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Abstract

Detecting keypoints and computing descriptors needed in an image
recognition algorithm are tasks that require substantial processing power
if they are to be executed in a short time span. If a network of sensor
nodes is used to capture the images to be processed, then the sensor nodes
could be used to perform the actual processing. The system would dis-
tribute the computing tasks to the available nodes in the network, so that
the computing load can be divided among the nodes. By this, the com-
puting time could possibly still be kept low, despite the large difference
in available computing power between a rack-server and a sensor node.
This report describes the implementation of a testbed for the evaluation
of distributed processing of visual features. The testbed is implemented
in C++ using creditcard sized computers and Zigbee USB units. Com-
munication between nodes utilizes ASN.1 defined types. The detection
and extraction stage use an implementation of the SURF algorithm from
OpenCV. Results are sent for matching to a server using a TCP-socket
in the sink node. The system is evaluated in terms of data transmission
protocol efficiency, and time spent on transmitting data vs. computation.
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1 Introduction

Computer vision is used today in various situations. When an area needs to be
monitored for undefined events that cannot be measured with electro-mechanical
sensors, computer vision is a technology that can detect a wide range of inci-
dents. By extending the objects included in the model, the detection range can
easily be extended. For example, when an animal community is to be moni-
tored for different events, and it is uncertain in what place this event is going
to happen, then computer vision can be used to detect the event. If the area
to be monitored is large, a network of cameras can be used to capture images
or video from multiple places [1]. Another example is when an area is to be
monitored for trespassing, and conventional detection methods cannot be used
due to the fact that certain creatures are allowed to pass. Examples of usage
can also be found in a home or industrial environment, such as smart meeting
rooms or automated production [2] [3] [4].

A sensor node is a node that is able to perform some processing, with low
complexity and energy consumption. A system of such sensor nodes, that cap-
tures and process images from multiple locations, is often termed a Visual Sensor
Network (VSN). Such a network has recently been subject of extensive research.
The device that captures images or video in the network is often a low-cost de-
vice termed a sensor node. A node can be configured with a wireless transmitter
to communicate with other sensor nodes, in some cases over a distance of many
kilometres [5]. Sensor nodes have a power consumption in the range of 10 mA,
and can in sleep mode stay powered for a year [5]. The sensor nodes has the
ability to perform some processing, the typical processing power is in the range
of 10 MHz [6–8]. By using the network of nodes as a distributed computing
system, one could eliminate the need for a centralized server, and possibly, with
decreased processing time.

The goal of this thesis is to develop a testbed for such a system. The comput-
ing tasks that are to be distributed are common operations used in computer
vision. The system shall use existing system components and software. The
system will be evaluated in terms of transmission and computing efficiency.

1.1 Methodology

Prior to implementing the testbed, a litterature study was performed. The
literature study included network topics, the Zigbee protocol and different Xbee-
hardware communication libraries. Some operating systems were considered
and tested. A study of the ASN.1-syntax and encoding rules was carried out,
together with a design of the different types needed to be defined with this
syntax. Software development topics like multi-threading and cross compiling
were also considered, together with topics like build systems, testing frameworks
and applications for memory allocation analysis. After the literature study a
specification of included features was agreed upon. Then a first design of the
testbed was made, followed by a first implementation. After that followed some
iterations of redesign of selected parts, implementation of the new design and
debugging. At last an evaluation of the testbed was performed. The evaluation
consisted of measuring how much time is spent in the different parts of the
testbed when an image is processed.
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1.2 Report structure

The rest of the report is laid out in the following way. In the next chapter a
background to the problem is given. Computer vision is described together with
some use cases for a visual sensor network with distributed computing capac-
ities. Different concepts like descriptors and keypoints are described, together
with the algorithm that use these concepts. The implementation of the algo-
rithm to be distributed in the testbed is described. In the same chapter the
Zigbee protocol is outlined together with the key concepts of the ASN.1-syntax
and decoding method. The last part of the next chapter describes the different
hardware components used in the testbed. Chapter 3 then describes the func-
tionality that is included in the testbed. Areas like computing task creation
and different processing schemes are discussed. Chapter 4 describes the actual
software implementation. Here, the different classes are described. This chapter
also includes a description and analysis of the application layer protocol defined
with the ASN.1 syntax. The last chapter includes result from the evaluation of
the testbed.

2 Background

2.1 Computer vision

Visual features are often used in computer vision applications for image retrieval
and object recognition. Visual feature extraction is the process of identifying
important areas in an image and then describing those areas with mathematical
tools. The identified objects in the image are described with a mathematical
model, and the models are then compared to models in a library of existing
models, available in a database of the recognition system. The comparison is
done with a matching algorithm that tries to find the objects in the database
that match the object found in the image. Computer vision is used in many
areas, from robot navigation to gesture recognition in digital cameras. If com-
puter vision is performed in consecutive frames from a video, it can be used to
track the movement of objects in the sequence of images.

2.2 Use cases

A distributed computing system for computer vision has many applications.
The general case is when the computing power of each node is insufficient for
the application, or when the computing power could be increased by utilizing
available nodes in a network. Another case is when one would like to have a
system that is not dependent on a central server. The cost is kept down if
different components can be excluded. And, the complexity added with central
server can be avoided if the nodes can perform the processing.

One example of when such a system is favourable is a monitored traffic in-
tersection. Each entry to the section could be monitored by one node connected
to a camera. The cameras should capture vehicles in the intersection, and the
system should then detect if the vehicle is a public transport bus. If a public
transport bus is approaching, then the traffic lights should turn green so that
the bus can pass without stopping. When an object is detected in one entrance

5



to the intersection, the node will capture an image from the camera. The differ-
ent computing tasks for the image are then distributed to other nodes available
in the network, hence the speed of the recognition process can be increased.
The results from the different nodes are then gathered in one of the nodes. The
computed model is then used to match the vehicle against known models of
different vehicles. If the model matches a public transport bus, then the traffic
lights are switched.

2.3 Keypoints, descriptors and the SURF algorithm

A keypoint is a point in an image that defines a point detected because of the
pixel(s) value, and the pixel values compared to the surrounding pixel values.
For each keypoint a descriptor is computed. The descriptor describes the area
surrounding the keypoint. The algorithm used in this testbed is the Speeded Up
Robust Features (SURF) algorithm. The SURF algorithm operates on greyscale
images [9]. There exists other algorithms to detect keypoints and to extract fea-
ture descriptors, such as Binary Robust Invariant Scalable Keypoints (BRISK)
and Fast Retina Keypoint (FREAK).

2.3.1 Integral images

The filters used for identifying SURF interest points typically rely on the sum of
pixel values in rectangular areas. To compute the sum of the pixels, one could
simply add all the pixel values in the region. If many regions should be summed,
one could first compute the integral image, and then use the integral image to
compute the sums. An integral image is, similar to the one-dimensional case,
the sum of all pixels from the origin to each index. If the integral image is
denoted I(x, y), and the pixel value is denoted F (x, y), then the integral image
is

I(x, y) =

x∑

a=0

y∑

b=0

F (a, b) (1)

With the integral image available, any sum over a region can be computed
as a sum of just four values.

2.3.2 Keypoints

To detect keypoints, a 2-dimensional filter is used. The filters used are various

second derivatives of a gaussian g(σ) [9, 10]. Three filters are used; ∂2g(σ)
∂x2 is

shown in figure 1, ∂2g(σ)
∂y2 is shown in figure 2, and ∂2g(σ)

∂x∂y
is shown in figure 3.

The filters shown in figure 1, figure 2, figure 3 are then approximated by
box-filters, where the filter that approximates the second order derivative of the
gaussian curve only can take on two values; 1 and -1. By this, the computation
of the multiplication and sum over the image and the box-filter can be carried
out as a sum of all the pixels that have a 1 in the corresponding place in the box
filter, and subtracting by the pixels that have a -1 in the corresponding place.
The main advantage of this is that the sum of all pixels within a rectangular
area can be computed as a sum of only four values, if the integral of the image
has been computed beforehand, see section 2.3.1. A Hessian matrix is then
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Figure 1: The second derivative of a gaussian curve multiplied with an image
tries to detect differences along the x-axis.
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Figure 2: The second derivative of a Gaussian curve multiplied with an image
tries to detect differences along the y-axis.
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Figure 3: The second derivative of a Gaussian curve multiplied with an image
tries to detect differences along the diagonal-axis.

formed with the result of the inner product of the image and the second order
derivatives. The result of the detection is then computed as the determinant
of the Hessian. This is termed the response value. A pixel is identified as a
keypoint if the determinant is above some threshold value. The threshold value
is termed Hessian threshold

The above method is carried out with different values of σ, which results in
different filter sizes. The filter sizes used are determined by two parameters; the
number of octaves, and the number of octave layers. The number of octaves
sets the number of levels in the gaussian pyramid of filters, and the number of
octave layers sets the number of filters within each layer. Keypoints found with
a certain filter size are said to be found at a certain scale. A 9 x 9 filter is the
filter with lowest scale, which corresponds to σ = 1.2 [9].

An object in the image can give rise to many keypoints with a response
above the threshold. In order to not clutter the set of keypoints detected with
keypoints that arise from the same object, a non-maximum suppression is per-
formed [9]. A non-maximum suppression is basically carried out by comparing
the response values of adjacent filters in the same layer and response values of
filters in adjacent octaves. This is described thoroughly in [11]. To perform the
non-maximum suppression, two additional filter sizes are used in each octave.
One in the upper limit in the octave range, and one in the lower limit. These
filters are used only for comparison, no keypoints can be found at their scale.

With the number of octaves defined as NO and the number of octave layers
defined as NL, the filter size in layer Np is computed as:
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Np = 9 · 2NO−1 + 6 · 2NO−1 · (NL − 1) (2)

With the number of octaves set to 4, and the number of octave layers set to
2, the filter sizes used are shown in table 1.

Table 1: Size of filters with four octaves and two octave layers.

Layer 1 Layer 2 Layer 3 Layer 4

Octave 1 9 15 21 27
Octave 2 18 30 42 54
Octave 3 36 60 84 108
Octave 4 72 120 168 216

For more details, see [9].
The image is also up-scaled and interpolation between adjacent filters is

carried out to increase the number of available filter results.
Each detected keypoint has the following parameters:

• x: The x coordinate of the keypoint.

• y: The y coordinate of the keypoint.

• scale: The size of the interest area around the keypoint.

• octave: The octave where the keypoint was found.

• response: A measure of the difference between the pixels in the keypoint
area. In other words; how distinct the keypoint is. See section 2.3.2 for a
definition.

• angle: The orientation of the keypoint. This functionality increases com-
putation time significantly, and can therefore be disabled.

A visualization of the keypoints found for an image is shown in figure 4.
Each keypoint is marked by a circle. The diameter of the circle is proportional
to the scale of the keypoint. Each keypoint also has a line from the center to
a point on the circle. The angle of this line is proportional to the angle of the
orientation of the keypoint. One can for example see that the last letter ’I’ in
the text is aligned with the angle of the keypoint found in it’s vicinity.

2.3.3 Descriptors

For each keypoint a 64 element long vector, termed descriptor, is computed.
The descriptor describes the area surrounding the keypoint. The computation
of the descriptors is done in a quadratic area aligned with the angle of the
keypoint. The size of the area is larger for keypoints detected at a larger scale.

The area around a keypoint used to compute descriptors is dependent on
the scale of the keypoint. The width of the area d is [10]

d =
√
2 · 20 · σ (3)

where σ is the scale of the keypoint. This area is then divided into 16
sub-areas, laid out in a 4 x 4 grid.
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Figure 4: Keypoints with various sizes and angles. The Hessian threshold is set
to 1000 to keep the number of keypoints found low.

Each sub-area is then divided in a 5 x 5 grid. For each rectangle in the
grid, the response of the Haar-wavelet in the x-direction dx, and the response
of the Haar-wavelet in the y-direction dy, is computed. The responses are then
weighted with a gaussian centered around the keypoint.

For each sub-area, the following is computed:

• The sum of the weighted Haar-responses in the x-direction.
∑

dx (4)

• The sum of the weighted Haar-responses in the y-direction
∑

dy (5)

• The sum of the absolute values of the weighted Haar-responses in the
x-direction ∑

|dx| (6)
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(a) Haar wavelet in x-direction. (b) Haar wavelet in y-direction.

Figure 5: Haar-wavelets

• The sum of the absolute values of the weighted Haar-responses in the
y-direction ∑

|dy| (7)

The values computed by 4, 5, 6 and 7 form a four element long vector for
each of the 16 sub-areas. This results in a 64 element long descriptor for the
keypoint. Each element contains a 32 bit floating point number.

Shown in figure 6 is a visualization of the values of the matrix constructed
from the descriptors for the set of keypoints detected. Each row contains 64
pixels and there are 106 rows, one for each of the 106 keypoints found (shown
in figure 4). A vector with 128 32 bit floating point values can be computed in
an extended mode of the descriptor computation.

2.4 OpenCv

OpenCV is an open source computer vision library, most parts of it are free for
both academic and commercial use. It has a C++ interface and supports Win-
dows, Linux, Mac OS, iOS and Android. There is a large community of users,
with more than 47 thousand members and the estimated number of downloads
exceeds 6 million [12]. There is a large number of books available about OpenCv.
OpenCv has its own implementation of the SURF algorithm but it is not part
of the free algorithms, and hence, cannot be used for commercial applications
without permission. This work is however purely academic and can therefore
use the OpenCv implementation without restrictions.

The OpenCv implementation for SURF provides the class SURF, which has
methods for detecting keypoints and computing descriptors. The keypoints are
stored in the OpenCv class KeyPoint, and the collection of keypoints is passed
to the different methods in the STL class vector. The descriptors are stored
in the OpenCV class Mat, which basically is a matrix class that implements
common matrix operations.

2.5 Zigbee

Zigbee is a protocol that operates in the network layer and in the application
framework layer. It is suitable for communication in a wireless personal area
network (WPAN), where the devices have low power consumption, low duty
cycles and low data rate requirements. It can be used to connect various devices
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Figure 6: Descriptors for the keypoints in figure 4. The values are scaled so
that the largest value is completely white. The image is 64 x 105 pixels. Each
row represents the descriptor for one keypoint.

in a home environment, such as light switches, alarm devices, locks and cameras.
It is also suitable for automation in an industrial environment.

One of the key concepts in a WPAN is the ability for devices to connect and
join the network temporarily, and then leave the network at any point. Zigbee
supports this and devices can join a network in 30 ms. Zigbee communicates at
2.4 GHz and requires a 3 MHz interference free bandwidth at that frequency.
Zigbee supports adressing with 16 or 64 bits [13]. The channel bands operate in
5 MHz wide bands from 2.405 GHz to 2.480 GHz. Data rate is supported up to
250 Kbps and the protocol can operate on 16 different channels [14,15]. Zigbee
incorporates security built on the 128-bit AES algorithm [15].

Zigbee is built on the IEEE 802.15.4 protocol, and an overview of the dif-
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Figure 7: Zigbee and 802.15.4.

ferent layers is shown in figure 7. The IEEE 802.15.4 protocol is a packet
based radio protocol [14]. The physical layer is responsible for modulation of
the carrier wave that makes it possible for the information to be transmitted
through the air. The 802.15.4 protocol use offset quadrature phase shift keying
(O-QPSK) as modulation technique. The physical layer is also responsible for
enabling/disabling the radio transceiver, link quality indication (LQI) for re-
ceived packets, energy detection (ED) on the current channel and clear channel
assessment (CCA) [14].

The MAC layer is responsible for correct operation over a shared medium.
The MAC layer tries to avoid collision when the medium is occupied by multiple
devices transferring at the same time. The protocol used in 802.15.4 is Carrier
sense multiple access with collision avoidance (CSMA-CA). The MAC layer also
guarantees time slots for a device to transfer. [14]. Additionally, the MAC layer
is responsible for sending acknowledgement packets. The functionality to send
acknowledgement packets can be switched off.

The network layer provides mechanisms for nodes to join a network. It also
has functionality to discover new nodes that intend to join the network, together
with functionality to discover a certain node that the network is expecting to
join. The network layer also provides mechanisms to transfer data in a secure
way. The network layer provides tables that lets one node communicate with
another node even if the node is not within reach. This functionality is termed
message forwarding. The communication via message forwarding can occur by
keeping tables of how a node can be reached via other nodes.

The application layer provides the possibility to send messages to groups of
nodes. Furthermore, the application layer can map between different addressing
methods [14, 15]. Additionally, the application framework layer provides map-
ping between different manufacturers services. The interested reader can refer
to [14] for more information.

The 802.15.4 protocol has support for unicast and broadcast messages. The
802.15.4 protocol does not have any functionality for sending acknowledgement
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packets for broadcast messages.

2.5.1 libxbee

Libxbee is an open source C/C++ library to aid the use of Digi’s XBee radios
running in API mode. Libxbee supports various Zigbee radios from Digi.

Below, the main classes used from the library are described.

• libxbee::XBee(std::string mode, std::string device, int baudrate)

This class opens the hardware unit. The Xbee constructor takes param-
eters to specify the mode, the device and the baudrate to be used. The
device is specified as the serial port which the node is connected to. The
Xbee instance can be created in different modes. The mode of the XStick
is ”xbee1”. Digi offers other Zigbee devices which also could be used with
libxbee and some of them use different modes.

• libxbee::ConCallback(XBee &parent, std::string type, struct

xbee conAddress *address)

This class is a super class, which takes a reference to the Xbee instance
used for communication, the type of the connection and the address of
the remote xbee unit to create the connection to. The address is speci-
fied with a pointer to a xbee conAddress struct. The different types of
connections used in this projects are ”AT” and ”64-bit data”. The ”AT”
mode is created to the local device, and this connection can be used to
send commands to the xbee unit. Examples include commands for retriev-
ing the address of the local unit, or commands to get/set different settings
in the unit. The ”64-bit data” type connection is used with remote xbee
units, and this type is used for sending the data. This class has a virtual
method xbee conCallback(libxbee::Pkt** pkt) which the inheriting
class needs to implement. The method xbee conCallback(libxbee::Pkt**

pkt) is called for each packet that is received by the connection.

• libxbee::Pkt

This is libxbee’s representation of a packet. This holds a pointer to the
data contained in the packet together with the length of the data. There
is a limit of 100 bytes for each packet.

See https://code.google.com/p/libxbee/ for more info.

2.5.2 Automatic Repeat-reQuest

Both the MAC layer of the 802.15.4 protocol, and the libxbee library imple-
ments a stop-and-wait protocol. The stop-and-wait protocol implements a
scheme where the transmitter waits for an acknowledgement message from the
receiver [16]. The stop and wait protocol is favourable because of its simple
design, but the time spent waiting for the acknowledgement package decreases
the throughput compared to other schemes.
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2.6 ASN.1

”Abstract Syntax Notation number One is a standard that defines a formalism
for the specification of abstract data types” [17]. ASN.1 is standardized in ISO
8824 and ISO 8825 [17]. The definitions written with the ASN.1 syntax are
encoded using encoding rules, which are a part of the ASN.1 standard. The
following text presents a brief description of the encoding rules.

2.6.1 Basic encoding rules (BER)

The basic encoding rules use three different types to encode the data.

• Primitive type.

Examples includes INT (ASN.1 type: INTEGER) and double (ASN.1 type:
REAL).

• Constructed, definite- length encoding

The constructed type is a type constructed from other primitive types.
An example could be a structure to hold a record of a measurement, and
the date when the measurement was recorded. The length of the encoded
data from this type is always known. The definition for such a type is
shown below.

Measurement ::= SEQUENCE {

year INTEGER,

month INTEGER,

day INTEGER,

value REAL

}

• Constructed, indefinite-length encoding

The constructed indefinite length type is similar to the type above, but it
also has one member where the length is not explicitly set in a field. The
end of the type is instead set by a pre-defined end octet.

The above types are all encoded in series of octets. The different kinds of
octets encoded are described below.

• Identifier octets.

These octets sets the class of the ASN.1 value. It also tells the decoder if
the type is primitive or constructed by setting bit six to 0 or 1, respectively.

• Length octets.

For the definite-length methods, this set of octets sets the length of the
encoded data. The constructed, indefinite-length method does not have
a specified length, and this is signalled using a pre-defined value of the
length octet. The length octet(s) can be in either short or long form.
If the short form is used, then there is only one length octet, with bit
number 8 set to 0 and bit 0 to 7 setting the actual length. If bit 8 is set
to 1, then the long form is used. Bit 0 to 7 then sets the length of the
length octets. The length octets can therefore be encoded with two up till
127 octets using the long form. The following octets are the actual length
octets. [18]
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• Contents octets.

When the method to encode a type is the primitive, definite-length method,
these octets represents the value of the type encoded. For the constructed
methods, these octets contain the encoded types.

• End-of-contents octet.

When the length is not set explicitly (constructed, indefinite- length method),
then this octet signals that the end of the encoded data is reached. The
octet used for this is 00. This octet is not used if the method is one where
the length is explicitly encoded.

2.6.2 Distinguished encoding rules

The distinguished encoding rules (DER) is a subset of the basic encoding rules.
With DER, only one way exists to encode a certain type, which is not the
case with BER, where a type can be encoded in different ways. DER is for
example used with digital signatures. The DER is compatible with the BER,
and therefore a DER encoded stream can be decoded with a decoder using BER.

2.6.3 Asn1.c compiler

The ASN.1 compiler from http://lionet.info/asn1c/ is a compiler that lets the
user compile ASN1 definitions into a set of .c and .h files. The .c and .h files
contains equivalent structures of those defined. These structures are then used
to set the data to be encoded. The compiler will also produce some native types
that the structures use, along with C-functions to encode/decode the data that
are sent over the link.

2.7 Hardware Components

The testbed consists of Beaglebone Black single board computers equipped with
Zigbee USB dongles. In the following chapter a description of these hardware
components is given.

2.7.1 Beaglebone black

The Beaglebone Black is a low-cost, credit-card sized computer from Beagle-
board. The board comes with an ethernet connector, and this is used to connect
the board to a switch. The board is then accessed via SSH. The Beaglebone
Black can also be connected to a monitor via an HDMI connector. The board
can act as both USB client and host. When using it as a host, the USB hardware
must be connected when the board is powered up. The client mode can be used
as a power supply, and it is also possible to connect it to a desktop computer
and gain access to the board via SSH via a USB to ethernet adapter that is
pre-installed in the board. The board comes with an operating system called
Angstrom. Angstrom is a Linux distribution made specially for embedded sys-
tems. The board also comes with a microSD card reader, and other operating
systems can be used by booting from a card with the OS image. The board
measures 86.36mm x 53.34mm and the cost is approximately 45 USD. [19]

Other properties:
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• AM335x 1GHz ARM Cortex-A8

• 512MB DDR3 RAM

• 2GB 8-bit eMMC on-board flash storage

• NEON floating-point accelerator

• 2x PRU 32-bit micro-controllers

• 2 x 46 pin headers

More information can be found at http://beagleboard.org.

Figure 8: Beaglebone Black.

2.7.2 XStick

The Zigbee unit used for transmission is the XStick 802.15.4 from Digi Interna-
tional.

Properties [20]:

• Operation range is 15 m

• Transmits at 1 mW (0dBm)

• Transmit and receive current is 64 mA

• Serial interface data rate is supported up to 115.2 Kbps.
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Figure 9: Xstick from Digi.

The XStick provides retries on top of the retries in the MAC layer. The
number of retries can be set to a value between zero and six. For each XStick
retry, there are three MAC layer retries.

The XStick presents itself as a serial port in /dev/tty/USBx where x is a
number starting from 0. The XStick can be configured via the X-CTU software
available form Digi’s webpage1. The XStick can also be opened in AT-Mode
(Attention), and different settings can then be changed by sending strings with
commands to the port connected to the XStick. Examples of settings that can
be changed are datarate and addressing.

See Appendix B for the configuration settings used for the XStick.

3 Design space

In figure 10 a drawing of the known topology of the different nodes in the testbed
is shown. To the far left is the camera node. The camera node is connected to
a camera. The camera is then able to communicate via Zigbee with the other
nodes. The processing nodes sends the result to a sink node, which has a a
TCP-connection to a server. [10]

3.1 Key functionality

The following chapter describes the schemes implemented in the testbed follow-
ing the descriptions in [10], and how the testbed can be extended to include
other schemes.

3.1.1 Area-split and scale-split

• Area-split

1http://www.digi.com/
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Figure 10: Topology of the testbed nodes. The camera node is connected to a
camera. The camera node and the sink node also have a mutual xbee connection
(not shown in the picture). The sink node is connected to a server via a TCP
connection. The server application is not part of the testbed.

The testbed should support the area split scheme when creating tasks.
The area split scheme divides the image in equally large areas, called
regions of interest (roi). The roi is the area for which each node should
detect keypoints and compute descriptors. The image data for the roi’s
are transmitted to each node, or, the whole image is transmitted and a
parameter to set the roi is transmitted.

In the case of an area split, where each processing node is assigned an area
to detect keypoints in, it is important to distribute not only the sub image
that the processing node is assigned. The camera node also needs to dis-
tribute a portion of the area surrounding each image, because the filters are
overlapping in adjacent areas. If this is not done, the detection/extraction
process will zero-pad the adjacent area, and then the results will not be
the same as if keypoints and descriptors had been computed locally on the
whole image.

The following section discusses other schemes to create tasks
(not implemented).

• Scale split The computing tasks can also be created by separating detec-
tion at various scales between the nodes. In this method, one node could
for example only detect keypoints in the lowest octave, the second node
would only detect keypoints in the second octave, and so on. The majority
of keypoints are found in the first octave [10]. To distribute the comput-
ing load evenly, the detection of keypoints and extraction of descriptors in
the first octave could be distributed to multiple processing nodes, while
detection/extraction in higher octaves is performed by a smaller set of
nodes.

3.1.2 Processing in camera node

The keypoints and features described in 2.3.2 can be computed in various nodes,
as described in [10]. The following scheme is supported in the testbed.

• No detection / extraction in camera

With this scheme, the camera node is only responsible for capturing the
image and then creating computing tasks for the image. The image and the
tasks are then distributed to the different processing nodes. The camera
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does not have any information about the load that the task will put on
the node, except for the size of the sub image that the node should detect
keypoints in. This is the method that is implemented in the testbed.

The following text discusses other extraction schemes. They
could possibly be implemented in a future version of the testbed.

• Detection at the camera node

If the image is divided in separate areas, and one area is assigned to each
processing node, it is possible that only a few keypoints are found in
the part of the image that is assigned to one processing node. Another
processing node might detect a large number of keypoints, making the
computing load uneven among the different nodes. One way to distribute
the tasks so that the computing load is more balanced, is to perform the
detection in the camera. This way the number of keypoints, and where
in the image the keypoints are located, would be known before the tasks
are sent to the different processing nodes. Each processing node would
then be assigned the same number of keypoints to compute descriptors
for. This way, the camera node would distribute keypoints to compute
descriptors for more evenly among the processing nodes.

• Detection and partial extraction at the camera node

The camera could also compute the descriptors for the interest points
found in certain layers, and then assign other layers to other nodes. If
only the data for the part of the image where the nodes region of interest
is located is transmitted to each node, then this could be an advantage.
Then, the camera node would detect keypoints in the layers that need to
use larger filter sizes, and leave the smaller filter sizes to the processing
nodes. In this case the overlapping area around each region of interest is
decreased, hence, a smaller image can be transmitted to each node.

3.1.3 Separation of control and data

Efficient communication between nodes is important for a fast and extendible
testbed. Separation between data messages, and control messages facilitates
distribution of tasks and results. The testbed should be implemented with sep-
arated messages for data and control messages. An example of a data message
is an image and an example of a control message is a command to detect key-
points for an image. If these two message are kept separate, additional control
messages can be sent, and those control messages can refer to already received
data. If data and control were sent jointly, an image would be sent with each
message to detect keypoints or extract descriptors, thus, dramatically increasing
the amount of data that is sent from the camera node.

3.1.4 Dynamic configuration of the off-loading scheme from the server
node

The objects in an image are not necessarily located such that each processing
node is assigned a task so that the computing load is distributed evenly. One use
case could be when a series of images is to be processed. If the series of images
is taken within a relatively short interval, then the location of the object is
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probably correlated between the images. If one object produces a large amount
of keypoints, and if the node that is assigned the region where the object is
located also should compute descriptors for the keypoints, then that processing
nodes computation load will be large for consecutive images. If a new picture
is taken within a small time interval the system could assign that region to
another node, thus distributing the high computational tasks to different nodes.
To facilitate this, timing info is added to a completed task before it is sent to
the server. The server could then compare the timing info in each task for an
image, and with this information it is possible to approximate the computing
load in each node.

4 System Design

A node can have the role as a camera, as a processing nodes, or as a sink node.
Each node is identified by a variable nodeid. When the application is started
it is given a list of the different nodes in the system which also sets the role of
each node. Zigbee connections are created to all of the other nodes in the list,
and if the node is acting as sink node, the application also tries to connect to
an open TCP socket in the server.

4.1 Testbed workflow

The following text describes the work flow in each node, from the command to
capture an image and process it, to sending the results to the server for object
matching.

Figure 11: Sequence diagram for the initial commands to take a picture. Bold
arrows represents a synchronous call and an outlined arrow represents an asyn-
chronous call (an outlined arrow is an arrow which is not ”filled”). A dashed
line represents communication to another node.

1. The server sends a command to the sink node to capture an image. See
Figure 11.

2. The sink node sends the message onwards to the camera node. See Figure
11.

3. The camera node receives the message, and captures the image.

4. The image is then broadcast from the camera node to all other nodes
(including the sink node)
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5. The camera node creates tasks for the image according to the setting for
creating tasks.

6. The tasks are added to a queue, and one by one the tasks are checked if
they have been executed (they have not, but the queue is also used for
received tasks). If they haven’t been executed, the identifier that tells the
application which node that is the executing node is compared to the node
identifier of the node where the application is run. If the tasks should be
executed at the camera, then the node adds it to the queue for execution.
If the node to execute the task is another node, it is sent to that node. If
a task is completely executed then the task is sent to the sink node.

7. The processing nodes receive a task and the task is added to the same
queue described in the previous step.

8. The sink node receives a task and the task is also in this case added to
the same queue described in the previous step. Because this is the sink
node it is not sent to the sink node, it is instead added to the structure
for saving completed tasks for a particular image, along with information
about what time the completed task is received. When a new task is
received, the node performs a check to see if all the tasks for that image
are received. If they are, the result is sent to the server via the TCP
connection.

4.2 Class layout

The following section describes the different classes and their relation to each
other.

Figure 12: Overview of classes and their relation to each other. An arrow from
one class to another means that the first class has a pointer to an instance of
the second class. Two classes that have a pointer to a class does not necessarily
share the same instance of the class.
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4.2.1 NodeManager

Figure 13 shows an overview of the NodeManager class. The NodeManager is
the central class of the application. An instance of the DfeSettings class is
input to the constructor of the NodeManager. The NodeManager retrieves the
nodeid from the xbee unit. The NodeManager identifies the role of the node in
the testbed depending on which identifier is set to each role in the settings. The
NodeManager then creates the different classes needed for the role in question.
The nodeid is also used during the various operations to make different choices
depending on the role of the node. For example; a connection to a server is only
created if the nodeid matches the nodeid in the settings that is specified as the
sink node. The NodeManager creates the libxbee instance, and will then input a
pointer to this instance when each instance of the Connection class is created.

Figure 13: UML class diagram of the NodeManager class.

4.2.2 Connection

Figure 14: UML class diagram of the Connection class.

Figure 14 shows an overview of the Connection class. The Connection

class inherits from the libxbee superclass ConCallback. The ConCallback is a
C++ interface of libxbee’s c-functions. The constructor takes a pointer to the
instance of Xbee (which is connected to the hardware), and the adress of the
remote xbee unit to create a connection to. The Connection that inherits from
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the ConCallback superclass has to implement a method xbee conCallback(

libxbee::Pkt** pkt ). This method will be called for each packet received.
The ConCallback can also be created with an address that specifies a broad-

cast transmit. Packets received from a broadcast transmit will also cause the
callback method to be called for each packet.

If a second packet is received, the callback for the second packet is called
when the callback triggered from the first packet has returned. When the
callback is called for a newly received packet, the Connection class method
ConCallback adds a pointer to the packet to a queue available in the Connection
class own instance of the Receiver class. The callback can then return and a
new packet can be processed. This way, consecutive packets can be processed
directly without being held up, waiting for a callback that was triggered from a
previous packet to return.

4.2.3 Receiver

Figure 15: UML class diagram of the Receiver class.

Figure 15 shows an overview of the Receiver class. One instance of the
Receiver is created for each connection. The receiver also creates an instance
of the Decoder class.

The Receiver fetches pointers to packets from its internal queue. The packet
header in each packet is decoded, and the packet number and the number of
total packets that this packet belongs to is read. For each batch of packets, i.e
packets that have the same number of total packets, the Receiver creates an
instance of the ReceiveItem class, and then adds the packet that belongs to
this batch to the ReceiveItem instance. As long as a received packet have the
same number of total packets, it is added to the same instance. If the last packet
is received, the receiver calls a method in the ReceiveItem class to check if all
packets have been received. If so, the RecevieItem is used to concatenate the
data in the packets, and then the Decoder is used to decode the data divided
among the multiple packets. When the information in the data is decoded, the
Receiver will processes the data accordingly.

24



Figure 16: Sequence diagram for the Receiver::DoStuffToObject. The method names that do not have a namespace preceding the name
belong to the Receiver. Bold arrows represent a synchronous call and an outlined arrow represents an asynchronous call.
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As specified in the ASN.1-defintion file, shown in section 4.3, the different
messages that can be decoded by the receiver are listed below, along with the
actions that are performed upon receiving them.

• An image.

Upon receiving an image the receiver will call the ImageManager to create
the image. The ImageManager will also add it to its ”library”. See Figure
17.

Figure 17: Sequence diagram for the case when an image is received in the
Receiver. The method names that do not have a namespace preceding the
name belong to the ImageManager. Bold arrows represents a synchronous call
and an outlined arrow represent an asynchronous call.

• A task to find keypoints and/or compute descriptors for the keypoints.

The Receiver will call the ImageManager to get a pointer to the image
that should be available at the receiver before the task for the image is
received. If the image is available, then the task manager is called to create
the task and take further action. If the image is not available, then no
task is created. See figure 18. Functionality to take actions when an image
cannot be found can be added here. For example, a task that could not be
paired with its image could be saved to the TaskManager for processing in
the future when the missing image is finally received.

The task received can be an already finished task, and if that is the case
the node where the application is running should be the sink node. The
task is still added to the TaskManager, and the TaskManager is responsible
to process it accordingly.

• A message to take a new picture.

The receiver will call a method in the NodeManager to take a picture. The
NodeManager will then call necessary methods to capture and process the
image.

26



Figure 18: Sequence diagram for the case when a task is received in the Receiver.
The method names that do not have a namespace preceding the name belong
to the TaskManager. Bold arrows represent a synchronous call and an outlined
arrow represents an asynchronous call.

• A message about a finished task.

The receiver will call the TaskManager method to delete the task from its
bookkeeping.

4.2.4 ReceiveItem

Figure 19: UML class diagram of the ReceiveItem class.

The stop and wait mechanism should ensure that a packet is acknowledged
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when it is received. Also, a new packet should not be sent before the previous
packet is received, or if all the retries time out. So, if all packets were successfully
sent then the packets should have arrived in the correct order. However, the
same functionality is not possible when data is broadcast, since there are no
acknowledgement packets sent. The ReceiveItem class is used to store packets
that are received. The class contains methods to check if packets are lost or if
a packet has already been received. These methods are used before decoding
to make sure that all the data is present. If a packet is lost, and the data of
the received packets are concatenated as the packets arrive, then it will not be
possible to decode the data. The same problem arises when a packet is received
multiple times and no checking is done if the data have already been received.

The Receiver creates an instance of the ReceiveItem class for each batch
of packets. An overview is shown in figure 19. When a new packet is received,
the packet is added to the instance of the ReceiveItem class. If the packet
already has been received, it is discarded. When the last packet in the class
is received the ReceiveItem class can be called to check if all the packets have
been received. This class can be used to implement various automatic repeat
request schemes. For example; if all frames were not received, the class can be
used to detect which packets that were not received, and then send a request to
the sender to re-send those packets.

4.2.5 DfeImage

The DfeImage class is mainly just a wrapper around the OpenCV Mat class.
The DfeImage class adds an identifier to the image. There are also methods for
serializing the Mat data.

4.2.6 ImgTask

The class ImgTask is the class that creates instances of classes from the OpenCv
library used to detect the keypoints and to compute the descriptors. An overview
of the ImgTask is shown in figure 20. The results from the SURF operations are
stored in internal variables in the class. The class also implements functionality
to fill a struct needed for serializing the class with the ASN.1 encoding scheme.
Other methods in the class include functionality to compute the number of pix-
els that a region of interest needs to be extended with. This is to make sure that
there is no unnecessary zero padding because of missing values when filtering
the image with the box filters used in the keypoint detection and descriptor
computation.

The ImgTask class inherits from an interface, and this interface is used as
input/output type for a task. This will facilitate for other types of tasks to be
added in the future. OpenCv includes other feature extraction algorithms like
SIFT, which could be added to extend the family of supported algorithms by
creating a new class and inherit from the interface.

4.2.7 ImageManager

The ImageManager class is used to store images received or created in the node.
An overview is shown in figure 21. The camera node will send the image in
a separate message when distributing tasks to the nodes. The image that is
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Figure 20: UML class diagram of the ImgTask class.

processed is broadcast to all the nodes, and then the task to be carried out by
each node is sent separately. Therefore, the image that the task is to be carried
out on is received first. When the Receiver receives an image, it is sent to the
ImageManager. The ImageManager adds it to its internal structure, identifying
it with its id. When a task is received, the task identifies the image to operate
on by its id. This id is input to the ImageManager which will return a pointer
to the image that the tasks should be carried out on. This way, an image only
need to be transferred once to all nodes, instead it being transferred together
with the task.

The ImageManager also has methods to capture an image from the camera,
or from an already existing file.
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Figure 21: UML class diagram of the ImageManager class.

4.2.8 TaskCreator

Figure 22: UML class diagram of the TaskCreator class.

The class TaskCreator is responsible for creating tasks for an image and
a set of nodes. An overview is shown in figure 22. The TaskCreator class
will divide the image in regions of interest, and create tasks with the supplied
detection / extraction parameters.

4.2.9 TaskManager

Received or created tasks are added to the TaskManager, which is a subclass to
the ThreadedQueue. An overview of the TaskManager class is shown in figure
23. The task manager is responsible for deletion of all tasks that are still in
memory when the application terminates. The TaskManager adds all tasks to
its own queue, and a separate thread fetches tasks from the queue and processes
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Figure 23: UML class diagram of the TaskManager class.

them in the method DoStuffToObject, which is implemented by all subclasses
to the ThreadedQueue. See figure 24. This way, the method that added the
task does not have to wait until the task is processed. The TaskManager re-
sponsibility is not to actually carry out the detection / extraction for the tasks.
The TaskManager checks if the tasks are to be carried out at this node or at
another node. If a task is to be carried out at this node then it is added to the
TaskExecuter. If the task is supposed to be carried out at another node, then
the task is sent to that node. If the task is completed, then the task is added
to an instance of the CompletedTasks class that corresponds to the image id of
the task. If all tasks for the image are completed, then the TaskManager will
call the appropriate method of the TcpSender to send the results to the server.
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Figure 24: Sequence diagram for TaskManager::DoStuffToObject. The method names that do not have a namespace preceding the name
belong to the TaskManager. Bold arrows represents a synchronous call and an outlined arrow represent an asynchronous call. A dashed
line represents communication to another node.

32



4.2.10 TaskExecturer

Figure 25: UML class diagram of the TaskExecuter class.

As the name indicates, this class is responsible for execution of tasks. The
TaskExecuter is a sub-class to the ThreadedQueue, and an overview is shown in
figure 25. Tasks that should be executed at the node are added to the queue in
the TaskExecuter. This way, the TaskManager can add tasks to the queue and
then return to process the next task. The next task could be a task that is to
be executed at another node. If the TaskExecuter did not have a queue and a
thread working on the tasks in the queue, then the TaskManager would be kept
waiting while the task was executed. Other tasks waiting to be processed by the
TaskManager would then be held up, and not sent until the first task had been
executed. When the thread that executes tasks from the queue has executed a
task, and the task is completely executed, then the task is sent to the sink node.
If descriptors should be computed in another node, then the task is sent to that
node. See figure 26. It should be very simple to add the possibility to execute
tasks at the sink node. This could be advantageous since the sink node is mostly
idle when the processing nodes are doing work. The TaskExecuter would then
pass the executed task back to the TaskManager. The TaskManager will detect
that it is executed, and add it to the correct instance of the CompletedTasks

class. See section 4.2.11.
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Figure 26: Sequence diagram for TaskExecuter::Execute. The method names that do not have a namespace preceding the name belong
to the TaskExecuter. Bold arrows represents a synchronous call and an outlined arrow represent an asynchronous call. A dashed line
represents communication to another node.
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4.2.11 CompletedTasks

Figure 27: UML class diagram of the CompletedTasks class.

The CompletedTasks class has functionality to store pointers to executed
tasks, an overview of the methods for this class is shown in figure 27. Only tasks
that originate from the same image can be added to the same instance of this
class . A task that is pointing to an image with another id compared to tasks
added prior cannot be added. When a completed task is added, a timestamp is
added to the completed task. This can be used to estimate the processing load
in the different nodes. The CompletedTasks class also implements a method
to check if all tasks for the image have been added. The method computes
the total area of the regions of interests of the completed tasks. If the size of
this area is the same size as the area of the image, then all tasks must have
been completed. The class also implements a method to fill an ASN.1-structure
needed to serialize the completed tasks along with the timing info.

4.2.12 Encoder

Figure 28: UML class diagram of the Encoder class.

To encode, the Encoder implements one method for each of the different
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types that need to be serialized. An overview of the class is shown in figure 28.
The Encoder is just a wrapper around the c-functions generated by the Asn1c
compiler. If another type of encoder should be used, only this class needs to
be changed. The Encoder adds a small header to the encoded array that sets
which type that is encoded. This way the type can be identified when the array
is to be decoded. The objects that is input to the Encoder is hereby encoded
as the same type, so when the array is decoded, it can be decoded as the same
type, and then a series of octets tells the decoder what type that follows.

4.2.13 Sender

Figure 29: UML class diagram of the Sender class.

The Sender class implements a template method to send objects. An overview
of the class is shown in figure 29. The Sender class creates its own instance of
the Encoder class, and this class is used to encode the different objects. By hav-
ing the send method taking a template as input parameter, it is easy to extend
the Sender’s capability to send other types of objects. When the Sender has
encoded the object into an array of bytes, the Sender will create an instance of
the SendItem class. This class takes an array of data and divides it into packets.
The Sender class is a sub class to the ThreadedQueue, and the ThreadedQueue
protects its internal queue with mutexes, so the Sender’s send method can be
called from multiple places without the risk of a deadlock. Also, by having the
Sender fetch data to be sent from a queue, the method that is sending an object
can return directly after the SendItem is created and added to the queue. See
figure 30 and figure 31. Hence, the calling method does not have to wait until
the data are sent.

4.2.14 Decoder

The Decoder takes a pointer to data and the length of the data. An overview
is shown in figure 32. The decoder returns a struct, with one field pointing to
the decoded object, and one field that says what type of object that has been
decoded.

4.2.15 TcpClient, TcpSender, TcpReceiver

The TcpSender and the TcpReceiver is used in the sink node to connect to the
server through a TCP connection. The TcpClient initializes and connects to
the socket. The TcpClient then creates an instance of the TcpSender and an
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Figure 30: Sequence diagram for Sender::Send(). The ”external” method could
be any method that has access to an instance of the Sender. The SendItem call
creates an instance of a SendItem. Bold arrows represents a synchronous call
and an outlined arrow represents an asynchronous call.

Figure 31: Sequence diagram for the method that is executed for each object in
the senders internal queue. Bold arrows represents a synchronous call and an
outlined arrow represents an asynchronous call.

Figure 32: UML class diagram of the Decoder class.

instance of the TcpReceiver. A pointer to the socket created by the TcpClient
is passed to the TcpReceiver and the TcpSender when they are created. The
TcpClient is only created if the node is the sink node. An overview of the three
classes is shown in figure 33.

The TcpSender is a subclass to the ThreadedQueue. When the method to
send an object is called, the TcpSender encodes the object using its own instance
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Figure 33: UML class diagrams of the TcpClient, TcpSender and TcpReceiver
classes.

of the Encoder. The TcpSender creates a struct with a pointer to the encoded
data and the length of the encoded data. This struct is then added to the queue
implemented in the ThreadedQueue class. The TcpSender then implements a
method that is called for each object in the queue, and this method sends the
data pointed to by each struct.

The TcpReceiver creates a thread and runs a method that reads from the
socket that is input to the TcpReceiver when it is created. The TcpReceiver

has access to a pointer to the Sender class created by the NodeManager, and
can with this pointer send messages to nodes that are received by the sink node.
For example, when a message to capture an image is received, the sink node
sends this message to the camera node via the Sender.

4.2.16 DfeSettings

To facilitate different parameters, a settings class is available. The class im-
plements methods used to parse a settings file. An overview is shown in figure
34. A similar class for settings related to the SURF algorithm is available. This
class should come to use if the application is extended with other functionalities,
where the user would like to change between different settings, and to automate
test related to the functionality. An example of a settings file is

capture_from_camera=0
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path_to_image=../resources/box.png

resize_image=1

resize_ratio=0.5

camera_node_id=0013A200409B095E

node_ids=

0013A200409B0990

0013A200409B0AAD

ENDOFLIST

sink_node_id=0013A200409B5E34

port=54321

extended=0

hessianThreshold=3000

nOctaveLayers=3

nOctaves=4

upright=0

END

Figure 34: UML class diagram of the DfeSettings class.

4.2.17 ThreadedQueue

Threads are used in multiple classes for the application. An overview of the
superclass ThreadedQueue is shown in figure 35, which forms the base for all
threaded queues in the application. The class presents a method to add tasks
to the queue, so if one would like to change the inner representation of the
queue, then it is possible without breaking other parts in the application. The
TaskExecuter inherits from this class so that a thread continuously fetches
tasks from a queue where tasks to be executed have been added. The Sender

also inherits from the ThreadedQueue class. The objects to be sent are added
to the queue and the thread then fetches the objects in the queue and calls the
method implemented in the Sender to send them to the connection specified.
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Figure 35: UML class diagram of the ThreadedQueue class.

4.3 ASN.1-types

The type used for sending image data is the MatAsn type.

MatAsn ::= SEQUENCE {

numrows INTEGER,

numcols INTEGER,

type INTEGER,

data BIT STRING

}

It includes fields for setting the number of rows, the number of columns, the
type of the data stored at each index in the matrix and a pointer to the data.
To recreate the OpenCv core type Mat, the Mat class presents a constructor
that takes these four parameters. The length of the data stored at the pointer
position can then be computed with

l = bitdepth/bitperbyte ∗ cols ∗ rows ∗ channels. (8)

For example, consider the OpenCV type CV 16SC3, which defines an image
where each element has:

• bitdepth = 16

• channels = 3

With bitperbyte = 8 and an image with cols = 10 and rows = 20, the length
of the data is 1200 bytes.

The full definition of the various ASN.1 types can be viewed in appendix A.

4.4 Overhead in packets

The type used for sending packets is the PktHeaderAsn type. The ASN.1 defi-
nition of this type is
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PktHeaderAsn ::= SEQUENCE {

pktnum INTEGER,

totpkts INTEGER,

typeheaderasn BIT STRING

}

Libxbee has limited the packet size to 100 bytes, so the SEQUENCE type,
the field to set the packet number, the number of total packets, and the data
in the BIT STRING type, cannot exceed 100 bytes. In the following subsection
an analysis of each components contribution to the size of the packet header is
made.

The SEQUENCE type includes one identifier to set the type and this identifier
is one octet long. The following octet is the length octet. The total length of
the packet cannot exceed 100 so the short form is sufficient for the length, see
section 2.6.1. The total amount of octets for the SEQUENCE is therefore two.

The pktnum and the totpkts are both INTEGERS. The identifier for an
INTEGER is an octet with value 0x02. The maximum value that can be en-
coded into the field is limited by the testbed to 65535. The length octet of an
INTEGER therefore requires one octet, see section 2.6.1. Encoding the pktnum

and the totpkts value will require one octet if the value is below 128, and two
octets if the value is 128 or above [21] [18]. Three octets will therefore be used
by the pktnum and the totpkts fields at least, and four octets at the most.

The BIT STRING type is identified with the value 0x03, which takes up one
octet. Since the maximum size of the whole packet is 100 bytes, the length
octet of the BIT STRING can be encoded with the short form, thus taking up
one byte, see section 2.6.1. The length of the data in the BIT STRING can also
never be above 127 bytes. The length of the data can therefore be encoded
with one byte, plus one byte for setting the amount of bits not used in the last
byte. This results in two bytes needed to encode the data length field of the
BIT STRING. This gives us three bytes total for the BIT STRING.

The BIT STRING type could possibly be changed to an ASN.1 type that does
not have the option to set unused bits, since the data that is encoded always
takes up an even amount of bytes. This is true not only for the PktHeaderAsn

type

Name Size (min) Size (max)

SEQUENCE 2 2
pktnum INTEGER 3 4
totpkts INTEGER 3 4

typeheaderasn BIT STRING 3 3
Total 11 13

Consequently, the packet header takes up 11 bytes at its minimum, and 13
bytes at its maximum. The amount of data that can be sent within each packet
is then 89 bytes to 87 bytes, depending on the total number of packets and the
packet number. The current encoding method always adds 87 bytes of data to
each packet. Logic to determine if one byte is used to encode the INTEGER’s
value could be added to pack one extra byte in the data array for each INTEGER

type that has a value of 127 or less.
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4.5 Maximum supported data size

A maximum packet number of 65535 for the packet number limits the maximum
data size for a type to be sent. With 87 bytes per packet, and a maximum of
65535 packets, the largest data array that can be transmitted is 87 times 65535,
which is 5701545 bytes.

5 Experimental results

To evaluate the testbed in a situation that resembles a network of sensor nodes,
the CPU power is limited in each Beaglebone to 5% of the CPU power. This
is done by using the software CPUlimit 2. When CPUlimit is started it takes
an argument where one specifies the executable that should have limited CPU
power. The BeagleBone Black has a CPU at 1 GHz, and limiting it to 5% gives
us an effective CPU of 5 MHz, which is in the range of a sensor node.

5.1 802.15.4 Data rate measurement

The XStick operates in the 2.4 GHz band [20], and at this frequency the maxi-
mum over-the-air data rate is 250 kbps. Due to overhead in the Zigbee protocol
the actual theoretical maximum data rate is approximately half of that [22].
The evaluation was performed with a baud of 9600 bits per second. The reason
for using a lower baud between the Xstick and the Beaglebone is that many
packet losses was observed when using a higher rate.

With approximately 100 bytes in each packet, the image of size 223x324 is
transferred with 813 packets (the image data takes up 223 · 324 · 8 = 578016
bits). With 813 · 102 bytes transferred in 155 seconds, we have a data rate
of 813 · 102· 8 bits / 155 s ≈ 4.2 kbits / s. The ratio between the theoretical
maximum data rate and the data rate of the testbed is then 4.2 kbits / 125 kbits
≈ 0.034. One parameter that is decreasing the data rate is the lowered data
rate between the Xstick and the Beaglebone Black. The Xstick supports a data
rate up to 115200 bits per second, and when tests where performed on a desktop
computer using a baud of 115200 then the 223x324 image could be transferred
in 54 seconds. The ratio between the over-the-air data rate and the maximum
theoretical over-the-air data rate, using a baud of 115200, is then approximately
0.1 3. If a protocol for resending packets that are dropped is implemented, then
it is possible to use a higher data rate between the XStick and the Beaglebone,
and thereby increasing the available over-the-air data rate.

The data rate was also measured when the processing power of the Beagle-
bone was not limited. The image in the previous example was then transferred
in 153 seconds, so the decreased processing power does not have such a high
impact on the over-the-air data rate.

The observed data rate is the same for both broadcasting and direct ad-
dressing.

2http://cpulimit.sourceforge.net/
3The author of libxbee has also performed an evaluation of the over-the-air data rate, using

a Xbee series 1 module with a baud rate of 57600. The speed was then 12.73 kb/s
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5.2 Distributed keypoint detection and descriptor extrac-

tion performance

In this section the results from an evaluation of the system in terms of time
consumed at different stages is presented. The different stages that are clocked
are:

• Time taken to transfer an image

• Time taken to detect keypoints

• Time taken to compute descriptors

• Time taken to transfer a completed task

The image used for evaluation is the image used to detect keypoints, shown
in figure 4. The system is evaluated at the Hessian thresholds 100, 500, 1000,
1500, 2000, 2500 and 3000, for each of the image sizes 223 x 324, 112 x 162 and
55 x 81. One processing node was used. The SURF settings used are:

• extended = false

• nOctaveLayers = 3

• nOctaves = 4

• upright = false

The results shown in figure 36 shows that the time to transfer the image is
proportional to the image size.

The number of keypoints found for each image and value of the Hessian
threshold is shown in figure 37. For an image size of 223x324 and 111x162, one
can see an abrupt decrease in the number of keypoints found between a Hessian
threshold of 100 and 500. This change is not so large in 55x81. The reduced
amount of filters used in 55x81 decrease the amount of results, so there are
not so many keypoints found with a low response value, and this reduces the
amount of keypoints in the interval 100 to 500. The amount of keypoints found
is larger for larger images, but it is not proportional to the image size. This is
also because of the filter sizes that can not be fitted in the smaller image, thus,
keypoints at larger scales cannot be found because there is simply not enough
pixels to detect them.

The time to detect keypoints is larger for larger image sizes obviously, but
the time taken to compute the keypoints is not proportional to the image size.
This is because the filter sizes that do not fit in the smaller images are not used,
hence decreasing the effective amount of filters. In figure 38 we can also see
that the time spent on detecting keypoints is also dependent on the value of the
Hessian threshold. From this we can say that there must be some optimizing
functionality in OpenCV to speed up the process when the threshold is larger.

The time spent on computing descriptors is shown in figure 39. The time
spent on computing descriptors is linearly proportional to the amount of key-
points found within the image. This is expected since one descriptor is computed
for every keypoint found. The time it takes to compute descriptors is however
dependent on the image size. One can for example see that at approximately
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Figure 36: The amount of time spent transferring images of different size.

200 keypoints the time taken to compute descriptors is different for the 223x324
image compared to the 111x162 image. This is probably because that there are
more keypoints found at a larger scale in the 223x324 image, and computing
descriptors for larger areas is more time consuming. This needs to be verified
however.

The time spent on transferring keypoints and descriptors is shown in figure
40. Similar to the proportionality in time taken to transfer the image relative
to image size, the time taken to transfer the detected keypoints and computed
descriptors is proportional to the amount of keypoints found.

Figure 41 shows the total time spent on transmitting image and results data,
and the total time spent on processing in each processing node. Time spent on
transferring data is larger for every image size, so no speed-up in processing time
is gained with a distributed system. However, there is no necessity for a central
server, so one could possibly accept the increased processing time in favour of a
more simple system. If different compression techniques is applied to the image
data and the keypoints / descriptors, the time spent on transferring data could
be decreased. Keypoint data are transferred to the sink node, though some
matching algorithms only use the descriptor data with no information about
where in the image the descriptors was computed [23]. To further decrease the
amount of data needed to be transmitted, the keypoint information could be
left out when sending results to the sink node. See section 5.1 for a discussion
about the data rate of the testbed.
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Figure 37: The number of keypoints found for each image and for different
values of the Hessian threshold.

5.3 Unit testing

Unit tests are written with Google’s Gtest framework, and extensively make use
of mock classes to test the intended functionality. A mock class is used to test
the behaviour of another class. The mock class inherits from the same interface
as the class it is implemented to mock. The mock class can then be used to check
whether a certain method was called, how many times it was called, with what
type of input parameters it was called and the values of the input parameters.
The mock objects can also be used to check in what order the mock object’s
method was called. Basic functionality of each class is tested and this should
facilitate future work that builds on this project.

The project is hosted at https://code.google.com/p/distributed-feature-extraction/.
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Appendices

A ASN.1 types

/**

* Creator: ASNDT (http://www.asnlab.org)

* Author: andreas

* Created: Mon Mar 25 20:36:37 CET 2013

*/

DistributedFeatureExtraction DEFINITIONS AUTOMATIC TAGS ::= BEGIN

-- imports and exports

EXPORTS ;

IMPORTS ;

-- type assignments

ImageAsn ::= SEQUENCE {

matdata MatAsn,

imageid INTEGER

}
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MatAsn ::= SEQUENCE {

numrows INTEGER,

numcols INTEGER,

data BIT STRING,

type INTEGER

}

ImgTaskAsn ::= SEQUENCE {

taskid INTEGER,

imgid INTEGER,

-- task parameters

kpexecuter BIT STRING,

dexecuter BIT STRING,

keypoints-detected BOOLEAN,

descriptors-extracted BOOLEAN,

rect RectAsn,

parameters AlgorithmParametersAsn,

-- Result

keypoints SEQUENCE OF KeyPointAsn,

descriptors MatAsn

}

ParametersAsn ::= CHOICE {

surfparameters SurfParametersAsn

}

AlgorithmParametersAsn ::= SEQUENCE {

detectionparameters ParametersAsn,

extractionparameters ParametersAsn

}

SurfParametersAsn ::= SEQUENCE {

extended BOOLEAN,

hessianthreshold REAL,

noctavelayers INTEGER,

noctaves INTEGER,

upright BOOLEAN

}

TaskFinishedAsn ::= SEQUENCE {

taskid INTEGER

}

ReportNewNodeAsn ::= SEQUENCE {

adress BIT STRING

}

DeleteNodeAsn ::= SEQUENCE {

adress BIT STRING

}
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RectAsn ::= SEQUENCE {

x INTEGER,

y INTEGER,

width INTEGER,

height INTEGER

}

KeyPointAsn ::= SEQUENCE {

angle REAL,

klass INTEGER,

octave INTEGER,

x REAL,

y REAL,

response REAL,

size REAL

}

PktHeaderAsn ::= SEQUENCE {

pktnum INTEGER,

totpkts INTEGER,

typeheaderasn BIT STRING

}

TypeHeaderAsn ::= CHOICE {

imageasn ImageAsn,

imgtask ImgTaskAsn,

taskfinishedasn TaskFinishedAsn,

reportnewnodeasn ReportNewNodeAsn,

deletenodeasn DeleteNodeAsn,

takepicture TakePicture

}

TakePicture ::= ENUMERATED {

takepicture

}

TimingInfoAsn ::= SEQUENCE {

hour INTEGER,

minute INTEGER,

second INTEGER,

millisecond INTEGER

}

CompletedTasksAsn ::= SEQUENCE {

imgtasks SEQUENCE OF ImgTaskAsn,

timinginfos SEQUENCE OF TimingInfoAsn

}

-- value assignments

END
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B XStick configuration

This is the configuration used for the XStick. The Destination address high, the
Destination adress low and the 16 bit source address is important for the com-
munication between nodes. Setting the 16 bit source address to FFFF disables
the use of 16 bit addresses which is necessary when using the 64 bit addresses.

Setting the xbee retries to 6 will make the XStick retry to send a packet six
times. This will result in 6 times the number of MAC layer retries plus one
retry, totalling in 19 retries before the packet is skipped.

The Interface data rate can be set to the users preference, but the value need
to be reflected in the value passed to the libxbee::Xbee constructor. This value
is set in dfe typedefs.h with a #define BAUDRATE statement. Setting it to a
too high value will speed up transmission, but also result in more packet losses.

The API enabled parameter needs to be enabled (set to 1) for libxbee to
function properly.
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Table 2: XStick settings

Name AT command value

Channel CH C
Pan id ID 3332
Destination address high DH 0
Destination address low DL 0
16 bit source address MY FFFF
Mac mode MM 0
xbee retries RR 6
Random delay slots RN 0
Node discovery time NT 19
Node discovery options NO 0
Coordinator enabled CE 0
Scan channels SC 1FFE
Scan duration SD 4
End device association A1 0
Coordination association A2 0
AES encryption enabled EE 0
Node identifier NI
Power level PL 4
CCA Threshold CA 2C
Sleep mode SM 0
Time before sleep ST 1388
Cyclic sleep period SP 0
Disassociated cyclic cleep period DP 3E8
Sleep options SO 0
Interface data rate BD 3
Parity NB 0
Packetization timeout RO 3
API enabled AP 1
Pin settings D8 0
Pin settings D7 1
Pin settings D6 0
Pin settings D5 1
Pin settings D4 - D0 0
Pull up resistor enbaled PR FF
I/O Enabled IU 1
Samples before TX IT 1
DIO change detect IC 0
Sample rate IR 0
PWM0 Configuration P0 1
PWM1 Configuration P1 0
PWM Output timeout PT FF
RSSI PWM Times RP 28
I/O Input adresses IA FFFFFFFFFFFFFFFF
T0 - DO to T7 - D7 Output addresses T0 FF
Device type identifier DD 10000
AT Command Mode Timeout CT 64
Guard Time GT 3E8
Command Sequence character CC 2B
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