Preprint

This is the submitted version of a paper published in Bioconjugate chemistry.

Citation for the original published paper (version of record):

Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody
Molecules Radiofluorinated at the N-Terminus via Oxime Formation with (18)F-4-
Fluorobenzaldehyde.
Bioconjugate chemistry, 25(1): 82-92
http://dx.doi.org/10.1021/bc400343r

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-218569
Incorporation of a triglutamyl spacer improves the biodistribution of synthetic Affibody molecules radiofluorinated at the N-terminus via oxime formation with 18F-4-fluorobenzaldehyde

Daniel Rosik†, Alf Thibblin ¥, Gunnar Antoni¥‡, Hadis Honarvar§, Joanna Strand§, Ram Kumar Selvaraju‡, Mohamed Altai§, Anna Orlova‡, Amelie Eriksson Karlström†, Vladimir Tolmachev§*

†Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden;
¥PET Centre, Uppsala University Hospital, Uppsala, Sweden;
‡Preclinical PET Platform, Uppsala University, Uppsala, Sweden;
§Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden;

*Corresponding author:
Vladimir Tolmachev
Biomedical Radiation Sciences
Rudbeck Laboratory
Uppsala University
SE-751 85 Uppsala
Sweden

http://pubs.acs.org/doi/abs/10.1021/bc400343r
Phone: +46 18 471 3414
Fax: +46 18 471 3432
E-mail: vladimir.tolmachev@bms.uu.se
ABSTRACT

Affibody molecules are a class of affinity agents for molecular imaging based on a non-immunoglobulin protein scaffold. Previous studies have demonstrated high contrast for in vivo imaging of cancer-associated molecular abnormalities using Affibody molecules. Using the radionuclide 18F for labeling and PET as the imaging modality, the sensitivity of molecular imaging using Affibody molecules can be further increased. The use of oxime formation between an aminooxy-functionalized peptide and 18F-fluorobenzaldehyde (18F-FBA) is a promising way of radiolabeling targeting peptides. However, previous studies demonstrated that application of this method to Affibody molecules is associated with high liver uptake. We hypothesized that incorporation of a triglutamyl spacer between the aminooxy moiety and the N-terminus of a synthetic Affibody molecule would decrease the hepatic uptake of the 18F-N-(4-fluorobenzylidene)oxime)(18F-FBO)-labeled tracer. To verify this, we have produced two variants of the HER2-targeting Z$_{HER2:342}$ Affibody molecule by peptide synthesis: OA-PEP4313, where aminooxyacetic acid was conjugated directly to the N-terminal alanine, and OA-E$_3$-PEP4313, where a triglutamyl spacer was introduced between the aminooxy moiety and the N-terminus. We have found that the use of the spacer is associated with a minor decrease of affinity, from $K_D = 49$ pM to $K_D = 180$ pM. Radiolabeled 18F-FBO-E$_3$-PEP4313 demonstrated specific binding to HER2-expressing ovarian carcinoma SKOV-3 cells and slow internalization. Biodistribution studies in mice demonstrated that the use of a triglutamyl linker decreased uptake of radioactivity in liver 2.7-fold at 2 h after injection. Interestingly, radioactivity uptake in kidneys was also reduced (2.4-fold).

Experiments in BALB/C nu/nu mice bearing SKOV-3 demonstrated HER2-specific uptake of 18F-FBO-E$_3$-PEP4313 in tumors. At 2 h pi, the tumor uptake (20 ± 2 % ID/g) exceeded uptake in liver 5-fold and uptake in kidneys 3.6-fold. The tumor-to-blood ratio was 21±3. The microPET/CT imaging experiment confirmed the biodistribution data. In conclusion, the use
of a triglutamyl spacer is a convenient way to improve the biodistribution profile of Affibody molecules labeled at the N-terminus using 18F-FBA. It provides a tracer capable of producing high-contrast images of HER2-expressing tumors.
INTRODUCTION

Cancer proliferation, metastasis and neoangiogenesis are often associated with overexpression and excessive signaling of certain transmembrane receptor tyrosine kinases (RTK)\(^1\). Specific blocking or downregulation of these RTKs is a promising approach to therapy of disseminated cancer. Several RTK-targeting monoclonal antibodies and tyrosine kinase inhibitors have demonstrated improvement of cancer patients’ survival and have been approved for routine clinical use. The major issue is, however, the heterogeneity of RTK overexpression. Only a fraction of the patients would have tumors expressing a particular RTK and potentially benefit from a certain treatment. Moreover, expression of RTKs can change during the course of the disease or in response to therapy. As overexpression of a molecular target often is a strong predictive and/or pharmacodynamic biomarker for response to targeting therapy, a non-invasive, repeatable determination of RTK expression levels in tumors would enable personalized therapy of cancer. Radionuclide molecular imaging of RTKs may be a facile method for patient stratification for targeting therapy\(^2,3\).

A precondition for the implementation of radionuclide imaging into clinical practice is having high sensitivity and specificity. The use of radiolabeled therapeutic antibodies is a straightforward way for imaging the expression of their molecular targets\(^4\). However, the long residence time of antibodies in circulation and slow extravasation and tissue penetration cause low tumor-to-organ radioactivity concentration ratios and, consequently, low contrast and sensitivity of imaging using radiolabeled antibodies\(^3\). Size reduction of targeting proteins is considered as a successful approach for increasing sensitivity of radionuclide imaging\(^5\). Both experimental data and theoretical calculation predict that molecular weights below 25 kDa in combination with high (at least low nanomolar) affinity are preconditions for
successful targeting. This prompts to seek an alternative to immunoglobulins as targeting agents.

A promising class of non-immunoglobulin based targeting proteins are Affibody molecules; small (7kDa), three-helix proteins based on the B-domain of protein A. Currently, Affibody molecules with low nanomolar or subnanomolar affinity to several RTKs, e.g. HER2, EGFR, HER3, PDGFRβ and IGF1R, have been developed. Radiolabeled derivatives of the anti-HER2 ZHER2:342 Affibody molecule have demonstrated the capacity of high contrast imaging of HER2-expressing tumors a few hours after injection both in preclinical studies and in clinical trials. Preclinical data suggest that derivatives of ZHER2:342 provide the highest contrast (sensitivity) and specificity among all evaluated HER2 imaging agents.

Importantly, preclinical data demonstrated that different labeling approaches appreciably influence the biodistribution and targeting properties of Affibody molecules, and a careful optimization of the combination of nuclide and chelator or linker is required to obtain maximum imaging contrast.

The use of positron-emitting labels should enable PET imaging and further increase the sensitivity of Affibody-mediated imaging. This is important for detection of expression in small metastases. The use of PET allows also an accurate quantification of uptake in tumor. For this reason, labeling of Affibody molecules with positron-emitting nuclides, 11C, 18F, 19F, 64Cu, 68Ga, 76Br, and 124I, using different labeling strategies has been evaluated.

18F is one of the most attractive nuclides for labeling of Affibody molecules. Its half-life (109.5 min) is compatible with the rapid biokinetics of Affibody molecules. The short positron range of 18F provides one of the best spatial resolutions among positron emitters. Due to the constant demand for 18F-FDG, technologies for large scale production of 18F and
logistics for regional distribution of radiofluorinated tracers have been established. On the other hand, the chemistry for radiofluorination of proteins and peptides is demanding. The relative inertness of fluoride requires rather harsh labeling conditions, which necessitates the use of protected precursors. As a result, synthesis of reactive intermediates for fluorinating proteins is typically a multistep, time-consuming and low yield process. Currently, two methods are the most promising for radiofluorination of targeting proteins: formation of aluminum fluoride with subsequent chelation by triaza chelators (AIF chemistry) and oxime formation between an unprotected aminoxy-functionalized peptide and 18F-labeled fluorobenzaldehyde (FBA) (Figure 1). Both approaches include a minimal number of synthetic steps with radiolabeled precursors. AIF chemistry provides residualizing labels, and is the most suitable for peptides that are rapidly internalized after binding to cancer cells. However, as internalization of the majority of anti-RTK Affibody molecules is slow, non-residualizing labels can be applied for their labeling without decreasing tumor uptake.

In fact, 18F-fluorobenzaldehyde conjugation has been used for labeling of recombinant dimeric and monomeric anti-HER2 Affibody molecules (after conjugation of 2-(aminooxy)-N-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)acetamide to a C-terminal cysteine) and a synthetic, truncated 2-helix variant of the anti-HER2 Affibody molecules. All conjugates were capable of specific targeting of HER2-expressing xenografts in mice. However, a major concern in all cases was an elevated uptake of radioactivity in liver (close to or even exceeding uptake in tumors at 1-3 h pi), which would prevent imaging of liver metastases in clinics. Taking into account that liver is a major metastatic site for many tumors, this is a serious issue. It has to be noted that the elevated liver uptake of 18F-N-(4-fluorobenzylidene)oxime (FBO)-labeled Affibody molecules is associated with the labeling methods and not features of the Affibody molecules, as the same targeting proteins had several fold lower hepatic uptake when
labeled by other methods \cite{18,22,32}. Furthermore, an elevated hepatic uptake or hepatobiliary excretion is often associated with either overall or local elevated lipophilicity of the protein surface \cite{33}. Earlier, we have succeeded in the suppression of hepatic uptake or hepatobiliary excretion of Affibody molecules labeled with 99mTc at the N-terminus by increasing the hydrophilicity of the peptide-based chelators via incorporation of glutamyl residues \cite{34,35}.

Our hypothesis was that incorporation of a triglutamyl spacer between the aminooxy moiety and the N-terminus of a synthetic Affibody molecule would decrease the hepatic uptake of 18F-FBO-labeled Affibody molecules. To verify this, we have produced two variants of the Z\textsubscript{HER2:342} Affibody molecule by peptide synthesis; OA-PEP4313, where aminooxy acetic acid was conjugated directly to N-terminal alanine, and OA-E\textsubscript{3}-PEP4313, where a triglutamyl spacer was introduced between the aminooxy moiety and the N-terminus. Both variants and their N-(4-fluorobenzylidine)oxime derivatives were characterized by biophysical methods. Biodistribution of radiofluorinated variants was evaluated in normal mice to investigate the influence of the triglutamyl linker on hepatic uptake. In addition, targeting of HER2-expressing SKOV-3 xenografts using 18F-FBO-E\textsubscript{3}-PEP4313 was studied in immunodeficient mice by direct ex vivo measurements and microPET/CT imaging.
MATERIAL AND METHODS

Peptide synthesis

The two Affibody molecules were based on the same core protein, PEP4313, where the only difference is a linker composed of three glutamate residues (E) introduced at the N-terminus (Figure 2).

The two molecules were synthesized using microwave-assisted solid phase peptide synthesis (SPPS). The assembly was performed on a fully automated peptide synthesizer with an integrated microwave oven (Liberty, CEM Corporation) as described earlier. However, the Rink Amide MBHA LL resin (01-64-0467, Merck KGaA) was used in the current study. For deprotection, a 5% piperazine solution in N-methyl-2-pyrrolidone (NMP) was used with microwave irradiation. A 0.1 mmol batch was synthesized up to the first alanine (A1).

Thereafter, the batch was split into two equal parts to prepare two different variants. At this stage, the triglutamyl (E3)-linker and the final, bis-Boc-protected aminoxyacetic acid (BB-AOA) residue were attached using manual peptide synthesis. Briefly, the couplings were performed using 5 times molar excess of carboxylic acid. 9-Fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid (Fmoc-AA) or BB-AOA, O-(benzotriazole-N,N,N',N'-tetramethyluroniumhexafluorophosphate) (HBTU) and N-hydroxybenzotriazole (HOBt) in dimethylformamide (DMF), and N,N'-diisopropylethylamine (DIPEA) in NMP were added to the resin at a molar ratio of 1:1:1:2 (Fmoc-AA:HBTU:HOBt:DIPEA). The couplings were performed without microwave irradiation and using 20% piperidine solution for deprotection. The reactions were monitored using ninhydrin test to verify the absence of free amines, implying an incomplete reaction. During cleavage of the peptides using 95:2.5:2.5 trifluoroacetic acid
(TFA)/H$_2$O/triisopropylsilane (TIS) for approximately 2 h at room temperature, 100 times molar excess of unprotected aminooxyacetic acid was added as a scavenger. The peptides were recovered using ether precipitation and finally freeze-dried before further purification.

Purification and analysis

The crude peptides were purified on an Agilent 1100 HPLC system, using reversed phase HPLC (RP-HPLC). The purification was performed on a Zorbax 300SB C18 (9.4x250, 5 µm) column using 0.1% TFA/H$_2$O and 0.1% TFA/CH$_3$CN as solvents A and B, respectively. The column oven temperature was set to 30°C. The column was eluted with a linear gradient of 25 – 30% solvent B in 3 column volumes (CV) with flow rate of 5 mL/min. UV detection was at 220 and 280 nm. 300 µL fractions were collected using an automated fraction collector. The fractions were analyzed on an Agilent 6500 Series Accurate-Mass Q-TOF LC/MS System using Agilent MassHunter Qualitative Analysis software version B.04.00. LC was run using a C4 column with the same buffers as the Agilent 1100 HPLC system. The fractions with correct mass were pooled, aliquoted and freeze-dried. For final purity analysis, one aliquot of each protein was analyzed on the same Agilent 1100 HPLC system as earlier, using a Zorbax 300SB C18 (4.6x150, 3 µm) column eluted with a linear gradient of 5 – 50% solvent B in 6 CV with flow rate of 1 mL/min.

It is important to mention that after the free aminooxyacetic acid (scavenger) has been removed, i.e. during and after purification of the peptides, all handling of the peptides was performed in glass or metal vessels, to avoid contact with plastic, which leads to extensive side reactions. Furthermore, organic solvents of high purity, free of contaminating carbonyl compounds, were used.
Conjugation of non-labeled FBA

For analytical purposes and for the development of a labeling protocol, purified aminooxy-peptides were conjugated with cold FBA. FBA (Sigma-Aldrich, #128376) was diluted 1000 times in methanol. The freeze-dried Affibody molecules were reconstituted in 0.1% TFA/H\(_2\)O, mixed with the diluted FBA in a molar ratio of 1:100 (Affibody:FBA) and incubated for 30 min at 60°C. The reverse ratio (i.e. 100:1, Affibody:FBA) was also evaluated to mimic the conditions of the labeling reaction with \(^{18}\)F-FBA. Analysis was performed using the same LC and LC/MS systems as described earlier.

Circular dichroism (CD)

FBO-E\(_3\)-PEP4313 and FBO-PEP4313 were analyzed by variable temperature measurements from 20 °C to 90 °C at 221 nm as described earlier\(^{37}\). A circular dichroism (CD) wavelength scan from 250 nm to 195 nm was collected before and after melting.

Biacore analysis

The equilibrium dissociation constants (K\(_D\)) were determined by binding kinetics analysis on a Biacore 2000 instrument as described earlier\(^{37}\). The two protein variants were studied after conjugation to cold F-FBA. The extracellular domain of HER2 (rhErB2/Fc, Pierce 1129ER) was immobilized on a CM5 sensor chip by amine coupling. Immobilization levels reached 1,000 response units (RU). The different Affibody molecules were diluted to concentrations ranging from 0.2 to 16 nM in HBS-EP buffer (0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% surfactant P20) from Biacore. The binding kinetics were studied in a 5-min association phase and a 30-min dissociation phase with a flow rate of 50 µL/min, followed by
regeneration with 25 mM HCl. A 1:1 Langmuir binding model was used for the kinetic calculations. BIAEvaluation 4.1 software was used for calculations.

Radioactivity measurements

Radioactivity was measured using a dose calibrator VDC-405 (Veenstra Instruments BV, The Netherlands) equipped with an ionization chamber. In animal studies, the radioactivity was measured using an automated gamma-counter with a 3-inch NaI(Tl) detector. The distribution of radioactivity along the ITLC strips was measured on the CycloneTM Storage Phosphor System (Packard) and analyzed using the OptiQuantTM image analysis software (OptiQuant).

Radiolabeling

The semi-preparative HPLC purification was performed with a VWR HPLC system with a VWR LaPrep P110 gradient pump and a LaPrep P311 variable wavelength UV-detector in series with a Bioscan β+ flow radioactivity detector FC-3600. The semipreparative HPLC purification was carried out on an ACE C18 HL 5 µm 250 x 10 mm column with 40% MeCN in water, flow 5 mL/min. The analytical HPLC analyses were performed using a VWR-Hitachi LaChrom Elite system with an L-2130 gradient pump, an L-2300 autosampler, and an L-2450 diode-array detector in series with a Bioscan FC-3300 γ flow count radioactivity detector. The product analysis was performed using Zorbax 300SB C18 column calibrated using non-labeled FBO-E3-PEP4313 and FBO-PEP4313.

[¹⁸F]Fluoride anion was produced via the ¹⁸O(p,n)¹⁸F nuclear reaction using a Scanditronix MC17 cyclotron. The bombardment of enriched ¹⁸O water (98%, Rotem) gave an aqueous solution of ¹⁸F⁻ which was transferred from the cyclotron target with a flow of CH₃CN/H₂O (35/65 v/v) and trapped on a preconditioned QMA column (Waters). The column was purged with helium and then eluted with a solution of Kryptofix K222 (900 µL, 10 mg/mL) and
potassium carbonate (1.4 mg/mL) in CH$_3$CN/H$_2$O 80/20 v/v. The eluate was dried at 120 °C under a stream of helium. After drying, a procedure which took about 23 min, the 18F-Kryptofix complex was used directly for the nucleophilic aromatic substitution of the precursor.

Radiofluorination was performed as described by Poethko and co-workers28. The radiosyntheses were carried out at the PET Centre at Uppsala University Hospital, on an in-house built Synthia robot system based upon a Gilson ASPEC module. The 4-formyl-N,N,N-trimethylanilinium triflate (3.0 mg) dissolved in 1000 µL of dry DMSO was added to the dried 18F-Kryptofix complex. The reaction mixture was heated at 100 °C for 15 min and then cooled 1.5 min with compressed air before the next step. The radiochemical yield as measured by HPLC was 50–70%. The labeled aldehyde was purified with reversed-phase semipreparative HPLC.

An HPLC fraction (2.9 mL, 40% CH$_3$CN in H$_2$O) containing purified labeled aldehyde was added to the peptide precursor (108 mg) dissolved in 900 µL of a citrate/phosphate/CH$_3$CN solution, pH 2.6. After 15 min at 70 °C, the mixture was cooled for 1.5 min with compressed air and then transferred to a rotary evaporator. About 80% of the solvent was removed at reduced pressure and heating (95 °C). This procedure removes the labeled aldehyde almost quantitatively (see below). Water (5 mL) was added before further purification.

A final purification and solvent exchange was performed using NAP-5 size-exclusion column, pre-equilibrated and eluted with PBS. The radiochemical purity of the final product was determined by ITLC eluted with acetone:water (80:70). In this system, radiolabeled Affibody molecules remain at application point while fluorobenzaldehyde and fluoride migrates with the solvent front.
In vitro binding specificity and cellular processing

Binding specificity and cellular processing of 18F-FBO-E$_3$-PEP4313 was studied using HER2-expressing ovarian carcinoma SKOV-3 cells (1.6x106 receptors/cells38). 18F-FBO-E$_3$-PEP4313 at a protein concentrations of 270 pM was added to 6 dishes (106 cells/ dish). A 1000-fold excess of non-labeled recombinant parental Affibody molecule was added to 3 of the petri dishes 5 min before the labeled conjugate to saturate the receptors. The dishes were incubated for 1h in a humidified incubator at 37 °C. The media was collected, the cells were detached using trypsin-EDTA solution, and the radioactivity was measured both in the media and the cell suspension. The percentage of cell-bound radioactivity was calculated for both the pre-saturated and unsaturated cells.

Processing of the 18F-FBO-E$_3$-PEP4313 by SKOV-3 cells during continuous incubation was studied according to a method described and validated by Wållberg and co-workers 39. The labeled compounds (protein concentration of 1 nM) were added to petri dishes containing 106 cells/dish. The cells were incubated at 37°C, in a humidified atmosphere containing 5% CO$_2$. At predetermined time points (1, 2, 3 and 4 h after incubation start), the media from 3 dishes was collected and the cells were washed in ice-cold serum-free medium. The cells were then treated with 0.5 mL 0.2 M glycine buffer containing 4 M urea, pH 2.5, for 5 min on ice. The solution was collected, and the cells were washed additionally with 0.5 mL glycine buffer. The fractions were pooled together. The radioactivity of the acid wash fractions was considered to be membrane-bound radioactivity. The cells were then incubated at 37°C for at least 30 min with 0.5 mL 1 M NaOH. The alkaline solution was collected and the cell dishes were washed with an additional 0.5 mL NaOH and the alkaline fractions were pooled. The
radioactivity in the alkaline fractions was considered as internalized. A percentage of the internalized radioactivity was calculated for each fraction at each time point.

Biodistribution studies

The animal study was approved by the Local Ethics Committee for Animal Research. The animals were acclimatized for one week at the Rudbeck laboratory animal facility before experiments.

For comparative biodistribution study, normal female NMRI mice were used. An average animal weight was 30±2 g at the time of experiment. Mice (group of four) were intravenously injected with 18F-FBO-PEP4313 or 18F-FBO-E$_3$-PEP4313 (1µg Affibody ligand, ~60 kBq in 100 µL of PBS). The radiochemical purity of injected conjugate was 99.9% and 99.7% for 18F-FBO-PEP4313 and 18F-FBO-E$_3$-PEP4313, respectively. The mice were euthanized at 2 h pi with an intraperitoneal injection of Ketalar-Rompun solution (20 µL of solution per gram of body weight: Ketalar [ketamine], 10 mg/mL; Rompun [xylazin], 1 mg/mL). Thereafter, mice were exsanguinated by syringes rinsed with diluted heparin. Blood and organ samples (lung, liver, spleen, kidney, muscle and bone) were collected and weighed. Their radioactivity was measured using an automatic gamma-counter. A standard of injected activity was also measured along with each group of mice. The organ uptake values were calculated as percent injected dose per gram tissue (% ID/g). Whole gastrointestinal tract was taken from each animal to determine a level of hepatobiliary excretion of radioactivity. An unpaired Student’s t-test was used to determine a significant difference (p < 0.05) between uptake of 18F-FBO-PEP4313 and 18F-FBO-E$_3$-PEP4313.
Targeting properties of different conjugates were compared in female BALB/c nu/nu mice (15 weeks old, mean weight of 20.0±1.5 g) carrying SKOV-3 xenograft. The cells (10⁷ cells per mouse) were subcutaneously implanted in the right hind leg 5 weeks before the experiment. At the time of the experiment, an average tumor weight was 0.19±0.1 g. ¹⁸F-FBO-E₃-PEP4313 in 100 µL PBS each was injected in two groups of mice (four mice each). The radiochemical purity of the injected conjugate was 99.7%. Activity of ¹⁸F-FBO-E₃-PEP4313 was 40 kBq/mouse for the group sacrificed at 1 h pi, and 60 kBq/mouse for the group sacrificed at 2 h pi. The total injected amount of protein was adjusted to 1 µg/animal by adding unlabeled protein. In order to check the specificity of in vivo targeting, HER2 receptors in one group of mice were saturated by the injection of 750 µg of unlabeled recombinant ZHER2:342 Affibody molecule 40 min before the injection of ¹⁸F-FBO-E₃-PEP4313 (60 kBq/mouse, 1 µg/mouse). These mice were sacrificed at 2 h after injection. The biodistribution was measured as described above.

Imaging

To confirm the capacity of ¹⁸F-FBO-E₃-PEP4313 to image HER2-expressing tumors, two mice bearing SKOV-3 xenografts were intravenously injected with 2.5 MBq of ¹⁸F-FBO-E₃-PEP4313 (3.3 µg peptide). Immediately before imaging (1 or 2 h pi), the animals were euthanized and the urine bladders were dissected. The PET/CT imaging was performed in The Triumph™ Trimodality system (Gamma Medica, Inc), a fully integrated SPECT/PET/CT hardware and software platform optimized for small animals. The PET data was reconstructed into a static image using a MLEM 2D algorithm (10 iterations). The CT raw file was reconstructed using Filter Back Projection (FBP). PET and CT dicom-files were analyzed using PMOD v 3.12 software (PMOD Technologies Ltd, Zurich, Switzerland).
RESULTS

Peptide Synthesis

Aminooxy derivatives of PEP4313 were successfully synthesized using Fmoc solid phase peptide synthesis followed by manual conjugation of Bis-Boc-aminooxyacetic acid with subsequent deprotection. The mass of each peptide was determined by ESI-MS, and the experimentally determined molecular weights correlated well with the theoretically calculated values (Figure 3). Conjugation of non-labeled FBA provided yields of almost 70% when an excess of FBA was used. After a simple size-exclusion chromatography using a disposable NAP-5 column no free FBA could be detected. After confirming the molecular weight by mass spectrometry, FBO-PEP4313 and FBO-E3-PEP4313 were used as standards for radio-HPLC.

Circular dichroism (CD) spectra of FBO-PEP4313 and FBO-E3-PEP4313 before and after heating are presented in Figure 4. Both conjugates generated very similar spectra typical for alpha-helical structure. The CD-spectra did not show any noticeable difference in secondary structure content before and after heating to 90º C for either of the constructs, indicating accurate refolding after denaturing. The melting point (TM) was determined to be 72 and 73º C for FBO-PEP4313 and FBO-E3-PEP4313, respectively.

Biacore analysis

Using Biacore analysis the binding affinity of FBO-E3-PEP4313 to HER2 protein was estimated to be $K_D = 180 \text{pM (} k_a = 2.2 \times 10^6 \text{Ms}^{-1}, k_d = 3.8 \times 10^{-4} \text{s}^{-1}\)$, while the corresponding K_D for FBO-PEP4313 was 49 pM ($k_a = 6.6 \times 10^6 \text{Ms}^{-1}, k_d = 3.3 \times 10^{-4} \text{s}^{-1}$).
Radiolabeling

An unoptimized labeling procedure provided an overall non-decay-corrected yield of 3-5%. The simple azeotropic evaporation of unreacted 18F-fluorobenzaldehyde resulted in a radiochemical purity of radiofluorinated Affibody molecules of 97% (Figure 5). An additional purification and buffer exchange using disposable NAP-5 size-exclusion columns provided a purity of over 99%.

The binding specificity test demonstrated that adding an excess of unlabeled recombinant $\text{Z}_{\text{HER2:342}}$ Affibody molecule reduced binding of 18F-FBO-E$_3$-PEP4313 to HER2-expressing SKOV-3 cells from 49±5% of added radioactivity to 0.39±0.07 % (p <5×10$^{-5}$). This demonstrates the saturability of the binding and suggests receptor-mediated binding of 18F-FBO-E$_3$-PEP4313 to HER2-expressing cells.

Data for the cellular processing of 18F-FBO-E$_3$-PEP4313 by HER2-expressing SKOV-3 cells are presented in Figure 6. The processing patterns were typical of $\text{Z}_{\text{HER2:342}}$ and its derivatives. The binding was very rapid, and the uptake plateau was reached within 1 h. The internalization was slow. The internalized fraction of activity was small (5-6% of totally bound activity), and did not increase with time.

Animal study

Data concerning a comparative biodistribution of 18F-FBO-PEP4313 and 18F-FBO-E$_3$-PEP4313 in NMRI mice at 2 h p.i. are presented in Figure 7. Both compounds demonstrated a rapid clearance from blood (less than 1 %ID/g at 2 h pi) and the majority of organs and tissues. The radioactivity in the gastrointestinal tract and its content was lower than 4% of the
injected radioactivity, which suggests that the hepatobiliary pathway played a minor role in excretion of both radiofluorinated conjugates. The hepatic uptake of 18F-FBO-E$_3$-PEP4313 (1.9 ± 0.1 %ID/g), was 2.7-fold lower ($p < 0.5$) than the uptake of 18F-FBO-PEP4313 (5.0 ± 1.1 %ID/g). The renal retention of radioactivity was also lower (2.4-fold, $p < 0.5$) for 18F-FBO-E$_3$-PEP4313. On the opposite, uptake of 18F-FBO-E$_3$-PEP4313 in lung, spleen and bones was approximately 1.5-fold higher.

Results of the biodistribution experiments of 18F-FBO-E$_3$-PEP4313 in BALB/c nu/nu mice bearing SKOV-3 xenografts are presented in Figures 8, 9 and 10.

In order to verify the specificity of 18F-FBO-E$_3$-PEP4313 accumulation in HER2-expressing SKOV-3 xenografts, its biodistribution at 2 h pi was studied after saturating the binding epitope of HER2 by pre-injection of a large excess of non-labeled $Z_{HER2:342}$ (Figure 8). The blocking of the binding sites reduced the tumor uptake from 20±2 to 1.2±0.2 % ID/g ($p < 5 \times 10^{-6}$), demonstrating the specificity of HER2 targeting.

The biodistribution data for BALB/c nu/nu mice (Figure 9A) were in a good agreement with the data for NMRI mice (Figure 7), taking into account the much smaller size of the tumor-bearing mice. Already at 1h after injection, radioactivity was cleared to a high extent from blood and majority of tissues (Figure 9 A). At the same time, the tumor uptake was 21± 3 % ID/g, and only the uptake in kidneys was higher. At two hours after injection, the tumor uptake (20 ± 2 % ID/g) did not differ significantly from uptake at one hour after injection, but radioactivity was further cleared from blood (3.5-fold reduction), and all other measured organs and tissues. The most pronounced difference, nearly 6-fold, was the reduction of renal
uptake. The hepatic uptake was reduced 1.6-fold. This resulted in appreciable increase of tumor-to-organ ratios. At two hours after injection, the tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios were 20 ± 2, 5.1 ± 0.8, and 3.6 ± 0.6, respectively.

The microPET/CT experiment (Figure 10) confirmed the results of the biodistribution study. Already at one hour after injection, radioactivity in the tumor and kidneys dominated the image (Figure 10A), and average liver uptake was ca. 3-fold lower than in the tumor. By two hours after injection (Figure 10B), the radioactivity was cleared from the kidneys, and the tumor was the only site with pronounced radioactivity accumulation.
Discussion

A steadily increasing amount of scientific data suggests that Affibody molecules is a promising class of targeting proteins, which can be successfully applied for radionuclide imaging of molecular targets for cancer therapy, particularly RTKs (for reviews see \(^3\)\(^1\)\(^3\)). The combination of the exquisite specificity of the Affibody molecules and the high resolution, sensitivity and quantification accuracy of PET would further improve in vivo imaging of cancer-related molecular abnormalities. The use of \(^{18}\)F as a label would facilitate translation of Affibody-based imaging agents into clinical practice due to the availability of this nuclide and the good feasibility of regional distribution of radiofluorinated tracers. However, a careful optimization of labeling chemistry and molecular design of Affibody molecules is required to realize the potential of these targeting proteins for radionuclide imaging. Importantly, sensitivity of imaging is dependent on contrast, which is determined by tumor-to-organ ratios. That is why a reduction of radioactivity uptake in normal organs and tissues is as important as enhancement of uptake in tumors. This study was dedicated to the reduction of radioactivity uptake in liver; an important metastatic site for many cancers.

We have shown earlier that incorporation of amino acids with hydrophilic, preferably negatively charged, side chains into mercaptoacetyl-containing peptide-based chelators for labeling with \(^{99m}\)Tc=O\(^+\) \(^3\)\(^4\) and histidine-based chelators for labeling with \([^{99m}\)Tc(CO)\(_3\)]\(^+\) \(^3\)\(^5\) reduces hepatic uptake and hepatobiliary excretion of Affibody molecules. This led us to a hypothesis that the use of triglutamate spacer between an Affibody molecule and aminoxooxy-containing moiety for labeling with \(^{18}\)F-FBA might also have similar effect. However, a molecular mechanism behind reduction of hepatic uptake of Affibody molecules labeled with \(^{99m}\)Tc using glutamate-containing chelators is unclear. Moreover, there is a profound chemical and structural difference between \(^{99m}\)Tc chelates and \(^{18}\)F-FBO label conjugated via triglutamate spacer (Figure 11). Earlier studies suggested that much smaller differences, e.g.
the use of homologous macrocyclic chelators DOTA, NOTA, and NODAGA, had appreciable influence on biodistribution (including hepatic uptake) of Affibody molecules labeled with 111In and 68Ga. Thus, achieving of the desirable effect was not given a priory. This required not only changes in the labeling chemistry, but also biological re-evaluation of modified imaging agents.

The triglutamic acid linker did not reduce the melting point of the protein. The presence of the spacer had no influence on the capacity of FBO-E$_3$-PEP4313 to refold after heating to 90º C (Figure 4). This suggested that rather harsh labeling conditions are still permissible to this protein.

Conjugation of FBA was swift and efficient under the right conditions with low pH and elevated temperatures. However, great care has to be taken in order to prevent the reactive aminooxy-group on the peptides not to produce side reactions in contact with plastics. In our hands, contact with different types of plastics (e.g. polypropylene, PEEK and polyethylene) added a +12 Da adduct to the peptides within an hour. Our hypothesis is that the aminooxy-group reacted with residual formaldehyde on the plastic walls, which would add 12 Da to the total mass after formation of the corresponding oxime. Avoiding any contact with plastics from the first purification to the point of conjugation with FBA seemed to eliminate the side reaction and produce constructs with expected masses according to the theoretical calculations.

Importantly, both FBO-PEP4313 and FBO-E$_3$-PEP4313 retained the capacity to bind to HER2 with very high (low picomolar) affinity. Apparently, incorporation of the triglutamyl spacer reduced the on-rate of the binding, which caused increase of the dissociation constant from 49 pM for FBO-PEP4313 to 180 pM for FBO-E$_3$-PEP4313. This was not entirely unexpected, as N-terminal modification has earlier caused some modulation of affinity of Affibody molecules. However, our recent study has demonstrated that a reduction of
affinity of an Affibody molecule from $K_D = 120$ pM to $K_D = 3.8$ nM has no influence on the uptake of radiolabeled anti-HER2 Affibody molecules in tumors with high HER2 expression at 4 h after injection. Even in the case of low target expression, there was no difference in uptake of Affibody molecules with affinities of $K_D = 116$ and $K_D = 154$ pM at early time points $^3^9$. The biodistribution and imaging studies (Figures 8, 9 and 10) confirmed the excellent targeting properties of 18F-FBO-E$_3$-PEP4313. It should be noted, however, that the influence of a spacer on a binding site should depend on the binding site composition, and might differ for Affibody molecules specific to different molecular targets.

The biodistribution experiment confirmed the correctness of our hypothesis. The uptake of 18F-FBO-E$_3$-PEP4313 in liver was nearly three-fold ($p < 0.05$) lower than the uptake of 18F-FBO-PEP4313 (Figure 7). Thus, the use of a triglutamyl extension of the N-terminus permits modulation of the hepatic uptake of Affibody molecules. Interestingly, there was no significant difference in the radioactivity in the gastrointestinal tract. This means that the presence of the spacer did not influence hepatobiliary excretion of radioactivity. Most likely, the radiocatabolites of both conjugates do not act as substrates for efflux pumps on apical (canalicular) membrane of hepatocytes.

Reduction of the renal uptake was an interesting effect of the spacer. Unlike Affibody molecules labeled using residualizing radiometal labels $^{2^2,2^3,3^2,3^5}$, the renal retention of 18F-N-(4-fluorobenzylidine)oxime-labeled Affibody molecules is quite low (Figure 9). This is in agreement with data showing rapid clearance of radioactivity from kidneys for other Affibody molecules labeled with 18F-N-(4-fluorobenzylidine)oxime $^{1^9,2^9,3^0}$. This is a strong indication that the 18F-N-(4-fluorobenzylidine)oxime-label is non-residualizing, i.e. its hydrophobic radiocatabolites leak from the cell after intracellular proteolytic degradation of the Affibody.
molecules. One possible explanation for the difference in the renal retention of 18F-FBO-E$_3$-PEP4313 and 18F-FBO-PEP4313 is that the presence of a triglutamyl spacer facilitates enzymatic cleavage of hydrophobic 18F-bearing catabolites from the Affibody molecule during processing in the proximal tubuli cells and, in this way, makes the clearance process more rapid. Another possible explanation is based on that the re-absorption of peptides in the kidneys is mediated by interaction of “negative patches” on the proximal tubuli cells with positively charged side-chains of peptides. The presence of the negatively charged spacer might interfere with such an interaction and reduce the renal re-absorption of 18F-FBO-E$_3$-PEP4313 in comparison with 18F-FBO-PEP4313. Whatever the explanation is, such a feature would facilitate imaging of adrenal metastases and other metastases in the lumbar area.

Experiments in tumor-bearing mice confirmed that 18F-FBO-E$_3$-PEP4313 can target HER2-expressing xenografts with high specificity (Figure 8). The tumor uptake appreciably exceeded the hepatic uptake already at 1 h after injection, and renal uptake at 2 h because of radioactivity clearance from these organs (Figures 9 and 10). The tumor uptake remained unchanged between the two time points, despite the apparent non-residualizing properties of the label. Apparently, this is due to slow internalization of 18F-FBO-E$_3$-PEP4313 by tumor cells (Figure 6). Table 1 shows a comparison of tumor-to-organ ratios of 18F-FBO-E$_3$-PEP4313 with tumor-to-organ ratios of 68Ga-DOTA-Z$_{HER2:342}$ anti-HER2 Affibody molecule in BALB/C nu/nu mice bearing SKOV-3 xenografts at 2 h p.i. 68Ga-DOTA-Z$_{HER2:342}$ has demonstrated a capacity for a high-contrast imaging of HER2-expressing breast cancer metastases in clinics. Apparently, the tumor-to-organ ratios of 18F-FBO-E$_3$-PEP4313 were quite similar to those of a radiometal-labeled counterpart having the highly hydrophilic DOTA chelator at the N-terminus. The renal uptake of 18F-FBO-E$_3$-PEP4313 is nearly 100-fold lower, which resulted in much higher tumor-to-kidney ratio for the radiofluorinated tracer.
This comparison suggests that 18F-FBO-E$_3$-PEP4313 has a favorable biodistribution profile for radionuclide imaging in vivo.

In conclusion, the introduction of a triglutamyl linker between N-(4-fluorobenzylidene)oxime and the N-terminus of Affibody molecules provides a conjugate with a high (low picomolar) affinity. In mice, both hepatic and renal uptake of 18F-FBO-E$_3$-PEP4313 was reduced ca. 2.7-fold in comparison with 18F-FBO-PEP4313. Experiments in tumor-bearing mice confirmed that tumor uptake of 18F-FBO-E$_3$-PEP4313 exceeds the uptake both in liver and kidneys already at 2 h after injection with good margin. This creates pre-conditions for improving contrast of imaging of abdominal metastases using Affibody molecules.

ACKNOWLEDGEMENT

This research was financially supported by grants from Swedish Cancer Society (Cancerfonden), Swedish Research Council (Vetenskapsrådet) and the VINNOVA SAMBIO program.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.
REFERENCES

Table 1. Comparison of tumor-to-organ ratios for 18F-FBO-E$_3$-PEP4313 and 68Ga-DOTA-Z$_{HER2:342}$ in BALB/C nu/nu mice bearing SKOV-3 xenografts at 2 h p.i. Data for 68Ga-DOTA-Z$_{HER2:342}$ are taken from 22. Data are presented as average value for four mice with standard deviation.

<table>
<thead>
<tr>
<th>Tumor-to-organ ratio</th>
<th>18F-FBO-E$_3$-PEP4313</th>
<th>68Ga-DOTA-Z$_{HER2:342}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood</td>
<td>21±3</td>
<td>31±14</td>
</tr>
<tr>
<td>lung</td>
<td>23±2</td>
<td>19±6</td>
</tr>
<tr>
<td>liver</td>
<td>5.1±0.9</td>
<td>6.9±1.8</td>
</tr>
<tr>
<td>spleen</td>
<td>64±5</td>
<td>20±8</td>
</tr>
<tr>
<td>kidney</td>
<td>3.6±0.6</td>
<td>0.05±0.02</td>
</tr>
<tr>
<td>muscle</td>
<td>88±28</td>
<td>74±45</td>
</tr>
<tr>
<td>bone</td>
<td>41±6</td>
<td>50±13</td>
</tr>
</tbody>
</table>
Figure 1. Radiofluorination of peptides using ^{18}F-FBA. For labeling of Affibody molecules, the aminooxy-linker was conjugated directly to the N-terminal alanine (PEP4313) or via a triglutamyl spacer (E$_3$-PEP4313).
Figure 2. Alignment of the HER2-binding Affibody molecule (PEP4313) used in the present study and other variants of Z\textsubscript{HER2:342} described in the literature8,20,23. Asterisks indicate differences between aligned primary structures.
Figure 3. Deconvolution results from MS for OA-PEP4313, FBO-PEP4313, OA-E₃-PEP4313 and FBO-E₃-PEP4313. The measured masses were in good accordance with the theoretical values (6 784.6, 7 172.0, 6 890.7 and 7 278.1 for OA-PEP4313, OA-E₃-PEP4313, FBO-PEP4313, and FBO-E₃-PEP4313, respectively).
Figure 4. CD spectra showing FBO-E$_3$-PEP4313 in red and FBO-PEP4313 in blue. The dashed lines are before heating to 90°C, and solid lines after heating.
Figure 5. Representative radio-HPLC chromatogram (18F-FBO-E$_3$-PEP4313) of radiolabeled Affibody molecule after evaporation of 18F-fluorobenzaldehyde. The blue line shows the signal from the UV detector; the red line from radioactivity detector. The retention time of the main radioactivity peak corresponds to retention time of non-labeled FBO-E$_3$-PEP4313.
Figure 6. Cellular processing of 18F-FBO-E$_3$-PEP4313 by HER2-expressing cells (SKOV-3) in vitro. Cells were incubated with labeled compound at 37 °C. Data are presented as mean values for three cell dishes with standard deviations. Error bars might be smaller than the symbols.
Figure 7. Comparative biodistribution of 18F-FBO-PEP4313 and 18F-FBO-E$_3$-PEP4313 in NMRI mice at 2 h p.i. Data expressed as %ID/g and presented as an average with standard deviation for four mice. Asterisk indicates a significant difference ($p < 0.05$ in a Student’s t-test) between uptake of 18F-FBO-PEP4313 and 18F-FBO-E$_3$-PEP4313. Data for gastrointestinal tract (with content) and carcass are provided as %ID per whole sample.
Figure 8. In vivo targeting specificity of SKOV-3 xenografts using 18F-FBO-E$_3$-PEP4313 at 2 h p.i. One group of animals was pre-injected with 750 µg non-labeled Z$_{\text{HER2:342}}$ to saturate the HER2 receptors 40 min before injection of the radiolabeled conjugate. Results are expressed as % ID/g and as average values for four mice with standard deviation. Saturation of the HER2 receptors in the tumor caused a significant ($p < 5 \times 10^{-6}$) decrease of radioactivity uptake in tumors.
Figure 9. Biodistribution expressed as %ID/g (A) and tumor-to-organ ratios (B) of 18F-FBO-E$_3$-PEP4313 in BALB/C nu/nu mice bearing SKOV-3 xenografts. Data are presented as average value for four mice with standard deviation.
Figure 10. Coronal microPET/CT images (MIP) of mice bearing SKOV-3 xenografts at 1h (A) and 2 h (B) after injection of 18F-FBO-E3-PEP4313. Arrows pointing at tumor (T), liver (L) and kidney (K).
Figure 11. Chematic drawing of Affibody molecules labeled with A. 18F- N-(4-fluorobenzylidene)oxime)using a triglitamate spacer; B. 99mTc=O$^{3+}$ using mercaptoacetyl-Glu-Glu- Glu-chelator 34 and C. $[^{99m}$Tc(CO)$_3]^+$ using His-Glu- His-Glu-His-Glu-chelator.35
Table of Contents Graphic