Tekniken i förskolan

En tolkningsfråga?

Författare: Malin Bjäreklint och Merja Utriainen

Handledare: Susanne Engström

Examinator: Morten Norholm
Sammanfattning

Denna studie syftar till att studera yrkesverksamma förskollärares uppfattningar av teknik i förskolan och deras beskrivningar av hur de synliggör teknik i förskolans verksamhet. För att skapa en grundförståelse av vad teknik innebär inom förskolans verksamhet och hur det kan gestaltas, bör en medvetenhet hos pedagogerna finnas för att synliggöra tekniken i vardagen. Teknikområdet lyftes fram i förskolans reviderade läroplan Lpfö98/10, men hur man arbetar med att synliggöra tekniken i vardagen är upp till pedagogen att tolka. Studiens empiri utgör en pedagogisk analys av läroplanstexten Lpfö98/10 samt halvstrukturerade intervjuer med sex förskollärare. Detta har tolkats med hjälp av ett teoretiskt ramverk i form av ett raster av olika teknikaspekter/emfaser som vi finner i tidigare forskning vilket har fördjupats till ändamålet med denna studie. Teknikaspekterna som vi har definierat och frambringat är: Att göra aspekten, Medborgerliga aspekten, Teknik som artefakt-aspekten och Tekniska system-aspekten. Vi har valt att sammanbinda den empiriska studien med formuleringsarenan och realiseringsarenan då dessa arenor berör pedagogerna och deras verksamhet.

Vid bearbetning av förskollärarnas resonemang framkom att det fanns en osäkerhet gällande teknik inom förskolan. De flesta av förskollärarna beskrev teknik som svårt och diffust samt att de önskade mer teknikutbildning för att klara av att tolka läroplanens intentioner på ett realistiskt sätt. Den pedagog som hade mer teknikutbildning hade lättare att omsätta teknik i den dagliga verksamheten på förskolan.

Nyckel ord: Teknik, Förskola, Aspekter, Intention, Läroplan, Lpfö98/10
Innehåll

Sammanfattning ...2

1. Inledning ...5

2. Bakgrund ...6

3. Litteraturöversikt ..7
 3.1. Intentionen med Lpfö98/10 ...8
 3.2. Tidigare forskning om teknik i förskolan ...9
 3.3. Läroplanen om teknik som kunskap ..10
 3.4. Teknik som att göra-aspekten ...11
 3.5. Teknik som artefakt-aspekten ..12
 3.6. Teknik som system-aspekten ..13
 3.7. Teknik som medborgerliga aspekten ..13
 3.8. Sammanfattning av litteraturöversikten ..15

4. Teoretiska perspektiv ..16

5. Syfte och frågeställningar ...19

6. Metod ...20
 6.1. Pedagogisk analys av läroplanstexten som metod ...20
 6.1.1. Pedagogisk analys av läroplanstexten som metod för datainsamling20
 6.1.2. Urval ...21
 6.1.3. Undersökningens genomförande ...21
 6.1.4. Databearbetning ...21
 6.1.5. Tillförlitlighet ...22
 6.2. Intervju som metod ...22
 6.2.1. Val av intervju som metod för datainsamling ...22
 6.2.2. Urval ...22
 6.2.3. Undersökningens genomförande ...23
 6.2.4. Databearbetning ...23
 6.2.5. Reliabilitet ..24
 6.2.6. Validitet ...24
 6.2.7. Forskningsetiska överväganden ...24

7. Resultat ...25
1. Inledning

Hur långt kan morgondagens teknik nå? En fascinerande fråga som man ofta kan fundera över och som kan leda till diskussioner beroende på hur man bland annat värderar teknikutveckling. Teknik är någonting vi alla kommer i kontakt med dagligen i olika former och sammanhang och utvecklingen av tekniken går fort fram. Blickar vi tillbaka i historien till Roger Bacon en franciskanermunk som på 1200-talet var en av dåtidens lärda filosofer. Han förutspådde att människan skulle kunna färdas i ofattbara hastigheter i vagnar utan dragdjur, flygande maskiner och båtar som kunde gå under vattnet.1 Detta uppfattades som uppnåteliga saker för många men är dagens sanning. Sätter vi detta i ett sammanhang som vi själva levit i kan vi jämföra detta med mobiltelefonerna. För trettio år sedan när det började talas om att alla i framtiden skulle ha en egen bärbar telefon kändes detta som en utopi men ingår idag naturligt i vår livsstil.

Intresset för studieobjektet kommer ifrån att vi har varit yrkesverksamma i förskolan under flera år och att vi upptäckt att det finns brister inom förskolan dels när det gäller hur man arbetar med teknik, dels vad man som pedagog synliggör gällande teknik. Vi har även upplevt att det finns en osäkerhet beträffande vad teknik i förskolans kontext faktiskt innebär ute hos pedagoger i förskolan. Pedagogers osäkerhet är en fråga som är högaktuell i och med regeringens och Skolverkets satsning på teknik i skola och förskola, samt aktualiseras när tekniken har fått en mer prioriterad roll i både förskolans läroplan och skolan.2 Forskning visar i samma riktning som våra yrkeserfarenheter att det finns en osäkerhet inom teknikämnet hos yrkesverksamma förskollärare på förskolan. Relationer till teknik finns hos människan i olika sammanhang i livet både som brukare, som yrkesverksam och som medborgare. Alla dessa roller och aspekter på teknik ska enligt läroplaner behandlas i förskolan och i skolan.

Vi har själva upplevt hur snabbt tekniken har förändrats under de senaste årtionden och hur viktig den är för vårt vardagsliv vilket gör att vi anser att det är extra angeläget att lära barnen i förskolan möta olika aspekter på teknik. Barnen är framtiden och teknikutveckling antas vara en av samhällets grundpelare men barnen ska också växa upp till engagerade och självständiga medborgare. Vi får inte begränsa barnen i deras öppenhet och kreativitet utan istället uppmuntra till reflektion och annorlunda tänkande för att ge barnen insikter och självförtroende när det gäller teknik. Vi vill i detta arbete både analysera förskolans läroplan för att där se hur teknik framställs och studera hur pedagogerna säger sig synliggöra teknik i förskolans verksamhet.

1 Sundin (2006) s. 99
2 Bjurulf (2013) s.15
2. Bakgrund

Behovet av teknisk kompetens har debatterats i samhället bland politiker och inom näringslivet. Fler ingenjörer men även andra yrkesgrupper inom teknik efterfrågas. Tekniken har bland annat därför fått en mer framträdande roll i skolans läroplan i form av tydliga strävansmål och centralt innehåll där de bland annat betonar praktiskt kunnande samt förståelse för hur enklare teknik fungerar redan i lägre årskurser. I Förskolans läroplan betonas att barnen ska få utveckla och upptäcka hur enklare teknik fungerar i sin vardag.3 Vad innebär då enklare teknik som står i läroplanen? Hur beskriver pedagogerna i förskolan att de arbetar med de förtydligade pedagogiska uppdraget i läroplanens strävansmål att man i den dagliga verksamheten ska stimulera barnens utveckling och lärande inom bland annat teknik?

Bjurulf framhäver i sin inledning till boken Teknikdidaktik att vardagsteknik kan vara så självklar för oss vuxna att vi inte ens tänker på den. Teknik förekommer naturligtvis lika självklart i barnens vardag exempelvis som toaletten, blöjan, tandborsten, skeden, gummitövlnarna, gungor, surflattor, dockor, kranar osv. Som pedagog är det viktigt att vara medveten om och känna till innebörden av teknikbegrepp.4 Inom denna studie intresserar vi oss för hur pedagogerna beskriver innebörden av teknikbegrepp i förskolans verksamhet?

Det har visats sig i tidigare forskning att det finns stor okunskap om vad ämnet teknik i skolan och området teknik inom förskolan innebär, vad som innefattas i teknik och hur man ska förhålla sig till detta hos lärare som själva bland annat säger sig sakna det tekniska självförtroendet.5 Många lärare som undervisar i detta ämne i skolans tidiga är liksom förskollärare saknar utförligheter i specifikt teknik. Detta är en av anledningarna att Veronica Bjurulf efter sin doktorsavhandling Teknikämnets gestaltningar – en studie av lärare arbete med skolämnet teknik, numera leder skolverket satsning på teknik från förskolan till gymnasiet.

På samhällsnivå anser exempelvis Teknikföretagen6 och även Teknikdelegationen7 att det finns ett behov av att i tidig ålder börja med teknik för att barnen/eleverna ska behålla teknikintresset för att kunna följa samhällets utveckling och behov. Behovet tydliggjordes bland annat efter en undersökning i grundskolan som påvisade att lärarna kände att de hade dåliga kunskaper i teknikämnets kursplan och timplaner samt att ämnet inte alls fick det utrymme som det borde enligt läroplanen.8 Teknikföretagen efterfrågar teknisk kunskap då teknikintresset är viktigt för framtiden i ett allt mer globaliserat samhälle.

3 Skolverket (2010) www.slolverket.se (2013-11-01) Lpfs98/10 s.10
4 Bjurulf (2011)
5 Jakobsson (2013)
6 Teknikföretagen är bransch- och arbetsgivarorganisation för fler än tre tusen teknikföretag i Sverige.
7 Teknik-delegationen har haft regeringens uppdrag att verka för att öka intresset för matematik, naturvetenskap och informations- och kommunikationsteknik.
8 Eriksson (2005) s.8-10
3. Litteraturöversikt

Litteraturöversikten är till viss del strukturerad utifrån rubriker som stämmer överens med de teoretiska ramverk som arbetats fram för denna studie. Vi har valt att definiera olika aspekter av teknik som vi hittat i tidigare forskning och som exempelvis benämnts bildningsemfaser inom teknik eller olika definitioner av teknik. Litteraturen som utgör litteraturöversikten är främst vetenskapliga artiklar men även uttalanden från styrdokument och utredningar av olika slag som i sig baserats på aktuell forskning. Översikten är ingalunda heltäckande men vår föresats har varit att organisera befintlig forskning om syn på teknik inom de olika aspekter som vi definierat. Vi vill även poängtera att vi har valt bort att belysa genusperspektivet som en specifik aspekt, vi presenterar genusrelaterad forskning under den medborgerliga aspekten. Det är visserligen en viktig och återkommande aspekt i förskolans verksamhet och vi ser hur den genomsyrar alla övriga aspekter. Vi har dessutom valt att betrakta hållbar utveckling och medborgarskap som en aspekt trots att de i tidigare forskning särskilts som två olika emfaser.9

För att inledningsvis belysa begreppet teknik har vi tagit hjälp av Nationalencyklopedin där man kan läsa att teknik kommer från grekisk teknologia och härstammar från téchnē som betyder "konst", eller "hantverk" och logos inbegriper "lära".10 Det skulle ge en bild av teknik som läran om konst eller hantverk vilket kan förklara ämnet teknik i skolan som utvecklats från att ha omfattat slöjdämnen, gått via mer av ett verkstadsämne till att numera omfatta ett mer teoretiskt ämne med många olika delar.11 Då man kommer i kontakt med varierande litteratur där ämnet teknik förekommer visar de på många olika infallsvinklar i sina försök att definiera teknikbegreppet. Lindqvist12 nämner åtta olika definitioner i sin antologi ”I teknikens backspegel”.

1. Teknik är användandet av maskiner, redskap och verktyg
2. Teknik är tillämpad naturvetenskap
3. Teknik är människans metoder att behärskas naturen
4. Teknik är människans metoder att behärskas den fysiska miljön
5. Teknik är människans metoder att tillfredsställa sina behov genom att använda fysiska föremål
6. Teknik är de metoder som används för att bearbeta råmaterial i syfte att öka deras användbarhet
7. Teknik är människans metoder att tillfredsställa sina önskningar genom att

9 Klasander (2010)
11 Bjurulf (2008)
12 Lindqvist (1987)
8. Teknik är all rationell, effektiv verksamhet.

Författaren försöker med dessa definitioner skapa en meningsfull betydelse av ordet i dagligt tal som vi kan känna oss väl bekanta med. Kline13 delar upp och beskriver teknik på fyra olika sätt: 1. \textit{Artefakt}, ett föremål som är tillverkat av människan. 2. \textit{Sociotekniska system} för produktion, ett gemensamt nyttjande av artefakt tillverkning som tex. maskiner och ekonomi. 3. \textit{Kunskap eller metod}, den kunskap eller färdighet som krävs för att utföra en uppgift, blir inte möjlig utan systemet. 4. \textit{Sociotekniska system} för användning, där människan och artefakten samverkar för att utföra en uppgift, blir inte möjlig utan systemet.14

Här nedan ger vi en definition av teknik i förskolan, genom att beskriva olika teknikaspekter samt hur tidigare forskning belyser de olika teknikaspekterna. Vi börjar dock med att belysa läroplanen och dess intentioner av teknik i förskolan.

3.1. Intentionen med Lpfö98/10

- uppföljning, utvärdering och utveckling (2.6)
- förskolechefens ansvar (2.7)

I kapitlet som handlar om utveckling och lärande (kapitel 2.2) har målen kring språk och kommunikation, matematik, naturvetenskap och teknik kompletterats och utvecklats.

Dessa delar har förtjogligt i avseende att förskolan inom olika områden som exempelvis teknik ska ta tillvara barnens lust att lära på ett bättre sätt vilket inte utnyttjats fullt ut.15 Även riktlinjer för förskollärarens ansvar är nytt.

Förskolans uppdrag innebär bland annat att skapa en verksamhet som är rolig, trygg och lärorik för alla barn som deltar. Varje barn ska få möjlighet att utveckla olika förmågor och intressen i en verksamhet som bidrar till barns förståelse för sig själva och sin omvärld och förskolan ska anpassa och anknyta sin verksamhet till alla barns erfarenhetsvärld och ta till vara flödet av barns tankar och idéer för att skapa mångfald i lärandet.16

Intentionen med läroplanen är att förskolan ska präglas av en helhet och allsidighet där leken intar en betydelsefull del av verksamheten. Det är även hur barnens utveckling och lärande tillgodoses som ska utvärderas och inte de enskilda barnen.

13 Kline (1985/2003)
14 Ibid
15 Utbildningsdepartementet (2011) \url{www.regeringen.se} (13-12-29)
16 Ibid s.4
3.2. Tidigare forskning om teknik i förskolan

Stables anser att stödet till barnen i deras tankar och kunnande om hur saker fungerar är en viktig del för att barnen ska tillägna och utveckla sina kompetenser. Hon menar att fokus i arbetet med de yngre barnen ska ligga på att utveckla de olika förmågorna. Dock är det viktigt, enligt Stables, i strävan mot en likvärdig utbildning att börja låta barnen redan i tidig ålder möta tekniska aktiviteter. Desto tidigare barnen möter tekniska aktiviteter ges ett större utrymme för att utveckla deras tekniska självförtroende och deras tillit till sin egen förmåga. De yngre barnen har sällan spärrar i sitt tänkande utan har ett naturligt intresse och en nyfikenhet i mötet med omvärlden. Stables menar att barnen bör få lära genom praktisk erfarenhet och att ett aktivt lärande i sin tur leder till att barnen får en ökad förståelse för sin omvärld. Detta bör ske i ett meningsfullt sammanhang vilket framhålls av Stables.18

Camlibel Cakmak anser att det är viktigt att redan från förskolan arbeta med naturvetenskap och teknik för att barnen ska tillägna sig positiva erfarenheter. Han hänvisar till andra forskare som genomfört studier som belägger detta exempelvis Harlen & Jelly, Chaille & Britain, Duckworth, Frost, Keller, Özbec & Alisinanouglu.20 21 22 23 24 25

I Camlibel Cakmak’s artikel betonas att naturvetenskap är viktigt redan från förskolan. Eftersom det i förskolan skapas en grund för insikter om de första vetenskapliga begreppen. För att barnen ska utveckla sina attityder till naturvetenskap och utveckla sina vetenskapliga färdigheter har dessutom lärarnas attityder och inställning en betydande roll, framhålls av Davies & Howe.26 Camlibel Cakmak skriver att lärare som har negativa attityder och bristande kunskaper om naturvetenskap och teknik kan orsaka att förskolebarn utvecklar negativ uppfattning eller missuppfattningar om detta. Som ett resultat av detta anser Camlibel Cakmak att barn i förskoleåldern bör ges möjlighet till att utveckla positiva attityder till vetenskap.27

Tu hävdar att ”barns långsiktiga attityd gentemot naturvetenskap börjar med deras första upplevelse av den”.28 Tu menar att yngre barn är i grunden nyfikna på allt som finns runt omkring dem, de upptäcker saker på egen hand för att förstå och genom detta skapas det första mötet med naturvetenskapen och ger barnet möjligheter att utveckla en förståelse för världen runt omkring. Genom att barn får vara med och diskutera, ifrågasätta, reflektera sina egna teorier

17 Stables (1997)
18 Ibid
19 Camlibel Cakmak (2012)
20 Harlen & Jelly (1989)
21 Chaille & Britain (1991)
22 Duckworth (1996)
23 Frost (1997)
26 Davies & Howe (2003)
27 Camlibel Cakmak (2012)
28 Tu (2006)
29 Ibid s.251
och idéer mm. utvecklar de sina förmågor att forska och undersöka. Tu beskriver även i sin artikel att tekniken som vetenskap finns överallt i vår omgivning, han menar att tekniken behöver göras mer viktig och betydelsefull för barnen. Därför bör tekniken få mer utrymme i undervisningen och i förskolans verksamheter.30

Forskning om barns lärande presenterad av Marton och Booth31 beskriver att barns lärande kan se olika ut beroende på vilka uppfattningar och erfarenheter de har av olika fenomen. Författarna förklarar att lärandet sker då barnen utför handlingar där de skapar sig förståelse och mening. För att barn ska kunna sätta in sig i situationer behöver de återkoppna till olika sammanhang för att utvinna kunskap. Studien genomförs med en fenomenografisk ansats och utgörs av en undersökning där utgångsläget är att se hur barn uppfattar och tolkar olika fenomen.

Det första man studerar enligt författarna är hur barn förstår och tolkar fenomen. Sedan arbetar man vidare med att barnet får möjlighet till mer kunskap och nya erfarenheter med ett lärande underlag kopplat till det första fenomenet. Detta leder till vidare arbete med att ge barnet erfarenhet av det som barnet förställt. Nästa gång som barnet kommer i kontakt med samma objekt som första gången, har de nu fått så mycket kunskap och erfarenheter av objektet att de kan betrakta det i sin helhet och som ett välbekant objekt.32

3.3. Läroplanen om teknik som kunskap

Vid revideringen av läroplanen lyftes som tidigare nämnts tekniken fram. När man ska utläsa vad och hur man ska arbeta med teknik i förskolan krävs en tolkning av de olika strävansmålen men även att läroplanen ses som en helhet. Enligt Thulin33 är det viktigt med kunskap om innehållet i läroplanen då den även har fokus på lärande och kunskaper. Jarvis och Rennie34 visar att läroplanerna i Storbritannien och Australien väldigt konkret bygger på att pedagogerna har en lämplig utbildning. De beskriver också att lärarna har olika uppfattningar av vad teknik begreppet innebär, vilket kan leda till kommunikationsproblem kollegorna emellan. Frånsett olika uppfattningarna om teknik fanns det även en stor förvirring bland pedagogerna vad gäller skillnaden mellan teknik och naturvetenskap. Rennie och Jarvis visar på vikten att pedagogerna får tillräckliga kunskaper om både teknik och naturvetenskap, och att det skulle medföra en bättre implementering av ämnena i den pedagogiska verksamheten med barnen.35

I läroplanen framhålls att genom ett temainriktat arbetssätt har barnen möjlighet att tillägna sig kunskaper genom lek där läroplanens olika delar går in i varandra.

Som tidigare nämnts har teknik fått en mer framskriven roll i läroplanens kapitel om utveckling och lärande. Argumenten som används är att den tekniska utvecklingen går allt fortare

30 Tu (2006)
31 Marton & Booth (2000)
32 Ibid
33 Thulin 2006
34 Jarvis & Rennie (1998)
och att en medborgare behöver vara tekniskt bildad för att klara vardagen, vilket leder till att det är viktigt att redan i förskolan ska få kunskap om teknik. Viktigt blir hur ökad kunskap definieras och kan möjliggöras inom förskolan:

Lärandet ska baseras såväl på samspelet mellan vuxna och barn som på att barnen lär av varandra.

Det finns enligt Mawson37 en inte alltför omfattande forskningsbas gällande yngre barn och hur de lär enskilt och i grupp inom specifikt teknisk bildning. Detta eftersom teknikdidaktik, Technology education är en relativt ny disciplin. Vad som inverkar på det enskilda barnet samt vad som har inverkan i stort vid den tekniska förmågan hos yngre barn har därför bara belysts i ett ringa antal studier. Mawsons egen studie utgörs av en longitudinal etnografisk studie i en skola på Nya Zeeland och ökningen av den tekniska förmågan hos tjugo barn under de första tre åren i skolan har varit föremål för studien. Mawson beskriver att det är viktigt med hur den pedagogiska verksamheten planeras i sin helhet och att det även är viktigt att ge tid till teknikrelaterade aktiviteter, samt att skapa en pedagogisk verksamhet som är könsneutral för att ge förståelse av teknik. Det är lätt att tekniken blir ett isolerat projekt och saknar den samhälleliga kunskapen. För att nå fram till ett pedagogiskt förhållningssätt som stimulerar det tekniska kunnandet är det viktigt att pedagogerna får en utbildning i teknik som stämmer överens med dagens samhälle.38

3.4. Teknik som att göra-aspekten

Läroplanen för förskolan betonar Vikten av att lära med hela kroppen där barnens tidigare kunskaper och erfarenheter ska ligga till grund för den pedagogiska verksamheten. Genom att barnen får ”göra” saker och får möta teknik i meningsfulla sammanhang blir det ett lustfyllt lärande, vilket uttrycks i läroplanen.

Turja Endepohls-Ulpe & Chatoney39 anser att leken inte nyttjas i tillräckligt stor utsträckning inom teknikundervisningen trots att barn lär genom att i leken göra saker. Genom leken ges barnen möjlighet att komma i kontakt med och utöva många roller som kan sammanknippas med teknik, som exempelvis uppfinnare, designer, reparatör, forskare osv. I leken ges även möjlighet att utforska och få kunskap om material och föremål. Turja et al. menar att genom leken har barnen möjlighet att med hjälp av fantasin utforska problemlösningar och alternativa lösningar.

36 Skolverket (2010) [www.skolverket.se Lpfö98/10 s.6-7]
37 Mawson (2007)
38 Ibid
39 Turja, Endepohls-Ulpe & Chatoney (2009)
Detta benämner hon som ”make-/belive/symbolic play” vilket leder till att fantasin och kreativiteten expanderar. I den symboliska leken kan barnen tillskriva föremål andra värden vilket i sin tur leder till att föremålet gradvis ersätts med en symbol, exempelvis kan en kotte inta ett annat värde och bli en ko i deras lek. Detta hävdar Turja et al är grunden för konstruktionslek som i sig kan ses som ett led i designinlärning. Klossar och återvinningsmaterial får ofta inta en representativ roll då barn gärna använder sig av konkreta material i lek. Konstruktionsleken ligger nära rolleken då barnen genom fantasin har möjlighet att utforska och prova kunskaper, färdigheter och ståndpunkter.

Enligt Turja et al börjar barn från 5 års ålder kunna bemästra regellekar. Att kunna hantera förutsatta regler hjälper barnen även att hantera tekniska processer som i sin tur innehåller vissa regler. Genom aktiviteter där barnen får tillverka något annat leder till att även utveckla språket genom att bekanta sig med olika begrepp inom teknik. Även om processen till synes är viktig blir det ofta att fokus hamnar på det slutliga resultatet istället hävdar Turja et al.

3.5. Teknik som artefakt-aspekten

Bjurulf hävdar att många ser artefakter som teknik. En artefakt är ett föremål skapat av människan för att underlätta för sig själv. Exempel på artefakter är dator, penna, stol mm, men teknik är emellertid mer än endast artefakter.

Säljö betonar också artefakter som föremål som är skapade av människan och inom den sociokulturella synen på lärandet utgör artefakter en viktig aspekt.

40 Turja mfl. (2009)
41 Siraj-Blatchford (1998)
42 Ibid
43 Bjurulf (2008)
Denna definition är ofta förekommande i olika texter om teknik.

Teknik är allt det som människan sätter mellan sig själv och sin omgivning för att uppfylla olika behov samt de kunskaper och färdigheter hon utvecklar och förvaltar i denna problemlösende process.\(^{45}\)

Att förstå artefakters funktion, utveckling och ändamål framhålls som viktiga syften med ämnet teknik.\(^{46}\)

3.6. Teknik som system- aspekten

Clas Klasanders avhandling är riktad mot skolan där bland annat skolans styrdokument för teknikämnet har varit föremål för granskningen. Han har även studerat hur lärare förhåller sig till tekniska system och hur läroböcker skildrar detta. Resultatet visar på att tekniska system som undervisningsinnehåll har förstärkts sedan 1970-talet. Dock hämmar teknikämnets fascination för artefakten i sig vilket leder till att prylar får mer utrymme i undervisningssammanhang än den större bilden av hur saker sammanlänkar med varandra som vill säga tekniska system. Klasander skriver i sin inledning:

> Trots systemets ständiga närvaro i våra liv, tar många av oss den teknik de erbjuder för given på ett sätt som gör den näst intill osynlig. Ett illustrativt exempel är det globala kommunikationssystemet, ”världens största maskin”, och hur vi använder det.\(^{47}\)

Med detta vill han framhålla hur viktigt det är med kunskap om tekniska system och att vårt samhälle är uppbyggt på dessa system i olika sammanhang.

3.7. Teknik som medborgarliga aspekten

En samhällsmedborgare möter många olika teknikaspekter. För att kunna delta i ett demokratiskt samhälle är det viktigt att ha teknisk kompetens för att kunna fatta beslut i olika avseenden som exempelvis Sundin uttrycker det.

Det är också vår plikt att inse att utvecklingen inte är ödesbestämd. Vi har fortfarande möjlighet att välja framtid. Det är hög tid att bekymra sig inför detta val – inte genom att säga nej till tekniken, men, genom att återge den dess enda rimliga mening, att, som Martinson skriver, vara till livets hjälp.\(^{48}\)

\(^{44}\) Säljö (2000) s.29-30
\(^{45}\) Ginner & Mattsson (1996) s. 22
\(^{46}\) (deVries, 2006; Dusek, 2006; Bjurulf; 2008).
\(^{47}\) Klasander (2010)
\(^{48}\) Sundin (2006) s.293
För att kunna följa med i samhällsutvecklingen är det viktigt att vi tillägnar oss ett kritiskt tänkande, något som även tas upp i läroplanen Lpfo98/10.49 I alla tider har tekniska lösningar haft betydelse för människan och för utvecklingen i samhället. Det som har varit drivkraften för denna tekniska utveckling kommer ursprungligen från människans vilja att lösa problem och underlätta för sina egna behov.50

Stables51 skriver i sin artikel om hur teknikundervisningen för yngre barn kan gå till och han menar att barn har en naturlig drivkraft att genomföra sina önskningar att uppnå mål. Det kan handla om att tillverka ett hus till en nallebjörn, eller en liten ask att förvara skatter i, uppgiftens syfte har då en mottagare och en specifik utövare. Barn skapar miljöer och rekvisiter utifrån leksakens behov och de kan starkt känna igen dem. I verkligheten handlar det om att vara användare och konsument men här finns flera olika användare vars behov behöver tillsfredsställas. Stables menar också att det finns olika drivkrafter som håller igång barnets engagemang till teknikundervisningen och det är: a. önskan att få en nöjd lärare b. få lära sig nya saker c. få tillfälle att använda nya verktyg och material d. få visa för andra vad de kan. Stables menar att en lärare ska ha detta i åtanke och planera aktiviteterna utifrån dessa drivkraftar men det som är viktigaste här är att läraren ser ett syfte med aktiviteterna.52

Elvstrand53 har gjort en studie av hur flickor och pojkar förhåller sig teknik i förskolan. Observationer från olika situationer visar att både flickor och pojkar använder teknik i sin vardag och att de är positiva till teknik. De använder teknik både i lärarplanerade aktiviteter och i den fria leken. Den centrala platsen för teknik utomhus är sandlådan. Barnen gör sandkakor, bygger vägar och kör olika material på vägarna. Sandlådan lockar barn i alla åldrar i förskolan. När det gäller teknik inomhus är både flickor och pojkar upptagna av konstruktionslekar. Analysen visar på att flickor och pojkar väljer leksaker efter köns betydelse/ordning. Pojkars leksaker kategoriseras som typiska pojkuleksaker som bilar, kranar mm. och det finns skillnad i hur flickor och pojkar konstruerar teknik i leken. Det finns även en skillnad på självförtroende.54 Teknikämnet synliggör tydliga genusaspekter och det uppfattas ofta som manligt kodat.55 Flickor visar generellt på ett sämre självförtroende inom teknikundervisningen och förklarar sina tillkortakommanden inom teknik med att de själva saknar förmågor medan pojkar i högre grad relaterar till externa faktorer. Flickor framstår i högre utsträckning som användare av teknik medan pojkar oftare som skapare eller designers.56

49 Skolverket (2010) [www.skolverket.se (2013-11-01)]
50 Sundin (2006)
51 Stables (1993)
52 Ibid
53 Elvstrand (2012)
54 Ibid
55 Berner (2003); Skogh (2001)
56 Mitchham (1994); Turja et al. (2009); Mawson (2010)
3.8. Sammanfattning av litteraturöversikten

Inom ramen för denna studie har syftet varit att leta efter forskning gällande teknik i förskolan. Vi har försökt finna litteratur specifikt om förskolan men även vänt oss till övrig litteratur som vi anser är av relevans samt uppvisar en trovärdighet inom detta forskningsfält. Tidigare forskning och övrig litteratur beskriver bland annat att det finns en osäkerhet kring teknik hos pedagoger som möter barn i yngre åldrar. Intentionen med läroplanen är dels att stärka det pedagogiska uppdraget för att nå en likvärdig utbildning för alla och för att förskolan ska präglas av ett helhetstänk där lek, lärande, omsorg och fostran ingår i en helhet och skall vara nära sammanlänkande. Förskolan ses som den första delen inom utbildningssystemet och förutsätts lägga grunden för det livslånga lärandet. Den presenterande forskningen påvisar vikten av att börja arbetet med teknik redan med yngre barn för att på så vis utveckla barns tekniska kompetens och deras tekniska självförtroende. Yngre barn saknar i högre utsträckning tankespärrar vilket leder till en större kreativitet. Forskningen visar på att det är viktigt att verksamheten bygger på barnens kreativitet och naturliga nyfikenhet för att främja den tekniska kompetensen i det livslånga lärandet. Detta sammanlänkas med den svenska läroplanens intentioner där betoningen ligger på lekens betydelse och de enskilda individernas intressen och erfarenheter. Verksamheten bör bedrivas genom ett aktivt lärande i meningsfulla sammanhang vilket finner stöd hos flera forskare som exempelvis Stables och Camlibel Cakmak. Läroplanen har genomgått en revidering som bland annat har medfört förändringar med intentionen att nå en likvärdig förskola för alla. Förändringar som är av vikt för denna studie är:

- Teknik som framskrivits i läroplanen
- Förskollärarens förtydligande av uppdraget

Vissa aspekter av teknik är mer allmänt återkommande gällande yngre barns lärande.

Vid revideringen av läroplanen är det fortfarande begrepp såsom utbildning, undervisning samt kunskap som är aktuella för förskolans verksamhet likväl som för skolans verksamhet. Förskollärarens ansvar för undervisning har förtydligats dock uttrycks tydligt att hela arbetslaget ska verka för främjandet av barns lärande i förskolan.\(^{57}\)

\(^{57}\) Skolverket (2010) www.skolverket.se (2013-11-01)
4. Teoretiska perspektiv

I studien är vi speciellt intresserade av att försöka hitta olika teknik aspekter och hur de framträder dels i läroplanen och i förskollärarnas beskrivningar av hur de synliggör teknik i förskolan. De *tekniska aspekterna* kommer att utgöra verktyg mejslade ur de teoretiska perspektiven, studien har två teoretiska utgångspunkter. Den första teoretiska utgångspunkten utgörs av ett perspektiv som definierar *arenor*. Arenorna som menas är formuleringssarenan samt realiseringsarenan. Dessa arenor påverkar hur barnen i sin tur möter teknik i förskolan. Arenorna är inbördes beroende och samspelet med varandra.58 Formuleringsarena utgör en möjlighet att på statlig nivå utöva inflytande över samhällsutvecklingen exempelvis genom reformer och utformning av läroplaner. På detta sätt påverkas tekniken i förskolan genom hur den framskrivits i läroplanen. Detta är någonting som har ändrats över tid i och med de olika läroplansreformerna. Realiseringsarenan är den arena där det som formulerats verkställs.59 Med formuleringssarenan som grund för studien avses i denna studie en granskning av styrdokumentet för förskolan Lpfö 98/10 som pedagogerna har att förhålla sig till på realiseringsarenan. Realiseringsarenan kommer att beaktas i denna studie genom att pedagogernas föreställningar och uppfattningar om teknik i förskolan studeras och beskrivs.

Den andra teoretiska utgångspunkten är de olika syn på teknik som utgår ifrån Klasanders bildningsemfaser. Bildningsemfaser som i Klasander60 även relateras till kunskapsemfaser och traditioner hos Östman61 respektive Roberts62. Klasander studerar i sin avhandling63 hur olika bildningsemfaser kan komma till uttryck i texter. Totalt handlar det om sex olika bildningsemfaser vid undervisning om tekniska system och vad som är karaktäristiskt för dessa:

Design and make – Uppfinningsriktedom, tillverkan av produkter och modeller samt hantverkslära.

Den industriella emfasen – Förberedelse för arbete som ingenjör, inom produktionssystem, industridesign.

Den hållbara utvecklingsemfasen – Ekocentrism där tekniken ofta ses som förstörande, ond/god.

Hantera vardagens emfasen – Utgår ifrån människan och hennes hantering av artefakter.

Den medborgerliga emfasen – Ge en positiv framtidsbild där det egna handlandet sätts i fokus.

Teknikhistorisk emfas – Förståelse för teknikens framväxt, drivkrafter i form av mänskliga behov osv.

58 Klasander (2010) s.21
59 Lindensjö & Lundgren (2000)
60 Klasander (2010)
61 Östman (1995)
62 Roberts (1994)
63 Klasander (2010) s.80-85
Dessa bildningsemfaser har av oss omarbetats och anpassats för vår studie som riktar sig mot förskolan. Vi har valt att kalla de olika tekniksynerna för olika teknik aspekter. Flera av aspekterna har likheter med de som Klasander beskriver i sina bildningsemfaser, men justeringar har gjorts då vi anser att vissa av emfaserna går in i varandra, samt att hans emfaser saknar teknik som artefakt vilket vi upplever borde ingå.

Teknik aspekterna som vi har arbetat fram vilket utgör vårt teoretiska ramverk är, Teknik som *Att göra-* aspekten, Teknik som artefakt-aspekten, Tekniska system-aspekten och Medborgliga aspekten.

Dessa olika synsätt är återkommande i olika tolkningar av teknik. De kan beskrivas på olika sätt av olika författare och forskare men har i grunden samma betydelse.

Tabell 1: Omtolkning av teknik aspekter utifrån Klasanders bildningsemfaser samt DiGironimo\(^\text{64}\) och hennes olika definitioner av teknik.

<table>
<thead>
<tr>
<th>Teknik aspekter</th>
<th>Tolkning utifrån forskning</th>
<th>Tolkning utifrån Lpfö98/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Att göra-aspekten</td>
<td>Fokus ligger på produktion och design.</td>
<td>Lek, utforska, kreativitet, lärande</td>
</tr>
<tr>
<td>Teknik som system-aspekten</td>
<td>Fokus ligger på ett systemtänkande, där helhetssyn infinner sig med exempelvis kretsloppets alla delar.</td>
<td>Fokus på Artefakt i ett vidare perspektiv. Tex. Kretslopp</td>
</tr>
<tr>
<td>Medborgliga aspekten</td>
<td>Fokus ligger på att klara vardagen och på att som medborgare delta i ett demokratiskt samhälle. Även hållbar utveckling.</td>
<td>Demokrati, fatta beslut/delta i ett tekniskt samhälle, likvärdiga förutsättningar,</td>
</tr>
</tbody>
</table>

Dessa olika tekniksyner anser vi förekommer frekvent i tidigare forskning som granskats för denna studie. Den mest upprepade aspekten av teknik som förekommer är teknik som artefakt.

\(^{64}\) DiGironimo (2011)
Med denna artefaktaspekt syftar till olika föremål som tillverkats av människan och kopplas ofta ihop med främst teknikprylar men även andra uppfintningar som verktyg.65 Att göra aspekten riktar in sig på att konstruera, bygga, designa mm.

65 Blomdahl (2007)
5. Syfte och frågeställningar

I denna studie vill vi undersöka hur pedagoger inom förskolan beskriver att de uppfattar och hur de arbetar med teknik i förskolansverksamhet samt hur de uppfattar att de synliggör detta för barnen på förskolan. Vi har även betraktat läroplanen för förskolan Lpfö 98/10 där vi genomför en analys av texten för att infånga vad som uttrycks gällande teknik begreppet. Som utgångspunkt används de didaktiska frågorna hur, vad och varför?

Frågeställningarna som utgör grunden för denna studie är:

- Vad framträder inom formuleringssalen gällande vad, hur och varför när det gäller teknik i förskolan?
- Vad framträder inom realiseringsssalen gällande vad, hur och varför när det gäller teknik i förskolan?
- Hur stämmer formuleringssalen överens med realiseringsssalen gällande de olika teknikaspekterna?
6. Metod

Presentation av metoder ges i separata avsnitt. Metod 1 utgör en pedagogisk analys av läroplanstexten Lpfö98/10, metod 2 utgörs av en halvstrukturerad intervju med yrkesverksamma förskollärare.

Som metod har en pedagogisk analys av läroplanstexten genomförts för att undersöka vad och hur teknik framträder på formuleringssarenan. Malin, författare MB har haft huvudansvaret för den pedagogiska analysen av läroplanstexten.

Intervju som metod utgör en halvstrukturerad samtalsintervju med syfte att undersöka hur yrkesversamma förskollärare beskriver att de uppfattar att de på realiseringsarena arbetar med teknik, samt hur de uppfattar att de synliggör detta för barnen på förskolan. Merja, författare MU har tagit huvudansvaret för intervjudelen. Respektive författare har därmed skrivit respektive metodkapitel och respektive resultatkapitel.

6.1. Pedagogisk analys av läroplanstexten som metod

6.1.1. Pedagogisk analys av läroplanstexten som metod för datainsamling

Syftet med den pedagogiska analysen av läroplanstexten är att undersöka hur teknik framträder på formuleringssarenan gällande vad hur och varför när det gäller teknik på förskolan. I analysen framträder kategorier av hur tekniken framträder i förskolan vilka i sin tur analyseras och kopplas till de olika teknikaspekterna som framarbetats till syftet med studien.

En kvantitativ analys av textens innehåll och en kvalitativ analys av text i denna studie överlappar varandra. Kvantitativ analys av texten ligger först till grund för den kvalitativa analysen av texten, där en mer ingående analys och tolkning har genomförts av läroplanen utifrån teknikfokus på formuleringssarenan. Detta för att systematisera texten samt utgöra en ansats till att klargöra tankestrukturer kring begreppet teknik i förskolan.66

66 Esaiasson, Gilljam, Oscarsson & Wängnerud (2007)
Kvantitativ innehållsanalys av Lpfö98/10 är gjord utifrån fokus på vad, hur och varför teknik bör förekomma och synliggöras i förskolan. Vid en kvantitativ analys räknas förekomster av ord, idéer el frekvenser av ord och idéer. Vid denna form av analys av texten kommer inte textens outtalade budskap fram. Vid den kvantitativa analysen av texten har texten noga genomläst i sin helhet där övervägandet av stycken, ord och dess egentliga innebörd har analyserats och tolkats utifrån den aktuella frågeställningen.

6.1.2. Urval

Med utgångspunkt i syfte och frågeställning föll valet av metod på pedagogisk analys av läroplanstexten Lpfö 98/10.

6.1.3. Undersökningens genomförande

Vid den pedagogiska analysen av läroplanstexten lästes läroplanen för förskolan i sin helhet. Textens innehåll bearbetades i mindre delar för att finna olika kategorier om hur teknik fram skrivs i Lpfö98/10. Kategorierna i sin tur kopplas till de olika teknikaspekter som framarbetas till denna studie. Vad är teknik, hur framstår det och varför ska teknik förekomma i förskolans verksamhet är de frågor som ska besvaras av studien.

6.1.4. Databearbetning

Studiens övergripande frågeställningar:

"Vad framträder inom formuleringsarenan gällande vad, hur och varför när det gäller teknik i förskolan?"

Analysschema:

Kategorier som framträder i läroplanen gällande teknik.

- Teknik tydligt uttalad
- Teknik som uttalad matematik och naturvetenskap
- Teknik som en generell tolkning

Analysen kopplas sedan till de olika teknikaspekterna som har framarbetats till denna studie:

• Att göra-aspekten,
• Teknik som artefakt-aspekten,
• Teknik som system-aspekten
• Den medborgliga teknikaspekten.

6.1.5. Tillförlitlighet

Vid en pedagogisk analys av texten bör åtanken av studiens validitet och reliabilitet övervägas. Validitet handlar om att forskaren undersöker textens tillförlitlighet och ingenting annat. Reliabilitet handlar om att noggrant granska och analysera texten.70 Examensarbetet bygger i sin helhet på en avgränsad studie vilket resulterar i att det inte går att generella forskningsmässiga slutsatser av det som framkommit. Dock har hela läroplanen analyserats vilket innebär att tolkningar av just detta styrddokument som är en bas för förskolans verksamhet har gjorts och kan därmed sägas ge en helhetsbild av det som studerats. Föresatsen i analysen av materialet har varit att vara opartisk men en medvetenhet finns om att det är svårt att vara det fullt ut. Läroplanen är tolkat utifrån vår syn på tekniska aspekter dock är det viktigt att ha i åtanke att det är fullt möjligt att som läsare göra andra tolkningar.

6.2. Intervju som metod

6.2.1. Val av intervju som metod för datainsamling

Syfte med studien som tidigare sagts är att undersöka hur förskolelärare beskriver sina uppfattningar om hur de arbetar med teknik på realiseringsarena, samt hur de uppfattar att de synliggör detta för barnen på förskolan. Genom att använda öppnafrågor vid intervjuutkastena innebar att respondenternas med egna ord beskrev sina uppfattningar.71

6.2.2. Urval

Sex intervjuer genomfördes med förskollärare på fyra olika förskolor i en mellanstor kommun i mellan Sverige. Studien har sin utgångspunkt i förskolan, där fokus ligger på att ta reda på hur yrkesversamma förskollärare beskriver att de uppfattar att de på realiseringsarena arbetar med teknik samt hur de uppfattar att de synliggör detta för barnen på förskolan. Avgränsningar i studien gjordes genom att undersökningen är styrd mot yrkesverksamma förskollärare med ett urval av respondenter med olika examensår och erfarenheter av yrket för att få en bredd. Undersökningens fokus ligger på förskollärares uppfattningar om hur de på realiseringsarenan

70 Bergström & Borèus (2005) s.34
71 Esaiasson mfl. (2007)
omsätter och synliggör tekniken för barnen. Som grund för denna intervjustudie har vi använt oss av det som återfinns på formuleringssarenan i form av formuleringar i styrdokumentet för förskolan.

6.2.3. Undersökningens genomförande

Studien inleddes med att vi skickade mail till åtta förskolechefer i kommunen med en förfrågan om att vi sökte förskollärare som ville bli respondenter till vår studie. Vi bad om att få träffa förskollärare med olika examensår och yrkesverksamma år för att erhålla en bredd i uppfattningar. Därefter bokades tid för intervjuer med sex förskollärare vid fyra olika förskolor via mailkontakt. Vid alla intervjuetfällena fanns det tillgång till ett lugnt samtalsrum och ljudupptagning användes.\(^{72}\) Varje intervju startades med en information om syftet med vår forskningsstudie och att vi följer Vetenskapsrådets forskningsed vid intervjun.\(^{73}\) Fördelarna med att använda sig av ljudupptagning är som Esaiasson beskriver att det går att efteråt lyssna på intervjun och transkribera den. De genomförda intervjuerna transkriberades efter varje gång genom att vi lyssnade på inspelningen, för att få med så relevant information som möjligt. När alla intervjuerna genomförts och bearbetats fördes anteckningarna in i datorn med ett analyschema baserat på de tekniksyner som återfinns i bland annat läroplanen. Analysschemat utgör därigenom en enkel form av resultatanalys. MU genomförde intervjuerna och transkriberingarna. MB medverkade som observatör vid intervjuerna.

6.2.4. Databearbetning

Genomför en intervju kan man göra på flera olika sätt. Vi har valt att utgå ifrån en halvstrukturerad intervjuguide som arbetades fram innan intervjun. Den delades upp i teman med en eller flera underteman för att få bästa sätt få information till vår empiri. Den insamlade empirin det vill säga respondenternas utsagor har analyserats och bearbetats utifrån samma modell som den pedagogiska analysen av textens databearbetning som utgå ifrån de olika teknikaspekterna:

- **Att göra-aspekten,**
- **Teknik som artefakt-aspekten,**
- **Teknik som system-aspekten**
- **Den medborgliga teknikaspekten.**

\(^{72}\) Esaiasson mfl. (2007)
\(^{73}\) Ibid
6.2.5. Reliabilitet

Reliabiliteten bedöms god eftersom de intervjuade pedagogerna fick samma information innan intervjuutfallena. Intervjuerna har varit individuella och intervjufragorna har varit lika för alla. Några variationer kan ha förekommit då de intervjuade tolkar och förstår frågorna på olika sätt.

6.2.6. Validitet

De sex intervjuerna med utförliga svar och material har gett möjlighet att tillsammans med den pedagogiska analysen av läroplanstexten kunna besvara studiens frågeställningar och syfte.

6.2.7. Forskningsetiska överväganden

Det är väldigt viktigt att de personer som deltar i forskningsstudien redan från början känner sig trygga och säkra för ett gått samarbete. God forskningssed innebär att de personer som är delaktiga i en undersökning har rätt att vara anonyma i resultatbeskrivningar etc., att de har informerats om forskningsstudiens syfte och att inga uppgifter kan läcka ut. Efter en avslutad studie kommer även datainsamlingsunderlag att förstöras för att ytterligare skydda personlig identitet. Deltagandet ska vara helt frivilligt och de har all rätt att dra sig ur när som helst om de så önskar.74 Då man studerar människor blir individerna det viktigaste i forskningen och det är särskilt viktigt att ha det i åtanke redan vid planeringen av forskningsstudien. Vid intervjun är det viktigt att respektera respondenten genom att information om studiens syfte och alla de viktiga delarna överensstämmer med god forskningsled.

74 Vetenskapsrådet. www.vr.se (2013-12-18) s.66,67
7. Resultat

7.1. Läroplanen för förskolan

Nedan kommer att ges några exempel på vad som uttolkats i läroplanen angående olika teknik kategorier vilka också tidigare presenterats under metodavsnittet: Kategorin Tydligt uttalad teknik gick att finna fem gånger. Teknik uttalad som matematik och naturvetenskap uttolkades 14 gånger. Teknik som en generell tolkning uttolkades 64 gånger.

Tabell:2 Resultatschema: Antal uttolkningar av aspekten

<table>
<thead>
<tr>
<th>Antal teknik-Tolkningar*</th>
<th>Att göra aspekten</th>
<th>Artefakt aspekten</th>
<th>Teknik som system aspekter</th>
<th>Medborgerliga aspekten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tydligt uttalad teknik</td>
<td>5</td>
<td>4st</td>
<td>4st</td>
<td>3st</td>
</tr>
<tr>
<td>Matematik och naturvetenskap</td>
<td>14</td>
<td>8st</td>
<td>0st</td>
<td>2st</td>
</tr>
<tr>
<td>Teknik som generell tolkning</td>
<td>62</td>
<td>24st</td>
<td>1st</td>
<td>8st</td>
</tr>
</tbody>
</table>

*Antal tekniktolkningar innebär att det antingen tydligt står uttalat teknik eller att det uttalas underförstått relaterat till naturvetenskap och matematik eller att det kan uttolas ur ett uttalande som inte direkt uttrycker teknik men som mycket väl kan omfatta teknik.

Exempelvis står det i läroplanen

Barnen ska få möjligheter att utveckla sin förmåga att iaktta och reflektera.75

Detta är en generell tolkning där vi har tolkat att barnen ska få utveckla sin förmåga att iaktta och reflektera kring teknik begreppet för det i framtiden ska kunna bibehålla grunden till det framtida teknikintresset. För alla dessa tre kategorier har sedan de olika tekniktolkningarna kategoriserats i aspekter. Som tabellen anger så kan samma tekniktolkning kategoriseras i fler än en aspekt.

75 Skolverket (2010) www.skolverket.se (2013-11-01) Lpfö 98/10 s.6
7.2. Tekniktolknings kategorier

Under respektive teknikuttolkningskategori här nedan har uttolkningar av respektive aspekt gjorts.

7.2.1. Teknikuttolkningskategori: Tydligt uttalat som teknik.

Tydligt uttalad teknik återfinns i fem fall där teknik vid två av fallen nämns två gånger i samma avsnitt vilket vi har valt att ha under samma punkt då vi anser att de går in i varandra. Punkterna nedan kommer att representera olika uttalanden där man kan urskilja tydligt uttalat som teknik. Inom denna kategori av teknikuttolkningar gick det att uttolka teknikaspekten att göra-aspekten fyra gånger, artefakt-aspekten fyra gånger, tekniska system-aspekten tre gånger, samt medborgerliga aspekten fem gånger.

Exempelvis i avsnittet utveckling och lärande 2.2 Mål - står att läsa följande om hur förskolan skall sträva efter att alla barn:

- utvecklar sin förmåga att urskilja teknik i vardagen och utforska hur enkel teknik fungerar

I läroplanen står att verksamheten ska utgå ifrån barnens erfarenhetsevärld, därav kan en tolkning göras av texten att det rör sig om saker i barnens närhet. Enkel teknik i vardagen kan för många vuxna vara så självlöst att de inte ens reflekterar över den. För yngre barn kan tekniska föremål vara av intresse att utforska och undersöka. Teknik aspekter som går att urskilja är i denna teknikuttolknings: Teknik som artefakt-aspekten, teknik som tekniska system-aspekten, teknik att göra aspekten samt teknik som medborgerlig aspekt. Enkel teknik i vardagen kan möjligt tolkas som att det rör sig om teknik som artefakt dvs. saker/ redskap som finns i barnens erfarenhetsvärld i form av stolar, gafflar, saxar, toaletter och så vidare. Att dessa ska urskiljas och studeras gällande funktion. Artefakterna kan vidare utforskas i hur de konstruerats vilket gör att barnen har möjlighet att möta teknikaspekten att göra. I möte med teknikaspekten att göra, där barnen får konstruera och fundera över konstruktion exempelvis stol, gaffel samt prova att tillverka en artefakt vilket kan tolkas som fokus på produktionsprocessen. Artefakterna ingår ofta i större sammanhang vilket ger tekniska system-aspekten. Det kan vara nödvändigt att urskilja ett system eftersom teknik i vardagen ofta förekommer som system. Att komma i kontakt med teknik i det lustfylla lärandet bland annat genom lek kan även ses som att barnen kommer i kontakt med teknik som medborgerlig aspekt då det får positiva erfarenheter av teknik då det

76 Skolverket (2010) www.skolverket.se (2013-11-01) Lpfö98 s.10
stärker deras tekniska självförtroende som är relevant ur ett samhällsperspektiv. Den medborgerliga aspekt handalar även om att alla ska få tillgång till likvärdiga förutsättningar för att klara sig i vardagslivet och samhället.

Beroende på hur/ vad förskoläraren väljer att utmana barnen samt vad barnens egen drivkraft att utforska vidare ligger blir det olika fokus på olika aspekter.

Här nedan följer de övriga uttalanden i vilka teknik tydligt uttalas. Under utveckling och lärande 2.2 Mål -Förskolan skall sträva efter att alla barn:

- utvecklar sin förmåga att bygga, skapa och konstruera med hjälp av olika tekniker, material och redskap.77

1. Förskolans värdegrund och uppdrag - Förskolans uppdrag

- Att skapa och kommunicera med hjälp av olika uttrycksformer såsom bild, sång och musik, drama, rymtik, dans och rörelse liksom med hjälp av tal och skriftspråk utgör både innehåll och metod i förskolans strävan att främja barns utveckling och lärande. Detta inbegriper också att forma, konstruera och nytta material och teknik. Multimedia och informations teknik kan i förskolan användas såväl i skapande processer som i tillämpning.78

Under utveckling och lärande 2.2 Mål - Förskoleläraren skall ansvara för

- stimuleras och utmanas i sitt intresse för naturvetenskap och teknik79

Under utveckling och lärande 2.2 Mål - Arbetslaget ska:

- utmana barns nyfikenhet och begynnande förståelse för språk och kommunikation samt för matematik, naturvetenskap och teknik80

7.2.2. Teknikuttolkningskategorin: Teknik uttalat som naturvetenskap och matematik.

Kategorin teknik uttalad som naturvetenskap och matematik har uttolkats i 14 fall. Nedan har vi valt att exemplifiera ett urval av dessa med fem punkter av kategorin för att beskriva vår tolkning. Under denna kategori gick det att finna teknikaspekten att göra aspekten åtta gånger, artefaktaspekten 0 gånger, tekniska system-aspekten två gånger, samt medborliga aspekten fem gånger.

1. Förskolans värdegrund och uppdrag -förskolans uppdrag:

77 Ibid s.10
78 Ibid s.7
79 Ibid s.11
80 Ibid s.11
Förskolan ska medverka till att barnen tillägnar sig ett varsamt förhållningssätt till natur och miljö och förstår sin delaktighet i naturens kretslopp.

Genom att på förskolan få delta i upplevelser och få vara del i ett större sammanhang väcks en förståelse genom att kontextualisera.81 Det är viktigt att tillägna sig kunskapen här och nu för att på så vis förstå sin delaktighet i naturens kretslopp. Genom teknikaspekten att göra-aspekten kan barnen komma i kontakt med exempelvis återvinning av papper, plast kartonger, metall där det får delta genom aktivitet och följa hela processen. Ur detta kan härleda tankar kring tekniska system aspekten genom funderingar angående kretslopp och samhälle i ett vidare perspektiv. Tankar kring hur miljö påverkas av vår förhållningsätt och diskussioner om hur människor gjort förr i tiden eller gör i andra delar av världen är frågor som hör hemma här. Detta leder in oss på teknik som den medborgerliga aspekten. För att skapa förståelse för teknikens roll för individen, samhället och miljön behöver tekniken runt om oss synligöras och göras förståelig. Som framtida medborgare krävs det att på sikt att tillgodogöra sig möjlighet att påverka utvecklingen i ett allt mer tekniskt avancerat samhälle.82 Här nedan ges ytterligare exempel på uttalanden som kategoriserats som naturvetenskap eller matematik.

1. Förskolans värdegrund och uppdrag -förskolans uppdrag:

Verksamheten ska hjälpa barnen att förstå hur vardagsliv och arbete kan utformas så att det bidrar till en bättre miljö både i nutid och i framtid.83

2.2 Utveckling och lärande - mål att förskolan ska stäva efter att varje barn ska:

- utvecklar sin förmåga att använda matematik för att undersöka, reflektera över och pröva olika lösningar av egna och andras problemställningar
- utvecklar sin förståelse för naturvetenskap och samband i naturen, liksom sitt kunnande om växter, djur samt enkla kemiska processer och fysikaliska fenomen,
- utvecklar sin förmåga att urskilja, utforska, dokumentera, ställa frågor om och samtala om naturvetenskap84

81 Kontextualisera dvs. att få upplevelser i olika sammanhang.
82 Teknikdelegationen www.regeringen.se 1,3,1 Vårt vill vi komma.
84 Ibid s.10
7.2.3. **Teknikuttolkningskategorin: teknik som en generell tolkning.**

Kategorin teknik som generell tolkning har uttolkats 62 fall. Nedan har vi valt att exemplifiera med fem uttalanden av kategorin för att beskriva hur vi tolkat. Under denna kategori gick det att finna teknikaspekten "att göra-aspekten" 24 gånger, "artefakt aspekten" 1 gång, "tekniska system-aspekten" åtta gånger, samt "medborliga aspekten" 38 gånger. Det kan tyckas att antalet generella tolkningar i denna kategori är många jämfört med de ovanstående två kategorierna. Resultatet visar på att läroplanen utgör ett stor tolkningsutrymme beroende på vilket fokus som intas. Exempel på uttalanden som vi har valt bort är men som skulle kunna omfattas av denna kategori är formuleringar om språk. Språk är en viktig del i sig och har en central del i förskolans hela verksamhet därför räknas språket inte specifikt till teknik i denna tolkning utan räknas med att barnen kommer i kontakt med olika tekniska begrepp genom aktiviteter.

2.2 Utveckling och lärande - Mål saklighet och allsidighet:

- Varje barn ska ges möjlighet att bilda sig egna uppfattningar och göra val utifrån de egna förutsättningarna. Delaktighet och tilltro till den egna förmågan ska på så vis grundläggas och växa.85

I avsnittet normer och värden under förskolans uppdrag går det att läsa

- Förskolan ska lägga grunden för ett livslångt lärande.86

Ur ett samhällsperspektiv med fokus på teknik är det av störst vikt att barnen tillägnar sig positiva erfarenheter av teknik då ett allt mer ökat behov av teknisk kompetens råder och allt färre väljer att utbilda sig inom teknik.87 Ur detta synsätt skulle en möjlig tolkning vara teknik som den medborgerliga aspekten men samtliga aspekter anser vi ingår i det livslånga lärandet genom olika kontexter. För att kunna svara upp till ett allt mer globaliserat och tekniskt samhälle efterfrågas teknisk kompeten ur ett långsiktigt perspektiv. Att skapa situationer och lär tillfällen som ger ett lekfullt och lustfyllt lärande genom teknik vilket leder till positiva upplevelser och erfarenheter. Det är viktigt att barnen får utmanas och inspireras till nya kunskaper och färdigheter som bildar en grund i det livslånga lärandet.

Att förskolan ska sträva efter att varje barn:

- utvecklar sin identitet och känner trygghet i den,

85 Ibid s.5
86 Ibid s.6
87 Regeringen (2010) www.regeringen.se (2013-12-30)
• utvecklar sin nyfikenhet och sin lust samt förmåga att leka och lära
• utvecklar sin förmåga att lyssna, reflektera och ge uttryck för egna uppfattningar och försöker förstå andras perspektiv 88

Vid denna pedagogiska analys av texten är syftet att granska vad som har formulerats med fokus på teknik i förskolans styrdokument Lpfö98/10 som utgör en del av formuleringsarenan för förskolan. Vid revideringen av lärerplanen var målet att förändringen skulle leda till en mer likvärdig kvalitet på samtliga förskolor i Sverige.89 Det resulterade i förtydligade mål som är mer konkretiserade vilket i sin tur syftar till att möjliggöra att förskolan bättre tar tillvara på barnens lust att lära. Mot bakgrund av detta har det skett en framskrivning av teknik i förskolans läroplan, vilket gör att det kan tolkats som att teknik bör utgöra större plats i förskolan än vad den gjort.

Lärerplanen tolkas av den som genomläser lärerplanen. I studiens fall, i detta resultat är det vår tolkning som beskrivs och i intervjuandelsens resultat är det de yrkesverksamma förskollärarna som beskriver sina tolkningar. Att det blir varierande tolkningar är rimligt då det inte står tydligt framskrivet hur man ska gör för att arbeta med barns kunskap och lärande i teknik på förskolan. Dock är det viktigt att ha i åtanke att det är grupplärande och helhetssyn som betonas i lärerplanen och inte det enskilda barnet som exempelvis ska bedömas. På så vis är det av vikt att inta ett sociokulturellt perspektiv på lärandet när en tolkning ska genomföras av lärerplanen.90 Det går inte att plocka ut bara bitar att arbeta med, utan lärerplanen måste utgå ifrån ett lärande inom gruppen och en helhetssyn då alla bitarna egentligen sitter ihop.91 De olika teknikaspekterna som vi använder i analysen kan ses som olika tematiseringar och bildar ett ramverk för att underlätta tolkningen hur framskrivningen av teknik i lärerplanen yttrar sig. Dessutom har frågorna vad, hur och varför legat till grund för att skapa en övergripande förståelse av vad lärerplanen säger om lärande i förskolan i allmänhet. Detta för att skapa och göra en vidare tolkning av hur lärandet kan ske med inriktning mot teknik.

7.3. Intervju av yrkesverksamma förskollärare

Nedan kommer att redovisas hur sex förskollärare beskriver sina uppfattningar om hur de arbetar med teknik på realiseringsarenan samt hur de uppfattar att de synliggör detta för barnen på förskolan. Avsnittet börjar med en presentation av de intervjuade förskollärarnas svar i tabellform. Därefter kommer en utförlig genomgång av förskollärarnas svar. Resultatet från intervjuerna kommer att redovisas i ett resultatschema.

89 Utbildningsdepartementet (2011) www.regeringen.se Utbildningsdepartementet förskola i utveckling – bakgrund till ändringarna i förskolans lärerplan (2013-12-29)
90 Säljö (2000) s.17-21
Förskollärarnas uttalanden kommer att kopplas till de olika teknikaspekterna: *Att göra aspekten*, *Artefakt-aspekten*, *Tekniska system-aspekten*, *Medborgliga aspekten* vilka som har förklaras under teoretiska perspektiv i tabell: 1 under avsnitt teoretiska perspektiv.

Tabell: 3 Redovisningsschema tolkning av förskollärarnas uttalanden

<table>
<thead>
<tr>
<th>Förskollärare</th>
<th>Att göra aspekten</th>
<th>Artefakt-aspekten</th>
<th>Tekniska system-aspekten</th>
<th>Medborgliga aspekten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Förskollärare A</td>
<td>4st</td>
<td>1st</td>
<td>0st</td>
<td>1st</td>
</tr>
<tr>
<td>Förskollärare B</td>
<td>1st</td>
<td>3st</td>
<td>0st</td>
<td>1st</td>
</tr>
<tr>
<td>Förskollärare C</td>
<td>6st</td>
<td>4st</td>
<td>1st</td>
<td>1st</td>
</tr>
<tr>
<td>Förskollärare D</td>
<td>7st</td>
<td>3st</td>
<td>0st</td>
<td>1st</td>
</tr>
<tr>
<td>Förskollärare E</td>
<td>5st</td>
<td>2st</td>
<td>9st</td>
<td>6st</td>
</tr>
<tr>
<td>Förskollärare F</td>
<td>2st</td>
<td>3st</td>
<td>1st</td>
<td>2st</td>
</tr>
</tbody>
</table>

I redovisningen av förskollärarnas svar i det färdiga arbetet har delar som kommit fram vid intervjuerna tagits bort för att garantera respondenternas anonymitet.

7.3.1. *Presentation av de intervjuade förskollärarna.*

Förskollärare B är 62 år gammal hade arbetat som förskollärare i 23 år. Hon har arbetat med barn sedan 1985, utbildade sig till förskollärare 1990. Utbildningen var på 1,5 år och det förekom ingen teknik i utbildningen.

Förskollärare C är 37 år gammal hade arbetat som förskollärare i 4.5 år. Hon fick sin förkollärarexamen 2009, utbildningen var 3.5 år och hon kom inte riktigt ihåg om det ingick någonting om teknik.

92 NTA=Naturvetenskap och teknik för alla. Ett läromedel framtaget av Kungliga vetenskapsakademin och de garanterar kvalitén när det gäller utbildning och material.
Förskollärare D är 56 år gammal och har varit förskollärare i 12 år. Hon tog sin förskolläresexamen 2001, utbildningen var på 2,5 år och det förekom ingen teknik i utbildningen. Hon har gått en kurs med NTA om luft och vatten där det ingick diskussioner om teknik och vad som står i läroplanen.

Förskollärare F är 41 år gammal och har varit yrkesverksam i 17 år. Hon tog sin examen 1997 utbildningen var på 3 år. Hon tror sig minnas att det fanns lite teknik i utbildningen men hon minnes inte säkert. Hon har ingen fortbildning inom teknik men hon berättar att de har börjat diskutera begreppet teknik på arbetsplatsen i och med implementeringen av läroplanen. Förskollärare F arbetar med de yngre barnen 1-3 år. Hon sa sig finna ett intresse av teknik hemma där hon anser sig vara den tekniskt kunniga personen i hushållet.

7.4. Teknik kategorier

7.4.1. Teknik - att göra aspekten

Alla av de intervjuade förskollärarna gjorde yttrande som kan tolkas som att arbetet med teknik inom förskolan bestod i huvudsak att tillvara ta vardagsituationer som uppstår naturligt i vardagen. Vid fyra tillfällen under intervjun nämner förskollärare A att arbetet med teknik handlar om att fånga olika situationer i vardagen. Detta illustrerar hon exemplvis genom att använda skohorn, knivar, gafflar etc. och fokus ligger i hanterandet av olika vardagsartefakter. Förskollärare B och C, och nämner att teknik handlar om vardagsituationer, då främst i leksituationer som bygg lek. Förskollärare F nämner också:

Det är mer saker som händer i vardagen som man fångar upp. Till exempel om vi är och åker rutschkana så är ju det att utforska teknik. Man kan rulla låta olika saker åka ner för kanan och fundera kring vilken som kommer först och så där.

Förskollärare D säger att teknik är sådant som är återkommande i barnens vardag i form av påklädnad, matsituationer och att lägga pussel. Förskollärare E nämner också att teknik förekommer i vardagsituationer men hon nämner det i ett vidareperspektiv då det är någonting som ständigt är närvarande i alla situationer.

Bygga och konstruera med olika saker är någonting som samtliga förskollärare nämner som teknik. De ger exemplet att bygga med klossar och lego främst.
Förskollärare A:

Vi har ju barn som har börjat bygga med lego väldigt mycket, det bygger stora grejer och kan hålla på länge. Även de stora kuddarna i lekhallen har några barn börjat att bygga med så jag har börjat att tänka lite grann på det och börjat utveckla det vidare.

Förskollärare B:

Bygga är någonting som vi gör och det är ju teknik. Eller hur?

Förskollärare C:

Bygga med klossar och konstruera med lego är situationer som teknik naturligt förekommer, detta är någonting som förekommer dagligen.

Förskollärare D:

Vi försöker att se till att det finns tekniska material tillgängliga för barnen tex pussel och magneter mm.

Förskollärare E:

Teknik är ju så mycket det kan handla om att bygga och konstruera. Man kan diskutera konstruktioner om hur saker är konstruerade och sedan prova på att bygga det.

Förskollärare F:

Barnen bygger ju med Duplo det är ju teknik.

7.4.2. Teknik – som artefakt-aspekten

Förskollärare A, B, C och D gjorde olika yttranden vilket kan tolkas som att teknik handlar om tekniska artefakter vilket de nämner återkommande. När de ska definiera ordet teknik så säger de så här:

Förskollärare A:

För mig handlar det om det stora med apparater hur de fungerar osv.

Förskollärare B

För mig är teknik tekniska aparater som radio tv och datorer.

Förskollärare C

Teknik är väl för mig hur saker och ting fungerar, hur de är uppgjorda och konstruerade. Som apparater, lampor, radioaparater datorer.
Förskollärare D

Teknik är allt material som finns på förskolan som använts i verksamheten som tex. magnetar, pussel, klicks och så där.

Förskollärare F uttrycker först att teknik är främst tekniska prylar i form av datorer, telefoner osv. Senare beskriver hon att teknik kan vara nästan allt:

När man tänker efter så är teknik allt som finns runt omkring oss. Det är flaskor, stolar jaa nästan allt, såpbubblor som vi bläste med barnen de är ju teknik.

Förskollärare E anger att teknik finns överallt om kring oss. Vidare säger hon:

Teknik är det äldsta ämnet som finns, allt som människan har uppfunnit och använder som hjälpmedel för att underlätt vardagen.

7.4.3. Teknik – som tekniska system-aspekten

Tekniska system-aspekten har vi kunnat uttolka hos tre av pedagogerna genom deras yttranden. Förskollärare C och F nämner det varsin gång och förskollärare E nämner det två gånger:

Förskollärare C

Idag tex. när jag tog kort på barnen är ju teknik, om jag inte är helt ute och cyklar. Jag pratar med barnen om vad som händer när man skriver ut bilderna.

Förskollärare F

Vi arbetar med återvinning av olika material som papper, mjölkkartonger, plast och så där. När vi lämnar den brukar prata om vad som händer.

Förskollärare E nämner teknik som system-aspekten nio gånger på olika sätt ex.

Vid matsituationer diskuteras varifrån mjölen kommer det finns massor med teknik runt detta barnen har massor av funderingar och som vuxen är det viktigt att vara lyhörd och kunna fånga upp barnens tankar.

7.4.4. **Teknik – som medborgelig aspekt**

Samtliga förskolärare gjorde yttranden som kan tolkas att det var viktigt med teknik i förskolan eftersom vi lever i ett tekniskt samhälle och måste kunna handskas med det. Förskolärare E nämner det vid fem tillfällen. Exempelvis som:

Teknik ska ju vara för alla. Och som det är nu så är det oftast så att det är skillnader mellan flickor och pojkar.

För att kunna delta i samhället senare i livet är det viktigt att kunna tänka och ha en förståelse för det. Vi lever i ett tekniskt samhälle och då måste alla få tillgång till en teknisk utbildning och det blir allt viktigare tycker jag.
8. Diskussion

Nedan inleder vi med en metoddiskussion där vi kommer att reflektera över de olika metodvalen i vår studie. Sedan förs en resultat diskussion där inledningsvis en pedagogisk analys av läroplanstexter kommer att överläggas, därefter diskuteras intervjustudiens resultat. Dessa kommer sedan att speglas mot varandra i en tolkningsdiskussion.

8.1. Metod diskussion

93 Esaiasson mfl. (2007) s. 223-256
94 Klassander (2010)
95 Esaiasson mfl. (2007)
Nackdelen kan vara att frågorna blir för breda och respondenten leds in på fel område jämfört med det syftet hade. Önskemålet om ett naturligt samtal kan missas. Nedanstående fyra faktorer har vi beaktat vid intervjuutgåfallet då det påverkar utfallet.96

1. Viktigt är att inleda samtalet med uppvärmningsfrågor vilket skapar ett socialt möte och motverkar maktpositioner.

2. I intervju situationen bör strävas efter att skapa ett möte som intresserar både parterna.

4. Intervjuaren bör ha goda kunskaper om det ämnet som intervjun omfattar så att det finns möjligheter att ställa bra följdfrågor samt en idé om intervjuns analys metod.

Vi upplever dock att vi har lyckats skapa intervju situationer som skapat engagemang och som har känts bekväm. Vi har varit pålästa inom ämnet men vid genomlyssandet av den insamlade empirin kom vi underfund med att vissa följdfrågor skulle kunna ha utvecklats för att få ett ytterligare djup i utsagorna.

8.2. Resultat diskussion

Studiens utgångspunkt är att undersöka formuleringsarenan och realiseringsarenan angående teknik i förskolans verksamhet samt om det stämmer överens med pedagogers uppfattningar av hur de uppfattar och synliggör teknik i förskolan med barnen. Först har en pedagogisk analys av texten genomförts där formuleringsarenan har studerats för att undersöka hur teknik är framskriver i Lpō98/10 samt vilket tolkningsutrymme som finns gällande teknik i förskolans läroplan. Regeringen utövar inflytande över förskolans verksamhet och därigenom påverkar pedagogernas yrkesutövande, genom textens budskap. I läroplanen för förskolan Lpō98/10 står det inte tydligt hur pedagogerna ska arbeta med teknik i förskolan. Detta resulterar i att pedagogerna själva måste göra en tolkning av formuleringarna dvs. vad läroplanen säger om teknik. Formuleringsarenan och realiseringsarenan är ömsesidigt beroende av varandra och påverkar vad barnen möter för verksamhetsinnehåll på förskolan. Läroplanens intentioner utgår ifrån en helhetssyn där leken intar en viktig position i verksamheten och omsorg, fostran samt lärande går in i varandra. Mawson97 betonar att det är viktigt att den pedagogiska verksamheten utgår ifrån en helhet där alla barn ska ges samma förutsättningar. Att utgå ifrån barnens

96 Essaiasson mfl. (2007) s. 257-281 s.301-332
97 Mawson (2007)
erfarenhetsvärld är någonting som betonas i läroplanen, detta framhåller också Stables
98 då han anser att lärandet bör ske i meningsfulla sammanhang och genom praktisk erfarenhet.
99
Vid den pedagogiska analysen av texten i Lpfö 98 /10 framkom det att teknik uttolkat som en generell tolkning har det väsentligt största utrymmet. Detta i sin tur möjliggör det stora tolkningsutrymmet som finns på formuleringensarenan angående teknik i förskolan. Jarvis och Rennie visar i sin forskning hur viktigt det är att pedagogerna har goda kunskaper inom teknik och naturvetenskap för att kunna använda ämnena i verksamheten på ett bättre sätt.
100 Förståelse och kunskap i teknik måste finnas hos pedagogerna för att de ska kunna göra en djupare tolkning av läroplanen. Den tydligt uttalade tekniken som förekom i pedagogiska analysen av läroplanstexten hade ett förhållandevis mindre utrymme än jämförelse med teknik som en generell tolkning. Resultatet visar på att teknik i sig är ett väldigt brett begrepp som förekommer i många olika aspekter inom förskolans verksamhet precis som det gör i samhället i stort.
Vid analysen av respondenternas uttalanden framkom olika yttranden hos samtliga förskollärare att teknik bestod i att ta tillvara vardagssituationer som uppstår i förskolans dagliga arbete. Situationer som samtliga pedagoger nämnde som teknik var att göra-aspekten då främst i form av bygg och konstruktionslek. Förskollärare E var en av de sex intervjuade respondenterna som uttryckte det som att hon arbetade medvetet med teknik och hade det ständigt i åtanke, hon var även den som hade läst hela 90 Hp i teknik. Förskollärare E var den som vi tolkade även hade flest uttalanden som kan kopplas till Tekniska system-aspekten. Övriga pedagoger angav att det inte arbetade medvetet med teknik men att det ändå förekom i förskolans verksamhet. Resultatet visade på att de flesta pedagoger i vår studie hade en osäker inställning till teknik och de uttryckte också tydligt att de saknade kunskaper inom teknik och hur och vad som ska läras ut till barnen i verksamheten. De flesta av respondenterna gjorde yttranden vilket kan tolkas som att vidareutbildning i teknik skulle behövas då det numera tydligt står framskriet i läroplanen.
Hatice
101 beskriver hur en grupp förskollärarstudenter utan en specifik utbildning inom teknik studerades. De hade även en negativ inställning till teknik. Studenterna fick ta del av en teknikpedagogisk kurs med ett så kallat TPACK-baserat material vilket hjälpte dem att erhålla en ökad förståelse och ett bättre självförtroende. Plowman
102 betonar att barn som föds in i detta århundrade föds in i ett teknisk orienterat samhälle. Plowman
103 lyfter fram argumentet att teknik kan användas av förskollärarna och integrera tekniskundervisning redan för de yngre barnen för att skapa en förändring av inställningen till teknik.
104 Pedagogers erfarenhet och utbildning tycks ha stor betydelse för barnens uppfattningar om teknik. Hatice’s studieresultat visade på att en god

98 Stables (1997)
99 Ibid
100 Jarvis & Rennie (1998)
101 Hatice (2013)
102 Plowman, McPake & Stephen (2010)
103 Ibid
104 Ibid
teknisk utbildning kunde förändra studenternas uppfattning om teknik till positiva kunskaper och erfarenheter vilket ger ett intressant bidrag till lärarutbildning.

8.3. Tolkningsdiskussion

För att binda ihop resultaten från den pedagogiska analysen av läroplanstexten samt intervjustudien görs en jämförelse av vilket utrymme de olika teknikaspekterna har på formuleringsarenan respektive realiseringsarenan.

Staples menar att en lärare som bedriver teknikundervisning behöver ha goda ämneskunskaper, förmåga och självförtroende. Men det har visat sig att många lärare som undervisar teknik för elever i yngre åldrar saknar, den formella utbildning som är nödvändig för att kunna ge eleverna en bra utbildning.

Nedan presenteras ett stapeldiagram där en procentuell jämförelse görs av läroplanens och pedagogernas tekniktolkningar.

Diagram jämförelse 1: Lpfö98/10 – alla förskollärare i studien

En tolkning kan göras att pedagogernas och läroplanens tekniktolkning intar nästintill lika stort utrymme procentuellt vad gäller teknik som att göra aspekten. Teknik som artefakt-aspekten skiljer sig markant åt, då förskolārarna har nästan 26 procent av tekniktolkningar och läroplanen endast fem procent. Teknik som system-aspekt påvisar en viss skillnad då förskolārarnas

105 Hatice (2013)
106 Stables (1997)
Tekniktolkning utgör ca.19 procent och läroplanen ca.13 procent. Det som skiljer sig åt markant är teknik som den medborgliga aspekten där förskolärarnas tekniktolkningar utgör ca.19 procent och läroplanens ca.47 procent. Generellt kan sägas att förskolärarna tycks fokusera på artefakter och att göra aspekten. Teknik som en artefakt ges dock inte så stort utrymme i läroplanen men även tidigare forskning, exempelvis DeGironimo107, har visat att en typisk definition av teknik är just som en artefakt och att fokus ligger på att förklara funktionen. Teknik som att göra aspekten har ett större stöd i läroplanen även när det gäller kopplingen till naturvetenskap och det undersökande arbetssättet. Otydligheterna i det som uttolkats ur läroplanen vad det gäller teknik som den medborgliga aspekten kan vara en förklaring till att pedagogerna inte säger sig koppla teknik till sådana frågor. För att se teknik i större sammanhang, i större system, kopplat till etik och värderingar etc. krävs antagligen mer teknisk utbildning.

1. Vad framträder i formuleringsarenan gällande vad hur och varför när det gäller teknik i förskolan?
2. Vad framträder i realiseringsarenan gällande vad, hur och varför när det gäller teknik i förskolan?

Stapeldiagramet visa på en samstämmighet mellan formuleringsarenan och realiseringsarenan gällande hur man ska gå till väga där fokus ska ligga på att göra dvs. uppleva teknik med hela kroppen. En samstämmighet bland förskollärarna fanns också då samtliga betonade att det var genom vardags situationer teknikundervisningen skulle ske vilket också läroplanen förespråkar då den tar upp att verksamheten ska utgå ifrån barnens erfarenhetsvärd. Genom att barnen får leka och uttrycka sig i olika former skapar de sina egna små gemenskaper där de praktiserar det verkliga livet. I förskolan uppdrag ska barnen få komma i kontakt med samhällets gemensamma referensramar genom att de får leka sig till detta.

Den stora skillnaden ligger i varför teknikundervisningen ska ske. De flesta förskollärare i vår studie uttryckte att behovet av teknikundervisningen är en förutsättning i ett teknik orienterat samhälle och för att tekniken blivit tydligare framskiven i läroplanen. Läroplanen tolkas av pedagogerna och i läroplanen läggs betoningen på att individen ska klara av att hantera sin vardag nu och rustas för framtida behov. I vår tid kommer vi ofta i kontakt med teknik och det ställs allt större krav på oss i våra dagliga liv och i arbetet att vi har teknisk kunskap. Därför bör den teknik som finns omkring oss göras synlig och förståelig för människor, samhället och naturen då dagens samhällsfrågor och politisk avgörande innehåller många tekniska delar. Att barn redan i förskolan får möjlighet att utveckla sitt tekniska självförsörjande, kunskaper och färdigheter i teknik kan sammankopplas med det som framkommer i intentionen för förskolan som är en likvärdig förskola för alla. I ett alltmer globaliserat samhälle där kunskap om teknik är av största vikt för att kunna delta som samhällsmedborgare på lika villkor för alla. Dagens barn och elever bör få en så bra tekniskutbildning som möjligt där förskolan är det första mötet med skolväsendet. Intervjuerna med pedagogerna visar dock att de inte i så stor utsträckning ser

107 DeGironimo (2011)
tekniken relaterad till system, globala frågor, miljökonsekvenser etc. utan tekniken ses mer som byggande och kunskap om specifika saker.

108 Skolverket (2010) www.skolverket.se (14-01-03) s. 9, Mawson (2010)
9. Konklusion

9.1. Vidare forskning

- Tekniska system i förskolan med utgångspunkt i de didaktiska frågorna vad hur och varför?
- Samma studie men med könsperspektiv.
- Pedagogers uppfattning om inomhus miljöns betydelse för teknikbildningen hos barn med utgångspunkt i de didaktiska frågorna vad hur och varför?
- Pedagogernas syn om och hur teknik intrigeras i ett tematiska arbetssätt?
Referenslista

Bjurulf, Veronica. (2013). Teknikdidaktik i förskolan. Lund: Studentlitteratur AB s.15

Hatice Sancar, Tokmak 2013. Changing preschool teacher candidates´ perceptions about technology integration in a TPACK-based material design course. Förlag: Mersin University, Turkiет

Jarvis, T., & Rennie, L. (1998). Factors that influence children´s developing perceptions of

Elektroniskakällor:

 www.lararnasnyheter.se (2013-11-01)

Nationalencyklopedin:http://www.ne.se/teknik (2013-12-30)

Regeringen (2010) www.regeringen.se (13-12-30)

Vetenskapsrådet: http://www.vr.se (s.66-67), (2013-12-30)
Bilaga 1

Intervjufrågor

Tema 1 Bakgrundsfrågor
Hur gammal är du?
Hur länge har du arbetat på denna förskola?
Har du arbetat med någonting annat före ditt nuvarande arbete här på förskolan?

Undertema 1: Fritid
Vad har du för fritids intresse?
Har du något intresse av teknik på din fritid?

Tema 2 Pedagogernas kompetenser
Undertema 1 Utbildning och erfarenheter
När fick du din examen som förskollärare?
Hur lång var utbildningen?
Har du någon utbildning i teknik? Om nej, skulle du vilja ha det? Hur länge har du arbetat som förskollärare?

Tema 3 Teknik
Undertema 1 Pedagogens uppfattning av teknik
Vilka föreställningar har du av teknik?
Vad tänker du på när du hör ordet enkel teknik?
I vilka sammanhang använder du teknik på förskola/hemma?
Kan du nämna några saker som är teknik för dig?

Tema 4 Teknik i förskolan
Undertema 1 Verksamheten
Vilken åldergrupp arbetar du med?
Vilka situationer kommer ni i kontakt med teknik i förskolan?
Vill du berätta hur och vad ni gör?
Vad anser du om att arbeta med teknik på förskolan?
En intressant jämförelse med diagram 1 och 2 är att resultatet skiljer sig åt väsentligt om tekniktolkningarna från förskolärraren med teknikutbildning tas bort.