by keeping

the algorithms and mechanisms secret following the idea that ignorance will make it impossible

to find a security breach. Presumed Security is the sort of security which is considered secure

because no one has (yet) been able to prove the opposite.

In Computational Security, it is considered that a system is secure as high computational
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power, hence time, is required in order to break the security. This makes it most of the times

not worthy to attempt to crack it. This is the case of for instance RSA and mostly all modern

security schemes, such as DLP and Elliptic Curve Discrete Logarithm Problem (ECDLP).

Provable Security is the most rare case of security as security can be proved. An

example of it is Semantic Encryption which makes a different cryptogram every time for

the same cleartext and password inputs. Nevertheless, this scheme is rarely used in favour of

Computational Security methods.

1.2 Problem Statement

In any security context, additional data have to be transmitted appended to the original

message, in order to achieve some of the security goals (e.g. authenticity and integrity)

described in the previous section. This turns into additional communication overhead, which

is present in all the secured communications. Furthermore, as can be deduced, encryption

operations or key derivation algorithms require additional (usually intensive) processing time,

hence producing processing overhead. Both communication and processing overheads lead

to a lower battery life, which is a precious resource for WSN. It is clear that a compromise

between security and battery life must be achieved.

The widely researched pre-distributed keys approach, consisting in storing keys into the

nodes in provisioning time, requires few overhead in the communication and almost no

processing overhead since the keys are already pre-loaded in the nodes. However, since the

unawareness of the final location of a sensor is a common situation for mass produced devices,

key pre-distribution is not always the best option: the number of keys to be preloaded can be

huge without deployment knowledge. Additionally, it does not scale and implies high risks for

the entire network when a node is compromised as it may disclose all available keys. Other

authors considered key derivation from a master secret or a polynomial. While it requires low

or no communication overhead, it may allow an attacker to compute all the keys within the

network if the secret or the polynomial is known, which is easy since the nodes are not tamper-

proof. Finally, the traditional use of PKC and PKI is discarded for the high computational

requirements, opting for Elliptic Curve Cryptography (ECC) which is a less processor abusive

alternative. Albeit requiring less dedicated processor time, an ECC signature on a MSP430

microcontroller still takes over 1s[47] –in contrast to the 12s required by a signature using

RSA–. Furthermore, the big memory overhead of those schemes, due to the code footprint of

cryptographic libraries, is also an important constraint to consider. All this, together with the

larger communication overhead compared to the previous approaches, make the application

of traditional PKC using ECC not interesting for most of the sensing systems in favor of less

secure approaches.

Thus, the main issue lies in the secure communication bootstrap: the way keys are

generated and distributed among the sensors. The most secure approach makes the sensors

act autonomously and generate their own keys from information obtained using algorithms

such as Diffie-Hellman Key Exchange (DH), but their high processing requirements makes

them not suitable. Pre-distribution schemes do not scale well nor protect efficiently the nodes

in case of tampering as well as polynomial or key derivation approaches, which also have

proved to be insecure. However, their memory, processing and communication overhead is

smaller. An efficient solution for in situ transparent key generation and distribution with a

good trade-off between security and overhead and a good defense in case of node capture must
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be provided. This thesis targets the key generation and distribution as an issue in a link and

application layer levels1.

1.2.1 Motivation

It can be seen in the Problem Statement (Section 1.2) and from the literature review (Chapter

2) that key generation and distribution in WSN is a difficult problem to solve. A generic

solution which offers a good trade-off between the use of the resources and the security level

achieved does not exist, hence must be provided.

The current approaches can be categorized mainly in three big groups: Key pre-

distribution, Polynomial derivation and PKC. Other approaches are a combination of the

previous or key derivation from a master key.

• Key pre-distribution has the advantage of no key computation and few or no exchange

messages depending on the distribution scheme. It is widely described in the Section

2.1.1. Its main drawback is that once a key is disclosed, all the links using that key are

compromised and it is highly vulnerable to selective node tampering which can lead to a

key exhaustion. Additionally, the memory overhead grows exponentially with the size of

the network when probabilistic schemes are used without post-deployment knowledge.

• Polynomial approaches and master secret derivation offer a good arrangement between

memory, computation and no communication overhead. These approaches allow to

compute the communication keys from a polynomial or secret data, hence they have the

inconvenience that once the polynomial is known, an external attacker can compute all

the keys of all the links within the network.

• PKC has the advantage of providing high computational security, unpredictable and

independent link keys, hence a compromised node only may compromise its links

and eases the use authenticative signatures. The main drawback for this technology

is the high computational requirements additionally to the memory overhead for the

cryptographic libraries required.

There is no known method existing that offers a good trade-off between all of them,

keeping low the memory, communication and computation overheads. Additionally, most

of the researched methods do not contemplate consumer applications, which makes them

neither usable nor error-proof for industry products. Furthermore, many proposed solutions

are platform specific which makes them not portable to different platforms and breaks with

the idea of the Internet of Things. A new solution has to be developed, which offers a good

level of security, relatively small overheads and aims usability for consumer products keeping

in mind its portability to different platforms.

1.2.2 Objectives

The objective of this thesis is to develop a key generation and distribution method which

offers a good compromise between memory, computation and communication overheads while

offering a high level of security for WSN communications.

1Physical communicative attacks such as jamming are out of its scope of this master thesis
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The approach must allow in situ key generation, maintaining a different key per link and a

group key for multicast messages. This must be energy-efficient, not cpu abusive and scalable

according to the needs of the nature of a WSN. Furthermore, the solution has to be integrable

in Tado GmbH network hence it must be developed in C and work as a transparent Contiki

OS layer for the MSP430, CC430 and Cortex M3 processors, which are the current used

microprocessors in Tado motes, and any future addition, therefore portable. It has to have

a small memory footprint since it must co-exist with current firmware in the nodes and has

to provide a good level of security for avoiding possible attacks and protect the customers as

well as the company network from possible attacks and reverse engineering.

Expected Results

After literature review (see Chapter 2), it can be affirmed that the optimal way to achieve the

goal of the thesis is by an efficient use of ECC. Hence, general purpose cryptographic libraries

must be adapted for their use in embedded devices, in order to lower the energy consumption

and memory overhead. It is expected that the use of Elliptic Curve Diffie-Hellman (ECDH) is

affordable for secret information exchange allowing the parties to derive a link key while using

symmetric encryption for the rest of the communication, lowering the number of exchanged

messages and their size.

Another straightforward expectation from the bibliography is that any block ciphering

algorithm can cause far too much overhead on the communication. Hence, AES-CCM or

AES-CBC-stealing[51] will provide important savings in the communication, which is one of

the most energy expensive components of a WSN[7].

Finally, after the inspection of the current state of Tado’s devices and firmwares, deep

software optimizations are required in order to fit the protocol to implement together with

the cryptographic library and the regular device application.

1.3 Thesis Organization

This thesis report is organized in seven chapters. This one presents an overview on WSN,

the key generation and distribution problem as well as the objectives and scope of the thesis.

It is followed by a review of the solutions proposed by researchers. In the Environment

chapter, an examination of the available standards is given as well as a description of the

hardware available for testing. Chapter 4 offers a description of tools and algorithms in order

to generate the keys on the nodes while Chapter 5 relates how keys should be exchanged

between the different nodes in the network. In Chapter 6 a security and overhead analysis of

the proposed solution is given and finally, the conclusions are stated in Chapter 7.



Chapter 2

Related Work

The key generation and distribution problem has been concern of researchers for a long time.

A traditional solution to this problem consists in the use of some functions that are easy

to compute in one way but very difficult to reverse such as the DLP. However, this is not

always suitable for WSN[11, 37] because of the high computation required. Albeit some have

managed to implement PKC in small nodes[26, 49], the computational time for encryption,

decryption, signature generation and verification or even the memory overhead makes PKC

not suitable for this sort of networks.

Research has shown that the transmission of 1 single byte of data in WSN is approximately

as expensive as 800-1000 32-bit processor instructions[7]. Hence, it should be considered to

make the key generation and distribution system less verbose in favour of computation. This

must be the main goal of good schemes.

In this chapter, several solutions proposed by researchers are reviewed. The reviews are

divided in five main categories depending on the nature of the solution, being these: key

pre-distribution, polynomial derivation, Public Key Cryptography, physical observations and

hybrid schemes.

2.1 Key Pre-Distribution

The pre-distribution schemes solve the key generation and distribution problem by pre-loading

secret information in the nodes before deployment, different types be distinguished depending

on the nature of the pre-loaded information. These approaches have no processing overhead,

since the keys are already pre-loaded and ready to use, while offering very few communication

overhead. However, they have some important issues as discussed in the sections below.

2.1.1 Single key pre-distribution

The most straightforward solution to solve the key generation and distribution problem may

be to pre-load the same shared key in all the node, which is used to secure the communication.

However, a node capture would disclose the key and compromise the whole network. Hence,

it is not a good approach for networks with tamperable nodes.

An attempt to solve the previous scenario is to use a different key per node forcing all

the nodes to know all the keys of at least its neighbours, hence causing a huge memory

overhead for large networks and preventing scalability. Still, a node capture may break as

well neighbouring links since neighbouring keys are disclosed, leading to an unsecure network.

7
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A second attempt to solve this problem in an upright way is the use of a trusted third

party[12, 53, 54] which knows all the keys for different nodes, and to which the members of the

network can request keys to communicate to other nodes. This direct solution has scalability

problems as a request message from a node in an N th level of a network tree will need 2(N−1)

message forwards before receiving the key. Additionally, a captured node may disclose the

keys of all its neighbours voiding them.

2.1.2 Master Key Derivation

This type of key pre-distribution bases its strength in the ability of the nodes to derive the

keys from a master, pre-loaded key. A paper from Blom in 1985[9] proposes to provide nodes

with enough information in a way that the cooperation of the nodes allow one of them to build

a pairwise key. Despite it does not require big computation capabilities or memory overhead,

the capture of the master key allows an attacker to compute all the keys for the nodes.

One of the most recognised and discussed master key-derivation approaches is Security

Protocols for Sensor Networks (SPINS)[46]. All the nodes share a secret key with the

trusted base station, from which the keying information of a link is derived. Semantic

cryptography1, data freshness, weak authentication and very low communication overhead

are considered. It uses µTESLA, an efficient stream authentication scheme, symmetric

encryption for authenticated broadcasts and relies on loose time synchronization. The schema

is designed for very limited sensors but it presents some drawbacks for consumer and large

scale applications: a) the required time synchronization is not always possible, b) the keys

are stored in the gateway which may suffer from limited storage capabilities and c) only BS

to node and vice versa communications are contemplated.

[12] proposes considering the gateway a Trusted Base Station (TBS). An online server to

the network is added in order to solve the key storage problem and multiple authentication

keys are pre-loaded in each node. The node requests authentication to the GW which

queries the online server. The latter replies with a challenge for the node to solve. Once

a node is authenticated, both parties (node and GW) can derive a session key Kc from the

challenge. Despite the improvement it does not authenticate the network and therefore if the

key derivation function is captured, the system is vulnerable to eavesdropping and Man-in-

the-Middle (MiM) attacks.

Nehra and Patel[41] propose Mobile Agent Secure Location Key Establishment (MASLKE)

in order to fulfil the leakages of the previous solutions. In MASLKE, the CH is in charge of

key generation and distribution. It is considered that each node in a cluster is able to talk

to its CH. At communication bootstrap, every node generates a nonce (xi), encrypts it with

the pre-shared individual key and broadcasts it (yi). The CH selects N nonces (ri), with N

being the number of networks in the cluster, and encrypts every nonce with the pre-shared

individual key of each of the nodes (ti). All the encrypted messages are delivered to all the

nodes individually. At this point, the nodes have all the encrypted messages broadcasted by

others, their piece of decrypted information and the decrypted information they received from

the CH. The individual key is generated as the hash of all the encrypted keys together with

the two nonces that the node has been able to decrypt. In Equation 2.1, key generation for a

1Two instances of the same message result in two different cryptograms. This is achieved, for instance,
appending random information to the original cleartext.
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certain node is transcribed, where g is the generator of a cyclic group G, while in Equation

2.2 the way in which the keys are generated is described.

CH : ti = Epi(g
ri) N : yi = Epi(g

xi) (2.1)

Ki = H1(y1, y2, . . . , yn, g
xiri) (2.2)

A captured node may not disclose more information than the relative to itself. Since

all the nodes must send one message the communication overhead is very low as well as

the computational requirements. However, the assumption that all nodes can listen to all

broadcasts may not be realistic and a tampered CH can compromise the entire cluster as it

holds all the keys. Nevertheless, this solution has almost no communication overhead and

requires few memory and computation imprint.

Tufail et al.[57] propose to pre-load nodes with a hashed version of a master key Km

together with the node ID, KI = H(Km || ID). When a node joins the network, it sends this

KI , the node ID and a temporary generated session key KS to the gateway, encrypted with

the gateway public key (Kg), which was previously received of a Route Advertisement (RA)

message. Then the gateway replies with a group key encrypted with KS and the node erases

the two previous keys (KS and Km). An important drawback is that this approach does not

authenticate the gateway and forces the nodes to be capable to perform public key encryption,

which is sometimes not feasible[15, 37]. Since the network uses one single group key to cipher

the communications, a captured node compromises the entire network. Additionally, no key

renewal is possible since the information is deleted from the node after deployment.

Others[64] recommend the use of three different keys, two of those are preloaded and the

third is computed from the previous two and random data. The preloaded keys are network,

sensor and cluster specific. The message forwarding in this structure causes huge overhead as

every level adds its own Message Integrity Code (MIC) and encryption parameters. However,

it is a good approach to separate the environments using different keys. A wormhole attack

may induce a packet to loop indefinitely making it grow boundlessly. All the information of

the network can be read out when the network key is captured as only sensor-CH information

is protected individually. Hence, the capture of a node discloses all shared keys.

2.1.3 Key Pool Pre-loading

Eschenauer and Gligor[15] proposed one of the first key pool pre-loading schemes. A TBS,

which can be an external computer, generates a key pool of K keys, with K > N , being N is

the number of nodes. Every node has an aleatory sub-set of M |M < N < K keys pre-loaded

before deployment. During neighbour discovery phase, a node broadcasts all the IDs of the

keys it holds to all its neighbors. This way, two neighbor nodes with one or more matching

keys can agree in using a certain one as link key. Despite the huge memory prerequisites for

large networks, the proposal requires no computation overhead and almost no communication

overhead.

Nevertheless, there is no guarantee that two neighboring nodes share a key. Hence, a

huge key pool must be pre-loaded into the nodes to ensure a certain level of probability of

key sharing; and when a node is compromised, revocation of all the held keys is mandatory,

breaking several links and allowing an Smart attacker (see Section 6.1.1) to exhaust all the
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key pool easily. All of this is concern of Chang et al.[11] who presented the q-composite

key pre-loading. The main idea behind this is that two nodes must share at least q keys to

compute the pairwise key. Additionally, the size of the initial key-pool (|S|) is calculated

given the constraint of the probability that two nodes share at least q keys and the number

of keys that a node can hold (m). The probability is as given in Equation (2.4).

p(i) =

(|S|
i

)( |S|−i
2(m−i)

)(
2(m−i)
m−i

)
(|S|
m

)2 (2.3)

pconnect = 1− (p(0) + p(1) + . . .+ p(q − 1)) (2.4)

It can be seen from (2.4) that the probability increases when the pool size |S| decreases,

making it not suitable for very small networks. Although [12] pointed out that the connection

probability (pconnect) may be increased by previous knowledge of final distribution of nodes

in the field, this is not always possible.

Chang et al.[11] also propose multi-path reinforcement to improve resilience of the network

by sacrificing resources. Additionally to a random pairwise scheme to make sure that if a node

A shares exactly the same K keys with the nodes B and C, both neighbors of A can ensure

that the received message comes from B or from C, thus weak authentication. Multi-path

reinforcement requires the existence of disjoint paths which may not always be the case, and

the random pairwise scheme does not scale as mentioned in [13, 14].

At the same time, Di Pietro et al.[14] suggest pseudo-random key pre-loading for a more

efficient key discovery procedure. A node knows how to compute the keys it shares with

another node. While in [11], all shared keys XORed to compute the communication key, a

cooperative scheme is advised. When a node A wants to communicate with node B, it first

asks a set of nodes (N ∈ ζ = N1, . . . , Nm) for a hashed IDA together with their KNi,B as in

Equation (2.5) where H stands for the hashing function. The pairwise key between A and B

is the XOR of the shared keys between A and B XORed with all the received hashes. A tells

B the resultant key and the nodes in ζ, thus B computes the key as well.

kζA,B = kA,B ⊕ (
⊕
c∈ζ

H(IDA || KNi,B)) (2.5)

The resultant key does not depend only on the keys of the node. However, the capture of

one node may offer the seed and the algorithm used to compute the IDs of the keys a certain

node has. Since A will send B the set of nodes that participated in the key creation, an smart

attacker may be aware of which nodes to capture. As an attacker might know which keys are

shared with every node, it can trace a map of keying exhausting all the keys in the network

and breaking all the links.

Another alternative is to use multiple key spaces[55]. For a lower number of keys pre-

loaded, key sharing probability of 1 can be guaranteed. The approach bases in a Balanced

Incomplete Block Design (BIBD) which defines an arrangement of n different objects into b

in such a way that each block contains exactly k different objects.

Therefore, the final location of the nodes must be known in order to distribute the keys,

making it not attractive for many scenarios neither for small sized networks, as many of the

proposals described in this section.

The use of hash-chains is recommended in [8], hashing the pre-loaded keys n mod L times
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before storing them in the nodes where n is the ID of the node. Subsequently, the session key

will be derived from all the common keys. Thus, every link key will be different even if based

in the same base key. The node with the lower ID computes hashes x more times to compute

the shared session key. This is claimed to enhance the resilience of the network up to 40%.

Combinatorial approaches for key pre-distribution are discussed in [56]. Two types of

keys are considered: one for intra-region communication and another one for inter-region

communication. The CHs have at most one common key, thus a compromised agent does

not affect the other CHs and no key discovery algorithm has to be triggered. Their approach

bases on dividing the network in regions small enough to fit all the neighboring keys of a

certain region into that node’s memory. During key discovery the approach only broadcasts

node IDs so no key index is disclosed, which makes it very difficult for an smart attacker.

2.2 Polynomial

Shen and Chien[54] propose a symmetric bivariate polynomial to compute the keys (Equation

(2.6)). Only with the node IDs a link key can be computed and hashed afterwards. The main

issue in this scheme is that once a node is captured, the polynomial can be obtained and the

keys of all links can be computed. In [53], two scenarios for the scheme above are described:

online generation and offline generation.

KCH,S = H(fCH−Si(Si, CHx)) (2.6)

Online Generation: this is the case when a Key Distribution Server (KDS) is present in

the network. The joining node (i) computes the key of the pairwise key with CH as the hash

for the polynomial result using the node ID and the CH ID (x). Afterwards, the polynomial

is removed. At the same time the CH, which does not know the polynomial, requests a new

key to the KDS for the link with Si. A captured node before deployment will provide the

attacker with the polynomial to compute all link keys.

Offline Generation: this is the situation when a KDS is not present. Then the nodes

must be preloaded with a known node-CH key (KCHx,N ) and a CH-node key encrypted with

the BS-CH key (EKCHx,BS
(KCHx,N )). This way the CH will be able to decrypt the message.

Even if it belongs to another cluster head, it will be forwarded and re-encrypted by the CHs

network. In this approach the nodes final position does not affect their capability to join the

network, though the fact that only node-CH communication is considered.

Garćıa-Monchón et al.[18] propose to use small digital certificates and a symmetric

bivariate polynomial for key exchange using the certificates as node-ids for medical WSN.

In Min-Qing et al.[36] approach, every node generates a random secret ri and sends

EKpub
(Hi||IDi) (Equation 2.7) to the base station using the base station public key (Kpub).

The BS decrypts all received messages and generates a polynomial such as p(x) = (x −
H1) . . . (x−Hn)mod p, then sends g(x) = (p(x) +K)mod p to all nodes, but only valid nodes

can retrieve the key K. When the key needs to be updated, a new key is broadcasted in the

same way. As every node stores very few data, there is not much communication overhead

but all nodes use the same link key which is at the same time an advantage and a drawback.

However, the base station must not be captured. The network does not authenticate the nodes,

and any external node knowing the procedure may join if no upper layers of authentication
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are introduced.

Hi = H(IDi || ri)mod p (2.7)

2.3 Public Key Cryptography

Steffen et al.[47] confirm the infeasibility of software implementation for PKC on WSN. Long

computing cycles make energy consumption behave poorly. They also compare RSA with

ECC on several processors and configurations showing that ECC is around 10 times more

efficient for the same degree of security. Nevertheless, they propose a hardware accelerator

to be used as a peripheral and proving that hardware accelerators can help to reduce the

power consumption while providing as well a huge speed improvement when calculating PKC

operations. Others consider that this is not necessary and the increase of speed can be

achieved by pre-loading some already generated random data for the first pairing[63] basing

the security on the Bilinear Diffie Hellman Problem (BDHP).

Some proposed to use Host Identity Protocol (HIP)[38, 39] for message authentication

using PKI. HIP is used on top of IPv4 or IPv6 to identify hosts. It is “a self generated

PKI certificate which is mean to be the host identity”[20]. This allows separation of the

identifier and locator roles of the IP address. However, to be completely trusted and to allow

authorization, the certificate must be signed by a trusted Certification Agency (CA), which

adds a huge amount of overhead to the communication.

In [20], it is proposed Lightweight HIP (LHIP) and several alternatives to the original

HIP protocol such as: to dispense DH, Digital Signature Algorithm (DSA) and to reduce

the key size. They propose the use of Hash-based Message Authentication Codes (HMACs)

for message signing and to refer to Time Efficient Stream Loss-tolerant Authentication

(TESLA)[45] for time based signatures.

HIP is proposed to be the main network layer security builder[26] for WSN. It is

meant to use Certificates signed by a trusted CA together with ECC to improve the bad

performance observed in WSNs using traditional cryptographic methods such as RSA or DSA;

and replacing DH by ECDH to derive keying material for link based Advanced Encryption

Standard (AES) communication. Nevertheless, in [26] it is proposed to use Binary Trees for

lightweight certificate test together with polynomial key exchange (see Section 2.2). It is

claimed to improve dramatically the performance of PKC on WSN.

Some[25, 40] considered the use of Identity Based Cryptography (IBC) based on ECC and

bilinear pairing. In those schemes the node ID (serial number, Link-local Address (LLA), etc.)

is used as the public key. The energy consumption is highly reduced by this procedure thanks

to the avoidance of the exchange of messages for key generation. Another interesting option

presented is to use the IPv6 address of the node as a public key and generate the private keys

of the node during pre-deployment by a trusted third party[40]. This results in a little less

latency compared to the previous in spite of to higher energy consumption.

2.4 Physical Observations

Nitinawarat et al.[42] point out that it is possible to generate a key using the signal reception

since a pair of terminals will observe correlated signals that are independent of all other pairs
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of signals. In [60], it is proposed to use the phase of the received signal as it will be equivalent

in both communication ways. This way, the key is generated by two pairs or more, each

transmitting in a certain moment and computing the addition of the phase differences. The

security of the schema remains in that it is very difficult to receive the same phase in another

location different from the genuine nodes. However, time synchronization is fundamental

and may not be possible in some platforms. Furthermore, it is difficult to detect when an

additional signal has been added by an attacker and the accuracy to detect the phase of the

received signal is critical, as the accumulation of estimation errors when generating a group

key may cause the procedure fail. At the same time, the group size is limited by the required

Bit Error Ratio (BER). It is a very sophisticated method which requires low level signaling

access.

In [59] the use of sensor accelerometers is advised for the generation of high quality 128-bit

random numbers. Such approach is a True Random Number Generator (TRNG) which offers

perfect randomness for key generation.

2.5 Hybrid

From the previous sections, it can be concluded that the use of PKC is too resource expensive

to perform cryptographic operations on every message computation. Still, it seems to be

a reliable idea to use it for key exchange with DH and follow the communication using a

symmetric key[32]. [32] proposes a modification of Huang et al.[21] which solves the handshake

in five instead of six rounds but has weaknesses in the authentication of the sensors. [35] also

proposes a hybrid scheme that uses ECC, IBC and tate pairing for symmetric key distribution

with a hardware accelerator and achieving impressive results.

Yoo et al.[62] refer to the use of ECDH for key establishment using the same key pool on

all the nodes. Each node selects a key from the pool and a random nonce, the combination

of the data permits to derive a session key.

In this chapter several tendencies to solve the key distribution problem have been

presented, in the referenced sources the reader may find energy consumption values for some

of the implementations. Despite the optimal use PKC many assume that it is only feasible

using hardware accelerators. If this may be true in many situations, the microprocessor

manufacturers are producing more capable chipsets with lower power consumption opening the

door to possible software implementation of hybrid PKC-Symmetric Key Cryptography (SKC)

schemes.





Chapter 3

Environment

Within this chapter, the boundary and the tools used in this work are described. First, an

overview on the standards is given. Subsequently, the Contiki operative system network stack

structure is described, for which the key derivation and distribution solution will be developed.

Finally, the available testing hardware is presented.

3.1 IEEE 802.15.4g

IEEE 802.15.4 is a standard that specifies the protocol and interconnection of devices via radio

communication in a Personal Area Network (PAN)[2]. It makes use Carrier Sense Multiple

Access (CSMA) and supports star and P2P topologies. The standard defines the physical

layer and the Media Access Control (MAC) layer for device intercommunication.

The original standard of 2003 defines three operation frequency bands: an European band

at 868MHz at 20Kbps and BPSK modulation, an American band at 915MHz at 40Kbps

with the same modulation and a worldwide band at 2450MHz at 250Kbps and O-QPSK

modulation. However, in the Amendment 3 new bands where defined, allowing 50Kbps

and O-QPSK at 868MHz band[3] and specifying a Common Signaling Mode using F-2FSK

modulation at 50kbps in all the bands.

The standard defines 64-bit addresses with the possibility of transmitting 16-bit addresses

and using address expansion (as explained in Section 3.1.1) for obtaining the equivalent 64

bit address. This is a big advantage as the maximum frame size described is 127 bytes.

The MAC frame is reproduced in Figure 3.1 where the size variance of some of the fields

can be observed, this is due to the specification in the Frame Control field (Figure 3.2). For

instance if the security flag is not set, the security field will not be included, and in case it

is, it will depend on the configuration. The same applies for the PAN-ID. When a message is

sent inside the same PAN, the Intra PAN flag is set and the PAN fields of the MAC frame

are elided. The addressing fields vary depending on the length of the transmitted address (0,

16 or 64 bits) which is indicated in the Dst Mode and Src Mode in the Frame Control field

as well.

15
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type Sec Pend ACK
Intra
PAN

Reserved Dst Mode Reserved Src Mode

Figure 3.2: IEEE802.15.4 Frame Control Field
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Figure 3.1: IEEE802.15.4 MAC frame with field sizes in bytes

IEEE802.15.4 specifies as well security suite options, being AES-CCM-128 the recom-

mended one. This provides access control, data encryption, frame integrity and sequencial

freshness. See Section 3.3 for more detailed information of AES-CCM-128.

Given the nature of WSN, the minimum amount of data is intended to be sent. When

the nodes belong to the same PAN-ID the standard only produces 9 bytes of overhead in

clear with an additional 4 bytes MIC after AES-CCM. 13 bytes overhead in total, allowing

theoretically 114 bytes for payload.

3.1.1 Address Expansion

IEEE802.15.4 defines 64-bit addresses but it is also possible to use short 16-bit addresses,

which have to be expanded to a “pseudo 48-bit address” and finally to a complete 64-bit

address[30, 58]. This happens as shown in Figure 3.3.

PanID 00 00 Addr16

PanID Addr16

PanID 00 FFFE 00 Addr16

FFFE

Figure 3.3: EUI-64 address expansion from a 16-bit address

This 64-bit address can be expanded again to obtain a fully IPv6 address by appending

the prefix FE80::/64 and named LLA. In the rest of this document, the 64-bit address is

referred as LLA since the difference with the real LLA is a fixed padding.

3.2 6loWPAN

6loWPAN is an acronym for IPv6 over low-power Wireless Personal Area Networks and

appears from the idea of enabling IEEE802.15.4 networks to use IPv6. Since the IEEE802.15.4

standard generates small packets it makes it not suitable for the usage IPv6 on them, therefore

some adaption layer is necessary.
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The frame size defined in the 2003 standard[2] is 127 bytes in the physical layer, with

a maximum header size of 25 bytes, leaving 102 bytes to the MAC layer. Considering an

additional encapsulation overhead of a maximum 21 bytes due to AES-CCM-128 results in

81 bytes of maximum payload. At the same time the minimum packet size of the IPv6

standard is 1280 bytes, inclusive a header of 40 bytes. Additionally 8 bytes for User Datagram

Protocol (UDP) headers or 20 bytes for TCP headers should be considered. This situation

leaves between 20 and 33 bytes for upper layers data[30].

Given this problem, the 6loWPAN adaption layer defines a IPv6 compressed frame

structure such as in Figure 3.4. Each header field of the frame contains a header type followed

by zero or more header fields such as: addresses, hop-by-hop options, routing, fragmentation

and payload.

IPv6 Dispatch IPv6 Header Payload

Figure 3.4: 6loWPAN frame

The dispatch header starts with a zero bit and a one as the second bit, then a 6-bit header

selector and N bits for type specific header as in Figure 3.5. This allows to select which kind

of header will follow. Examples are 000001 for full IPv6 header, and 000010 for loWPAN

HC1 header.

In case the frames need to be fragmented –which is supported by IPv6– the fragmented

header is appended. This header follows the structure represented in Figure 3.6. The red field

offset is only present when the frame is not the first fragment while the 1 in the identifier field

turns 0 for the first fragmented packet, being 1 for the rest. This situation is not attractive

for WSN communication as produces a higher header overhead and leaving less room for the

payload of the message.

0 1 2 3 4 5 6 7 8

01 Dispatch type specific

Figure 3.5: 6loWPAN dispatch header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11100 fragment size fragment tag

offset

Figure 3.6: 6loWPAN fragmentation header

3.2.1 Header Compression

The header compression is one of the most interesting features of the 6loWPAN standard. It

makes it possible to send very few overhead for TCP/UDP over IPv6 communications. The

first standard, RFC4944, defines two levels of compression: HC1 and HC2. However, these

are considered insufficient for most practical uses of IPv6 in 6loWPAN[22]. RFC6282 defines

two more compression levels IPHC for effective compression of Unique Local, Global and

Multicast IPv6 addresses; and NHC which defines an encoding for arbitrary next headers.
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HC1

The main idea behind this compression is that the IPv6 packets will always take the same

values for some of the fields:

• IP version is always 6.

• The addresses can be resolved from the MAC addresses.

• The frame length can be inferred from the IEEE802.15.4 frame or the size field in the

fragment header (Figure 3.6).

• Traffic Class and Flow Label are zero.

• The next header is UDP/TCP or ICMP.

The HC1 byte is represented in Figure 3.7. PI fields identify how the addresses are

transported (10 means compressed and in-line), TC/FL is the compression of the Traffic

Class and Flow Label, the Proto field points out which is the protocol to use (TCP, UDP,

ICMP or full specified in-line) and HC2 points out if a HC2 header is provided after HC1.

0 1 2 3 4 5 6 7

PIS PID TC/FL Proto HC2

Figure 3.7: 6loWPAN HC1 byte

HC2

When HC1 indicates UDP and the HC2 flag is set, the HC2 header must follow. The

HC2 reduces the overhead of UDP from 8 bytes to 4 bytes. In Figure 3.8 a HC2 header

is reproduced. The C fields indicate whether compression is enabled or not for the Source

Port (SP), the Destination Port (DP) and the Length (L). The latter means that the length

of the payload is derived from the payload length of the IPv6 header, rather than being again

specified. The compression for the ports allows a port to be sent as a short value of 4 bits.

This value is added to 61616 (0xF0B0) to obtain the final port number.

0 1 2 3 4 5 6 7

CSP CDP CL Reserved

Figure 3.8: 6loWPAN HC2 byte

An example of a whole UDP over 6loWPAN frame using HC1 and HC2 compression

is reproduced in Figure 3.9. First, comes the dispatch header indicating HC1 loWPAN

compression, the second byte is the HC1 header pointing out UDP as a protocol and to

which follows a HC2 compression header. This indicates compression for ports and length.

Finally, further IPv6 and UDP headers (minimum additional 6 bytes) are appended.

0 7 8 15 16 23 24

01000010 xxxxx011 111xxxxx IPv6 headers and Payload

Dispatch HC1 HC2

Figure 3.9: 6loWPAN compressed UDP frame
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Field Bits Description

TF 2 Traffic Class and Flow Label
NH 1 Next Header compressed using NHC or not
MLIM 2 Hop Limit compression
CID 1 Context Identifier Extension
SAC 1 Source Address Compression
SAM 2 Source Address Mode
M 1 Multicast Compression
DAC 1 Destination Address Compression
DAM 1 Destination Address Mode

Table 3.1: 6loWPAN IPHC word fields description

IPHC and NHC

This new extension proposed in [22] compresses the IPv6 header even more and makes the

6loWPAN frame more generic for different succeeding headers using a NHC byte. This frame

defines which is the next header to follow and indicates if it is compressed or not.

011 TF NH HLIM CID SAC SAM M DAC DAM

Figure 3.10: 6loWPAN IPHC header structure

The fields of the IPHC byte are as described in Table 3.1. In Figure 3.11, the NHC frame

is depicted and in Figure 3.12 the compressed header for UDP is presented. C stands for

checksum, when it is 1, the checksum is elided and is recovered by recomputing it from the

6loWPAN termination point. P stands for the compression of the ports, they can be fully

carried in-line, 8 bits elided and 12 bits elided. This header compression offers more flexibility

than HC1 and HC2.

NHC ID Compressed Header

Figure 3.11: 6loWPAN NHC structure

1 1 1 1 0 C P

Figure 3.12: 6loWPAN UDP compressed header structure

IPHC IPv6 NHC Frag NHC UDP Payload

Figure 3.13: 6loWPAN Full UDP packet using IPHC and NHC

The standard defines 2-3 bytes for IPHC header and 1 byte for each NHC. The different

fields in IPHC allow a specification of the size of the source and destination addresses as 128-

bit, 64-bit or 16-bit addresses or fully elided (and computed from the encapsulating header).

This structure reduces to 7 bytes the full UDP/IPv6 packet headers when addresses are elided.

This is shown in Figure 3.13 where the red fields represent optional fields such as additional

IPv6 headers, addresses and fragmentation in case of a large frame.
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It is easy to deduce then, that the overhead for a UDP/6loWPAN over IEEE802.15.4

packet produces only between 14 and 28 bytes for the header. In Figure 3.14 it can be

seen that the use of UDP on broadcast addresses using 6lowPAN and 64-bit addresses for

IEEE802.15.4 maximizes the size of the payload.
0 40 89 127

IEEE 802.15.4 IPv6 + UDP Payload (40)

0 16 24 127

802.15.4 6low

UDP
Payload (105)

0 16 24 123 127

802.15.4 6low

UDP
Payload (101)

M
IC

Figure 3.14: Comparison of frames for IEEE802.15.4, 6loWPAN and AES-CCM MIC. On
top, IEEE802.15.4 with full IPv6 and UDP headers without compression. The second frame uses
compression for broadcast addresses and 6loWPAN using IPHC/NHC. The third frame adds an
AES-CCM-128 4 bytes MIC.

3.3 AES-CCM 128 bits

CCM is an operational mode for block ciphers such as AES and stands for Counter (CTR)

with CBC-MAC. It provides an authenticated encryption: integrity, authentication and

confidentiality and is described for use with AES in RFC3610[61]. The standard defines

four different inputs: the encryption key, a nonce, the message contents and authentication

data.

For integration within IEEE802.15.4, its header is used as a 13-bit authentication data

while the first four bytes of this data are meant to be the nonce of choice. This is a

good practice since a multicast IEEE802.15.4 frame has already 13 bytes of header, variable

depending on the source and destination addresses, giving enough information to ensure its

authenticity in the communication. The sequence number of IEEE802.15.4 offers at the same

time a simple solution for the nonce without more overhead. The key is only known by the

two communicating ends, therefore it is safe to use this data for authenticating, validating

integrity and confidentiality. The chosen size of the MIC is 4 bytes which offers a good

trade-off between overhead and security as detailed in Section 6.1. The resultant frame is

represented in the bottom frame in Figure 3.14.

The procedure works as follows: First the CBC-MAC of the data is computed to obtain a

MIC and then the CTR of the payload. Then, the cleartext header is sent together with the

encrypted payload and the MIC to the other end.

3.3.1 CBC-MAC

Firstly, a CBC-MAC code is computed over a flags byte, the nonce, the authentication data

and the payload. This allows a MIC which provides data integrity and authentication.

L len A len A 0

Figure 3.15: AES-CCM flags byte
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The flags byte (Figure 3.15) is formed by specifying the sizes of the MIC and the length field

and indicating if authentication data if provided. The nonce is appended to this byte together

with the authentication data and the payload. The result is a 128-bit block of encrypted data

which is the MIC of the packet. The block chaining for a CBC-MAC operation is depicted in

Figure 3.16.

Once the MIC is obtained, it is prepended the same flag frame, with A len and A set to 0.

This is encrypted and truncated to obtain a new encrypted MIC of 32 bits which the receiver

can validate providing integrity and authenticity. A 32-bit MIC is considered secure enough

as discussed in Section 6.1.

Encrypt

⊕
m1

0

Key Encrypt

⊕
m2

Key

. . .

Figure 3.16: CBC-MAC encryption

3.3.2 CTR

The second step of the procedure is to encrypt the payload using a counter fashion. This

is sketched in Figure 3.17. The concatenation of the nonce and a counter is encrypted and

XORed with the plaintext, producing the ciphertext.

Nonce || Counter

EncryptKey

⊕
Plaintext

Ciphertext

Figure 3.17: Counter Encryption Chain

3.4 Contiki

Contiki is the open source operating system for the Internet of Things[1] developed by Adam

Dunkels at the Swedish Institute of Computer Science (SICS). It is fully written in C

language and is able to run on different hardware platforms. It uses full low-power Internet
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communication while being compliant of the most recent wireless standards such as Routing

Protocol for Low-Power and Lossy Networks (RPL), 6loWPAN, IPv4, IPv6 and IEEE802.15.4

among others.

At the same time its relatively easy to write programs for Contiki thanks to the

Protothreads library and the ever growing community behind this project. Since July 2012,

Contiki creator and main developer Adam Dunkels, founded Thingsquare which offers private

support and integration of Contiki for private users and companies.

3.4.1 Memory Footprint

Even though the Contiki website claims a small memory footprint for an RPL sleepy router

with less than 30KB of ROM and 10KB of RAM, these numbers are not suitable for some

applications (see Section 3.5) as the most memory constrained network has just 32KB of ROM

and 4KB of RAM. However, this can be solved as Contiki is highly configurable and offers

by default the possibility to trim down the memory consumption by setting some compiling

time macro definitions. It has been reduced to use just 18KB of ROM and less than 3KB of

RAM performing good in a 3 nodes network. Some of the changes have been committed to

the Contiki project for public benefit.

3.4.2 Network Stack

Contiki is very modular, its network stack (Figure 3.18) is a prove of it, which makes everything

transparent for the programmer.

When an application requires to send data over IP, this data and destination information

is passed along to the µIP stack, a fully IPv4 and IPv6 stack. There, the full TCP, UDP or

ICMP packet is built up and embedded in an IPv6 packet. Subsequently, the IPv6 packet

is passed to the 6loWPAN adaption layer which compresses the headers according to the

6loWPAN standard (see Section 3.2). When the packet is ready and the MAC driver –CSMA

in Tado case– considers that the medium is ready, an IEEE802.15.4 packet is built and the

Radio Duty Cycle (RDC) controller takes care of it delivering it to the radio interface.

Application µIP Stack 6loWPAN MAC Framer RDC Interface

Figure 3.18: Contiki network stack (sending chain)

Application µIP Stack 6loWPAN Framer RDC Interface

Figure 3.19: Contiki network stack (receiving chain)

The receiving chain differs in the sense that the RDC is in charge of turning the radio on

and off. Therefore, the RDC sets the radio in listening mode and when a packet arrives it is

first driven to the framer, in order to expand the information, the chain goes in reverse way:

from 6loWPAN inflation methods, to µIP unpacking and IP checking, finally delivering it to

the application.

3.4.3 Implementation

For the implementation of the proposed solution, two modules are developed according to

Contiki’s structure. One is the Key Manager Application which is in charge of the key
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establishment routines, key renewal and generation procedures. The other module is a lower

module, between the RDC and the Framer. This one is in charge of packet encryption and

decryption depending on the link key. This is represented in Figure 3.20 and 3.21.

Application

Key Manager App

µIP Stack 6loWPAN MAC Framer RDC

Encryption

Interface

Figure 3.20: Contiki network stack with hooks (sending chain)

Application

Key Manager App

µIP Stack 6loWPAN Framer

Encryption

RDC Interface

Figure 3.21: Contiki network stack with hooks (receiving chain)

3.5 MSP430, CC430, Cortex M3 and CC1101

The design of the protocol has been focused on the particularities of the hardware specified

in Table 3.2. Nevertheless, it is easily portable to other platforms.

Tado’s network is composed of three different kind of nodes with different resources (see

Table 3.2). All the devices have compatibility with 32-bit storage, either native support as

the Cortex M3 or emulation support for the other platforms.

From the table, it can be seen that the most constrained node for both computational

power, memory and available energy is the CC430 platform, which is designed to run for two

years without replacement of the batteries. Therefore, an additional effort is required in order

to minimize the power consumption of such platform. This is achieved by using a reduced

version of Contiki, without RPL and just capability for link-local broadcasts.

GW CH Sensor

Processor LM3S9997 MSP430F5335 CC430F5137

Operation frequency 50 MHz 20 MHz 4 MHz

Address map 32 bits 16 bits 16 bits

Flash memory 128 KB1 1281 KB 32 KB

RAM 64 KB 16 KB 4 KB

Power DC 5 V HVAC supply 2 AAA batteries and a Solar Cell

Table 3.2: Hardware description

3.5.1 Cortex M3

The Cortex M3 is a well suited processor with 256 KB of Flash and 64 KB of RAM that

can run up to at 80MHz. However, the frequency is limited to 50MHz in order to decrease

1Albeit the real flash size is 256 KB, it is divided in two different partitions and therefore the final size of

a partition is just 128 KB.
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the power consumption as it is not necessary to operate at such a high frequency. Despite of

lowering the frequency this platform has a higher frequency of the rest of the nodes to ensure

the correct communication with the Internet.

Additionally, it has an internal ROM with the StellarisWare which contains AES SBOX

tables, Ethernet drivers, CRC-CCITT peripheral and the most common ADC interfaces and

peripherals.

In Tado’s platform, this processor is used as a Gateway (Figure 3.22), connected via

Ethernet wire to a home router which allows to bridge the IEEE802.15.4 network with the

Internet.

The gateway is connected to the electricity plug continuously allowing better performance

and keeping a stable input power supply. It uses a CC1101 RF chipset in order to communicate

with the other devices of the network.

Figure 3.22: Tado gateway (Cortex M3)
mote

Figure 3.23: Tado cluster (MSP430)
head mote

3.5.2 MSP430

The MSP430 family is an ultra low-power microcontroller family, allowing wake-ups from low

power modes to active modes in less than 3 µs and an operation frequency up to 20MHz. It

operates at its maximum frequency as the power supply is guaranteed by the house power

supply. On the other hand, the low-power consumption must be guaranteed for the goal of

the application.

This platform is not as fully featured as the Cortex M3 but offers a really low power

consumption and it is ideal for operating using the Heating, Ventilation and Air Conditioning

(HVAC) power supply without interfering with the control operation (Figure 3.23).

The platform is connected to a CC1101 RF chipset for RF communications and uses a

saving RDC algorithm with an on-time of about 6.25%.

3.5.3 CC430

The CC430 chipset is ultra low-power consumption microprocessor, while embedding a

CC1101-like RF chipset. It offers lower power consumptions than the MSP430, at the same

time that allows an operation frequency of 20MHz. This frequency is not required and

therefore lowered to 4MHz to ensure even lower power consumption, which is lineally related

to the operation frequency.
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Additionally, it has an AES encryption/decryption peripheral embedded in spite of its flash

memory size which is just 32 KB. The flash and RAM sizes make it extremely constrained for

many applications, but its very low power consumption turns it into a perfect microprocessor

for battery operated devices such as the Tado sensor (Figure 3.24), which reports temperature

periodically.

Figure 3.24: Tado sensor (CC430) mote

3.5.4 CC1101

The CC1101 is a sub-1GHz transceiver designed for very low-power applications, which

makes it suitable for IEEE802.15.4 operation on the European band (868MHz) supporting

different modulations and data rates up to 600kbps1. The datasheet claims 200nA of current

consumption in sleep mode, 11mA in receiving mode and 22mA in transmitting mode, which

makes it an ideal candidate for any device in a WSN.

As it can be observed in Section 6.4, the CC1101 chipset offers very low variance of the

current consumption for different supply voltages, making it extremely attractive for this

application.

1Note that the default Common Signaling Mode at 50kbps is used for the implementation





Chapter 4

Key Generation

In this chapter, an overview on all the necessary background and components for key

generation is given. The recommended procedure for key derivation is ECDH which is

described in Section 4.3.2. Other procedures regarding challenge solving and hashing

algorithms are also reviewed in this chapter.

4.1 Random Number Generation

Two approaches are generally accepted when speaking of random number generation: Pseudo

Random Number Generator (PRNG) and TRNG. The latter provides randomness through

physical phenomenons that are difficult to predict such as number of radioactive particles in

the ambiance or the noise received with the radio signal. On the other hand, PRNG use

mathematical algorithms to compute “random” values from a given seed, or initial value.

One of the objectives of a WSN is that devices on the field are as much energy efficient

as possible and the sensing option may have too high energy consumption for an extra use

rather than the normal purpose of the mote. The use of TRNG to generate a seed to feed

a PRNG (see Section 4.2) is recommended. If the quality of the PRNG is proved, then good

seed suffices for providing the system satisfactory random numbers.

Several algorithms have been considered, Relic-Toolkit random number generator, Mersenne

Twistter and glibc random implementation among them. However, given the memory

constraints in the CC430 (see Section 3.5) the default glibc PRNG was used for the

implementation. It is trusted for being an open source implementation and tested by many.

It has a really small footprint of about 38bytes for rand() and 10 bytes for srand() functions

on the CC430 binary. As already mentioned, the strength of this implementation bases on

the randomness of the seed, and therefore the PRNG must not be initialized twice with the

same seed. For the seed generation, the different mote capabilities have been used in order

to provide as much randomness as possible to the seed, which is described in the following

sections.

4.2 Entropy Collection

It is trusted in the strength of glibc PRNG given a good seed. The issue arising is in which

way this seed should be generated to ensure sufficient randomness. The advantage of a sensing

node in front of any other networking node is that physical information of the environment

27
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can be collected in order to generate a random number. For instance, the temperature

gradient between the boot time and some seconds later will depend in atmospheric and

environmental characteristics as well as manufacturing procedure, leading to differences among

similar devices. Another unpredictable information is the number of bytes sent or received

by a radio interface as it depends on the neighboring communications and interferences. The

time the device was running and the remaining battery life are other examples.

The information is salted using the serial number of the devices, hence two devices of the

same kind will give different seeds under the same conditions. The use of the serial number

rather than the LLA is due to the fact that the access to the serial number implies physical

access to the device as it is only printed in the boxing.

4.2.1 Entropy Collection in Tado motes

The sensors forming the Tado network are not identical, thus the same algorithm cannot be

used to collect entropy in all of them. In the following subsections the algorithm used in each

device is described. For that means, the auxiliary functions D(x, y) defined in Equation (4.1)

and H(x) are used. D converts two bytes into a word variable and H is a general purpose

hash function (see Section 4.5).

D : N× N −→ N (4.1)

D(x, y) = x · 256 + y = x || y (4.2)

H : N× N −→ N (4.3)

Gateway

The GW mote has no sensors. However, it has an Ethernet port and a RF chipset which can

provide statistics of the number of received or sent packets (RPE , RPRF ). Additionally, the

number of active processes in Contiki (Nproc) is also interesting to use as it depends on the

firmware and the device activity. The reason of the last reset (R) (watchdog, remote update,

strange device state or AC failure) is not always the same, thus it is compelling to use as well

as the device serial number (SN ) and the running time (Trun). Equation (4.4) defines the

value of the random seed for this platform.

H(D(RPE ,RPRF )⊕ Trun ⊕ (SN +Nproc +R)) (4.4)

Cluster Head

The cluster head in Tado’s network is connected to the voltage supply offered by the HVAC

system which differs depending on the model, brand and house AC network characteristics.

The seed is computed as in Equation (4.5) where ∆Tlow stands for the lower byte of

temperature reading delta (the centigrades) between the device boot temperature and the

temperature in the requested moment; and VHVAC is the reported input voltage from the

HVAC. The rest of variables are as for the Gateway case.

H(D(RPRF ,∆Tlow)⊕ Trun ⊕ (SN +Nproc +R)⊕ VHVAC ) (4.5)
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Temperature Sensor Node

The temperature sensor has a temperature sensing chip, an RF chipset and peripheral buttons.

The Equation for the temperature sensor is as in 4.6.

H(D(RPRF ,∆Tlow)⊕ Trun ⊕ (SN +R+Bcycles)) (4.6)

In this case, Bcycles stands for the number of processor cycles during which the pairing

button was pressed.

4.3 Elliptic Curve Cryptography

ECC is an approach to PKC based on elliptic curves over finite fields introduced in [27]. An

elliptic curve is defined by the Equation (4.7) and a point at infinity. An example of an elliptic

curve over R is reproduced in Figure 4.1. Some research outcomes claim that 163-bit ECC

provides a similar security to an RSA with a 1024-bit key[48].

y2 = x3 + ax+ b (4.7)
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Figure 4.1: Elliptic curve equation y2 = x3 − x+ 1

A curve is defined by several parameters (q, a, b, G, r ,h), q is the field, a and b are the

coefficients of the curve, G is the generator or base point, r is the order of the generator, and

h is the cofactor. The security of ECC bases on the ability to compute point multiplication,

and the inability to compute the multiplicand given the original product of points (see Section

4.3.1 and 4.3.2): this is exactly the ECDLP.
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4.3.1 Elliptic Curve Discrete Logarithm Problem

As already mentioned, the Elliptic Curves Cryptography bases its strength on the difficulty

to solve the ECDLP which derives from the traditional DLP stated in Definition 1. ECDLP

is stated in Definition 2.

Definition 1. Let G be a multiplicative group and g ∈ G, let 〈g〉 be a cyclic subgroup generated

by g. The Discrete Logarithm Problem for the group G can be stated as:

Given g ∈ G and a ∈ 〈g〉, find an integer x such as gx = a.

It is very difficult to find an integer x that fulfils this equation in a cyclic group since many

are the possibilities. This is the base for the DH Key Exchange.

Definition 2. Given an elliptic curve E over a finite field F. Let P and Q be two points on

this curve, find d ∈ Z which fulfills the relation Q = d · P .

For the particular case of elliptic curves, P is a commonly known point, d is a secret factor

or Private Key which is only known by the owner, and Q is a publicly known point or Public

Key. d and Q are referred as key pair in the rest of the document.

4.3.2 Elliptic Curve Diffie-Hellman

DH is a key exchange method which allows two entities to establish a common secret over

an insecure channel and it is named ECDH when operating over elliptic curves. Two entities

using the same P point (as in Definition 2), which depends on the curve and is usually the

curve generator (G), compute a common key K such as in (4.10).

dA ∈ Z dB ∈ Z (4.8)

QA = dA ·G QB = dB ·G (4.9)

K = dA ·QB = dAdBG = dB ·QA = dBdAG (4.10)

This means that two entities operating on a common curve can exchange the points QA
and QB in order to obtain a common point K which will be different for each pair of points

Qi. Hence, only the entities that know this points can obtain the same common point on the

curve.

4.3.3 Koblitz Curves

Koblitz curves, also known as anomalous binary curves, refers to a family of curves over

the field F2[28] with the advantage that the coefficients are optimized for efficient arithmetic

operations. Koblitz curves follow the Equation (4.11).

y2 + xy = x3 + ax2 + 1 (4.11)

Recent research proves that even the computation over Koblitz curves is optimized thanks

to the Frobenius endomorphism, which is also the cause of a security issue on these curves[17].

For the Curve of our concern theoretically 281 operations are required to break an elliptic

curve over the field F163
2 (Equation (4.12)). However, only 277 are actually required (Equation
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(4.13)). Despite of this fact, it is also mentioned in [17] that there is no evidence that elliptic

curves with small class are insecure for cryptography. Therefore, for memory and computation

constraints we will use a NIST Koblitz 163-bit curve (see Section 4.3.4 NIST K-163 curve)

with a class of 1. √
qπ

2 · h
≈ 281 (4.12)

√
qπ

4 · 163 · h
≈ 277 (4.13)

4.3.4 NIST K-163 curve

National Institute of Standards and Technology (NIST) issued a document in 1999[44] with

a collection of recommendations for the choice of curves and cryptographic key lengths for

governmental use. Due to some hardware limitations, the Koblitz curve K-163 defined over a

163 degree binary field (q = F2) is used. It is defined by the following parameters:

h = 2 (4.14)

p(t) = t163 + t7 + t6 + t3 + 1 (4.15)

a = 1 (4.16)

r = 5846006549323611672814741753598448348329118574063 (4.17)

Gx = 2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8 (4.18)

Gy = 289070fb05d38ff58321f2e800536d538ccdaa3d9 (4.19)

Where a is the coefficient; r the base point order; Gx,y are the coordinates x and y of the

generator and h is the cofactor.

4.3.5 Relic Toolkit

Relic Toolkit[4] is a mathematical library with emphasis on efficiency and flexibility. It

is chosen instead of libTomCrypt taking into account the analysis in [49] and the ease of

integration into a Contiki environment. Both are Open Source projects and have been

reviewed and used by many, hence they are considered trustworthy.

Relic offers a complete cryptographic library with already implemented point operations

for elliptic curves over binary fields, and optimizations for Koblitz curves, which are the ones

of our interest. It provides a high level of customization and different methods for curve point

generation and multiplication. Despite of its modularity, modifications were carried out to

embed the library in the most constrained platform (CC430) by limiting its features to just

one curve and some modifications in the random number generator and in the SHA1 library.1

Relic permits to choose between different operational algorithms (e.g. several point

multiplication approaches). Table 4.1 shows the memory and speed deltas for the chosen

methods. These methods are chosen as they offer a fair trade-off between processing and

memory overhead. With the basic configuration, the generation of the points took more

1According to it’s license (LGPL) all modifications have been published in this Theses Author github
account, on a fork of the relic repository in https://github.com/lebrush/relic-toolkit.

https://github.com/lebrush/relic-toolkit
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than five minutes of computation on the CC430. From that starting point, the different

configurations were tested and discussed.

Module ∆T ∆S Description

Point Multiplication Method 33 s + 2560 bytes The basic multiplication has
been replaced by the López-
Dahab multiplication[33].

Binary Field Multiplication
Method

- 11 s - 210 bytes Replaced the basic multipli-
cation for the López-Dahab
method.

Binary Field Inverse Method - 2 s + 250 bytes Selected the binary method
for inverse calculation.

Binary Field Modular Reduc-
tion Method

- 14 s - 294 bytes Faster modular reduction
method.

Binary Field Squaring - 12 ms - 198 bytes Setting a table based squaring
method reduces the compu-
tation time and the memory
footprint.

Table 4.1: Relic performance and size with several configurations (CC430)

After the modifications and optimizations, the library memory footprints on the different

platforms (see Section 3.5) are described in Table 4.2. The values in the table represent

the memory footprint of relic with the same configuration before the code optimizations and

after the code optimizations, the goal of the code modification led to huge memory footprint

reductions.

Microprocessor With Point Generation Without SHA1

Before optimization

Cortex MX 8224 6774 784
MSP430 12004 9840 2734
CC430 10110 8348 1904

After optimization

Cortex MX 4986 3412 720
MSP430 7916 5682 2554
CC430 6338 4446 1826

Table 4.2: Relic memory overhead (in bytes) for the different processors

4.4 Key Derivation Function

A Key Derivation Function (KDF) is a function which extracts one or more keys of a certain

length from a given master secret. The function of choice is the KDF2 defined in ISO-

18033[16]. This function is already implemented in Relic Toolkit. The procedure to obtain

a key consists in hashing the input secret together with a counter, and iterate it until the

desired key length has been achieved, increasing the counter in every loop and appending the

result to form the resulting key. The algorithm is as follows:

1. d = d key lengthhash lengthe
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2. For Counter =0 to d− 1

C = IntToString(Counter)

T = T || Hash(secret || C)

3. The Key is the first n bytes of T as defined by key length

In our case, the master secret is the common point on the elliptic curve as in Equation

(4.10), and the derived key is the link key.

4.5 Hashing Algorithms

A hash function is an algorithm that transforms a variable amount of data into a value of a

fixed length. They have huge importance in cryptography as they are unidirectional functions.

Thus, given the hash value of some data, the original data can not be retrieved back. It is

highly important for instance for key derivation (Section 4.4) as small changes in the input

can lead to completely different output hashes.

In example the SHA1 hash for “kth” is 6eeab79f9f 101d2c8909 ca87f7ab67 a8da21901c

while the same function over “ktH” gives as a result 46ab3a049f 2af3b7311b 49a610390c

f890a7c25f.

Three different algorithms have been considered as candidate hash functions for the

embedded application. SHA1, Quark [5] and Photon[19]. The comparison results are shown

in Table 4.3.

Quark is presented as a lightweight hash function, offered in four different configurations

with different strengths from 64 to 122-bit security. Photon is also a lightweight hashing

algorithm with focus on RFID security and inspired in the S-BOX structure of AES. Both

Quark and Photon are considered lightweight hash functions: the source code compared to

the code memory footprint of SHA1,is a proof of it. Despite of this, u-quark requires about

7KB of RAM memory for computing permutations, which makes it not a suitable candidate

for many embedded applications.

Algorithm Digest size Code size Comments

SHA1 20 1886 Standardized hash function

u-Quark 17 1271 Requires 7.2KB of RAM to

perform the permutations.

Therefore not suitable as the

smallest sensor has about

4KB of total available RAM

Photon-128 16 1562 Smaller hash and smaller

memory

Photon-160 20 1601 Good trade-off memory secu-

rity

Table 4.3: Comparison of hashing algorithms. Sizes are shown in bytes

The provided level of security is similar between all of the analysed algorithms. And if a

closer look into our purpose of the hash functions is taken, we can rapidly see that then are

all suitable. The main use of the hash function is to be used in the KDF (see Section 4.4)
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to generate an AES-128 key (16 bytes), to randomise the seed for the PRNG (2 bytes) (see

Section 4.2) and to create message signatures and challenges (4 bytes). Therefore, a 16 bytes

hash (or digest) is enough to fulfil this requirements, as any other size will be truncated. On

the other hand, it is important that the algorithm strengths and weaknesses are known, as

the most important security functions rely on it, and that it can be easily ported to different

platforms. Hence, and in spite of the memory overhead, SHA1 is the chosen hash function.

4.6 Keys and Scopes

The proposed solution requires four different keys with four different scopes. Each of them

serves one purpose[64]. The different keys are described below.

4.6.1 Secret Key

This 128-bit key is generated by the provisioning station and pre-loaded to the node during

manufacturing together with the serial number and other unique information. Its main

purpose is to provide authentication as a proof of identity and it must be kept secret. It allows

encrypted communication with the server if necessary: i.e. provides end-to-end security. This

key is shared between the node and the Trusted Authentication Server (TAS) and never

renewed. Hence, if this key is corrupted or disclosed the node must have been tampered or

harmed and the network must not authorize it anymore as a valid member. An Intrusion

Detection System (IDS) should be present in the network to expose this situations. See

Section 6.1 for detailed information about resilience.

In Tado, the communication with the server uses HTTP requests with a binary AES-

CCM-128 encrypted payload. This key is used to encrypt these requests since both parties

know the key.

4.6.2 Key Pair

The key pair, as mentioned in Section 4.3.1, consists of a integer number d and a point on

an elliptic curve Q = d ·G. It is generated by the provisioning station and preloaded during

manufacturing together with the secret key and the other unique information.

The reason it is not generated in the motes is because of the high power consumption due

to long time microprocessor usage as described in Section 6.3 and the memory overhead due

to it (about 2KB according to Table 4.2).

4.6.3 Link Key

The link key is the key to secure a communication link between two nodes. It is generated

by the nodes using ECDH for key exchange. The two random challenges are appended to the

calculated common secret and hashed using the KDF to obtain a link key as in (4.20). In

case of link key renewal the key is different thanks to the randomness of the challenges.

Since every link holds a different key, a compromised node may only disclose the keys for

its neighbouring links, not compromising the entire network.

Klink = KDF2(dAdBG || Challenge 1 || Challenge 2) (4.20)
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4.6.4 Group Key

The group key is used to encrypt multicast messages and grants a node access to the network

and to automated pairing (see Section 5.7) with other nodes. A node is not granted the group

key until it has been successfully authenticated.

The group key derivation is done by the CH. [46] debated the problematic of the group

key generation. However, in the proposed scheme, as already mentioned, it is trusted in the

strength of the PRNG and in the strength of the generated link keys. These can be trusted as

they are generated using ECDH and two random challenges generated by two different nodes

using a trusted PRNG.

When the group key needs to be renewed, the CH generates a random number and XORs

its hash with all the link keys available in the CH. This value is passed to the KDF to

obtain a new key from it (4.21). If the key is not different from the old one, a new number is

generated and the procedure is repeated. The random number is XORed to the link keys to

add an additional level of randomness since the link keys are influenced by random numbers

generated by other entities. This influences the randomness of the new random group key by

N external nodes and is therefore not easily predictable.

KG = KDF2(H(random)⊕ (
N⊕
i

Ki-link)) (4.21)

Group Keys are only generated either when a node joins the network, leaves or has been

compromised.

4.7 Challenges

A cryptography challenge is usually a number used only once (nonce), which allows an entity

to authenticate another entity by means of its capacity to solve the mentioned challenge. The

chosen challenges size is 32 bits. Although it is relatively small compared to the key size and

target security, it offers a good trade-off between overhead and security achievements. Please

refer to Chapter 6 for details about challenge size decisions and analysis.

For a node to authenticate another node and provide strong authentication, simple

encryption and hashing chaining schema is used. Imagine Node A (the newcomer) and Node

B want to authenticate each other. Node A will send a random 32-bit number to B and the

other way round.

Node A receives this challenge, hashes it to obtain a 16 bytes hash, then encrypts the

result using the recently generated link key, truncates it to 32-bit integer and hash it once

more to obtain a 16 bytes string. Finally, it encrypt the hash one last time using its secret

key and finally truncate the hash of it to 32-bit integer one last time.

When node B, which is already part of the network, receives a challenge, it hashes the

challenge and encrypts it with the link key. Finally, it hashes the result once more and

truncates it to a 32-bits value, which is sent to the TAS. The TAS hashes it once more,

encrypts it with the node secret key and returns a 32-bit truncated hash of it to Node B.

This procedure is repeated for both challenges, so that both nodes (A and B) have the

solution of the two challenges and can authenticate each other. In (4.25) the mathematical

challenge solution is summarized. H(x) is a hashing function which produces digests between

128 and 160 bits, T (x) is a function that truncates the data to 32-bit chunks, and Ek(x) is
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the encryption function for the cleartext x using the key k.

When node A provides the result to node B, this one knows A is a genuine node willing to

join the network. When node B provides the final solution to node A, the latter authenticates

the network.

H : N −→ N (4.22)

T : N −→ N (4.23)

Ek : N −→ N (4.24)

Solution = T (H(Esecret(H(T (H(Elink(H(challenge)))))))) (4.25)

It can be seen that the challenge solving is done by two identical operations: T (H(E(H(x))))

which only differ in the key to use. These are called the challenge partial solutions or partials.

The fact of hashing the encryption results before truncating them is done in order to avoid

any possible correlation between the cleartext challenge sent on the insecure channel and the

value of the transmitted data between the CH and the TAS.

This challenge solving method using partial solution on the CH and the TAS allows to

avoid MiM attacks as described in Section 6.1.

4.8 Signatures

A signature has the purpose to be the proof of the authenticity and integrity of a message.

In the proposed protocol, the signatures are computed over the entire message setting the

signature field to 0 and then replacing it by the value of the signature. First, the a hash of the

message is calculated and then encrypted using the key shared with the other communication

end. Finally, it is hashed and truncated again in a similar fashion as the challenge solving

method. The proposed signatures method takes 6.8ms for 100 bytes in an MSP430, which is

130 times less than an ECC signature as mentioned in [47].

Signatures are used in pairing and in authentication. In the pairing process the signatures

are computed to verify that the computed key by both entities is valid, therefore the link

key is used. In authentication, the signature is used as an integrity verification of a certain

authentication request message to avoid possible reply messages and computed using the

secret key.

Signature = T (H(EK(H(message)))) (4.26)
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Key Distribution

In this chapter the way how nodes join and leaves the network and is revoked is described.

For this purpose a lightweight protocol over UDP is developed. The protocol frames follow

the structure as in Figure 5.1. The header fields are as described in Table 5.1.

Within the following sections, the different procedures and the message exchange are

described.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ver

A
u
th Type Seq

Payload
. . .

Figure 5.1: General protocol message (see Table 5.1)

Field Length (bits) Value

Version 2 Version of the protocol
Authentication 1 This flag is set to one whenever a node has not

been authenticated by the network yet or vice
versa

Type 5 The type of message being transmitted
Sequence Number 8 Incremental sequence number. Even though

this protocol is meant to run over UDP which
already includes a sequence number, it is
interesting sometimes to ensure just application
level security

Payload - Contents of the message

Table 5.1: General protocol message description (see Figure 5.1)

An overview of the protocol flow is represented in Figure 5.2 while a detailed version can

be found in Figure 5.7.
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Figure 5.2: Key exchange flow

5.1 Provisioning

Some[55, 57] considered the provisioning phase as part of the key distribution phase, as

it involves key generation process. For the proposed schema, a trusted KDS is required.

The provisioning computer responsible for loading differentiation data into the nodes (Serial

number, IP address, stock configuration,. . . ) is a suitable candidate. The mission of the

KDS is to generate and pre-load the private keying information into the nodes. This KDS

generates a key pair (di and Qi) and the secret key KSi . The former is pre-loaded into the

nodes and immediately erased from the KDS memory while the latter is stored in the nodes

and additionally shared with the TAS. The use of the KDS allows the motes not to compute

the key pair, which speeds up the communication bootstrap for slow nodes.

Trust on the KDS is mandatory. The trust also applies to the fact that KDS distributes

the keying material to to the nodes and to the TAS in a secure way.

5.2 Pairing

Pairing (or association) is the process of creating a secure channel between two previously

unassociated devices over an insecure communication channel. In WSN the channel is the

wireless medium and therefore vulnerable to Man-in-the-Middle attacks, eavesdropping and

routing attacks among others.

This section describes a pairing protocol which allows a new node to associate with all

the neighbours almost automatically requiring the minimum user interaction and very-low

overhead making it suitable for any WSN. It uses ECDH for key exchange, SKC for securing

the communication and a TAS to ensure strong authentication and authorization. The key

management is meant to be built over UDP for compatibility, scalability and overhead. As it

was described in Section 3.1 and 3.2, the characteristics of UDP multicast messages offer the

lowest possible overhead over IPv6.
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Figure 5.3: Example of a unpaired node

5.2.1 First Pairing: Joining the Network

This situation is given when a new node wants to join the network for first time. For the

simplicity of the description, let a new node be Node A, which is willing to join a network

such as illustrated in Figure 5.3.

All the nodes must pair with the CH as it is considered a node with more resources and

it is the only entity with the right to renew the group key. To start a pairing process, the

operator in charge of deployment must press the pairing button of Node A and the CH, which

of course is already member of the network. This provides a Proof of Proximity [34], and

makes the CH accept temporarily unencrypted pairing requests from the multicast channel.

The security flag on the IEEE802.15.4 control field set to zero (see Figure 3.2) indicates no

secured frame incoming. Even if in some cases the automatic discovery is desired, it is true

that an Out of Band (OOB) auxiliary channel offers a good additional security mechanism

in spite of user interaction[29]. Other protocols also use an OOB such as typing a PIN in

Bluetooth devices.
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Figure 5.4: Pairing request message

After pressing the pairing button for a few seconds on both devices, the newcomer sends

a Pairing Request message (Figure 5.4) to the multicast channel. This message contains the

node’s public key (QA, computed over the elliptic curve K-163) and a challenge (Challenge

1 ).

5.2.2 Computing the Session Key

When the CH receives this message, it has to compute a session key, which consists of the

common point on the curve using ECDH as in Equation (4.10) and Challenge 1 and Challenge

2 appended. With this information the CH generates a new session key via KDF2 as in

Equation (4.20).

The use of the challenges to generate the key makes sure that if two node must renew a
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Field Length (bits) Value

Authentication 1 1
Type 5 PAIRING_REQUEST

Sequence Number 8 seq = rand()
Public Key 536 The public key of the node in format as an

elliptic curve point (x,y,z). The curve is 163 bits,
therefore each coordinate is 11 words (22 bytes)
and one extra byte as a normalization flag (QA)

Challenge 1 32 Challenge to provide network authentication
and to add randomness to the link key

Table 5.2: Pairing request message description

link key for any reason, a new key will be used every time despite not renovating their key

pair.

Finally, the CH replies with a Pairing Response message (Figure 5.5). This message

contains its own public key (QCH), a signature of the message using the just computed

session key, Challenge 2 and a group key disclosure time in seconds. In Table 5.3 the response

message fields are detailed.

The sequence number is increased in every step in order to provide integrity and data

freshness to avoid reply attacks, which can be detected thanks to the signature.

The signature is computed as described in Section 4.8, by hashing the message, encrypting

it with the newly generated session key and encrypting it using AES-128. The signature is a

4 bytes truncated value.
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Figure 5.5: Pairing response message

5.2.3 Pairing verification

When receiving this response message, Node A computes the session key in the same way

CH did and verifies the signature of the message detecting possible contradictions. Finally,

generates a Pairing Proof message. This message is a signed empty with an increased sequence

number. It is detailed in Figure 5.6 and Table 5.4.
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Field Length (bits) Value

Authentication 1 1
Type 5 PAIRING_RESPONSE

Sequence Number 8 seqrequest + 1
Public Key 536 QCH
Signature 32 Signature of the packet using the just computed

key. It is used for verification and weak
authentication

Challenge 2 32 Random challenge to provide strong authentica-
tion and to add randomness to the link key

Group Key Disclosure Time 8 Seconds before group key disclosure

Table 5.3: Pairing request message description
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Figure 5.6: Pairing proof message

At this point both nodes have a session key which will not expire, therefore it has to

be kept secret. The reason for the session key not expiring is fully detailed in Section 5.5.

However, this protocol contemplates optional on-demand key renewal, offering a new layer of

security upon request of the nodes.

The newcomer is not yet fully authenticated, and it will receive the group key making

it full member of the network after the time mentioned in the Group Key Disclosure Time.

Meanwhile, CH will trigger an authentication request process with the TAS (Section 5.3). The

node must contact the CH back after the time indicated in the field Group Key Disclosure

Time of the Pairing Response message. In this message Node A provides the solution to

Challenge 2 to the CH which will validate it and will provide back the solution to Challenge

1 and the group key information requested.

This procedure is detailed in the following sections Authentication and Authorization (5.3)

and Group Key Distribution (5.4). The complete protocol is represented in Figure 5.7, where

the messages and operations are specified.

5.3 Authentication and Authorization

After the first pairing, a secure channel is set up between the two nodes. This means that

they know the session key and they are able to communicate in a encrypted fashion using

AES-CCM (see Section 3.3). Weak authentication is guaranteed thanks to ECDH, albeit the

newcomer is still not authorized neither authenticated.

It is one of the purposes of the described protocol to ensure strong authentication between

the node and the network at the same time as authorization. This guarantees that the node

is the one that it claims to be and that has the right to use the network or the cluster and

the network is a genuine one. This is purpose of the TAS.
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Field Length (bits) Value

Authentication 1 1
Type 5 PAIRING_PROOF

Sequence Number 8 seqresponse + 1
Signature 32 Signature of the packet using the just computed

key. It is used for verification

Table 5.4: Pairing proof message description
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Figure 5.7: Single node join. Complete protocol

CH contacts the TAS requesting authentication and authorization of the newcomer by

sending a Authentication Request message. The message contains the CH and the newcomer’s

LLAs as well as the partial solutions of the two challenges as it is reproduced in Equation

(5.1). LLAA and the partial solutions of the challenges are encrypted using the CH secret

key to ensure end-to-end privacy. Additionally, this message is signed using the private key

of CH which it only shares with the TAS to prove authenticity and integrity of the request,

and therefore the authorization to request that information.

Partial = T (H(Elink(H(challenge)))) (5.1)

The TAS validates the message signature using LLACH secret key and decrypts LLAA and

the partial solutions. If the Node A is authorized the TAS computes the final solution to the

challenges (1 and 2) using Node A secret key and responds to the CH with an Authentication

Response message, the message is signed to authenticate the origin and, as in the request

message, the LLAA and the solutions are encrypted using CH secret key for end-to-end

security. In case of not authorization, the solution of the challenges is not present in the

message and the CH will automatically unpair with Node A.

It has to be noted that the message sensitive data is encrypted end-to-end as it is important

that no middle node collects important data about the challenge resolution of one of the nodes.
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Figure 5.8: Authentication request message

Field Length (bits) Value

LLA CH 64 Link-local Address of CH
LLA Node A 64 Link-local Address of Node A
Partial Solution Challenge 2 32 Challenge proposed to Node A by CH
Partial Solution Challenge 1 32 Challenge proposed to CH by Node A
Signature 32 Signature of the message using the secret key of

CH

Table 5.5: Authentication request message description

Although trust is assumed among the nodes of the network but it may be the situation of a

not detected intruder within the route.

After the Group Key Disclosure Time Node A will request a new key via a Group Key

Request message to CH sending the solution to Challenge 2, if the solution is correct (matches

the provided by the TAS) the CH will generate a new group key, and send it together with

the solution to Challenge 1 to Node A. Then it will distribute the new key among the rest of

the nodes.

5.3.1 Authentication via Web Server

Due to the nature of Tado’s network and products and for scalability reasons, the TAS consist

in a cloud web server, therefore all the requests must be made over HTTP protocol. Thus,

every connection turns into a request-response pair. Additionally, it is a requirement that the

user must approve manually a device joining to the home network.
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Figure 5.9: Authentication response message

Field Length (bits) Value

LLA Node A 64 Link-local Address of Node A
Solution Challenge 2 32 Challenge proposed to Node A by CH
Solution Challenge 1 32 Challenge proposed to CH by Node A
Signature 32 Signature of the message using CH secret key

Table 5.6: Authentication response message description

An adaption layer to the protocol has been developed. Immediately after a Pair Proof

message has been received, the CH communicates the joining to the TAS using an HTTP

request containing as binary payload the Join Notification message as represented in Figure

5.10. The first field, the LLACH , and the rest of the message is encrypted using AES-CCM-

128 with the first 4 bytes of the message as a nonce with the CH secret key as the encryption

key. This way, integrity, confidentiality and authenticity are ensured at the same time as

protecting from reply attacks.

The reply of the server is typically a 200 OK if the requested device is under consideration,

a 404 (not found) if the device is not known and a 401 (unauthorized) if the device should not

be considered anymore, following the standard HTTP codes[31]. When the device is under

consideration, the user receives a notification on the dashboard and his/her smartphone to

approve (authorize) the device.

After a fixed amount of time which is set to 3 minutes1, the CH sends another binary-

embedded HTTP request to the server, this time a full Authentication Request encrypted in

the same way as in the previous message using AES-CCM-128. The server will reply with an

HTTP response containing the binary encrypted Authentication Response message in case it

is authorized or with a 401 status code otherwise. In case that the user did not reply to the

authorization request in this interval of time, the node will be considered unauthorized.

This adaption allows the integration of a web server as a TAS and provides the user

1This time is experimentally found during the work time on the thesis, it may not be the same as it will be
influenced by users feedback and further usability cases for Tado.



5.3. AUTHENTICATION AND AUTHORIZATION 45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ver

A
u
th Type Seq

LLA CH

LLA Node A

Figure 5.10: Joining notification message

the control of the devices accessing their home network in a completely transparent way for

the rest of the network and at the same time ensuring the same level of security with just an

extra message. Furthermore, it allows high scalability in spite of some overhead but only most

powerful nodes such as CH or GW can perform such TCP communications and therefore new

nodes must be firstly paired to those devices.

The complete procedure can be seen in Figure 5.11. In this figure, a node A joins the

network using the CH, the TAS is a webserver and user/customer interaction is required for

authorization as described above.
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interaction
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5.4 Group Key Distribution

The group key distribution may happen in three situations: when a node joins the network,

leaves or is revokated.

5.4.1 Node Join

After the Group Key Disclosure Time, Node A will send a Group Request message to CH with

the authentication flag set and the solution to Challenge 2. If the solution of the challenge

is correct, CH will compute a new group key (see Section 4.6.4) and send it to Node A

together with the solution to Challenge 1 which was proposed by the newcomer, and the Key

Establishment Time. This is the number of seconds the node should wait until establishing

the new group key. The value of it is interesting as it depends on the size of the network and

if the nodes have current operations pending, they can delay the key establishment until the

tasks are finished. Finally, the CH distributes the key among its neighbours using the same

Group Key Response message.

If the solution to the Challenge 1 is correct, Node A will set the new key after the time

indicated in the establishment field. Otherwise the entry on the neighbour table for the CH

is voided.

The Group Request message and Group Response message are represented in Figure 5.12

and 5.13 and in Table 5.7 and 5.8.
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Figure 5.12: Group request message

Field Length (bits) Value

Authentication 1 This flag is set to one whenever a node has not
been authenticated by the network yet (or the
other way round)

Type 5 GROUP_REQUEST

Sequence Number 8 seqpair proof + 1 for authentication or seq =
rand() for regular request

Solution to Challenge 2 32 The solution to the previously proposed chal-
lenge by the network

Table 5.7: Group request message description

5.4.2 Existent Node

When an existent node receives a Group Key Response message it automatically sends a

Group Key Advertisement to the multicast channel. When a neighbouring node receives this

message and has not received the new group key, it will send a Group Key Request message to
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Figure 5.13: Group response message

Field Length (bits) Value

Authentication 1 This flag is set to one whenever a node has not
been authenticated by the network yet (or the
other way round)

Type 5 GROUP_RESPONSE

Sequence Number 8 seqrequest + 1
AES Group Key 128 Group Key
Establishment 8 Number of seconds to wait before key set up.
Solution to Challenge 1 32 The solution to the previously proposed chal-

lenge by the node

Table 5.8: Group response message description

the advertiser. This procedure is repeated for all the nodes within the network. This is done

because the broadcast messages are less expensive than the directed messages and because a

node may be neighbour of two nodes knowing the key, which makes it cheaper in terms of

energy that the interested node requests the key to one of the knowing nodes.

The Group Key Advertisement message guarantees that the CH does not have to send the

message to all the nodes individually, distributing the load of the network and using link level

key distribution rather than entire routes, hence reducing the communication overhead of the

nodes near the CH.

The challenges in the messages are not applying any longer and therefore they are not

sent if the authentication flag is not set. Thus, this is reducing the size of the messages.

Furthermore, the sequence number of the request message must be the incremental to the

pair proof for the authentication case and a random number for the advertisement case. It

should not be the incremental in the latter case to avoid encrypting the same message with

different encryption keys, which is a known technique of cryptoanalysis. This would not be

dangerous as the encryption takes into account the sequence number of the IEEE802.15.4

frame, however it is considered a good practice to use semantic encryption.
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5.4.3 Node Revocation

When a node must be revoked the CH revokes the node first and generates a new group key.

Then it distributes a Revoke message among its neighbours individually. When a Revoke

message is received and the node has a neighbour responding LLA given, this neighbour is

automatically revoked. The message is forwarded individually to all the neighbours but the

affected one. This message follows the structure as in Figure 5.14 and contains the new group

key to be set with immediate effect as described in Table 5.9.
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Figure 5.14: Revoke message structure

Field Length (bits) Value

Authentication 1 0
Type 5 REVOKE

Sequence Number 8 rand()
AES Group Key 128 New group key
LLA of node 64 LLA of the node to revoke

Table 5.9: Revoke message description

5.5 Key Renewal

There are four types of keys in the proposed solution for the Key Generation and Distribution

Problem. The keys scopes are detailed in Section 4.6. The secret key and the key pair are

never renewed.

Recent research shows that AES-128 as in FIPS 197 (10 rounds) is vulnerable to brute

force attacks with a complexity of 2126.1 instead of the expected 2128[10]. Considering that the

smallest frame of the protocol is 26 bytes (Table 6.5), and that the IEEE802.15.4 standard

(see Section 3.1) forces a data throughput of 50kbps at 868MHz, a complete brute force attack

under this conditions requires 293.2 ≈ 1.11 · 1028 years to exhaust all possibilities considering

no processing time and no collisions in the medium. This makes brute force not a good option

to recover an AES 128-bit key and enforces the minimum or even no key renewal.
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5.5.1 Link Key

A link key renewal can be triggered by one of the nodes when it considers it necessary. Given

the throughput of the communication, the strength of the cipher and the limited resources

of the nodes, it is not advised to renew the link key. However, the structure of the protocol

allows key renewal in an easy way and without mediation of the TAS.

When a node considers that a link key must be renewed –usually because of the statistics

of messages sent through a link– this sends a Pairing Request message to the other end,

in an encrypted way as the nodes are already paired, with the authentication flag set to

0. The process will continue as the Pairing process (Section 5.2), without proceeding to

authentication.

If a flaw in AES should be found (e.g. lowering the time required to break a key), the

protocol allows optional key renewal. Additionally, the version field allows a new version of

the protocol to be released. However, the use of the version flag must offer retro-compatibility

to make it attractive for commercial solutions.

5.5.2 Group key

The Group key can only be renewed by the CH when a node joins the network, leaves or has

been detected as compromised.

The CH sends the group key to its neighbours individually. When a node receives a

new group key, it sends a Group Key Advertisement message to the multicast channel; if

neighbouring nodes need to renew a group key they will send a Group Key Request message

to that node, which will reply with a Group Key Response containing the new group key.

Compromised Node

If the group key has to be renewed because of a node revocation, the CH will use a Node

Revocation message (Section 5.6) sent individually to all its neighbours except the affected

node. It has immediate effect, unlikely the regular procedure when the key establishment can

be delayed.

5.6 Revocation

The described solution also contemplates the case of a node access revocation. The special

packet will void all the possible communication of the suspicious node with its neighbours

and thus with the network. The TAS sends this message to the area CH, which distributes it

among its neighbours as described in Section 5.4.3. The revoked node will be left out of the

network.

No black list of nodes is kept in the memory of the nodes. Firstly, because of memory

overhead it may produce and secondly, because in case of a protocol or TAS error a node

may become unusable. If a network may consider by mistake a node to be malicious, a

new message structure to unblacklist the node must be implemented, which may introduce

new security flaws. The user experience and the possibility to re-pair a node is specially

important commercial applications, hence the solution must always allow manual pairings.

Since to trigger a manual pairing the pairing button of both parties must be pressed during

N seconds, it makes continuous pairing attempts not dangerous in terms of a possible Denial

of Service (DoS) attack as every retry is too time expensive.
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5.6.1 Node Re-pair

Another function of the revocation messages is to allow a defect node to re-pair. In the case

of a node which looses the keys to its neighbours, it is isolated from the network. Even

after a new manual pairing with the CH, the automatic pairing process (Section 5.7) will

not be triggered as the neighbours already have knowledge of the affected node, hence they

consider a certain link key. For that reason, when a node re-pairs to CH, the group key is

distributed among the rest of the nodes using a Revoke message instead of a Group Response

message. Nodes delete the information about the affected node and, since no black-lists are

kept, the automated pairing can be triggered after the manual pairing. This behaviour is a

good approach for consumer products in order to overcome defect firmware where the keying

information is deleted by mistake or new firmware version with imposes new key storage

schemes.

5.7 Automated pairing

When a node is member of a network, this means that it has the group key and it can

process multicast messages such as Neighbour Solicitation (NS), RA, . . . . It is able to pair

automatically with other unknown devices. This is done in the same fashion as the described

pairing procedure. First, the node sends a message to the multicast with an Pair Request

message, however the authentication flag is not set.

A node receiving a pairing request (Node B) from an unknown node (Node A) sends an

Authenticity Request message to the multicast. If another node (Node C) is successfully paired

to the requested device it means that Node A is truly authenticated and Node C will reply

to Node B with an Authenticity Confirm message. When at least two responses have been

received, Node B responds to the unknown node’s Pairing Request.
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Figure 5.15: Authenticity messages

Field Length (bits) Value

Type 5 AUTHENTICITY_REQUEST or AUTHENTICITY_CONFIRM
Sequence Number 8 seq = rand()
LLA 64 Requested node LLA

Table 5.10: Authenticity messages description

In case no node replied to the Authenticity Confirm message, Node B sends this message

to the CH to confirm authenticity.
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The two responses are required because in case of one node is compromised, both the group

key and the link key can be read out, and therefore the attacker may be able to reply to the

authenticity message. In that case, it is considered that two nodes have to be compromised

without detection before confirming the authenticity of a third node. This is a more unlikely

situation. Both nodes must be neighbours of Node B and both attacks must have not been

detected.

The Authenticity Request and Authenticity Confirm messages are reproduced in Figure

5.15 and Table 5.10

As described before, the messages responses must have the incremented sequence number

as the requested one.





Chapter 6

Evaluation of the Proposed Scheme

6.1 Security Achievements

In this section the security achievements by the proposed solution are analysed. Firstly, the

different attackers are defined and then the individual contexts are discussed depicting these

attackers and the harm threat in the situation.

6.1.1 Types of Attackers

An attacker is considered an insider as she has already compromised some authorized nodes

in the network (run malicious code, stolen keys, . . . )[48] and an outsider when she has not

special access to it. Attackers can be distinguished as well according to their behaviour and

resources.

Attacker behaviour

An attacker is considered an oblivious attacker when she may select the next node to attack

randomly, and the smart attacker [13, 56] when she will select the next node which is most

likely to provide significant information. The smart attacker is very dangerous when the

schema is key pool pre-loading, as it can lead to a key exhaustion.

Attacker Resources

In function of the resources available by the attacker we can distinguish two types of

attackers[37, 48]. The Mote-Class attacker has access to nodes with similar capabilities,

in opposite to the Laptop-Class attacker who owns more powerful devices such as a laptop

with higher processing capacity, battery capacity and transmitting power. The last can easily

cause energy exhaustion (DoS) of the nodes, being able to isolate sectors of the network.

6.1.2 Adversaries

In this sections, several attacks and vulnerability contexts such as fraudulent device, fraudulent

network, replay attacks and, of course tampering, eavesdropping and MiM are analysed.

53
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Eavesdropper

An eavesdropper can listen to the pairing communication, however, thanks to ECDH it will

not be able to deduce the shared key and therefore the proposed solution is not vulnerable

at any moment to eavesdroppers. When the devices are paired, all the communication is

encrypted, hence not exposed to eavesdropping.

Fraudulent Device

A device is considered fraudulent when it attempts to fake the identity of a device, but this

will not be allowed by the network. The challenges and their resolution proposed in this thesis

protects the network from fraudulent devices and Man-in-the-Middle attacks as they provide

strong authentication.

Tado TAS has logic to detect possible attacks of a fraudulent node, e.g. same node is

trying to connect to different networks or does reiterated challenge solution requests. Thus,

thanks to the double authorization layer in Tado it is possible to block joining requests from

a particular device automatically or by the customer.

In order to choose the optimal size for the challenges, the Equation (6.1) was used. This

equation describes the maximum time a brute force attack needs to be successful. Tbutton is

the time a pairing button has to be pressed in order to start the pairing process; lp,x is the

length of a pairing message where x is the request, response or proof messages. Rx is the

average number of retransmissions due to collisions and due to the slot of the RDC; Tg,disc is

the time after which the network will provide the group key, and with it the authentication

and authorization confirmations. Tcomp is the key computation time. Finally, b is the size of

the challenge in bits.

tbrute force = (2b − 1)·(
Tbutton +

lp,req + lp,resp + lp,prov + lg,req
v

· (Rcollision +Rslot) + Tg,disc + 2Tcomp

)
(6.1)

tbrute force ≈ (Tbutton + Tg,disc + Tcomp) · (2b − 1) (6.2)

In the worst case, laptop-class attacker, the 2Tcomp turns into Tcomp as the computation

time is almost null. This equation is plotted in Figure 6.1 (red) where the amount of time

necessary to perform brute force attacks on challenges of 8, 16, 24 and 32 bits was marked.

The ideal case is considered in (6.2), no retransmissions ((Rcollision + Rslot) = 1), no key

computation time (Tcomp = 0) for the fraudulent device and a MSP430 computation time for

the network (Tcomp = 1.986s, Table 6.3). The Tg,disc is typically 3 minutes and the button

pressing Tbutton is typically 5 seconds, which leads to tbrute force ≈ 25.000 years for a 32-bit

challenge. Hence, brute force attack is not likely to be successful.

In the situation of an attacker triggering the automated pairing procedure, the node

contacts the CH since the neighbouring nodes do not reply to the authenticity request message.

The CH is able to detect the attack and therefore revoke the fraudulent node in case necessary.

Two neighbouring nodes must be tampered at the same time when the automated pairing

process is triggered, leading to a more unlikely situation.
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Figure 6.1: Challenge break brute force attack duration versus challenge length. The red curve
represents a fraudulent device connecting to a valid network, while the blue curve represents a
genuine device connecting to a dishonest network

Fraudulent TAS or Network

A fraudulent network or even the TAS can attempt to pair a device; in that case, the challenge

proposed by the device will fail to be solved. Even considering no retransmissions, and no

key computation by the network size, the node still has to compute a key, signatures, etc.

taking 4.916s for the CC430. Equation (6.3) indicates the most influential terms, which are

represented in Figure 6.1.

tbrute force ≈ (Tbutton + Tcomp) · (2b − 1) (6.3)

Message Replayer

Message replaying is a really harmful attack on a wireless medium. However, the capabilities

of the proposed solution make it not vulnerable to this kind of attacks.

During the pairing bootstrap there are three sequence numbers transmitted in clear text,

IEEE802.15.4 has a 1 byte of sequence number, 6loWPAN UDP has 1 more byte of sequence

number and the proposed protocol also has 1 more byte of sequence number. Since the key

exchange is performed in the application layer this application sequence number is required in

order to be able to sign the messages and ensure integrity and authentication. The goal of this

sequence number is to avoid message reply attacks. It is incremented on each message, hence

the ends know the expected sequence number during pairing, not accepting other messages.

Thanks to the signature it can be ensured that it is not a replayed message even if lower layers

are trespassed.
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Physical attack (tampering)

The solution is in some measure vulnerable to tampering attacks. These are difficult to solve

while ensuring strong authentication capabilities. Once a device is tampered, it is considered

that all its data is disclosed.

In the case of a tampered node and the group key read out before being able to change it

or detect the intrusion, an attacker may try to pair the devices with neighbouring nodes. This

is not possible in the proposed solution as for a new automated pairing, the nodes will request

authentication information of the newcomer from their authorized neighbours. In case of an

unknown node, the CH is queried. A node must tamper two nodes which are neighbours to

a third one in order to be able to access the network with a false newcomer. Albeit being

an unlikely situation, an smart attacker could trigger that situation. Only an IDS can detect

this breach.

When a node has been tampered and its secret key is extracted, a fraudulent device

may attempt to pair using this information. Some [36, 53, 54] have considered that devices

cannot be attacked during bootstrap and after the initial pairing they can delete the secret

key. Hence, tampered nodes will not reveal secret information which may grant access to

the network. Since keys are never renewed, this is a good approach except in the case of a

memory-loss a node, in which the node may become unusable. This situation is not convenient

for commercial products, and therefore it is encouraged to relay on a IDS. The TAS however

can detect this attacks easily and react to them. A node trying to pair within to different

clusters is an unlikely situation as well as several pairings of a node in the same cluster within

a short period of time.

On the other hand, when a device is captured, not only the neighbouring links are

compromised but the group key is disclosed as well. So that, an attacker can decrypt the

broadcast messages. Performing periodical authentication may not provide of trustworthy

results as the secret key has been disclosed. Again, only a IDS may help, alerting the TAS

that a device has been compromised, and therefore voiding all its pairings and blocking it not

to authenticate again.

The worse situation is a tampered CH. It is impossible to detect if it has no interaction

with the TAS. A non-tamperable CH has been considered by many[26, 34, 43, 50], but this

is not an ideal situation. In Tado, a periodic connection from the CH to the TAS is used to

report health of the network and other information. In case of disruptions on this channel, a

possible attack may have occurred. Redundant CHs are recommended by others[12] to solve

the mentioned problem for middle-sized clusters.

Man-in-the-Middle

MiM attacks are dangerous during the communication bootstrap when the first key exchange

is made. If an attacker is able to forge the LLA address of the device and making the network

consider the messages coming from this address, it can be paired to the network in behalf of

the other node. In that case, the node and the network are not going to authenticate each

other in this schema thanks to the partial solution of the challenges where the link key is

involved in the solution and this is generated through ECDH. This situation is represented

in Figure 6.2.
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Figure 6.2: Man-in-the-middle scenario. A different key for each link is used thanks to ECDH

6.2 Memory Overhead

In order to fit Contiki, Relic and the key generation and exchange layers, several modifications

were done in Contiki’s source, in the CC430 drivers and in Relic Toolkit source code. However,

the numbers presented in this section shall not be considered absolute but merely illustrative

as they depend on the software implementation and compiler optimizations. Nevertheless,

to accommodate ECC in embedded devices together with other applications is a challenge

hence, the difficulty of the task shall be remarked. The variance of the sizes depending on the

compiler and platform can be observed in Table 4.2 where a variance of about 3KB must be

noticed.

6.2.1 Tool Chain

All the provided data for the CC430 and MSP430 is result of compiling with msp430-gcc dev

20120911 for gcc version 4.7.0 20120322. The binary sizes are obtained using the msp430-size

and msp430-nm for the symbols sizes, both of the same development version as msp430-gcc

and belonging to the tool set GNU Binutils 2.22.

Regarding the Cortex M3 gcc version 4.5.1 (Sourcery G++ Lite 2010.09-51) was used as

a compiler. And nm and size from GNU Binutils 2.20.51.20100809.

The compiler optimizations have been -Os -fno-strict-aliasing -ffunction-sections -fdata-

sections and -Wl,–gc-sections for the linker to strip not used sections for both compilers,

leading to a reduction of the binary size, in spite of a diminution of the speed.

6.2.2 Contiki

As mentioned previously, Contiki OS (Section 3.4) over the platforms specified in Section

3.5 was used for the implementation of the proposed solution. For being able to integrate

Contiki OS in the smallest platform together with the cryptographic library, some important

modifications in Contiki were carried out. This modifications were such as: rewriting memory

management functions, rewriting some code of the rime module, blocking the response and

processing to neighbour solicitations and advertisements by other nodes, disabling TCP and

some driver structures, reformat the default driver structure to behave nameless and write

custom printf functions for debugging via UART among others. After the trial of several

configurations, the size of Contiki was trimmed from 24KB to 18KB. Taking into account the

32KB of flash memory on the CC430, it is a significant improvement1.

1The modifications do not modify the behaviour of Contiki but improve its speed and reduce the code
footprint. They will be committed to the Contiki OS source project in Github.
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6.2.3 CC430

Important modifications were required for this platform. Drivers to use AES and CRC

peripherals were written during the process in order to avoid using the heavier and slower

software implementations, thus reducing the processing time as well as the memory footprint.

This improvements can be seen in Table 6.1. Which makes a significant difference of 2.6KB.

Module Software Hardware

AES encryption 1040 bytes 116 bytes

AES decryption 1350 bytes 98 bytes

AES configure key n/a 46 bytes

AES SBOX 512 bytes 0 bytes

AES-CCM encryption 32.349 ms 5.789 ms

AES-CCM decryption 32.349 ms 5.798 ms

CRC16 (CCITT) 52 bytes 24 bytes

Total 2954 bytes 284 bytes

Table 6.1: Comparison between software and hardware implementations sizes of AES and CRC-
(CCITT)

The memory footprint reduction is truly significant and critical for this microprocessor.

Additionally, the AES encryption and decryption speed is also reduced perceptibly leading to

a reduction of the power consumption.

6.2.4 Relic

Relic-Toolkit is meant to be highly configurable and modular. It can be compiled as an

external library and linked afterwards in the final binary. The optimizations for lower memory

footprint were described in section 4.3.5. Since the secret pair keys are not meant to be

renewed, there is not need to include key pair generation algorithms in the devices, and

therefore the final memory footprint is: 4.34KB for the CC430 and 3.33KB for the Cortex

M3.

6.2.5 Key Manager

The key manager is the application in charge of key exchange, node authentication and all

the operations related to the key generation and distribution. It has two parts, one is the

application, which manages the key renewal and processing, and the other is a low level layer

which encrypts and decrypts packets when they are received or transmitted.

It has to be noted that in this case the memory overhead is the most variable factor as it

will depend on the implementation which is at the time of writing this thesis, the very first

version. The total size of the implementation of the complete protocol on Contiki OS is 2160

bytes for the CC430. This figure can not be considered absolute as compiler optimizations may

have merged low level UDP functions into the sending and receiving procedures2 Although

it is a large number compared to the size of Relic-Toolkit, it must be considered that the

complete protocol, considering retransmissions and packet flow, is accounted.

2Additionally, all the cryptographic functions have been trimmed off during the computation.
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6.2.6 Infomem

Infomem is a region of the flash memory in the microprocessors where the page size is inferior

and therefore it is ideal to store permanently variable information during runtime. MSP430

and CC430 offer a infomem section of 512bytes (4 pages of 128 bytes); therefore this is

the maximum amount of key-address mapping that can be stored in the sensor. Taking

into account that an address is 8 bytes and an AES key is 16 bytes, this makes a total of

20 neighbours considering that the group key is also stored in the infomem. Thus, all the

simulations in later sections consider 20 neighbours as a top boundary for large sized networks.

It should be remarked that this is not realistic for most networks as in this section usually

the serial number and local information such as local RF address is stored taking about one

entire page for this information.

Other approaches may consider the use of an entire flash page out of the infomem section

to store this information, hence more data can be stored as the page size is larger. However,

the redundancy of the data is critical for both approaches, as a power failure while writing the

segment or an interruption can cause the data to be corrupt and therefore the node to have

untrustworthy security information. This is not in the scope of the analysis in this thesis but

must be considered for implementation being a critical factor in commercial products which

may lead to user dissatisfaction due to unusability. This is especially critical in the second

case as the pages must be written at once and therefore all the information in the whole page

may become corrupted.

6.3 Processing Overhead

6.3.1 Test Set-up

The set-up consists in a 10Ω resistor connected between the ground pin of the chipsets and

the real ground (Figure 6.3). This allows to compute the current flow through the resistor

and offers more accurate measurements than reading on the Vcc port in the available testing

devices.

Chip

+
−Vin 10Ω

IR

Figure 6.3: Measurement circuit

Using the described procedure, measurements of the energy consumption when the

processor is busy and when the CC1101 (or CC430) is transmitting and receiving were carried

out. The time consumption of the different operations required by this proposal are computed

in Central Processing Unit (CPU) cycles and converted to seconds. Using this information,

the energy consumption of the devices is computed.

The measurements for MSP430 and CC430 processors have been done using a test

board. A test board has no electronic components other than the strictly necessary for the

microprocessor to run, which avoids external energy consumption by the peripherals. The

boards can be observed in Figure 6.5 and 6.4. The measurements for the CC1101 chipset
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have been done connecting this chip to the MSP430 board and measuring only the intensity

drained by this chip. For the radio frequency component on the CC430 chipset, this isolation

is not possible since the RF chipset is embedded in the microprocessor. For the Cortex M3

microprocessor tests, a modified Tado gateway board has been used (Figure 3.22). All the

peripherals on it have been disconnected in exception of the microprocessor and mandatory

electronic circuitry for it to run.

All energy consumption tests have been done with the Rigol DS1052E oscilloscope. The

accuracy is described in Equation (6.4) according to its datasheet[52].

reading± 3%(reading + vertical position)

+ (1% of vertical position) + 0.2div + 2mV
(6.4)

Therefore, it must be remarked that in the presented results, a level of uncertainty of at

least 0.2mA is present. This is not considered as all the measurements contain errors and

uncertainty, since it would complicate the calculations and the readability of this document.

Nevertheless, it must be mentioned for awareness of the reader.

Figure 6.4: CC430 test board Figure 6.5: MPS430 test board

6.3.2 Energy Consumption

The input voltage of the Tado GW mote is always constant. However, it is not the case for the

CH and the sensor node, whose input voltage is variable depending on the HVAC output for

the previous and on the battery charge and solar cell for the latter. The current consumption

has been tested for several input voltages obtaining a lineal dependency as plotted in Figure

6.6. Since these motes can operate at different voltages without influencing the operation

frequency, this will affect the energy consumption according to P = V · I. Both values –for

maximum and minimum input voltage– are given in all the cases. In the case of the CC1101

no current variation was observed when powered at different voltages. Table 6.3 reflects

the results. The CC430 shows a similar behaviour with very small variations of the current

consumption.

In Table 6.3 the individual processing consumptions for the different chips and algorithms

required by the proposed solution are presented, while Table 6.4 holds the summary of

consumption depending on the role (newcomer and CH) for the different microprocessors.

Two of the most obvious observations are the incredible reduction of processing time thanks

to the embedded AES accelerator in the CC430 and the expensiveness of the ECC operations,
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Figure 6.6: Energy consumption of the different chipsets

Input Range Minimum (mA) Maximum (mA)

Cortex M3 3.3 V 43 43
MSP430 2.4 - 3.6V 2.68 3.0
CC430 2.2 - 3.6V 0.98 1.01

CC1101 tx (0dBm) 1.8 - 3.6V 16.8 16.8
CC1101 tx (12dBm) 28 28
CC1101 rx 16.4 16.4
CC430 tx (0dBm) 2.2 - 3.6V 18 18
CC430 tx (10dBm) 32 32
CC430 rx 17.8 17.8

Table 6.2: Current drain of the different chipsets for their input range at full load

which is the most influential value for the consumption as can be seen in Table 6.4.

As already mentioned, key pair generation is discouraged in the motes, and the energy

consumption for these operations confirms the need of avoiding it as much as possible.

According to the described key distribution protocol, a new node joining the network has

to solve two challenges for the authentication; to compute a signature for the Pairing Proof

message and another to validate the Pairing Response message. Additionally, it has to derive

a key from given point sets. At the same time, the CH has to compute a key derivation for

the link, sign a Pairing Response message and validate a Pairing Prove, it has to compute

two partial solutions to the challenges, sign an Authentication Request message and finally

a derive a new group key. Encryption and decryption is also considered in Table 6.4. The

message sizes are extracted from Section Communication Overhead.

It can be observed from the results that the main power consumption contribution comes

by the hand of the key derivation function, though the point multiplication algorithm chosen

as described in Section 4.3.5 offers a good trade-off between memory overhead and speed.

However, faster algorithms may reduce the power consumption. These algorithms are suitable

for the MSP430 and the Cortex M3 but were dismissed for the comparison in favour of a

2The values presented in Table 6.3 are the result of taking three measurements and computing the average.
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(a) CC1101 (b) CC430

Figure 6.7: Oscilloscope readings for full tx power

Algorithm
Cortex M3 MSP430 CC430

time avg time min max time min max

Hashing 0.665 94 µJ 5.432 35 µJ 59 µJ 15.625 34 µJ 57 µJ
Point Generation 609.792 86.529 mJ 1909.790 12.284 mJ 20.626 mJ 4840.759 10.437 mJ 17.601 mJ
Key Derivation 609.910 85.546 mJ 1912.598 12.302 mJ 20.656 mJ 4845.581 10.447 mJ 17.619 mJ
AES-CCM encryption 5.329 756 µJ 21.606 139 µJ 233 µJ 5.789 12 µJ 21 µJ
AES-CCM decryption 5.313 754 µJ 21.606 139 µJ 233 µJ 5.798 13 µJ 21 µJ
Signature 0.895 127 µJ 6.836 44 µJ 74 µJ 10.925 24 µJ 40 µJ
Challenge Solving 1.839 261 µJ 13.611 88 µJ 147 µJ 21.667 47 µJ 79 µJ

Table 6.3: Current drain of the different chipsets for their input range. Data sets for hashing
and signing are 100 bytes2. Times are in ms

common one in order to offer a good comparison of memory, communication and processing

overhead on the different microprocessors.

6.3.3 Communication Processing

It is a matter of fact that when a node is member of a network every sent message is encrypted

and therefore, AES-CCM encryption and decryption processing times –hence, consumption–

should be considered.

6.4 Communication Overhead

The communication overhead of the proposed solution is definitely larger than other solutions

which employ key pre-distribution or polynomial approaches in spite of a great security

improvement thanks to ECDH. In Table 6.5, message sizes are summarized for the

exchange messages described in Chapter 5. The sizes are displayed in four categories: with

authentication information and no headers, with headers, without authentication information

neither headers and with headers. Note that the headers of IEEE802.15.4 and UDP over

6loWPAN are 20 and 28 bytes for broadcast messages and unicast messages turning into 24

and 32 bytes after AES-CCM encryption due to the MIC. This frames were depictured in

Figure 3.14 in comparison with the case without compression.

6.4.1 Single node overhead

The Equations (6.5), (6.6) and (6.7) describe the communication overhead per node since it

joins the network, both in transmission and in reception. The length of the packets used
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New node Cluster Head

Cortex M3
time 631.790 ms 636.469 ms
avg 89.651 mJ 90.315 mJ

MSP430
time 2.016 s 2.031 s
min 12.970 mJ 13.063 mJ
max 21.777 mJ 21.933 mJ

CC430
time 4.917 s 4.908 s
min 10.601 mJ 10.581 mJ
max 17.879 mJ 17.844 mJ

Table 6.4: Processing energy consumption for the different devices under different roles

Authentication Regular
Message Payload Headers Payload Headers

Pairing Request (Prq) 73 +20 73 +24
Pairing Response (Prs) 78 +28 77 +32
Pairing Proof (Ppr) 6 +28 6 +32

Group Advertisement (Gad) - - 2 +24
Group Request (Grq) 6 +32 2 +32
Group Response (Grs) 25 +32 21 +32

Authentication Request (Arq) - - 30 +32
Authentication Response (Ars) - - 20 +32

Authenticity Request (Trq) - - 10 +24
Authenticity Confirm (Trs) - - 2 +32

Node Revocation (Rrk) - - 26 +32

Table 6.5: Message sizes (in bytes) for key exchange with and without authentication fields

is reflected in Table 6.5. The other variables are: R = Rcol +Rslot the average number of

retransmissions, N the number of neighbours, M the number of nodes that joined the network

afterwards, Nn the number of new neighbouring nodes, ηmid the probability that the target

node is between the CH and the GW, ηsol the probability a node requests a new key for a

neighbour, ηno that a neighbour did not receive the group key and ηknown the probability a

pairing node is already paired with the target node.

On = Otx +Orx (6.5)
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Otx = (Prq + Ppr +Grq)R︸ ︷︷ ︸
Pairing process

+ d Trun
Tpair

eN ((Prq + Ppr)(1− ηsol) + Prsηsol)R︸ ︷︷ ︸
Link key renewal

+ (M + d Trun
Tgroup

e) · (Gad + ηnoGrq + ηnoNGrs)R︸ ︷︷ ︸
Group key renewal

+Nn (ηsol(Prs + Trq) + (1− ηsol)(Prq + Trq + Ppr) +NηknownTrs)R︸ ︷︷ ︸
New neighbours in automated pairing

+MηmidN(Arq +Ars)R+
Nn

N
(1− ηknown)(Trq + Trs)R︸ ︷︷ ︸

Forward authentication and authenticity messages

(6.6)

Orx = (Prs +Grs)R︸ ︷︷ ︸
Pairing process

+ d Trun
Tpair

eN ((Prq + Ppr)(ηsol) + Prs(1− ηsol))R︸ ︷︷ ︸
Link key renewal

+ (M + d Trun
Tgroup

e) · (ηno(Gad +Grs +Grq))R︸ ︷︷ ︸
Group key renewal

+Nn (ηsol(Prq + Ppr) + (1− ηsol)Prs + (1− ηknown)NTrq)R︸ ︷︷ ︸
New neighbours in automated pairing

+MηmidN(Arq +Ars)R+
Nn

N
(1− ηknown)(Trq + Trs)R︸ ︷︷ ︸

Forward authentication and authenticity messages

(6.7)

Additionally, some time variables were included for exemplification, standing Tpair for the

time to renew a key pair, Tgroup for the group key renewal time and Trun for the running

time; in case they are decided to be renewed in a time fashion. As mentioned in Section Key

Renewal (5.5.1), key renewal in a time basis is contemplated by the proposed solution but

discouraged. Hence, for the rest of the document Tpair, Tgroup →∞ is assumed.

In Figure 6.8 and 6.9, the overhead of communication (as expressed in Equation (6.8)

and (6.9)) in function of the total node joinings in the network is plotted for a network with

an average number of 2 (blue), 5 (green) and 20 (red) neighbouring nodes and 20% of new

neighbouring nodes (Nn). The probability of not having received a group key (ηno) is 75%.

This probability is inversely related with the probability of having a known pair (ηknown) which

is considered 37.5%. The probability of a neighbour requesting key (ηsol) is 50% while the

probability of being between the CH and GW (ηmid) is 0% in most of the networks. Finally

the R is 1. The probabilities are quite realistic regarding Tado’s network but they may be



6.4. COMMUNICATION OVERHEAD 65

adjusted for other network characterizations.

Otx = 165

+M · (26 + ηno34 + ηnoN53)

+Nn (ηsol143 + (1− ηsol)169 +Nηknown34)

+MηmidN(114) +
Nn

N
(1− ηknown)68

(6.8)

Orx = 162

+Mηno · 113

+Nn (ηsol135 + (1− ηsol)109 +N(1− ηknown)34)

+MηmidN(114) +
Nn

N
(1− ηknown)68

(6.9)
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Figure 6.8: Transmission communica-
tion overhead versus number of joining
nodes for 2 neighbour networks (blue), 5
(green) and 20 (red)

0 100 200 300

103

104

105

N

by
te
s

Figure 6.9: Reception communication
overhead versus number of joining nodes
for 2 neighbour networks (blue), 5 (green)
and 20 (red)

In Figure 6.8, the communication overhead is drawn for transmission and in 6.9 the same

information for reception is presented. A lineal growth in the overhead can be observed for

both transmission and reception.

The very last node joining a 2 neighbours network, transmits an average of 246.1 bytes.

When the network has an average of 5 neighbours per node, this figure grows up to 393.25

bytes for no new joins and to 1644.5 bytes when 5 new node join. These numbers demonstrate

a very small footprint for small sized networks such the one in Tado in comparison to the

regular network communication operations.

In comparison to polynomial approaches such as in [53], which has total communication

overhead of 75 bytes independently of the number of joining nodes and the size of network,

the given results may seem alarming when targeting larger networks. However, a closer

look to some of the literature demonstrates that only direct communication to the CH has

been considered. Additionally, those simulations do not contemplate neither key renewal,

packet broadcasting nor the possibility of a neighbour node joining. Although this fact

complicates the comparison between proposals, the given solution should not be compared to
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pre-distributed keys or polynomial approaches as it offers a much higher level of security.

Nevertheless, looking at the regular communication overhead of the described protocol for

regular communication, we can affirm that it is very low: only 4 bytes per any packet because

of the AES-CCM-128 MIC versus the 6 bytes for a 30 bytes packet of SPINS[46].

6.4.2 Communication Energy Consumption

In Table 6.6, the energy consumption per node of the CC1101 and and CC430 chipsets is

summarized. Several network configurations are used: 2, 5 and 20 neighbours per node

networks and 0, 2 and 5 node joinings. The power values used are the ones in Table 6.3

considering 0dBm for transmission and maximum sensitivity for reception.

Neighbours per node Joins Tx bytes Rx bytes
CC1101 CC430

min max min max battery

2 Neighbours
0 246,100 236,300 2,307 4,614 3,040 4,974 3,316
2 508,100 405,800 4,375 8,750 5,762 9,429 6,286
5 901,100 660,050 7,477 14,955 9,845 16,110 10,740

5 Neighbours
0 393,250 398,750 3,786 7,572 4,990 8,166 5,444
2 893,750 568,250 7,008 14,017 9,223 15,093 10,062
5 1644,500 822,500 11,842 23,683 15,573 25,483 16,989

20 Neighbours
0 1817,500 2358,500 19,933 39,867 26,293 43,025 28,683
2 3510,500 2528,000 28,925 57,851 38,082 62,316 41,544
5 6050,000 2782,250 42,413 84,827 55,765 91,252 60,835

Table 6.6: Energy consumption by the RF chips and different network configurations. Message
sizes in bytes and power consumption in mJ

The Tado temperature sensor sends a message every minute if the temperature delta

regarding the previous transmission is significant, or a message every 10 minutes when the

delta is not significant. The message is about 16bytes of payload, thus a total of 38bytes

including headers. In the worst case the node sends 19500KB of data per year and 1950KB in

the best case. The rest of the messages are blocked, thus it cannot perform neighbour discovery

nor process router advertisements. Therefore, the communication overhead considering a 5

neighbouring node network with 5 new node joins is about 0.08% of the annual communication

for the least transmitting case. This statistic improves for the rest of nodes which exchange

more messages. For instance, the CH communicates with the TAS once a minute using

a 256bytes communication. This gross is 4.21MB of data per year and a 0.037% of the

communication.

Communication Processing Energy

The processing overhead due to communication also has to be mentioned, especially in

activities such as encryption, challenge solving, decryption, key computation and signatures.

Given the Equations (6.6) and (6.6) and the Table 6.3 it is easy to obtain Equations (6.10)

and (6.11). These are plotted in Figure 6.10 and Figure 6.11 for the same cases as in the
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previous section.

Otx = 11.823

+M · (0.004 + ηno0.005 + ηnoN0.007)

+Nn (ηsol11.786 + (1− ηsol)11.771 +Nηknown0.005)

+MηmidN(0.016) +
Nn

N
(1− ηknown)0.010

(6.10)

Orx = 11.842

+Mηno · 0.016

+Nn (ηsol11.766 + (1− ηsol)11.781 +N(1− ηknown)0.005)

+MηmidN(0.016) +
Nn

N
(1− ηknown)0.010

(6.11)
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Figure 6.10: Processing overhead for
outgoing communication (including key
generation) versus number of joining
nodes for 2 neighbour networks (blue), 5
(green) and 20 (red)
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Figure 6.11: Processing overhead for
incoming communication (including key
generation) versus number of joining
nodes for 2 neighbour networks (blue), 5
(green) and 20 (red)

A major influence of the processing overhead rather than the communication overhead

can be observed, mostly due to the key computation procedures.

A single pairing on a MSP430 takes about 1.968s for the newcomer and 1.954s for the

CH, which compared to the figures in [40] for the TelosB mote (assuming it is configured at

20MHz) show better performance than the TLS pairing (4.35s) but slightly worse than the

TLS using IBC and ECDH (2.78s). However, in the mentioned reference no data is provided

about the configuration of the microprocessor. Additionally, no memory figures are given to

compare the memory overhead or processor configurations for a fine comparison.

6.5 Energy Consumption

Within this section, combined graphs of processing and communication energy consumptions

are given for a better overview concerning the previous assumptions. Later on, a simulation
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on the battery lifetime powered sensor is described.
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Figure 6.12: Common consumption overhead versus number of joining nodes for 2 neighbour
networks (blue), 5 (green) and 20 (red)

In Figure 6.12, the addition of the processing and communication energy consumption for

both outgoing and incoming packets is plotted. It can be seen that the energy consumption is

mainly driven by processing overhead due to the key computation. More efficient algorithms

for key computation (elliptic curve point multiplication) shall reduce the overall consumption.

6.5.1 Battery Life of the CC430

It is important to see the impact of the proposed solution on the design battery life of the

Tado sensor (CC430 platform). The former is powered by two AAA batteries and a solar cell,

where the solar cell is a secondary power supply and the batteries are the main power source.

The rechargeable NiMH batteries are recommended.

According to the Energizer HR03 datasheet[23] on typical discharge characteristics, the

energy available in the battery is the integral of the curve at 80mA discharge rate. The

interesting range is between 1.3 and 1.1V as the CC430 input range varies between 3.6V and

2.2V and the device is powered by two serial batteries. Approximating the curve given in

the datasheet by a line between these two values, an energy of about 3060J (Wb) is obtained.

Neither information regarding self-discharge effects of this battery when connected to line nor

a good approximation for the general case have been found, suggesting no self-discharge or

marginal discharge effects when connected. Therefore, no self-discharge is considered in this

simulation.

The CC430 has a standby consumption of about 2µA[24] when in Low Power Mode 3

(LPM3), this permits the lowest consumption possible while holding the RAM data and

allowing wake-ups due to interrupts. The platform will keep the processor in LPM3 and

waking up once per minute to compute and broadcast the temperature. If this temperature

has a relative variance of 0.3oC regarding the last transmitted temperature, the node sends

the temperature to the CH, otherwise it goes to LPM3 again. The temperature is transmitted

mandatorily once every 10 minutes.

The report data consists in 16 bytes of UDP payload, which includes error flags and status

messages. This packet is encapsulated by IEEE802.15.4 and 6loWPAN headers, which add up
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to 24 bytes, making a 40 bytes transmission. Assuming that the sensor is only paired once,

that it needs 5ms to compute the temperature readings, a mean supply voltage of 2.4V and

the current consumptions are stated in 6.3. The ideal platform consumption is as stated in

Equation (6.12).

Wm = compute+ encrypt+ transmit+ sleep

= 12.120µJ + 5.613µJ + 276.480µJ + 287.328µJ = 581.541µJ
(6.12)

The sleep mode energy is computed taking into account the temperature reading time,

the encryption time and the transmission and subtracting it from one minute: tsleep = 60s−
5ms− 2.32ms− 6.4ms = 59.86s and therefore Wsleep = V ILPM3tsleep = 287.328µJ . Thus, as

it can be seen, is the main contribution to the energy consumption of the platform regardless

of being in “standby” mode.

Given the consumption values in Table 6.6 and in Table 6.4, for the simulations presented

in Section Communication Overhead the the lifetime of the batteries (Equation (6.13)) can be

plotted as in Figure 6.13. In (6.13), Wp stands for the energy consumption of the described

key generation and distribution protocol.

T =
Wb −Wp

Wm
≈ 10 years (6.13)
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Figure 6.13: Battery life of the CC430 using 2 AAA batteries on a 2 neighbours network (blue),
5 (green) and 20 (red)

As it can be seen in the previous graphic, the energy consumption due to communication

does influence the life of the sensor device in approximately 2-3 days in 10 years for the most

consuming configuration. This demonstrates that the communication overhead of the protocol

is minimal and it is a good approach for solving the key distribution problem.

Please note that in this estimation only pure processor consumptions have been considered.

The sensing board also has a temperature sensor, operational amplifiers and other circuitry

which may reduce notably the battery life dramatically. Additionally, as already mentioned, it

is not guaranteed that the batteries do not present a self discharge factor even if not specified

by the manufacturer. Furthermore, neither the RDC effects, such as burst retransmissions;

retransmissions due to collision or slot; nor other physical channel effects have been considered.
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Albeit these effects may scale considerably the transmission energy consumption, the main

contributor is the key computation and therefore the difference may not be significant. The

design of this platform claims a battery life of about 2 years without solar cell assistance

considering all the electronic components and a transmission every minute.

This simulation evidences that the proposed solution only influences the overall energy

consumption slenderly and it will not reduce the battery life significantly, which makes it

attractive for all the sensors within Tado network. Hence, the obtained result is compatible

with the sensor platform design.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this master thesis, a solution to the key generation and distribution problem has been

proposed and developed, which uses Elliptic Curve Diffie-Hellman and Key Derivation

Function 2 for key generation and symmetric encryption to ease the computation requirements

of Elliptic Curve Cryptography. All the security goals described in the Objectives section have

been achieved: confidentiality, integrity, strong authentication, non repudiation, authorization

and data freshness. The resilience of the proposed scheme has been proved against the most

adversaries: eavesdropping, fraudulent devices, message replies and man-in-the-middle. It

has been argued that security against physical attacks is difficult to achieve in this kind of

networks as the deletion of secret information upon deployment may lead to unusable devices,

which is not attractive for consumer products or mobile nodes.

A complete study of the current standards and technologies available for WSN demon-

strated that the key exchange over multicast UDP presented the lowest overhead due to the

lower protocols; and that AES-CCM offers integrity, authenticity and confidentiality of the

communication with a minimum additional overhead of 32 bits per transmitted frame which

offers a good level of resilience against brute force attacks. Furthermore, it have been seen

that a key length of 128 bits for AES offers a good level of security.

The huge impact on the memory footprint due to compiler optimizations has been

documented, which is not possible to control, differentiating in about 3KB the Relic-Toolkit

size between the MSP430 and the Cortex M3 microprocessors. On the other hand, it was

proved that intelligent code optimization can lead to important reductions of memory footprint

and processor time. This optimizations were: the usage of the microprocessor peripherals as

much as possible and to reduce the code footprint, since it is the bottleneck in many WSN

applications.

The work done reveals that Elliptic Curve Cryptography is affordable by using hybrid

schemes with a relatively small processing and communication overhead. More labor must

be executed on the cryptographic libraries as it still represents the 13.57% of the total flash

memory available. It can also be noticed that the size of the SHA1 hashing algorithm is the

5.57% of the flash of the CC430. Hence, more efficient lightweight hashing functions should

be researched.

The developed key generation hybrid schema brings together the strength of ECDH

with the possibility of using symmetric encryption and non-abusive processor techniques for

71
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random number generation. Furthermore, the use of partial solution of challenges and a

Trusted Authentication Server permit strong authentication and detects Man-in-the-Middle

attacks while keeping the communication overhead at a minimum. Finally, it uses symmetric

AES-CCM-128 encryption as recommended by the IEEE802.15.4 standard. Nevertheless, an

Intrusion Detection System is required for the detection of physical attacks an for network

health reports.

Key generation procedures have demonstrated a big processing impact due to point

operations monopolising the microprocessor during 4.845s. This can be a limiting factor for

low featured processors nodes within networks with a high variance of members. A processing

consumption of 153mJ was acquired after a simulation of a network for 20 neighbouring nodes

per node with 300 posterior joins. For consumer small networks, such as Tado’s, it has revealed

an energy consumption as low as 40-55mJ for the CC430.

The security achievements of this solution make it suitable for any size of network even

with limited nodes. The developed protocol is flexible enough to include custom additions,

which allows its use in not-hierarchical networks by allowing every node to generate a group

key, while still ensuring strong authentication. The experimentation has revealed that the

processing times for new link key generation are affordable since typically the networks do

not grow indefinitely and have a reduced number of neighbouring nodes. The lack of link key

renewal makes the key generation operation a one-time operation attractive for WSN.

7.2 Future Work

Improvements in memory footprint and processing time by the use of hardware peripherals

have been documented[35, 47]. These require about three orders of magnitude less energy

than the software implementation: about 12mJ for the software version in contrast to 11µJ

for the fastest of the accelerators reviewed. Hence, the use of hardware accelerators for ECC

operations is encouraged. This reduces the main contribution to the power drain in the

proposed solution and makes it, therefore suitable for more constrained nodes. Although the

code optimizations –as proposed in [6]– also prove a reduction of the computation time on the

MSP430 boards, these do not reduce the code size as much as a hardware accelerator. This

effect has has been demonstrated by using the AES peripheral on the CC430. Moreover, these

low level code optimizations are processor specific makes the portability to different platforms

not an easy task.

Additionally, it must be mentioned that this work presents only simulations and figures

for chipset exclusive consumption. More accurate calculations shall be done, considering

the peripherals consumption and other circuitry of the boards as well as using more accurate

measurement equipment. Despite of this, a bias and additional currents drained by the boards

can be easily added to the presented results for an approximated estimation.

The physical attack analysis (Section 6.1) revealed important weaknesses in the schema,

making an IDS presence mandatory. Other approaches shall be researched in order to grant

commercial products of a good physical resilience against physical attacks. Another reported

weakness is the cooperative authenticity report feature. Despite the fact that it lowers the

communication overhead of the CH, it may lead to fraudulent node access to the network if

two or more neighbouring nodes are compromised. Hence, further research in this direction

is advocated as well.
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